entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
pytorch_code
stringlengths
200
4.05k
ANN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/xk/cxkoqb3kxz2yd7scflge247h2s4tm7sn45x5eovbo5agxcenjofr.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_1 => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7z/c7zsuucunqdovb2xa6tywxjxwmolzjzdk72ratro7fi3qvgyqb7c.py # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_7 => sigmoid_3 # Graph fragment: # %sigmoid_3 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_7,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (20, 20), (20, 1)) assert_size_stride(primals_5, (20, ), (1, )) assert_size_stride(primals_6, (20, 20), (20, 1)) assert_size_stride(primals_7, (20, ), (1, )) assert_size_stride(primals_8, (1, 20), (20, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf1, primals_2, 1280, grid=grid(1280), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 20), (20, 1), 0), reinterpret_tensor(primals_4, (20, 20), (1, 20), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 20), (320, 80, 20, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_0.run(buf3, primals_5, 1280, grid=grid(1280), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 20), (20, 1), 0), reinterpret_tensor(primals_6, (20, 20), (1, 20), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 20), (320, 80, 20, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_0.run(buf5, primals_7, 1280, grid=grid(1280), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 20), (20, 1), 0), reinterpret_tensor(primals_8, (20, 1), (1, 20), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf7, primals_9, 64, grid=grid(64), stream=stream0) del primals_9 return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, buf7, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((20, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((20, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((20, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch from torch import nn class ANN(nn.Module): def __init__(self, args, name): super(ANN, self).__init__() self.name = name self.len = 0 self.loss = 0 self.fc1 = nn.Linear(args.input_dim, 20) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() self.dropout = nn.Dropout() self.fc2 = nn.Linear(20, 20) self.fc3 = nn.Linear(20, 20) self.fc4 = nn.Linear(20, 1) def forward(self, data): x = self.fc1(data) x = self.sigmoid(x) x = self.fc2(x) x = self.sigmoid(x) x = self.fc3(x) x = self.sigmoid(x) x = self.fc4(x) x = self.sigmoid(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'args': _mock_config(input_dim=4), 'name': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (20, 20), (20, 1)) assert_size_stride(primals_5, (20,), (1,)) assert_size_stride(primals_6, (20, 20), (20, 1)) assert_size_stride(primals_7, (20,), (1,)) assert_size_stride(primals_8, (1, 20), (20, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(1280)](buf1, primals_2, 1280, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 20), (20, 1), 0), reinterpret_tensor(primals_4, (20, 20), (1, 20), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 20), (320, 80, 20, 1), 0) del buf2 triton_poi_fused_sigmoid_0[grid(1280)](buf3, primals_5, 1280, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 20), (20, 1), 0), reinterpret_tensor(primals_6, (20, 20), (1, 20), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 20), (320, 80, 20, 1), 0) del buf4 triton_poi_fused_sigmoid_0[grid(1280)](buf5, primals_7, 1280, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 20), (20, 1), 0), reinterpret_tensor(primals_8, (20, 1), (1, 20), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf6 triton_poi_fused_sigmoid_1[grid(64)](buf7, primals_9, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, buf5, buf7, primals_8, primals_6, primals_4 class ANNNew(nn.Module): def __init__(self, args, name): super(ANNNew, self).__init__() self.name = name self.len = 0 self.loss = 0 self.fc1 = nn.Linear(args.input_dim, 20) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() self.dropout = nn.Dropout() self.fc2 = nn.Linear(20, 20) self.fc3 = nn.Linear(20, 20) self.fc4 = nn.Linear(20, 1) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
luoyang97/FedProx-PyTorch
ANN
false
7,133
[ "MIT" ]
1
b19263e22420251ad8c3a9701951a37b5c0a3569
https://github.com/luoyang97/FedProx-PyTorch/tree/b19263e22420251ad8c3a9701951a37b5c0a3569
from _paritybench_helpers import _mock_config import torch from torch import nn class Model(nn.Module): def __init__(self, args, name): super().__init__() self.name = name self.len = 0 self.loss = 0 self.fc1 = nn.Linear(args.input_dim, 20) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() self.dropout = nn.Dropout() self.fc2 = nn.Linear(20, 20) self.fc3 = nn.Linear(20, 20) self.fc4 = nn.Linear(20, 1) def forward(self, data): x = self.fc1(data) x = self.sigmoid(x) x = self.fc2(x) x = self.sigmoid(x) x = self.fc3(x) x = self.sigmoid(x) x = self.fc4(x) x = self.sigmoid(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Predict_Network1_combine
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/cy/ccy2s3bgoyu6vw3wuf772mifqyy4tokqrm5khaji772ruw2shslv.py # Topologically Sorted Source Nodes: [mean, std, sub, add, output, output_1, h], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.relu] # Source node to ATen node mapping: # add => add # h => relu # mean => mean # output => div # output_1 => add_1 # std => sqrt, var # sub => sub # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view_1, [-1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view_1, [-1]), kwargs = {correction: 1.0, keepdim: True}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %mean), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_4), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) triton_poi_fused_add_div_mean_relu_std_sub_0 = async_compile.triton('triton_poi_fused_add_div_mean_relu_std_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_relu_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_relu_std_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = 3.0 tmp23 = tmp21 / tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 1e-06 tmp26 = tmp24 + tmp25 tmp27 = tmp10 / tmp26 tmp29 = tmp27 + tmp28 tmp30 = tl.full([1], 0, tl.int32) tmp31 = triton_helpers.maximum(tmp30, tmp29) tl.store(out_ptr0 + (x0 + (8*x1)), tmp31, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/y7/cy7dwphppgpb4tjogyhecgnwlzbv37vngcsd2jy2ongmfasz4h2u.py # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # h_1 => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_5], -1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (8*x1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gm/cgmflgdlpeeb52xctoa47uvw47ycyf7ahlj5wdscxdatpbwcboco.py # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # h_2 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_6, (4, 8), (8, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf3 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (128, 32, 8, 1), 0) # alias # Topologically Sorted Source Nodes: [mean, std, sub, add, output, output_1, h], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mean_relu_std_sub_0.run(buf0, primals_4, buf1, 256, grid=grid(256), stream=stream0) buf2 = reinterpret_tensor(buf3, (4, 4, 4, 4), (128, 32, 8, 1), 4) # alias # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_5, buf2, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 8), (8, 1), 0), reinterpret_tensor(primals_6, (8, 4), (1, 8), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf7, 256, grid=grid(256), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_9 return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf3, (64, 8), (8, 1), 0), reinterpret_tensor(buf5, (64, 4), (4, 1), 0), primals_8, buf7, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim def weights_init_(m): if isinstance(m, nn.Linear): torch.nn.init.xavier_uniform_(m.weight, gain=1) torch.nn.init.constant_(m.bias, 0) class LayerNorm(nn.Module): """ Simple 1D LayerNorm. """ def __init__(self, features, center=True, scale=False, eps=1e-06): super().__init__() self.center = center self.scale = scale self.eps = eps if self.scale: self.scale_param = nn.Parameter(torch.ones(features)) else: self.scale_param = None if self.center: self.center_param = nn.Parameter(torch.zeros(features)) else: self.center_param = None def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) output = (x - mean) / (std + self.eps) if self.scale: output = output * self.scale_param if self.center: output = output + self.center_param return output class Predict_Network1_combine(nn.Module): def __init__(self, num_inputs, hidden_dim, num_outputs, n_agents, layer_norm=True, lr=0.001): super(Predict_Network1_combine, self).__init__() self.linear1 = nn.Linear(num_inputs, hidden_dim) self.linear2 = nn.Linear(hidden_dim + n_agents, hidden_dim) self.last_fc = nn.Linear(hidden_dim, num_outputs) self.layer_norm = layer_norm if layer_norm: self.ln1 = LayerNorm(hidden_dim) self.apply(weights_init_) self.lr = lr self.optimizer = optim.Adam(self.parameters(), lr=self.lr) def forward(self, input, add_id): if self.layer_norm: h = F.relu(self.ln1(self.linear1(input))) else: h = F.relu(self.linear1(input)) h = torch.cat([h, add_id], dim=-1) h = F.relu(self.linear2(h)) x = self.last_fc(h) return x def get_log_pi(self, own_variable, other_variable, add_id): predict_variable = self.forward(own_variable, add_id) log_prob = -1 * F.mse_loss(predict_variable, other_variable, reduction='none') log_prob = torch.sum(log_prob, -1, keepdim=True) return log_prob def update(self, own_variable, other_variable, add_id, mask): predict_variable = self.forward(own_variable, add_id) loss = F.mse_loss(predict_variable, other_variable, reduction='none') loss = loss.sum(dim=-1, keepdim=True) loss = (loss * mask).sum() / mask.sum() self.optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.parameters(), 1.0) self.optimizer.step() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_inputs': 4, 'hidden_dim': 4, 'num_outputs': 4, 'n_agents': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.nn.functional as F import torch.optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_div_mean_relu_std_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = 3.0 tmp23 = tmp21 / tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 1e-06 tmp26 = tmp24 + tmp25 tmp27 = tmp10 / tmp26 tmp29 = tmp27 + tmp28 tmp30 = tl.full([1], 0, tl.int32) tmp31 = triton_helpers.maximum(tmp30, tmp29) tl.store(out_ptr0 + (x0 + 8 * x1), tmp31, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 8 * x1), tmp0, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_6, (4, 8), (8, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf3 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (128, 32, 8, 1), 0) get_raw_stream(0) triton_poi_fused_add_div_mean_relu_std_sub_0[grid(256)](buf0, primals_4, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = reinterpret_tensor(buf3, (4, 4, 4, 4), (128, 32, 8, 1), 4) triton_poi_fused_cat_1[grid(256)](primals_5, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 8), (8, 1), 0), reinterpret_tensor(primals_6, (8, 4), (1, 8), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(256)](buf5, primals_7, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_9 return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(buf3, (64, 8), (8, 1), 0 ), reinterpret_tensor(buf5, (64, 4), (4, 1), 0 ), primals_8, buf7, primals_6 def weights_init_(m): if isinstance(m, nn.Linear): torch.nn.init.xavier_uniform_(m.weight, gain=1) torch.nn.init.constant_(m.bias, 0) class LayerNorm(nn.Module): """ Simple 1D LayerNorm. """ def __init__(self, features, center=True, scale=False, eps=1e-06): super().__init__() self.center = center self.scale = scale self.eps = eps if self.scale: self.scale_param = nn.Parameter(torch.ones(features)) else: self.scale_param = None if self.center: self.center_param = nn.Parameter(torch.zeros(features)) else: self.center_param = None def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) output = (x - mean) / (std + self.eps) if self.scale: output = output * self.scale_param if self.center: output = output + self.center_param return output class Predict_Network1_combineNew(nn.Module): def __init__(self, num_inputs, hidden_dim, num_outputs, n_agents, layer_norm=True, lr=0.001): super(Predict_Network1_combineNew, self).__init__() self.linear1 = nn.Linear(num_inputs, hidden_dim) self.linear2 = nn.Linear(hidden_dim + n_agents, hidden_dim) self.last_fc = nn.Linear(hidden_dim, num_outputs) self.layer_norm = layer_norm if layer_norm: self.ln1 = LayerNorm(hidden_dim) self.apply(weights_init_) self.lr = lr self.optimizer = optim.Adam(self.parameters(), lr=self.lr) def get_log_pi(self, own_variable, other_variable, add_id): predict_variable = self.forward(own_variable, add_id) log_prob = -1 * F.mse_loss(predict_variable, other_variable, reduction='none') log_prob = torch.sum(log_prob, -1, keepdim=True) return log_prob def update(self, own_variable, other_variable, add_id, mask): predict_variable = self.forward(own_variable, add_id) loss = F.mse_loss(predict_variable, other_variable, reduction='none') loss = loss.sum(dim=-1, keepdim=True) loss = (loss * mask).sum() / mask.sum() self.optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.parameters(), 1.0) self.optimizer.step() def forward(self, input_0, input_1): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_6 = self.linear2.weight primals_4 = self.linear2.bias primals_8 = self.last_fc.weight primals_7 = self.last_fc.bias primals_9 = self.ln1.center_param primals_3 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
ltzheng/CDS
Predict_Network1_combine
false
7,134
[ "Apache-2.0" ]
1
397282147498647a9f26577adfa451e8478de76d
https://github.com/ltzheng/CDS/tree/397282147498647a9f26577adfa451e8478de76d
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim def weights_init_(m): if isinstance(m, nn.Linear): torch.nn.init.xavier_uniform_(m.weight, gain=1) torch.nn.init.constant_(m.bias, 0) class LayerNorm(nn.Module): """ Simple 1D LayerNorm. """ def __init__(self, features, center=True, scale=False, eps=1e-06): super().__init__() self.center = center self.scale = scale self.eps = eps if self.scale: self.scale_param = nn.Parameter(torch.ones(features)) else: self.scale_param = None if self.center: self.center_param = nn.Parameter(torch.zeros(features)) else: self.center_param = None def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) output = (x - mean) / (std + self.eps) if self.scale: output = output * self.scale_param if self.center: output = output + self.center_param return output class Model(nn.Module): def __init__(self, num_inputs, hidden_dim, num_outputs, n_agents, layer_norm=True, lr=0.001): super().__init__() self.linear1 = nn.Linear(num_inputs, hidden_dim) self.linear2 = nn.Linear(hidden_dim + n_agents, hidden_dim) self.last_fc = nn.Linear(hidden_dim, num_outputs) self.layer_norm = layer_norm if layer_norm: self.ln1 = LayerNorm(hidden_dim) self.apply(weights_init_) self.lr = lr self.optimizer = optim.Adam(self.parameters(), lr=self.lr) def forward(self, input, add_id): if self.layer_norm: h = F.relu(self.ln1(self.linear1(input))) else: h = F.relu(self.linear1(input)) h = torch.cat([h, add_id], dim=-1) h = F.relu(self.linear2(h)) x = self.last_fc(h) return x def get_log_pi(self, own_variable, other_variable, add_id): predict_variable = self.forward(own_variable, add_id) log_prob = -1 * F.mse_loss(predict_variable, other_variable, reduction='none') log_prob = torch.sum(log_prob, -1, keepdim=True) return log_prob def update(self, own_variable, other_variable, add_id, mask): predict_variable = self.forward(own_variable, add_id) loss = F.mse_loss(predict_variable, other_variable, reduction='none') loss = loss.sum(dim=-1, keepdim=True) loss = (loss * mask).sum() / mask.sum() self.optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.parameters(), 1.0) self.optimizer.step() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_inputs': 4, 'hidden_dim': 4, 'num_outputs': 4, 'n_agents': 4}]
GeM
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/w7/cw76edgx2byvy63fwff7anzlambkufz45h3okmkxmcgppfib77jc.py # Topologically Sorted Source Nodes: [clamp, pow_1], Original ATen: [aten.clamp, aten.pow] # Source node to ATen node mapping: # clamp => clamp_min # pow_1 => pow_1 # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_1, 1e-06), kwargs = {}) # %pow_1 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%clamp_min, %primals_2), kwargs = {}) triton_poi_fused_clamp_pow_0 = async_compile.triton('triton_poi_fused_clamp_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_pow_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = 1e-06 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp5 = libdevice.pow(tmp2, tmp4) tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/bw/cbwgbppqaap3oywo4gn6wujtg6clpxlchs4m6kjxievrbuoqr6wh.py # Topologically Sorted Source Nodes: [avg_pool2d, truediv, pow_2], Original ATen: [aten.avg_pool2d, aten.reciprocal, aten.mul, aten.pow] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # pow_2 => pow_2 # truediv => mul, reciprocal # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%pow_1, [4, 4]), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%primals_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%avg_pool2d, %mul), kwargs = {}) triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1 = async_compile.triton('triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr1 + (0)) tmp34 = tl.broadcast_to(tmp33, [XBLOCK]) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp31 = 0.0625 tmp32 = tmp30 * tmp31 tmp35 = tl.full([1], 1, tl.int32) tmp36 = tmp35 / tmp34 tmp37 = 1.0 tmp38 = tmp36 * tmp37 tmp39 = libdevice.pow(tmp32, tmp38) tl.store(out_ptr0 + (x0), tmp32, xmask) tl.store(out_ptr1 + (x0), tmp39, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp, pow_1], Original ATen: [aten.clamp, aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_clamp_pow_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [avg_pool2d, truediv, pow_2], Original ATen: [aten.avg_pool2d, aten.reciprocal, aten.mul, aten.pow] triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1.run(buf0, primals_2, buf1, buf2, 16, grid=grid(16), stream=stream0) return (buf2, primals_1, primals_2, buf0, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F from torch.nn.parameter import Parameter class GeM(nn.Module): def __init__(self, p=3, eps=1e-06): super(GeM, self).__init__() self.p = Parameter(torch.ones(1) * p) self.eps = eps def forward(self, x): return F.avg_pool2d(x.clamp(min=self.eps).pow(self.p), (x.size(-2), x.size(-1))).pow(1.0 / self.p) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_pow_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = 1e-06 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp5 = libdevice.pow(tmp2, tmp4) tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp33 = tl.load(in_ptr1 + 0) tmp34 = tl.broadcast_to(tmp33, [XBLOCK]) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp31 = 0.0625 tmp32 = tmp30 * tmp31 tmp35 = tl.full([1], 1, tl.int32) tmp36 = tmp35 / tmp34 tmp37 = 1.0 tmp38 = tmp36 * tmp37 tmp39 = libdevice.pow(tmp32, tmp38) tl.store(out_ptr0 + x0, tmp32, xmask) tl.store(out_ptr1 + x0, tmp39, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_pow_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1[grid(16)](buf0, primals_2, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf2, primals_1, primals_2, buf0, buf1, buf2 class GeMNew(nn.Module): def __init__(self, p=3, eps=1e-06): super(GeMNew, self).__init__() self.p = Parameter(torch.ones(1) * p) self.eps = eps def forward(self, input_0): primals_2 = self.p primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
lulor/project_vg
GeM
false
7,135
[ "MIT" ]
1
27b0c3b3038c5a666dde516a0a265ae8ddf2059f
https://github.com/lulor/project_vg/tree/27b0c3b3038c5a666dde516a0a265ae8ddf2059f
import torch from torch import nn import torch.nn.functional as F from torch.nn.parameter import Parameter class Model(nn.Module): def __init__(self, p=3, eps=1e-06): super().__init__() self.p = Parameter(torch.ones(1) * p) self.eps = eps def forward(self, x): return F.avg_pool2d(x.clamp(min=self.eps).pow(self.p), (x.size(-2), x.size(-1))).pow(1.0 / self.p) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SEModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean] # Source node to ATen node mapping: # x => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ad/cadccuyhl7stcp3nyqfgohiwbiv5ckfzxsye27ithwsill6dvmh4.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_1 => convolution # x_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hc/chcuw27vv75itefu6xswbdhopf2pq6oaj4bww4whelczhqtkghqr.py # Topologically Sorted Source Nodes: [x_3, add, relu6, x_4, mul], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # relu6 => clamp_max, clamp_min # x_3 => convolution_1 # x_4 => div # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, 3.0), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %div), kwargs = {}) triton_poi_fused_add_convolution_div_hardtanh_mul_2 = async_compile.triton('triton_poi_fused_add_convolution_div_hardtanh_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_hardtanh_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_div_hardtanh_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = (xindex // 16) x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 3.0 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 6.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tmp10 = 0.16666666666666666 tmp11 = tmp9 * tmp10 tmp12 = tmp0 * tmp11 tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/rh/crhdgkbcu2rbqzaxws3536qfrpjhmp6d6zhyebzqejxvceodywdi.py # Topologically Sorted Source Nodes: [x_3, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward] # Source node to ATen node mapping: # add => add # x_3 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, 3.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%add, 0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add, 6), kwargs = {}) # %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le, %ge), kwargs = {}) triton_poi_fused_add_convolution_hardtanh_backward_3 = async_compile.triton('triton_poi_fused_add_convolution_hardtanh_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_hardtanh_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_hardtanh_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 3.0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp7 = 6.0 tmp8 = tmp4 >= tmp7 tmp9 = tmp6 | tmp8 tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, ), (1, )) assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_3, 4, grid=grid(4), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3, add, relu6, x_4, mul], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul] triton_poi_fused_add_convolution_div_hardtanh_mul_2.run(primals_1, buf4, primals_5, buf5, 256, grid=grid(256), stream=stream0) buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward] triton_poi_fused_add_convolution_hardtanh_backward_3.run(buf4, primals_5, buf6, 16, grid=grid(16), stream=stream0) del buf4 del primals_5 return (buf5, primals_1, primals_2, primals_4, buf1, buf3, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torchvision.transforms import functional as F import torch.utils.data from torch import nn import torch.nn.functional as F class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): return F.relu6(x + 3.0, inplace=self.inplace) / 6.0 class SEModule(nn.Module): def __init__(self, channel, reduction=4): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(channel, channel // reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channel // reduction, channel, kernel_size=1, padding=0) self.hsigmoid = Hsigmoid() def forward(self, x): input = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.hsigmoid(x) return input * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torchvision.transforms import functional as F import torch.utils.data from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_add_convolution_div_hardtanh_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex // 16 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 3.0 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 6.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tmp10 = 0.16666666666666666 tmp11 = tmp9 * tmp10 tmp12 = tmp0 * tmp11 tl.store(out_ptr0 + x3, tmp12, xmask) @triton.jit def triton_poi_fused_add_convolution_hardtanh_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 3.0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp7 = 6.0 tmp8 = tmp4 >= tmp7 tmp9 = tmp6 | tmp8 tl.store(out_ptr0 + x2, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1,), (1,)) assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(4)](buf3, primals_3, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_convolution_div_hardtanh_mul_2[grid(256)]( primals_1, buf4, primals_5, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) triton_poi_fused_add_convolution_hardtanh_backward_3[grid(16)](buf4, primals_5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf4 del primals_5 return buf5, primals_1, primals_2, primals_4, buf1, buf3, buf6 class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): return F.relu6(x + 3.0, inplace=self.inplace) / 6.0 class SEModuleNew(nn.Module): def __init__(self, channel, reduction=4): super(SEModuleNew, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(channel, channel // reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channel // reduction, channel, kernel_size=1, padding=0) self.hsigmoid = Hsigmoid() def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
ljjyxz123/CenterMask
SEModule
false
7,136
[ "BSD-2-Clause" ]
1
443eebde30e209eeb3b953f7ef35d3f7f14aaca5
https://github.com/ljjyxz123/CenterMask/tree/443eebde30e209eeb3b953f7ef35d3f7f14aaca5
import torch from torchvision.transforms import functional as F import torch.utils.data from torch import nn import torch.nn.functional as F class Hsigmoid(nn.Module): def __init__(self, inplace=True): super().__init__() self.inplace = inplace def forward(self, x): return F.relu6(x + 3.0, inplace=self.inplace) / 6.0 class Model(nn.Module): def __init__(self, channel, reduction=4): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(channel, channel // reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channel // reduction, channel, kernel_size=1, padding=0) self.hsigmoid = Hsigmoid() def forward(self, x): input = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.hsigmoid(x) return input * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Conv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ud/cudtupp4xbsxvl5czwt3p2pj3cknjnhtp6x45zymsucnyg3xzdnf.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1, 1], [4, 4], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/r6/cr6dadrhpyxhbvayrqsgg5jsar4ckn6ku5xyq7mu3ehavjpdivjo.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1, 1], [4, 4], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_2, buf0, 16, 16, grid=grid(16, 16), stream=stream0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf0, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 9, 9), (324, 1, 36, 4)) del buf0 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 1296, grid=grid(1296), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 9, 9, 4), (324, 36, 4, 1), 0), primals_2, reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils class Conv2d(nn.Module): def __init__(self, C_in, C_out, kernel_size, padding): super(Conv2d, self).__init__() self.conv = nn.Conv2d(C_in, C_out, kernel_size=kernel_size, stride= 1, padding=padding) def forward(self, x): return self.conv(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'C_in': 4, 'C_out': 4, 'kernel_size': 4, 'padding': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 16)](primals_2, buf0, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf0, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 9, 9), (324, 1, 36, 4)) del buf0 buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(1296)](buf2, primals_3, 1296, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 9, 9, 4), (324, 36, 4, 1), 0 ), primals_2, reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0) class Conv2dNew(nn.Module): def __init__(self, C_in, C_out, kernel_size, padding): super(Conv2dNew, self).__init__() self.conv = nn.Conv2d(C_in, C_out, kernel_size=kernel_size, stride= 1, padding=padding) def forward(self, input_0): primals_1 = self.conv.weight primals_3 = self.conv.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
lorylei/DARTS-et
Conv2d
false
7,137
[ "Apache-2.0" ]
1
f22cfd53c14afd6ba602b8ecfbff9cdf77fc2ff8
https://github.com/lorylei/DARTS-et/tree/f22cfd53c14afd6ba602b8ecfbff9cdf77fc2ff8
import torch import torch.nn as nn import torch.utils class Model(nn.Module): def __init__(self, C_in, C_out, kernel_size, padding): super().__init__() self.conv = nn.Conv2d(C_in, C_out, kernel_size=kernel_size, stride= 1, padding=padding) def forward(self, x): return self.conv(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4, 4]
GeneralizedMeanPooling
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/jo/cjokg6rcdy3skvr2km4dzpdafioonte45gjnhuttcbrzjku4p4ly.py # Topologically Sorted Source Nodes: [clamp, x, adaptive_avg_pool2d, pow_2], Original ATen: [aten.clamp, aten.pow, aten.mean] # Source node to ATen node mapping: # adaptive_avg_pool2d => mean # clamp => clamp_min # pow_2 => pow_2 # x => pow_1 # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 1e-06), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min, 3.0), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1, -2], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mean, 0.3333333333333333), kwargs = {}) triton_per_fused_clamp_mean_pow_0 = async_compile.triton('triton_per_fused_clamp_mean_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_clamp_mean_pow_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_clamp_mean_pow_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = 1e-06 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = tmp2 * tmp2 tmp4 = tmp3 * tmp2 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.where(xmask, tmp5, 0) tmp8 = tl.sum(tmp7, 1)[:, None] tmp9 = 16.0 tmp10 = tmp8 / tmp9 tmp11 = 0.3333333333333333 tmp12 = libdevice.pow(tmp10, tmp11) tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [clamp, x, adaptive_avg_pool2d, pow_2], Original ATen: [aten.clamp, aten.pow, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_clamp_mean_pow_0.run(buf1, arg0_1, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.optim.lr_scheduler import * from torch.optim import * class GeneralizedMeanPooling(nn.Module): """Applies a 2D power-average adaptive pooling over an input signal composed of several input planes. The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)` - At p = infinity, one gets Max Pooling - At p = 1, one gets Average Pooling The output is of size H x W, for any input size. The number of output features is equal to the number of input planes. Args: output_size: the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H H and W can be either a ``int``, or ``None`` which means the size will be the same as that of the input. """ def __init__(self, norm=3, output_size=1, eps=1e-06): super(GeneralizedMeanPooling, self).__init__() assert norm > 0 self.p = float(norm) self.output_size = output_size self.eps = eps def forward(self, x): x = x.clamp(min=self.eps).pow(self.p) return torch.nn.functional.adaptive_avg_pool2d(x, self.output_size ).pow(1.0 / self.p) def __repr__(self): return self.__class__.__name__ + '(' + str(self.p ) + ', ' + 'output_size=' + str(self.output_size) + ')' def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from torch.optim.lr_scheduler import * from torch.optim import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_clamp_mean_pow_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = 1e-06 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = tmp2 * tmp2 tmp4 = tmp3 * tmp2 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.where(xmask, tmp5, 0) tmp8 = tl.sum(tmp7, 1)[:, None] tmp9 = 16.0 tmp10 = tmp8 / tmp9 tmp11 = 0.3333333333333333 tmp12 = libdevice.pow(tmp10, tmp11) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp12, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_clamp_mean_pow_0[grid(16)](buf1, arg0_1, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del arg0_1 return buf1, class GeneralizedMeanPoolingNew(nn.Module): """Applies a 2D power-average adaptive pooling over an input signal composed of several input planes. The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)` - At p = infinity, one gets Max Pooling - At p = 1, one gets Average Pooling The output is of size H x W, for any input size. The number of output features is equal to the number of input planes. Args: output_size: the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H H and W can be either a ``int``, or ``None`` which means the size will be the same as that of the input. """ def __init__(self, norm=3, output_size=1, eps=1e-06): super(GeneralizedMeanPoolingNew, self).__init__() assert norm > 0 self.p = float(norm) self.output_size = output_size self.eps = eps def __repr__(self): return self.__class__.__name__ + '(' + str(self.p ) + ', ' + 'output_size=' + str(self.output_size) + ')' def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
lxc86739795/fast-reid
GeneralizedMeanPooling
false
7,138
[ "Apache-2.0" ]
1
29178d70c591ef64021f10767eb606f3053156b9
https://github.com/lxc86739795/fast-reid/tree/29178d70c591ef64021f10767eb606f3053156b9
import torch from torch import nn from torch.optim.lr_scheduler import * from torch.optim import * class Model(nn.Module): """Applies a 2D power-average adaptive pooling over an input signal composed of several input planes. The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)` - At p = infinity, one gets Max Pooling - At p = 1, one gets Average Pooling The output is of size H x W, for any input size. The number of output features is equal to the number of input planes. Args: output_size: the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H H and W can be either a ``int``, or ``None`` which means the size will be the same as that of the input. """ def __init__(self, norm=3, output_size=1, eps=1e-06): super().__init__() assert norm > 0 self.p = float(norm) self.output_size = output_size self.eps = eps def forward(self, x): x = x.clamp(min=self.eps).pow(self.p) return torch.nn.functional.adaptive_avg_pool2d(x, self.output_size ).pow(1.0 / self.p) def __repr__(self): return self.__class__.__name__ + '(' + str(self.p ) + ', ' + 'output_size=' + str(self.output_size) + ')' def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
net2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/fp/cfp5jrxxyxrvhcpoq5tio3p5tkhj5ugdrpyur3x4v6meatzih7jn.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/f4/cf435ljkvsbmsfqmb2jfkuq4aor2tpycnclm7llj5efimpnzxiwz.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/j3/cj3tcccv2au6fwrk7zrqv6aadd7rde25xioifxhrg3rnq277xw2z.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/mv/cmvvxenutty4sz3eynxns45xagw56ec2ufreiud5s5acbv345vt5.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gb/cgbyyfi5lll3xaoryj23lises4aplhm5a4rcgchfqja6bfmq4vbx.py # Topologically Sorted Source Nodes: [conv2d_3, x_3, x_4], Original ATen: [aten.convolution, aten.relu, aten._log_softmax, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x_3 => relu_3 # x_4 => amax, sub # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%relu_3, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_3, %amax), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused__log_softmax_convolution_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused__log_softmax_convolution_relu_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_convolution_relu_threshold_backward_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_convolution_relu_threshold_backward_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 x1 = (xindex // 2) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp10 = tl.load(in_ptr0 + (1 + (2*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (1)) tmp12 = tl.broadcast_to(tmp11, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp8 = tmp5 + tmp7 tmp9 = triton_helpers.maximum(tmp3, tmp8) tmp13 = tmp10 + tmp12 tmp14 = triton_helpers.maximum(tmp3, tmp13) tmp15 = triton_helpers.maximum(tmp9, tmp14) tmp16 = tmp4 - tmp15 tmp17 = 0.0 tmp18 = tmp4 <= tmp17 tl.store(out_ptr0 + (x2), tmp16, xmask) tl.store(out_ptr1 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/f6/cf62mfpqwv5pcofy3ro6w6ycq3f2iwdol4c5h7ameyvaum2rwiui.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # x_4 => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_5 = async_compile.triton('triton_poi_fused__log_softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 2 y1 = (yindex // 2) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (2*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + ((2*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (2*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp6 = tl_math.log(tmp5) tmp7 = tmp0 - tmp6 tl.store(out_ptr0 + (x2 + (16*y3)), tmp7, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (64, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (2, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_9, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 64, 4, 4), (1024, 1, 256, 64)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_2, 4096, grid=grid(4096), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf4, primals_5, 16384, grid=grid(16384), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 128, 4, 4), (2048, 1, 512, 128)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf6, primals_7, 8192, grid=grid(8192), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 2, 4, 4), (32, 1, 8, 2)) buf8 = empty_strided_cuda((4, 2, 4, 4), (32, 1, 8, 2), torch.float32) buf10 = empty_strided_cuda((4, 2, 4, 4), (32, 1, 8, 2), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, x_3, x_4], Original ATen: [aten.convolution, aten.relu, aten._log_softmax, aten.threshold_backward] triton_poi_fused__log_softmax_convolution_relu_threshold_backward_4.run(buf7, primals_9, buf8, buf10, 128, grid=grid(128), stream=stream0) del primals_9 buf9 = reinterpret_tensor(buf7, (4, 2, 4, 4), (32, 16, 4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_5.run(buf8, buf9, 8, 16, grid=grid(8, 16), stream=stream0) del buf8 return (buf9, primals_1, buf0, primals_4, primals_6, primals_8, buf2, buf4, buf6, buf9, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((2, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class net2(nn.Module): """ """ def __init__(self, n_classes=2): super(net2, self).__init__() if torch.cuda.is_available(): torch.device('cuda') else: torch.device('cpu') self.n_classes = n_classes self.conv1 = nn.Conv2d(4, 64, 1) self.conv2 = nn.Conv2d(64, 256, 1) self.conv3 = nn.Conv2d(256, 128, 1) self.conv4 = nn.Conv2d(128, self.n_classes, 1) self.logsoftmax = nn.LogSoftmax(dim=1) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = self.logsoftmax(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused__log_softmax_convolution_relu_threshold_backward_4(in_ptr0 , in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 x1 = xindex // 2 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp10 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last' ) tmp11 = tl.load(in_ptr1 + 1) tmp12 = tl.broadcast_to(tmp11, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp8 = tmp5 + tmp7 tmp9 = triton_helpers.maximum(tmp3, tmp8) tmp13 = tmp10 + tmp12 tmp14 = triton_helpers.maximum(tmp3, tmp13) tmp15 = triton_helpers.maximum(tmp9, tmp14) tmp16 = tmp4 - tmp15 tmp17 = 0.0 tmp18 = tmp4 <= tmp17 tl.store(out_ptr0 + x2, tmp16, xmask) tl.store(out_ptr1 + x2, tmp18, xmask) @triton.jit def triton_poi_fused__log_softmax_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 8 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 2 y1 = yindex // 2 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 2 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (2 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 2 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp6 = tl_math.log(tmp5) tmp7 = tmp0 - tmp6 tl.store(out_ptr0 + (x2 + 16 * y3), tmp7, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (64, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (2, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_9, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 16)](primals_3, buf0, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 64, 4, 4), (1024, 1, 256, 64)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(4096)](buf2, primals_2, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf4 = buf3 del buf3 triton_poi_fused_convolution_relu_2[grid(16384)](buf4, primals_5, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 128, 4, 4), (2048, 1, 512, 128)) buf6 = buf5 del buf5 triton_poi_fused_convolution_relu_3[grid(8192)](buf6, primals_7, 8192, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf7 = extern_kernels.convolution(buf6, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 2, 4, 4), (32, 1, 8, 2)) buf8 = empty_strided_cuda((4, 2, 4, 4), (32, 1, 8, 2), torch.float32) buf10 = empty_strided_cuda((4, 2, 4, 4), (32, 1, 8, 2), torch.bool) triton_poi_fused__log_softmax_convolution_relu_threshold_backward_4[ grid(128)](buf7, primals_9, buf8, buf10, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf9 = reinterpret_tensor(buf7, (4, 2, 4, 4), (32, 16, 4, 1), 0) del buf7 triton_poi_fused__log_softmax_5[grid(8, 16)](buf8, buf9, 8, 16, XBLOCK=16, YBLOCK=8, num_warps=4, num_stages=1) del buf8 return (buf9, primals_1, buf0, primals_4, primals_6, primals_8, buf2, buf4, buf6, buf9, buf10) class net2New(nn.Module): """ """ def __init__(self, n_classes=2): super(net2New, self).__init__() if torch.cuda.is_available(): torch.device('cuda') else: torch.device('cpu') self.n_classes = n_classes self.conv1 = nn.Conv2d(4, 64, 1) self.conv2 = nn.Conv2d(64, 256, 1) self.conv3 = nn.Conv2d(256, 128, 1) self.conv4 = nn.Conv2d(128, self.n_classes, 1) self.logsoftmax = nn.LogSoftmax(dim=1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
luisesanmartin/dwelling-recognition
net2
false
7,139
[ "MIT" ]
1
b2437b64088a26746947c1c88077c96332e7b9c6
https://github.com/luisesanmartin/dwelling-recognition/tree/b2437b64088a26746947c1c88077c96332e7b9c6
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ """ def __init__(self, n_classes=2): super().__init__() if torch.cuda.is_available(): torch.device('cuda') else: torch.device('cpu') self.n_classes = n_classes self.conv1 = nn.Conv2d(4, 64, 1) self.conv2 = nn.Conv2d(64, 256, 1) self.conv3 = nn.Conv2d(256, 128, 1) self.conv4 = nn.Conv2d(128, self.n_classes, 1) self.logsoftmax = nn.LogSoftmax(dim=1) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = self.logsoftmax(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
LSTM
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] # Source node to ATen node mapping: # combined => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/bf/cbf5h5s73n3ugovaw7yqfdle2h2bfbw3r52thdqgaloet277mdg6.py # Topologically Sorted Source Nodes: [f_gate, cell_sub, mul, mul_1, cell, tanh_1, hidden], Original ATen: [aten.sigmoid, aten.tanh, aten.mul, aten.add] # Source node to ATen node mapping: # cell => add # cell_sub => tanh # f_gate => sigmoid # hidden => mul_2 # mul => mul # mul_1 => mul_1 # tanh_1 => tanh_1 # Graph fragment: # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%addmm,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %sigmoid), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %tanh_1 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh_1, %sigmoid), kwargs = {}) triton_poi_fused_add_mul_sigmoid_tanh_1 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp4 = libdevice.tanh(tmp1) tmp5 = tmp4 * tmp2 tmp6 = tmp3 + tmp5 tmp7 = libdevice.tanh(tmp6) tmp8 = tmp7 * tmp2 tl.store(out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr1 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/b7/cb7iq44xucvx4o4uio3etz5hrrkllxx5igr3vjyglpwcku6mi232.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # output => sigmoid_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {}) # %sigmoid_3 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (2, 8), (8, 1)) assert_size_stride(primals_4, (2, ), (1, )) assert_size_stride(primals_5, (4, 2), (2, 1)) assert_size_stride(primals_6, (1, 2), (2, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 2), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32) buf3 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [f_gate, cell_sub, mul, mul_1, cell, tanh_1, hidden], Original ATen: [aten.sigmoid, aten.tanh, aten.mul, aten.add] triton_poi_fused_add_mul_sigmoid_tanh_1.run(primals_5, buf1, buf2, buf3, 8, grid=grid(8), stream=stream0) buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (2, 1), (1, 2), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_2.run(buf5, primals_7, 4, grid=grid(4), stream=stream0) del primals_7 return (buf5, buf3, buf2, primals_5, buf0, buf1, buf2, buf3, buf5, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn import torch.optim import torch.nn as nn from torch.autograd import Variable class LSTM(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, cell_size=2): super(LSTM, self).__init__() self.hidden_size = hidden_size self.cell_size = cell_size self.gate = nn.Linear(input_size + hidden_size, cell_size) self.output = nn.Linear(cell_size, output_size) self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() self.softmax = nn.LogSoftmax() def forward(self, input, hidden, cell): combined = torch.cat((input, hidden), 1) f_gate = self.sigmoid(self.gate(combined)) i_gate = self.sigmoid(self.gate(combined)) o_gate = self.sigmoid(self.gate(combined)) cell_sub = self.tanh(self.gate(combined)) cell = torch.add(torch.mul(cell, f_gate), torch.mul(cell_sub, i_gate)) hidden = torch.mul(self.tanh(cell), o_gate) output = self.sigmoid(self.output(hidden)) return output, hidden, cell def initHidden(self, dim_num): return Variable(torch.zeros(dim_num, self.hidden_size)) def initCell(self, dim_num): return Variable(torch.zeros(dim_num, self.cell_size)) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 2])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn import torch.optim import torch.nn as nn from torch.autograd import Variable assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp4 = libdevice.tanh(tmp1) tmp5 = tmp4 * tmp2 tmp6 = tmp3 + tmp5 tmp7 = libdevice.tanh(tmp6) tmp8 = tmp7 * tmp2 tl.store(out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr1 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (2, 8), (8, 1)) assert_size_stride(primals_4, (2,), (1,)) assert_size_stride(primals_5, (4, 2), (2, 1)) assert_size_stride(primals_6, (1, 2), (2, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 2), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32) buf3 = empty_strided_cuda((4, 2), (2, 1), torch.float32) triton_poi_fused_add_mul_sigmoid_tanh_1[grid(8)](primals_5, buf1, buf2, buf3, 8, XBLOCK=8, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (2, 1), (1, 2 ), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_sigmoid_2[grid(4)](buf5, primals_7, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_7 return buf5, buf3, buf2, primals_5, buf0, buf1, buf2, buf3, buf5, primals_6 class LSTMNew(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, cell_size=2): super(LSTMNew, self).__init__() self.hidden_size = hidden_size self.cell_size = cell_size self.gate = nn.Linear(input_size + hidden_size, cell_size) self.output = nn.Linear(cell_size, output_size) self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() self.softmax = nn.LogSoftmax() def initHidden(self, dim_num): return Variable(torch.zeros(dim_num, self.hidden_size)) def initCell(self, dim_num): return Variable(torch.zeros(dim_num, self.cell_size)) def forward(self, input_0, input_1, input_2): primals_3 = self.gate.weight primals_4 = self.gate.bias primals_6 = self.output.weight primals_7 = self.output.bias primals_1 = input_0 primals_2 = input_1 primals_5 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0], output[1], output[2]
lwaekfjlk/Light-the-Torch
LSTM
false
7,140
[ "MIT" ]
1
eed1df3d28016aee86385959b5e94e2108ee0571
https://github.com/lwaekfjlk/Light-the-Torch/tree/eed1df3d28016aee86385959b5e94e2108ee0571
import torch import torch.utils.data import torch.nn import torch.optim import torch.nn as nn from torch.autograd import Variable class Model(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, cell_size=2): super().__init__() self.hidden_size = hidden_size self.cell_size = cell_size self.gate = nn.Linear(input_size + hidden_size, cell_size) self.output = nn.Linear(cell_size, output_size) self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() self.softmax = nn.LogSoftmax() def forward(self, input, hidden, cell): combined = torch.cat((input, hidden), 1) f_gate = self.sigmoid(self.gate(combined)) i_gate = self.sigmoid(self.gate(combined)) o_gate = self.sigmoid(self.gate(combined)) cell_sub = self.tanh(self.gate(combined)) cell = torch.add(torch.mul(cell, f_gate), torch.mul(cell_sub, i_gate)) hidden = torch.mul(self.tanh(cell), o_gate) output = self.sigmoid(self.output(hidden)) return output, hidden, cell def initHidden(self, dim_num): return Variable(torch.zeros(dim_num, self.hidden_size)) def initCell(self, dim_num): return Variable(torch.zeros(dim_num, self.cell_size)) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 2])] def get_init_inputs(): return [4, 4]
Attloss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/af/caf6j66yckvq7w2p5nlwms3itxkh7ciedjybplrzlphkhgszee2a.py # Topologically Sorted Source Nodes: [sub_1, pow_2, loss_att_1, loss_att_2, mul_1], Original ATen: [aten.sub, aten.pow, aten.mean, aten.clamp, aten.mul] # Source node to ATen node mapping: # loss_att_1 => mean_1 # loss_att_2 => clamp_max # mul_1 => mul_1 # pow_2 => pow_2 # sub_1 => sub_1 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg2_1), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%mean_1, 30), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 10), kwargs = {}) triton_per_fused_clamp_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused_clamp_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_clamp_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_clamp_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = 30.0 tmp10 = triton_helpers.minimum(tmp8, tmp9) tmp11 = 10.0 tmp12 = tmp10 * tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp12, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub_1, pow_2, loss_att_1, loss_att_2, mul_1], Original ATen: [aten.sub, aten.pow, aten.mean, aten.clamp, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_clamp_mean_mul_pow_sub_0.run(buf1, arg1_1, arg2_1, 1, 256, grid=grid(1), stream=stream0) del arg1_1 del arg2_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional class Attloss(nn.Module): def __init__(self): super(Attloss, self).__init__() self.bce = nn.BCEWithLogitsLoss() def forward(self, x_org, y_mask, att): loss_att = ((x_org * y_mask[:, 1, ...].unsqueeze(dim=1) - att) ** 2 ).mean() loss_att = ((x_org - att) ** 2).mean() loss_att = torch.clamp(loss_att, max=30) return 10 * loss_att def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_clamp_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = 30.0 tmp10 = triton_helpers.minimum(tmp8, tmp9) tmp11 = 10.0 tmp12 = tmp10 * tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_clamp_mean_mul_pow_sub_0[grid(1)](buf1, arg1_1, arg2_1, 1, 256, num_warps=2, num_stages=1) del arg1_1 del arg2_1 return buf1, class AttlossNew(nn.Module): def __init__(self): super(AttlossNew, self).__init__() self.bce = nn.BCEWithLogitsLoss() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
lvxiuwang/ferattention
Attloss
false
7,141
[ "MIT" ]
1
02e97df4a12129ed6706bddf0d2109650eae8765
https://github.com/lvxiuwang/ferattention/tree/02e97df4a12129ed6706bddf0d2109650eae8765
import torch import torch.nn as nn import torch.nn.functional class Model(nn.Module): def __init__(self): super().__init__() self.bce = nn.BCEWithLogitsLoss() def forward(self, x_org, y_mask, att): loss_att = ((x_org * y_mask[:, 1, ...].unsqueeze(dim=1) - att) ** 2 ).mean() loss_att = ((x_org - att) ** 2).mean() loss_att = torch.clamp(loss_att, max=30) return 10 * loss_att def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
SOSLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/l7/cl7r5hd5kpfmxo3gnbc4qcrsuttbgppzbejaxa4raarshdtjz4qc.py # Topologically Sorted Source Nodes: [sub, pow_1, dist_an, sub_1, pow_2, dist_pn, sub_2, pow_3, sum_3, pow_4, truediv], Original ATen: [aten.sub, aten.pow, aten.sum, aten.div] # Source node to ATen node mapping: # dist_an => sum_1 # dist_pn => sum_2 # pow_1 => pow_1 # pow_2 => pow_2 # pow_3 => pow_3 # pow_4 => pow_4 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sum_3 => sum_3 # truediv => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg2_1, %arg1_1), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [1]), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_3,), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_4, 4), kwargs = {}) triton_per_fused_div_pow_sub_sum_0 = async_compile.triton('triton_per_fused_div_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) r2 = rindex tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp4 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp5 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp9 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp10 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp14 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp15 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp19 = tl.load(in_ptr2 + (r0 + (64*r1)), None) tmp22 = tl.load(in_ptr2 + (16 + r0 + (64*r1)), None) tmp26 = tl.load(in_ptr2 + (32 + r0 + (64*r1)), None) tmp30 = tl.load(in_ptr2 + (48 + r0 + (64*r1)), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp20 = tmp19 - tmp1 tmp21 = tmp20 * tmp20 tmp23 = tmp22 - tmp5 tmp24 = tmp23 * tmp23 tmp25 = tmp21 + tmp24 tmp27 = tmp26 - tmp10 tmp28 = tmp27 * tmp27 tmp29 = tmp25 + tmp28 tmp31 = tmp30 - tmp15 tmp32 = tmp31 * tmp31 tmp33 = tmp29 + tmp32 tmp34 = tmp18 - tmp33 tmp35 = tmp34 * tmp34 tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK]) tmp38 = tl.sum(tmp36, 1)[:, None] tmp39 = libdevice.sqrt(tmp38) tmp40 = 0.25 tmp41 = tmp39 * tmp40 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp41, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [sub, pow_1, dist_an, sub_1, pow_2, dist_pn, sub_2, pow_3, sum_3, pow_4, truediv], Original ATen: [aten.sub, aten.pow, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_per_fused_div_pow_sub_sum_0.run(buf2, arg0_1, arg1_1, arg2_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class SOSLoss(nn.Module): def __init__(self): super().__init__() def forward(self, anchors, positives, negatives): dist_an = torch.sum(torch.pow(anchors - negatives, 2), dim=1) dist_pn = torch.sum(torch.pow(positives - negatives, 2), dim=1) nq = anchors.size(dim=0) return torch.sum(torch.pow(dist_an - dist_pn, 2)) ** 0.5 / nq def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp4 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp5 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp9 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp10 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp14 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp15 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp19 = tl.load(in_ptr2 + (r0 + 64 * r1), None) tmp22 = tl.load(in_ptr2 + (16 + r0 + 64 * r1), None) tmp26 = tl.load(in_ptr2 + (32 + r0 + 64 * r1), None) tmp30 = tl.load(in_ptr2 + (48 + r0 + 64 * r1), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp20 = tmp19 - tmp1 tmp21 = tmp20 * tmp20 tmp23 = tmp22 - tmp5 tmp24 = tmp23 * tmp23 tmp25 = tmp21 + tmp24 tmp27 = tmp26 - tmp10 tmp28 = tmp27 * tmp27 tmp29 = tmp25 + tmp28 tmp31 = tmp30 - tmp15 tmp32 = tmp31 * tmp31 tmp33 = tmp29 + tmp32 tmp34 = tmp18 - tmp33 tmp35 = tmp34 * tmp34 tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK]) tmp38 = tl.sum(tmp36, 1)[:, None] tmp39 = libdevice.sqrt(tmp38) tmp40 = 0.25 tmp41 = tmp39 * tmp40 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp41, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_div_pow_sub_sum_0[grid(1)](buf2, arg0_1, arg1_1, arg2_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class SOSLossNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
lulor/project_vg
SOSLoss
false
7,142
[ "MIT" ]
1
27b0c3b3038c5a666dde516a0a265ae8ddf2059f
https://github.com/lulor/project_vg/tree/27b0c3b3038c5a666dde516a0a265ae8ddf2059f
import torch from torch import nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, anchors, positives, negatives): dist_an = torch.sum(torch.pow(anchors - negatives, 2), dim=1) dist_pn = torch.sum(torch.pow(positives - negatives, 2), dim=1) nq = anchors.size(dim=0) return torch.sum(torch.pow(dist_an - dist_pn, 2)) ** 0.5 / nq def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
AttentionLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ut/cuthdky2gmlcllypdu6te7qddvqxmdfttriaxjae3jm7vigvse2t.py # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7b/c7bf34fgn2dhohe7ejneqlees25vyq6sbe4c5lfvoehzliak2nz6.py # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.add] # Source node to ATen node mapping: # linear_1 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_6), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/rh/crhb3fabztrl26dryvz44mbpy6ti3grcwx6xt22njk7wba7qwjsr.py # Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.tanh] # Source node to ATen node mapping: # add => add_1 # x => tanh # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, %getitem_2), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_1,), kwargs = {}) triton_poi_fused_add_tanh_2 = async_compile.triton('triton_poi_fused_add_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lt/cltwbpokq7b7gvah2tjf27qlzw6vpmwfuzs3xfk7mhbxym753kvi.py # Topologically Sorted Source Nodes: [a], Original ATen: [aten._softmax] # Source node to ATen node mapping: # a => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%squeeze, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/rr/crrmj7r54x5uk325xkhuskxp4m5prz3fpx53yc2st4o5pwbhq32p.py # Topologically Sorted Source Nodes: [a], Original ATen: [aten._softmax] # Source node to ATen node mapping: # a => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_3 del primals_4 # Topologically Sorted Source Nodes: [dropout], Original ATen: [aten.native_dropout] buf1 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), 0.5, True) buf2 = buf1[0] buf3 = buf1[1] del buf1 buf4 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_2, buf4, 64, grid=grid(64), stream=stream0) del primals_2 buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf5) del primals_5 buf6 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf6, primals_6, 64, grid=grid(64), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [linear_1, dropout_1], Original ATen: [aten.add, aten.native_dropout] buf7 = torch.ops.aten.native_dropout.default(buf6, 0.5, True) del buf6 buf8 = buf7[0] buf9 = buf7[1] del buf7 buf10 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.tanh] triton_poi_fused_add_tanh_2.run(buf10, buf8, 64, grid=grid(64), stream=stream0) del buf8 buf11 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), out=buf11) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_dropout] buf12 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf11, (4, 4, 1), (4, 1, 1), 0), 0.5, True) buf13 = buf12[0] buf14 = buf12[1] del buf12 buf15 = reinterpret_tensor(buf11, (4, 4), (4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [a], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf13, buf15, 16, grid=grid(16), stream=stream0) buf16 = reinterpret_tensor(buf13, (4, 4), (4, 1), 0); del buf13 # reuse # Topologically Sorted Source Nodes: [a], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf15, buf16, 16, grid=grid(16), stream=stream0) del buf15 return (buf16, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf3, reinterpret_tensor(buf4, (16, 4), (4, 1), 0), buf9, buf10, buf14, buf16, primals_7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class AttentionLayer(nn.Module): def __init__(self, hidden_dim_en, hidden_dim_de, projected_size): super(AttentionLayer, self).__init__() self.linear1 = nn.Linear(hidden_dim_en, projected_size) self.linear2 = nn.Linear(hidden_dim_de, projected_size) self.linear3 = nn.Linear(projected_size, 1, False) def forward(self, out_e, h): """ out_e: batch_size * num_frames * en_hidden_dim h : batch_size * de_hidden_dim """ assert out_e.size(0) == h.size(0) batch_size, num_frames, _ = out_e.size() hidden_dim = h.size(1) h_att = h.unsqueeze(1).expand(batch_size, num_frames, hidden_dim) x = F.tanh(F.dropout(self.linear1(out_e)) + F.dropout(self.linear2( h_att))) x = F.dropout(self.linear3(x)) a = F.softmax(x.squeeze(2)) return a def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'hidden_dim_en': 4, 'hidden_dim_de': 4, 'projected_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_add_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_3 del primals_4 buf1 = torch.ops.aten.native_dropout.default(reinterpret_tensor( buf0, (4, 4, 4), (16, 4, 1), 0), 0.5, True) buf2 = buf1[0] buf3 = buf1[1] del buf1 buf4 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_2, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf5) del primals_5 buf6 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0) del buf5 triton_poi_fused_add_1[grid(64)](buf6, primals_6, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_6 buf7 = torch.ops.aten.native_dropout.default(buf6, 0.5, True) del buf6 buf8 = buf7[0] buf9 = buf7[1] del buf7 buf10 = buf2 del buf2 triton_poi_fused_add_tanh_2[grid(64)](buf10, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf8 buf11 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), out=buf11) buf12 = torch.ops.aten.native_dropout.default(reinterpret_tensor( buf11, (4, 4, 1), (4, 1, 1), 0), 0.5, True) buf13 = buf12[0] buf14 = buf12[1] del buf12 buf15 = reinterpret_tensor(buf11, (4, 4), (4, 1), 0) del buf11 triton_poi_fused__softmax_3[grid(16)](buf13, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = reinterpret_tensor(buf13, (4, 4), (4, 1), 0) del buf13 triton_poi_fused__softmax_4[grid(16)](buf15, buf16, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf15 return buf16, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), buf3, reinterpret_tensor(buf4, (16, 4), (4, 1), 0 ), buf9, buf10, buf14, buf16, primals_7 class AttentionLayerNew(nn.Module): def __init__(self, hidden_dim_en, hidden_dim_de, projected_size): super(AttentionLayerNew, self).__init__() self.linear1 = nn.Linear(hidden_dim_en, projected_size) self.linear2 = nn.Linear(hidden_dim_de, projected_size) self.linear3 = nn.Linear(projected_size, 1, False) def forward(self, input_0, input_1): primals_2 = self.linear1.weight primals_4 = self.linear1.bias primals_3 = self.linear2.weight primals_6 = self.linear2.bias primals_7 = self.linear3.weight primals_1 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
lost-person/AREL
AttentionLayer
false
7,143
[ "MIT" ]
1
cee8bc542a2226f41fcbf65ed805fd585512689d
https://github.com/lost-person/AREL/tree/cee8bc542a2226f41fcbf65ed805fd585512689d
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, hidden_dim_en, hidden_dim_de, projected_size): super().__init__() self.linear1 = nn.Linear(hidden_dim_en, projected_size) self.linear2 = nn.Linear(hidden_dim_de, projected_size) self.linear3 = nn.Linear(projected_size, 1, False) def forward(self, out_e, h): """ out_e: batch_size * num_frames * en_hidden_dim h : batch_size * de_hidden_dim """ assert out_e.size(0) == h.size(0) batch_size, num_frames, _ = out_e.size() hidden_dim = h.size(1) h_att = h.unsqueeze(1).expand(batch_size, num_frames, hidden_dim) x = F.tanh(F.dropout(self.linear1(out_e)) + F.dropout(self.linear2( h_att))) x = F.dropout(self.linear3(x)) a = F.softmax(x.squeeze(2)) return a def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4]
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/yd/cydbtjoq352gcolmflbvu2nqkda7xg7q5hnvltb47jsg5dbmubym.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/s2/cs2rk3o3kmhydx4oijp6rsdb5atcrq5axy4adadrpl7gkt7scies.py # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # atte_weights => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # atte_weights => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/tc/ctcugqu2nbqlxcf2thnspnnypxifbalbzmclmutd5vaxdes2oyyk.py # Topologically Sorted Source Nodes: [query_5, query_6], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # query_5 => add # query_6 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_3 = async_compile.triton('triton_poi_fused_add_native_layer_norm_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ki/ckiemul6tf32aklelekgb7nubdcitlamu5mdffv4u2b2odledpcc.py # Topologically Sorted Source Nodes: [query_5, query_6], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # query_5 => add # query_6 => add_1, add_2, mul, mul_1, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-08), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_6), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_7), kwargs = {}) triton_poi_fused_add_native_layer_norm_4 = async_compile.triton('triton_poi_fused_add_native_layer_norm_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-08 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [query], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [key], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [value], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, buf3, 16, 4, grid=grid(16, 4), stream=stream0) buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, buf4, 16, 4, grid=grid(16, 4), stream=stream0) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf6, buf7, 256, grid=grid(256), stream=stream0) del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, buf8, 16, 4, grid=grid(16, 4), stream=stream0) buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [query_5, query_6], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_3.run(buf11, primals_1, buf12, buf13, 16, grid=grid(16), stream=stream0) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [query_5, query_6], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_4.run(buf11, primals_1, buf12, buf13, primals_6, primals_7, buf14, 64, grid=grid(64), stream=stream0) del buf12 del buf13 del primals_7 return (buf14, buf7, primals_1, primals_6, buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, primals_5, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class ScaledDotProductAttention(nn.Module): def __init__(self, dropout=0.0): super(ScaledDotProductAttention, self).__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value): assert query.size()[-1] == key.size()[-1] dim = query.size()[-1] tmp_raw_scores = torch.div(torch.matmul(query, key.transpose(-2, -1 )), math.sqrt(dim)) atte_weights = torch.softmax(tmp_raw_scores, dim=-1) atte_weights = self.dropout(atte_weights) output = torch.matmul(atte_weights, value) return output, atte_weights class MultiHeadAttention(nn.Module): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(MultiHeadAttention, self).__init__() assert reduced_dim % n_head == 0 self.n_head = n_head self.embedding_dim = embedding_dim self.reduced_dim = reduced_dim self.Wq = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wk = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wv = nn.Linear(embedding_dim, reduced_dim, bias=False) self.inner_attention = ScaledDotProductAttention(dropout) self.Wo = nn.Linear(reduced_dim, embedding_dim, bias=False) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, query): residual = query value = key = query query = self.Wq(query) key = self.Wk(key) value = self.Wv(value) b, n, _ = query.size() query = query.reshape(b, n, self.n_head, self.reduced_dim // self. n_head) b, m, _ = key.size() key = key.reshape(b, m, self.n_head, self.reduced_dim // self.n_head) value = value.reshape(b, m, self.n_head, self.reduced_dim // self. n_head) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) query, atte_weights = self.inner_attention(query, key, value) query = query.transpose(1, 2).reshape(b, n, self.reduced_dim) query = self.dropout(self.Wo(query)) query = query + residual query = self.ln(query) return query, atte_weights def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'embedding_dim': 4, 'reduced_dim': 4, 'n_head': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-08 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, buf3, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 4)](buf1, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_2[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 triton_poi_fused_clone_0[grid(16, 4)](buf2, buf8, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_3[grid(16)](buf11, primals_1, buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_4[grid(64)](buf11, primals_1, buf12, buf13, primals_6, primals_7, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf12 del buf13 del primals_7 return buf14, buf7, primals_1, primals_6, buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, primals_5, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) class ScaledDotProductAttention(nn.Module): def __init__(self, dropout=0.0): super(ScaledDotProductAttention, self).__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value): assert query.size()[-1] == key.size()[-1] dim = query.size()[-1] tmp_raw_scores = torch.div(torch.matmul(query, key.transpose(-2, -1 )), math.sqrt(dim)) atte_weights = torch.softmax(tmp_raw_scores, dim=-1) atte_weights = self.dropout(atte_weights) output = torch.matmul(atte_weights, value) return output, atte_weights class MultiHeadAttentionNew(nn.Module): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(MultiHeadAttentionNew, self).__init__() assert reduced_dim % n_head == 0 self.n_head = n_head self.embedding_dim = embedding_dim self.reduced_dim = reduced_dim self.Wq = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wk = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wv = nn.Linear(embedding_dim, reduced_dim, bias=False) self.inner_attention = ScaledDotProductAttention(dropout) self.Wo = nn.Linear(reduced_dim, embedding_dim, bias=False) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, input_0): primals_2 = self.Wq.weight primals_3 = self.Wk.weight primals_4 = self.Wv.weight primals_5 = self.Wo.weight primals_6 = self.ln.weight primals_7 = self.ln.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0], output[1]
luyu-fan/LRCM
MultiHeadAttention
false
7,144
[ "MIT" ]
1
6b0e4d7998bc4969afa764eb753077e3f858f1ba
https://github.com/luyu-fan/LRCM/tree/6b0e4d7998bc4969afa764eb753077e3f858f1ba
import math import torch import torch.nn as nn class ScaledDotProductAttention(nn.Module): def __init__(self, dropout=0.0): super().__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value): assert query.size()[-1] == key.size()[-1] dim = query.size()[-1] tmp_raw_scores = torch.div(torch.matmul(query, key.transpose(-2, -1 )), math.sqrt(dim)) atte_weights = torch.softmax(tmp_raw_scores, dim=-1) atte_weights = self.dropout(atte_weights) output = torch.matmul(atte_weights, value) return output, atte_weights class Model(nn.Module): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super().__init__() assert reduced_dim % n_head == 0 self.n_head = n_head self.embedding_dim = embedding_dim self.reduced_dim = reduced_dim self.Wq = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wk = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wv = nn.Linear(embedding_dim, reduced_dim, bias=False) self.inner_attention = ScaledDotProductAttention(dropout) self.Wo = nn.Linear(reduced_dim, embedding_dim, bias=False) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, query): residual = query value = key = query query = self.Wq(query) key = self.Wk(key) value = self.Wv(value) b, n, _ = query.size() query = query.reshape(b, n, self.n_head, self.reduced_dim // self. n_head) b, m, _ = key.size() key = key.reshape(b, m, self.n_head, self.reduced_dim // self.n_head) value = value.reshape(b, m, self.n_head, self.reduced_dim // self. n_head) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) query, atte_weights = self.inner_attention(query, key, value) query = query.transpose(1, 2).reshape(b, n, self.reduced_dim) query = self.dropout(self.Wo(query)) query = query + residual query = self.ln(query) return query, atte_weights def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
ComprehensionLayer_step3
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/yd/cydbtjoq352gcolmflbvu2nqkda7xg7q5hnvltb47jsg5dbmubym.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/s2/cs2rk3o3kmhydx4oijp6rsdb5atcrq5axy4adadrpl7gkt7scies.py # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # atte_weights => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # atte_weights => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/tc/ctcugqu2nbqlxcf2thnspnnypxifbalbzmclmutd5vaxdes2oyyk.py # Topologically Sorted Source Nodes: [hig_vectors_1, hig_vectors_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # hig_vectors_1 => add # hig_vectors_2 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %view_17), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_3 = async_compile.triton('triton_poi_fused_add_native_layer_norm_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ki/ckiemul6tf32aklelekgb7nubdcitlamu5mdffv4u2b2odledpcc.py # Topologically Sorted Source Nodes: [hig_vectors_1, hig_vectors_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # hig_vectors_1 => add # hig_vectors_2 => add_1, add_2, mul, mul_1, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %view_17), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-08), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_7), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_8), kwargs = {}) triton_poi_fused_add_native_layer_norm_4 = async_compile.triton('triton_poi_fused_add_native_layer_norm_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-08 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hig_query], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [low_key], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [low_value], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, buf3, 16, 4, grid=grid(16, 4), stream=stream0) buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, buf4, 16, 4, grid=grid(16, 4), stream=stream0) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf6, buf7, 256, grid=grid(256), stream=stream0) del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, buf8, 16, 4, grid=grid(16, 4), stream=stream0) buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [hig_vectors_1, hig_vectors_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_3.run(primals_2, buf11, buf12, buf13, 16, grid=grid(16), stream=stream0) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hig_vectors_1, hig_vectors_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_4.run(primals_2, buf11, buf12, buf13, primals_7, primals_8, buf14, 64, grid=grid(64), stream=stream0) del buf12 del buf13 del primals_8 return (buf14, buf7, primals_2, primals_7, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, primals_6, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class ScaledDotProductAttention(nn.Module): def __init__(self, dropout=0.0): super(ScaledDotProductAttention, self).__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value): assert query.size()[-1] == key.size()[-1] dim = query.size()[-1] tmp_raw_scores = torch.div(torch.matmul(query, key.transpose(-2, -1 )), math.sqrt(dim)) atte_weights = torch.softmax(tmp_raw_scores, dim=-1) atte_weights = self.dropout(atte_weights) output = torch.matmul(atte_weights, value) return output, atte_weights class MultiHeadAttention(nn.Module): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(MultiHeadAttention, self).__init__() assert reduced_dim % n_head == 0 self.n_head = n_head self.embedding_dim = embedding_dim self.reduced_dim = reduced_dim self.Wq = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wk = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wv = nn.Linear(embedding_dim, reduced_dim, bias=False) self.inner_attention = ScaledDotProductAttention(dropout) self.Wo = nn.Linear(reduced_dim, embedding_dim, bias=False) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, query): residual = query value = key = query query = self.Wq(query) key = self.Wk(key) value = self.Wv(value) b, n, _ = query.size() query = query.reshape(b, n, self.n_head, self.reduced_dim // self. n_head) b, m, _ = key.size() key = key.reshape(b, m, self.n_head, self.reduced_dim // self.n_head) value = value.reshape(b, m, self.n_head, self.reduced_dim // self. n_head) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) query, atte_weights = self.inner_attention(query, key, value) query = query.transpose(1, 2).reshape(b, n, self.reduced_dim) query = self.dropout(self.Wo(query)) query = query + residual query = self.ln(query) return query, atte_weights class ComprehensionLayer_step3(MultiHeadAttention): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(ComprehensionLayer_step3, self).__init__(embedding_dim, reduced_dim, n_head, dropout) del self.ln self.hig_ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, low_vectors, hig_vectors): b = low_vectors.size()[0] low_num, hig_num = low_vectors.size()[1], hig_vectors.size()[1] hig_residual = hig_vectors hig_query = self.Wq(hig_vectors) low_key = self.Wk(low_vectors) low_value = self.Wv(low_vectors) hig_query = hig_query.reshape(b, hig_num, self.n_head, self. reduced_dim // self.n_head) low_key = low_key.reshape(b, low_num, self.n_head, self.reduced_dim // self.n_head) low_value = low_value.reshape(b, low_num, self.n_head, self. reduced_dim // self.n_head) hig_query = hig_query.transpose(1, 2) low_key = low_key.transpose(1, 2) low_value = low_value.transpose(1, 2) hig_query, hig_low_weights = self.inner_attention(hig_query, low_key, low_value) hig_query = hig_query.transpose(1, 2).reshape(b, hig_num, self. reduced_dim) hig_vectors = self.dropout(self.Wo(hig_query)) hig_vectors = hig_residual + hig_vectors hig_vectors = self.hig_ln(hig_vectors) return hig_vectors, hig_low_weights def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'embedding_dim': 4, 'reduced_dim': 4, 'n_head': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-08 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, buf3, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 4)](buf1, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_2[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 triton_poi_fused_clone_0[grid(16, 4)](buf2, buf8, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_3[grid(16)](primals_2, buf11, buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_4[grid(64)](primals_2, buf11, buf12, buf13, primals_7, primals_8, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf12 del buf13 del primals_8 return buf14, buf7, primals_2, primals_7, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0 ), buf11, primals_6, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) class ScaledDotProductAttention(nn.Module): def __init__(self, dropout=0.0): super(ScaledDotProductAttention, self).__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value): assert query.size()[-1] == key.size()[-1] dim = query.size()[-1] tmp_raw_scores = torch.div(torch.matmul(query, key.transpose(-2, -1 )), math.sqrt(dim)) atte_weights = torch.softmax(tmp_raw_scores, dim=-1) atte_weights = self.dropout(atte_weights) output = torch.matmul(atte_weights, value) return output, atte_weights class MultiHeadAttention(nn.Module): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(MultiHeadAttention, self).__init__() assert reduced_dim % n_head == 0 self.n_head = n_head self.embedding_dim = embedding_dim self.reduced_dim = reduced_dim self.Wq = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wk = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wv = nn.Linear(embedding_dim, reduced_dim, bias=False) self.inner_attention = ScaledDotProductAttention(dropout) self.Wo = nn.Linear(reduced_dim, embedding_dim, bias=False) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, query): residual = query value = key = query query = self.Wq(query) key = self.Wk(key) value = self.Wv(value) b, n, _ = query.size() query = query.reshape(b, n, self.n_head, self.reduced_dim // self. n_head) b, m, _ = key.size() key = key.reshape(b, m, self.n_head, self.reduced_dim // self.n_head) value = value.reshape(b, m, self.n_head, self.reduced_dim // self. n_head) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) query, atte_weights = self.inner_attention(query, key, value) query = query.transpose(1, 2).reshape(b, n, self.reduced_dim) query = self.dropout(self.Wo(query)) query = query + residual query = self.ln(query) return query, atte_weights class ComprehensionLayer_step3New(MultiHeadAttention): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(ComprehensionLayer_step3New, self).__init__(embedding_dim, reduced_dim, n_head, dropout) del self.ln self.hig_ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, input_0, input_1): primals_3 = self.Wq.weight primals_4 = self.Wk.weight primals_5 = self.Wv.weight primals_6 = self.Wo.weight primals_7 = self.hig_ln.weight primals_8 = self.hig_ln.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0], output[1]
luyu-fan/LRCM
ComprehensionLayer_step3
false
7,145
[ "MIT" ]
1
6b0e4d7998bc4969afa764eb753077e3f858f1ba
https://github.com/luyu-fan/LRCM/tree/6b0e4d7998bc4969afa764eb753077e3f858f1ba
import math import torch import torch.nn as nn class ScaledDotProductAttention(nn.Module): def __init__(self, dropout=0.0): super().__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value): assert query.size()[-1] == key.size()[-1] dim = query.size()[-1] tmp_raw_scores = torch.div(torch.matmul(query, key.transpose(-2, -1 )), math.sqrt(dim)) atte_weights = torch.softmax(tmp_raw_scores, dim=-1) atte_weights = self.dropout(atte_weights) output = torch.matmul(atte_weights, value) return output, atte_weights class MultiHeadAttention(nn.Module): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super().__init__() assert reduced_dim % n_head == 0 self.n_head = n_head self.embedding_dim = embedding_dim self.reduced_dim = reduced_dim self.Wq = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wk = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wv = nn.Linear(embedding_dim, reduced_dim, bias=False) self.inner_attention = ScaledDotProductAttention(dropout) self.Wo = nn.Linear(reduced_dim, embedding_dim, bias=False) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, query): residual = query value = key = query query = self.Wq(query) key = self.Wk(key) value = self.Wv(value) b, n, _ = query.size() query = query.reshape(b, n, self.n_head, self.reduced_dim // self. n_head) b, m, _ = key.size() key = key.reshape(b, m, self.n_head, self.reduced_dim // self.n_head) value = value.reshape(b, m, self.n_head, self.reduced_dim // self. n_head) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) query, atte_weights = self.inner_attention(query, key, value) query = query.transpose(1, 2).reshape(b, n, self.reduced_dim) query = self.dropout(self.Wo(query)) query = query + residual query = self.ln(query) return query, atte_weights class Model(MultiHeadAttention): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super().__init__(embedding_dim, reduced_dim, n_head, dropout) del self.ln self.hig_ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, low_vectors, hig_vectors): b = low_vectors.size()[0] low_num, hig_num = low_vectors.size()[1], hig_vectors.size()[1] hig_residual = hig_vectors hig_query = self.Wq(hig_vectors) low_key = self.Wk(low_vectors) low_value = self.Wv(low_vectors) hig_query = hig_query.reshape(b, hig_num, self.n_head, self. reduced_dim // self.n_head) low_key = low_key.reshape(b, low_num, self.n_head, self.reduced_dim // self.n_head) low_value = low_value.reshape(b, low_num, self.n_head, self. reduced_dim // self.n_head) hig_query = hig_query.transpose(1, 2) low_key = low_key.transpose(1, 2) low_value = low_value.transpose(1, 2) hig_query, hig_low_weights = self.inner_attention(hig_query, low_key, low_value) hig_query = hig_query.transpose(1, 2).reshape(b, hig_num, self. reduced_dim) hig_vectors = self.dropout(self.Wo(hig_query)) hig_vectors = hig_residual + hig_vectors hig_vectors = self.hig_ln(hig_vectors) return hig_vectors, hig_low_weights def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
Tanh
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/dn/cdnhr6ixjduuhci57kobqjnehjrl22mcyjqzuuhvtxxshy437diy.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%arg0_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn import torch._utils from torch import optim as optim import torch.nn.parallel class Tanh(nn.Module): def __init__(self, inplace=False): super(Tanh, self).__init__() self.inplace = inplace def forward(self, x): return x.tanh_() if self.inplace else x.tanh() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn as nn import torch._utils from torch import optim as optim import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class TanhNew(nn.Module): def __init__(self, inplace=False): super(TanhNew, self).__init__() self.inplace = inplace def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
lovelinability/pytorch_image_models
Tanh
false
7,146
[ "Apache-2.0" ]
1
7c54200f3de7611ab1222a37088eb7f66ae2858f
https://github.com/lovelinability/pytorch_image_models/tree/7c54200f3de7611ab1222a37088eb7f66ae2858f
import torch import torch.utils.data import torch.nn as nn import torch._utils from torch import optim as optim import torch.nn.parallel class Model(nn.Module): def __init__(self, inplace=False): super().__init__() self.inplace = inplace def forward(self, x): return x.tanh_() if self.inplace else x.tanh() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
LayerNormalization
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/dx/cdxvfu4asrdqxv3hebtdi7k2mpsqdnfv2swotbko2wrdw43mle4b.py # Topologically Sorted Source Nodes: [sub, add, ln_out, mul, ln_out_1], Original ATen: [aten.sub, aten.add, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # ln_out => div # ln_out_1 => add_1 # mul => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %expand), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand_1, 0.001), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand_2, %div), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %expand_3), kwargs = {}) triton_poi_fused_add_div_mul_sub_0 = async_compile.triton('triton_poi_fused_add_div_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp2 - tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp3 - tmp10 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp10 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp10 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = 3.0 tmp24 = tmp22 / tmp23 tmp25 = libdevice.sqrt(tmp24) tmp26 = 0.001 tmp27 = tmp25 + tmp26 tmp28 = tmp11 / tmp27 tmp29 = tmp0 * tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + (x2), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, add, ln_out, mul, ln_out_1], Original ATen: [aten.sub, aten.add, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_sub_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNormalization(nn.Module): def __init__(self, d_hid, eps=0.001): super(LayerNormalization, self).__init__() self.gamma = nn.Parameter(torch.ones(d_hid), requires_grad=True) self.beta = nn.Parameter(torch.zeros(d_hid), requires_grad=True) self.eps = eps def forward(self, z): mean = z.mean(dim=-1, keepdim=True) std = z.std(dim=-1, keepdim=True) ln_out = (z - mean.expand_as(z)) / (std.expand_as(z) + self.eps) ln_out = self.gamma.expand_as(ln_out) * ln_out + self.beta.expand_as( ln_out) return ln_out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_hid': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp2 - tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp3 - tmp10 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp10 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp10 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = 3.0 tmp24 = tmp22 / tmp23 tmp25 = libdevice.sqrt(tmp24) tmp26 = 0.001 tmp27 = tmp25 + tmp26 tmp28 = tmp11 / tmp27 tmp29 = tmp0 * tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + x2, tmp31, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_sub_0[grid(256)](primals_2, primals_1, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf0, primals_1 class LayerNormalizationNew(nn.Module): def __init__(self, d_hid, eps=0.001): super(LayerNormalizationNew, self).__init__() self.gamma = nn.Parameter(torch.ones(d_hid), requires_grad=True) self.beta = nn.Parameter(torch.zeros(d_hid), requires_grad=True) self.eps = eps def forward(self, input_0): primals_2 = self.gamma primals_3 = self.beta primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
lz-chen/ner-bert
LayerNormalization
false
7,147
[ "MIT" ]
1
86e73c1e7124a4fb6ee65d42b72333573841fe5b
https://github.com/lz-chen/ner-bert/tree/86e73c1e7124a4fb6ee65d42b72333573841fe5b
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, d_hid, eps=0.001): super().__init__() self.gamma = nn.Parameter(torch.ones(d_hid), requires_grad=True) self.beta = nn.Parameter(torch.zeros(d_hid), requires_grad=True) self.eps = eps def forward(self, z): mean = z.mean(dim=-1, keepdim=True) std = z.std(dim=-1, keepdim=True) ln_out = (z - mean.expand_as(z)) / (std.expand_as(z) + self.eps) ln_out = self.gamma.expand_as(ln_out) * ln_out + self.beta.expand_as( ln_out) return ln_out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Conv2dUntiedBias
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/et/cet6mje25ge6ywvlm34oad3xuwmemw7aw7m3cvpkzt6yzrofl26r.py # Topologically Sorted Source Nodes: [repeat, output_1], Original ATen: [aten.repeat, aten.add] # Source node to ATen node mapping: # output_1 => add # repeat => repeat # Graph fragment: # %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze, [4, 1, 1, 1]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %repeat), kwargs = {}) triton_poi_fused_add_repeat_0 = async_compile.triton('triton_poi_fused_add_repeat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_repeat_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_repeat_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [repeat, output_1], Original ATen: [aten.repeat, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_repeat_0.run(buf1, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (buf1, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair class Conv2dUntiedBias(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, input_len, stride=1, padding=0, dilation=1, groups=1): super(Conv2dUntiedBias, self).__init__() kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *kernel_size)) height = 1 width = self.calc_output_width(input_len, kernel_size) self.bias = nn.Parameter(torch.Tensor(out_channels, height, width)) self.reset_parameters() def calc_output_width(self, input_length, kernel_size, stride=1): return (input_length - kernel_size[-1] + stride) // stride def reset_parameters(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1.0 / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) self.bias.data.uniform_(-stdv, stdv) def forward(self, input): output = F.conv2d(input, self.weight, None, self.stride, self. padding, self.dilation, self.groups) output += self.bias.unsqueeze(0).repeat(input.size(0), 1, 1, 1) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4, 'input_len': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn from torch.nn.modules.utils import _pair assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_add_repeat_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_repeat_0[grid(16)](buf1, primals_3, 16, XBLOCK =16, num_warps=1, num_stages=1) del primals_3 return buf1, primals_1, primals_2 class Conv2dUntiedBiasNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, input_len, stride=1, padding=0, dilation=1, groups=1): super(Conv2dUntiedBiasNew, self).__init__() kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *kernel_size)) height = 1 width = self.calc_output_width(input_len, kernel_size) self.bias = nn.Parameter(torch.Tensor(out_channels, height, width)) self.reset_parameters() def calc_output_width(self, input_length, kernel_size, stride=1): return (input_length - kernel_size[-1] + stride) // stride def reset_parameters(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1.0 / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) self.bias.data.uniform_(-stdv, stdv) def forward(self, input_0): primals_1 = self.weight primals_3 = self.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
lzamparo/SeqDemote
Conv2dUntiedBias
false
7,148
[ "MIT" ]
1
3eaf18e88c9dc6a3d1a69444ecdba9f9b5d9682a
https://github.com/lzamparo/SeqDemote/tree/3eaf18e88c9dc6a3d1a69444ecdba9f9b5d9682a
import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair class Model(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, input_len, stride=1, padding=0, dilation=1, groups=1): super().__init__() kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *kernel_size)) height = 1 width = self.calc_output_width(input_len, kernel_size) self.bias = nn.Parameter(torch.Tensor(out_channels, height, width)) self.reset_parameters() def calc_output_width(self, input_length, kernel_size, stride=1): return (input_length - kernel_size[-1] + stride) // stride def reset_parameters(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1.0 / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) self.bias.data.uniform_(-stdv, stdv) def forward(self, input): output = F.conv2d(input, self.weight, None, self.stride, self. padding, self.dilation, self.groups) output += self.bias.unsqueeze(0).repeat(input.size(0), 1, 1, 1) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4, 'input_len': 4}]
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/tq/ctqbufosv5x2yg6jklh4fqpslk7be7rbqcnu7eipvb6b4pemujk4.py # Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, mul_2, sub_2, mul_3, alpha_t, p, mul, sub, sub_1, mul_1, p_t, sub_3, pow_1, w], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.rsub, aten.add, aten.sigmoid, aten.pow] # Source node to ATen node mapping: # alpha_t => add_1 # binary_cross_entropy_with_logits => abs_1, exp, full_default, log1p, minimum, mul_5, mul_6, neg, sub_4, sub_5, sub_6, sum_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # p => sigmoid # p_t => add # pow_1 => pow_1 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sub_3 => sub_3 # w => mul_4 # Graph fragment: # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %arg0_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_5, %sub_5), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.7), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, 0.30000000000000004), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg1_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 1.5), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %pow_1), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %mul_4), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_6,), kwargs = {}) triton_per_fused_add_binary_cross_entropy_with_logits_mul_pow_rsub_sigmoid_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_with_logits_mul_pow_rsub_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_with_logits_mul_pow_rsub_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_binary_cross_entropy_with_logits_mul_pow_rsub_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = 0.7 tmp14 = tmp0 * tmp13 tmp15 = 0.30000000000000004 tmp16 = tmp2 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tl.sigmoid(tmp3) tmp19 = tmp18 * tmp0 tmp20 = tmp1 - tmp18 tmp21 = tmp20 * tmp2 tmp22 = tmp19 + tmp21 tmp23 = tmp1 - tmp22 tmp24 = 1.5 tmp25 = libdevice.pow(tmp23, tmp24) tmp26 = tmp17 * tmp25 tmp27 = tmp12 * tmp26 tmp28 = tl.broadcast_to(tmp27, [RBLOCK]) tmp30 = triton_helpers.promote_to_tensor(tl.sum(tmp28, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp30, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, mul_2, sub_2, mul_3, alpha_t, p, mul, sub, sub_1, mul_1, p_t, sub_3, pow_1, w], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.rsub, aten.add, aten.sigmoid, aten.pow] stream0 = get_raw_stream(0) triton_per_fused_add_binary_cross_entropy_with_logits_mul_pow_rsub_sigmoid_0.run(arg1_1, arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FocalLoss(nn.Module): def __init__(self, reduce=True, gamma=1.5, alpha=0.7): super(FocalLoss, self).__init__() self.reduce = reduce self.gamma = gamma self.alpha = alpha def _get_weights(self, x, t): """ Helper to get the weights for focal loss calculation """ p = nn.functional.sigmoid(x) p_t = p * t + (1 - p) * (1 - t) alpha_t = self.alpha * t + (1 - self.alpha) * (1 - t) w = alpha_t * (1 - p_t).pow(self.gamma) return w def focal_loss(self, x, t): """ Focal Loss cf. arXiv:1708.02002 Args: x: (tensor) output from last layer of network t: (tensor) targets in [0,1] alpha: (float) class imbalance correction weight \\in (0,1) gamma: (float) amplification factor for uncertain classification Return: (tensor) focal loss. """ weights = self._get_weights(x, t) return nn.functional.binary_cross_entropy_with_logits(x, t, weights, size_average=False, reduce=self.reduce) def forward(self, input, target): return self.focal_loss(input, target) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_binary_cross_entropy_with_logits_mul_pow_rsub_sigmoid_0( in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = 0.7 tmp14 = tmp0 * tmp13 tmp15 = 0.30000000000000004 tmp16 = tmp2 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tl.sigmoid(tmp3) tmp19 = tmp18 * tmp0 tmp20 = tmp1 - tmp18 tmp21 = tmp20 * tmp2 tmp22 = tmp19 + tmp21 tmp23 = tmp1 - tmp22 tmp24 = 1.5 tmp25 = libdevice.pow(tmp23, tmp24) tmp26 = tmp17 * tmp25 tmp27 = tmp12 * tmp26 tmp28 = tl.broadcast_to(tmp27, [RBLOCK]) tmp30 = triton_helpers.promote_to_tensor(tl.sum(tmp28, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp30, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_add_binary_cross_entropy_with_logits_mul_pow_rsub_sigmoid_0[ grid(1)](arg1_1, arg0_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class FocalLossNew(nn.Module): def __init__(self, reduce=True, gamma=1.5, alpha=0.7): super(FocalLossNew, self).__init__() self.reduce = reduce self.gamma = gamma self.alpha = alpha def _get_weights(self, x, t): """ Helper to get the weights for focal loss calculation """ p = nn.functional.sigmoid(x) p_t = p * t + (1 - p) * (1 - t) alpha_t = self.alpha * t + (1 - self.alpha) * (1 - t) w = alpha_t * (1 - p_t).pow(self.gamma) return w def focal_loss(self, x, t): """ Focal Loss cf. arXiv:1708.02002 Args: x: (tensor) output from last layer of network t: (tensor) targets in [0,1] alpha: (float) class imbalance correction weight \\in (0,1) gamma: (float) amplification factor for uncertain classification Return: (tensor) focal loss. """ weights = self._get_weights(x, t) return nn.functional.binary_cross_entropy_with_logits(x, t, weights, size_average=False, reduce=self.reduce) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
lzamparo/SeqDemote
FocalLoss
false
7,149
[ "MIT" ]
1
3eaf18e88c9dc6a3d1a69444ecdba9f9b5d9682a
https://github.com/lzamparo/SeqDemote/tree/3eaf18e88c9dc6a3d1a69444ecdba9f9b5d9682a
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, reduce=True, gamma=1.5, alpha=0.7): super().__init__() self.reduce = reduce self.gamma = gamma self.alpha = alpha def _get_weights(self, x, t): """ Helper to get the weights for focal loss calculation """ p = nn.functional.sigmoid(x) p_t = p * t + (1 - p) * (1 - t) alpha_t = self.alpha * t + (1 - self.alpha) * (1 - t) w = alpha_t * (1 - p_t).pow(self.gamma) return w def focal_loss(self, x, t): """ Focal Loss cf. arXiv:1708.02002 Args: x: (tensor) output from last layer of network t: (tensor) targets in [0,1] alpha: (float) class imbalance correction weight \\in (0,1) gamma: (float) amplification factor for uncertain classification Return: (tensor) focal loss. """ weights = self._get_weights(x, t) return nn.functional.binary_cross_entropy_with_logits(x, t, weights, size_average=False, reduce=self.reduce) def forward(self, input, target): return self.focal_loss(input, target) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SoftTargetCrossEntropy
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/nr/cnrkptzsuv7qm3ss6i6xgoxkou23z76h2vmwqkwz2zkgpdbxhedc.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7e/c7eos52pj4trwrwevfplxacwgfirtfuiycj3hrmzuhm4mq7vguud.py # Topologically Sorted Source Nodes: [neg, log_softmax, mul, loss, mean], Original ATen: [aten.neg, aten._log_softmax, aten.mul, aten.sum, aten.mean] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # loss => sum_2 # mean => mean # mul => mul # neg => neg # Graph fragment: # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %sub_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {}) triton_per_fused__log_softmax_mean_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mean_mul_neg_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mean_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp1 = -tmp0 tmp3 = tl_math.exp(tmp2) tmp5 = tl_math.exp(tmp4) tmp6 = tmp3 + tmp5 tmp8 = tl_math.exp(tmp7) tmp9 = tmp6 + tmp8 tmp11 = tl_math.exp(tmp10) tmp12 = tmp9 + tmp11 tmp13 = tl_math.log(tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp1 * tmp14 tmp17 = -tmp16 tmp18 = tmp4 - tmp13 tmp19 = tmp17 * tmp18 tmp20 = tmp15 + tmp19 tmp22 = -tmp21 tmp23 = tmp7 - tmp13 tmp24 = tmp22 * tmp23 tmp25 = tmp20 + tmp24 tmp27 = -tmp26 tmp28 = tmp10 - tmp13 tmp29 = tmp27 * tmp28 tmp30 = tmp25 + tmp29 tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.sum(tmp31, 1)[:, None] tmp34 = 64.0 tmp35 = tmp33 / tmp34 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp35, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [neg, log_softmax, mul, loss, mean], Original ATen: [aten.neg, aten._log_softmax, aten.mul, aten.sum, aten.mean] triton_per_fused__log_softmax_mean_mul_neg_sum_1.run(buf3, arg0_1, buf0, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torchvision.transforms.functional as F import torch.nn as nn import torch.nn.functional as F import torch._utils from torch import optim as optim import torch.nn.parallel class SoftTargetCrossEntropy(nn.Module): def __init__(self): super(SoftTargetCrossEntropy, self).__init__() def forward(self, x, target): loss = torch.sum(-target * F.log_softmax(x, dim=-1), dim=-1) return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.utils.data import torch.nn as nn import torch._utils from torch import optim as optim import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp1 = -tmp0 tmp3 = tl_math.exp(tmp2) tmp5 = tl_math.exp(tmp4) tmp6 = tmp3 + tmp5 tmp8 = tl_math.exp(tmp7) tmp9 = tmp6 + tmp8 tmp11 = tl_math.exp(tmp10) tmp12 = tmp9 + tmp11 tmp13 = tl_math.log(tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp1 * tmp14 tmp17 = -tmp16 tmp18 = tmp4 - tmp13 tmp19 = tmp17 * tmp18 tmp20 = tmp15 + tmp19 tmp22 = -tmp21 tmp23 = tmp7 - tmp13 tmp24 = tmp22 * tmp23 tmp25 = tmp20 + tmp24 tmp27 = -tmp26 tmp28 = tmp10 - tmp13 tmp29 = tmp27 * tmp28 tmp30 = tmp25 + tmp29 tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.sum(tmp31, 1)[:, None] tmp34 = 64.0 tmp35 = tmp33 / tmp34 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp35, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 triton_per_fused__log_softmax_mean_mul_neg_sum_1[grid(1)](buf3, arg0_1, buf0, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf3, class SoftTargetCrossEntropyNew(nn.Module): def __init__(self): super(SoftTargetCrossEntropyNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
lovelinability/pytorch_image_models
SoftTargetCrossEntropy
false
7,150
[ "Apache-2.0" ]
1
7c54200f3de7611ab1222a37088eb7f66ae2858f
https://github.com/lovelinability/pytorch_image_models/tree/7c54200f3de7611ab1222a37088eb7f66ae2858f
import torch import torch.utils.data import torchvision.transforms.functional as F import torch.nn as nn import torch.nn.functional as F import torch._utils from torch import optim as optim import torch.nn.parallel class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x, target): loss = torch.sum(-target * F.log_softmax(x, dim=-1), dim=-1) return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SimpleConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/d2/cd2w2tjdjbgdeh65hso2rcz7l72h2h6i23qyutv2xumb52zz6lm5.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 150 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (75*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/r5/cr5let6yjntwkbf53jd4yeoeuy4icu7yjffx67o3n62pxqegfu3x.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16384], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 9216 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (9216*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (27648*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/iy/ciycfbumlz4rjxsscjylf3pnlz3qughkqw7azbbgnqrujpqehgmi.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 5000 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 50 y1 = (yindex // 50) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (50*x2) + (1250*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/h2/ch2pot2ltn735r5nwss3elqbmedml6qb25b3cxvbbljtevwwf3w7.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1692800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fa/cfa5nl26eiorzxnqty6cf4z2hlhgp66sfgehgi3dwxwws5xri2pz.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_4 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_4(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 423200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 50 x1 = (xindex // 50) % 46 x2 = (xindex // 2300) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (100*x1) + (9200*x2)), xmask) tmp1 = tl.load(in_ptr0 + (50 + x0 + (100*x1) + (9200*x2)), xmask) tmp3 = tl.load(in_ptr0 + (4600 + x0 + (100*x1) + (9200*x2)), xmask) tmp5 = tl.load(in_ptr0 + (4650 + x0 + (100*x1) + (9200*x2)), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr1 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/sk/cskatsridi3flhgsxedhur3sq32zkbjdjktoidxvtka7equyu4wb.py # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 705600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6z/c6zka5uja52wkvzy4tf572dgdlrjzureqfwhrf6ur5j2vk377n25.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_3 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_6 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 128], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1764 xnumel = 100 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 21 y1 = (yindex // 21) y5 = yindex y4 = (yindex // 441) y6 = yindex % 441 tmp0 = tl.load(in_ptr0 + (x2 + (200*y0) + (8400*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (100 + x2 + (200*y0) + (8400*y1)), xmask & ymask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4200 + x2 + (200*y0) + (8400*y1)), xmask & ymask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (4300 + x2 + (200*y0) + (8400*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1, 1], 1, tl.int8) tmp4 = tl.full([1, 1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1, 1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1, 1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2 + (100*y5)), tmp15, xmask & ymask) tl.store(out_ptr1 + (y6 + (441*x2) + (44128*y4)), tmp16, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5e/c5emgzg5fbprnf3wyj2jnx6u2wyjtrvngahoogdt67b7b6hvmp75.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_5 => relu_2 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_7 = async_compile.triton('triton_poi_fused_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 1600 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/zf/czf2s4ziy43zvvw4yd6flzvdpvo7xa6mkywfzqdujwrysbntx3ma.py # Topologically Sorted Source Nodes: [o], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # o => sigmoid # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_sigmoid_8 = async_compile.triton('triton_poi_fused_sigmoid_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (50, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (50, ), (1, )) assert_size_stride(primals_3, (4, 3, 96, 96), (27648, 9216, 96, 1)) assert_size_stride(primals_4, (100, 50, 5, 5), (1250, 25, 5, 1)) assert_size_stride(primals_5, (100, ), (1, )) assert_size_stride(primals_6, (1600, 44100), (44100, 1)) assert_size_stride(primals_7, (1600, ), (1, )) assert_size_stride(primals_8, (1, 1600), (1600, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((50, 3, 5, 5), (75, 1, 15, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 150, 25, grid=grid(150, 25), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 3, 96, 96), (27648, 1, 288, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 12, 9216, grid=grid(12, 9216), stream=stream0) del primals_3 buf2 = empty_strided_cuda((100, 50, 5, 5), (1250, 1, 250, 50), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 5000, 25, grid=grid(5000, 25), stream=stream0) del primals_4 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 50, 92, 92), (423200, 1, 4600, 50)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf4, primals_2, 1692800, grid=grid(1692800), stream=stream0) del primals_2 buf5 = empty_strided_cuda((4, 50, 46, 46), (105800, 1, 2300, 50), torch.float32) buf6 = empty_strided_cuda((4, 50, 46, 46), (105800, 1, 2300, 50), torch.int8) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_4.run(buf4, buf5, buf6, 423200, grid=grid(423200), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf5, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 100, 42, 42), (176400, 1, 4200, 100)) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf8, primals_5, 705600, grid=grid(705600), stream=stream0) del primals_5 buf9 = empty_strided_cuda((4, 100, 21, 21), (44100, 1, 2100, 100), torch.int8) buf10 = empty_strided_cuda((4, 100, 21, 21), (44128, 441, 21, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_6.run(buf8, buf9, buf10, 1764, 100, grid=grid(1764, 100), stream=stream0) buf11 = empty_strided_cuda((4, 1600), (1600, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf10, (4, 44100), (44128, 1), 0), reinterpret_tensor(primals_6, (44100, 1600), (1, 44100), 0), out=buf11) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu] triton_poi_fused_relu_7.run(buf12, primals_7, 6400, grid=grid(6400), stream=stream0) del primals_7 buf13 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf12, reinterpret_tensor(primals_8, (1600, 1), (1, 1600), 0), out=buf13) buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [o], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_8.run(buf14, primals_9, 4, grid=grid(4), stream=stream0) del primals_9 return (buf14, buf0, buf1, buf2, buf4, buf5, buf6, buf8, buf9, reinterpret_tensor(buf10, (4, 44100), (44128, 1), 0), buf12, buf14, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((50, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 96, 96), (27648, 9216, 96, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((100, 50, 5, 5), (1250, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1600, 44100), (44100, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1600, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 1600), (1600, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SimpleConv(nn.Module): def __init__(self): super(SimpleConv, self).__init__() self.conv1 = nn.Conv2d(3, 50, 5, 1) self.conv2 = nn.Conv2d(50, 100, 5, 1) self.fc1 = nn.Linear(21 * 21 * 100, 1600) self.fc2 = nn.Linear(1600, 1) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 21 * 21 * 100) x = F.relu(self.fc1(x)) x = self.fc2(x) o = F.sigmoid(x) return o def get_inputs(): return [torch.rand([4, 3, 96, 96])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 150 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 75 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 xnumel = 9216 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 9216 * y3), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 27648 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 5000 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 50 y1 = yindex // 50 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 50 * x2 + 1250 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1692800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_4(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 423200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 50 x1 = xindex // 50 % 46 x2 = xindex // 2300 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 100 * x1 + 9200 * x2), xmask) tmp1 = tl.load(in_ptr0 + (50 + x0 + 100 * x1 + 9200 * x2), xmask) tmp3 = tl.load(in_ptr0 + (4600 + x0 + 100 * x1 + 9200 * x2), xmask) tmp5 = tl.load(in_ptr0 + (4650 + x0 + 100 * x1 + 9200 * x2), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 705600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 1764 xnumel = 100 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 21 y1 = yindex // 21 y5 = yindex y4 = yindex // 441 y6 = yindex % 441 tmp0 = tl.load(in_ptr0 + (x2 + 200 * y0 + 8400 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (100 + x2 + 200 * y0 + 8400 * y1), xmask & ymask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4200 + x2 + 200 * y0 + 8400 * y1), xmask & ymask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (4300 + x2 + 200 * y0 + 8400 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1, 1], 1, tl.int8) tmp4 = tl.full([1, 1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1, 1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1, 1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2 + 100 * y5), tmp15, xmask & ymask) tl.store(out_ptr1 + (y6 + 441 * x2 + 44128 * y4), tmp16, xmask & ymask) @triton.jit def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 1600 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_sigmoid_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (50, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (50,), (1,)) assert_size_stride(primals_3, (4, 3, 96, 96), (27648, 9216, 96, 1)) assert_size_stride(primals_4, (100, 50, 5, 5), (1250, 25, 5, 1)) assert_size_stride(primals_5, (100,), (1,)) assert_size_stride(primals_6, (1600, 44100), (44100, 1)) assert_size_stride(primals_7, (1600,), (1,)) assert_size_stride(primals_8, (1, 1600), (1600, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((50, 3, 5, 5), (75, 1, 15, 3), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(150, 25)](primals_1, buf0, 150, 25, XBLOCK= 32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 3, 96, 96), (27648, 1, 288, 3), torch .float32) triton_poi_fused_1[grid(12, 9216)](primals_3, buf1, 12, 9216, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((100, 50, 5, 5), (1250, 1, 250, 50), torch.float32) triton_poi_fused_2[grid(5000, 25)](primals_4, buf2, 5000, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_4 buf3 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 50, 92, 92), (423200, 1, 4600, 50)) buf4 = buf3 del buf3 triton_poi_fused_convolution_relu_3[grid(1692800)](buf4, primals_2, 1692800, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf5 = empty_strided_cuda((4, 50, 46, 46), (105800, 1, 2300, 50), torch.float32) buf6 = empty_strided_cuda((4, 50, 46, 46), (105800, 1, 2300, 50), torch.int8) triton_poi_fused_max_pool2d_with_indices_4[grid(423200)](buf4, buf5, buf6, 423200, XBLOCK=512, num_warps=8, num_stages=1) buf7 = extern_kernels.convolution(buf5, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 100, 42, 42), (176400, 1, 4200, 100)) buf8 = buf7 del buf7 triton_poi_fused_convolution_relu_5[grid(705600)](buf8, primals_5, 705600, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf9 = empty_strided_cuda((4, 100, 21, 21), (44100, 1, 2100, 100), torch.int8) buf10 = empty_strided_cuda((4, 100, 21, 21), (44128, 441, 21, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_6[grid(1764, 100)](buf8, buf9, buf10, 1764, 100, XBLOCK=128, YBLOCK=8, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((4, 1600), (1600, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf10, (4, 44100), (44128, 1), 0), reinterpret_tensor(primals_6, (44100, 1600), (1, 44100), 0), out=buf11) buf12 = buf11 del buf11 triton_poi_fused_relu_7[grid(6400)](buf12, primals_7, 6400, XBLOCK= 128, num_warps=4, num_stages=1) del primals_7 buf13 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf12, reinterpret_tensor(primals_8, (1600, 1), ( 1, 1600), 0), out=buf13) buf14 = buf13 del buf13 triton_poi_fused_sigmoid_8[grid(4)](buf14, primals_9, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_9 return (buf14, buf0, buf1, buf2, buf4, buf5, buf6, buf8, buf9, reinterpret_tensor(buf10, (4, 44100), (44128, 1), 0), buf12, buf14, primals_8, primals_6) class SimpleConvNew(nn.Module): def __init__(self): super(SimpleConvNew, self).__init__() self.conv1 = nn.Conv2d(3, 50, 5, 1) self.conv2 = nn.Conv2d(50, 100, 5, 1) self.fc1 = nn.Linear(21 * 21 * 100, 1600) self.fc2 = nn.Linear(1600, 1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
junoon53/pcam_challenge
SimpleConv
false
7,151
[ "MIT" ]
1
283c98b2d2e211424cdcb56d8230a7a29dc5af46
https://github.com/junoon53/pcam_challenge/tree/283c98b2d2e211424cdcb56d8230a7a29dc5af46
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 50, 5, 1) self.conv2 = nn.Conv2d(50, 100, 5, 1) self.fc1 = nn.Linear(21 * 21 * 100, 1600) self.fc2 = nn.Linear(1600, 1) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 21 * 21 * 100) x = F.relu(self.fc1(x)) x = self.fc2(x) o = F.sigmoid(x) return o def get_inputs(): return [torch.rand([4, 3, 96, 96])] def get_init_inputs(): return []
BilinearConvLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/q7/cq7qwv755rskgi3fxmqbrnzfm6sxg6uprg2cozcqvgaiyr3e5jdv.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] # Source node to ATen node mapping: # y => convolution # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/z3/cz3wzaxpnjzxw2tlwd44hdoijks7pwssvfnwqddof4cwhxcvud6q.py # Topologically Sorted Source Nodes: [z], Original ATen: [aten.mul] # Source node to ATen node mapping: # z => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_4, %slice_6), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = (xindex // 64) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1)), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1)), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 512, grid=grid(512), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) return (buf2, primals_1, primals_3, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch def setup_conv(in_channels, out_channels, kernel_size, bias, padding_mode, stride=1, Conv=torch.nn.Conv2d): return Conv(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, stride= stride, bias=bias) class BilinearConvLayer(torch.nn.Module): def __init__(self, input_channels, output_channels, bilin_channels=None, padding_mode='zeros', Conv=torch.nn.Conv2d, nonlinearity=torch.nn. Identity(), norm=torch.nn.Identity(), kernel_size=3): super(BilinearConvLayer, self).__init__() bilin_channels = (output_channels if bilin_channels is None else bilin_channels) self.chgrp1 = max(0, output_channels - bilin_channels) self.chgrp2 = bilin_channels self.layer1 = setup_conv(in_channels=input_channels, out_channels= self.chgrp1 + 2 * self.chgrp2, kernel_size=kernel_size, bias= True, padding_mode=padding_mode, stride=1, Conv=Conv) self.norm = norm self.nonlinearity = nonlinearity def forward(self, x): y = self.nonlinearity(self.norm(self.layer1(x))) mid = self.chgrp1 + self.chgrp2 y1, y2, y3 = y[:, :self.chgrp1], y[:, self.chgrp1:mid], y[:, mid:] z = y2 * y3 out = torch.cat((y1, z), dim=1) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4, 'output_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 8 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = xindex // 64 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(512)](buf1, primals_2, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_1[grid(256)](buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf2, primals_1, primals_3, buf1 def setup_conv(in_channels, out_channels, kernel_size, bias, padding_mode, stride=1, Conv=torch.nn.Conv2d): return Conv(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, stride= stride, bias=bias) class BilinearConvLayerNew(torch.nn.Module): def __init__(self, input_channels, output_channels, bilin_channels=None, padding_mode='zeros', Conv=torch.nn.Conv2d, nonlinearity=torch.nn. Identity(), norm=torch.nn.Identity(), kernel_size=3): super(BilinearConvLayerNew, self).__init__() bilin_channels = (output_channels if bilin_channels is None else bilin_channels) self.chgrp1 = max(0, output_channels - bilin_channels) self.chgrp2 = bilin_channels self.layer1 = setup_conv(in_channels=input_channels, out_channels= self.chgrp1 + 2 * self.chgrp2, kernel_size=kernel_size, bias= True, padding_mode=padding_mode, stride=1, Conv=Conv) self.norm = norm self.nonlinearity = nonlinearity def forward(self, input_0): primals_1 = self.layer1.weight primals_2 = self.layer1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
m-dml/lil2021swe
BilinearConvLayer
false
7,152
[ "Apache-2.0" ]
1
45352f214ec28c9f91dd24ed3669f492d8b68382
https://github.com/m-dml/lil2021swe/tree/45352f214ec28c9f91dd24ed3669f492d8b68382
import torch def setup_conv(in_channels, out_channels, kernel_size, bias, padding_mode, stride=1, Conv=torch.nn.Conv2d): return Conv(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, stride= stride, bias=bias) class Model(torch.nn.Module): def __init__(self, input_channels, output_channels, bilin_channels=None, padding_mode='zeros', Conv=torch.nn.Conv2d, nonlinearity=torch.nn. Identity(), norm=torch.nn.Identity(), kernel_size=3): super().__init__() bilin_channels = (output_channels if bilin_channels is None else bilin_channels) self.chgrp1 = max(0, output_channels - bilin_channels) self.chgrp2 = bilin_channels self.layer1 = setup_conv(in_channels=input_channels, out_channels= self.chgrp1 + 2 * self.chgrp2, kernel_size=kernel_size, bias= True, padding_mode=padding_mode, stride=1, Conv=Conv) self.norm = norm self.nonlinearity = nonlinearity def forward(self, x): y = self.nonlinearity(self.norm(self.layer1(x))) mid = self.chgrp1 + self.chgrp2 y1, y2, y3 = y[:, :self.chgrp1], y[:, self.chgrp1:mid], y[:, mid:] z = y2 * y3 out = torch.cat((y1, z), dim=1) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
FFN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/z5/cz5cv4otoqqg7gisuc6bx7rlau6zkmkldsfxasbc2l2hvtqjgjou.py # Topologically Sorted Source Nodes: [cated_vectors], Original ATen: [aten.cat] # Source node to ATen node mapping: # cated_vectors => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 12 x0 = xindex % 16 x2 = (xindex // 192) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + (x0 + (16*((-8) + x1)) + (64*x2)), tmp11 & xmask, other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lk/clkvwvqcst6t4cucaxdngnnuhangq7kuawiiub5xqxykvb3eih2u.py # Topologically Sorted Source Nodes: [mul, pow_1, mul_1, add, mul_2, tanh, add_1, mul_3], Original ATen: [aten.mul, aten.pow, aten.add, aten.tanh] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # pow_1 => pow_1 # tanh => tanh # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 3), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.044715), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.7978845608028654), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_2,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {}) triton_poi_fused_add_mul_pow_tanh_1 = async_compile.triton('triton_poi_fused_add_mul_pow_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_pow_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = tmp0 * tmp0 tmp4 = tmp3 * tmp0 tmp5 = 0.044715 tmp6 = tmp4 * tmp5 tmp7 = tmp0 + tmp6 tmp8 = 0.7978845608028654 tmp9 = tmp7 * tmp8 tmp10 = libdevice.tanh(tmp9) tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp2 * tmp12 tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/qk/cqk4fc6sh5nxra5g2ze56qihubkj2kgf6kgs6cvrl7zew3sie6gm.py # Topologically Sorted Source Nodes: [low_vectors_1], Original ATen: [aten.add] # Source node to ATen node mapping: # low_vectors_1 => add_2 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %getitem), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (192*x1)), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3o/c3ohg5u3kgv4nzwhohtfisgwxfppk7dvczwpyrw3fsxa3lspzcrm.py # Topologically Sorted Source Nodes: [mid_vectors_1], Original ATen: [aten.add] # Source node to ATen node mapping: # mid_vectors_1 => add_3 # Graph fragment: # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %getitem_1), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (64 + x0 + (192*x1)), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ci/ccicvllvu6lhrojla6mefablakbyu4tzhjfeosnnd47v7p7yde2j.py # Topologically Sorted Source Nodes: [hig_vectors_1], Original ATen: [aten.add] # Source node to ATen node mapping: # hig_vectors_1 => add_4 # Graph fragment: # %add_4 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %getitem_2), kwargs = {}) triton_poi_fused_add_4 = async_compile.triton('triton_poi_fused_add_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (128 + x0 + (192*x1)), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/we/cwehzh3z7s3nstmx7epm33gsgvy4mbg6xttmec2livc3ylvoisbm.py # Topologically Sorted Source Nodes: [low_vectors_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # low_vectors_2 => add_5, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_2, [3]), kwargs = {correction: 0, keepdim: True}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_3, 1e-08), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_5,), kwargs = {}) triton_poi_fused_native_layer_norm_5 = async_compile.triton('triton_poi_fused_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-08 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gm/cgmzdl6z4u4iu5bafof4nvofri54twnq7gifufkslpwxjmyguzb3.py # Topologically Sorted Source Nodes: [low_vectors_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # low_vectors_2 => add_5, add_6, mul_4, mul_5, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_2, [3]), kwargs = {correction: 0, keepdim: True}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_3, 1e-08), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_5,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %getitem_4), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %primals_6), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, %primals_7), kwargs = {}) triton_poi_fused_native_layer_norm_6 = async_compile.triton('triton_poi_fused_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12, 4, 4), (192, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cated_vectors], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 768, grid=grid(768), stream=stream0) buf1 = empty_strided_cuda((192, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (192, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 12, 4, 4), (192, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, pow_1, mul_1, add, mul_2, tanh, add_1, mul_3], Original ATen: [aten.mul, aten.pow, aten.add, aten.tanh] triton_poi_fused_add_mul_pow_tanh_1.run(buf1, buf2, 768, grid=grid(768), stream=stream0) buf3 = empty_strided_cuda((192, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (192, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [low_vectors_1], Original ATen: [aten.add] triton_poi_fused_add_2.run(primals_1, buf3, buf4, 256, grid=grid(256), stream=stream0) del primals_1 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mid_vectors_1], Original ATen: [aten.add] triton_poi_fused_add_3.run(primals_2, buf3, buf5, 256, grid=grid(256), stream=stream0) del primals_2 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hig_vectors_1], Original ATen: [aten.add] triton_poi_fused_add_4.run(primals_3, buf3, buf6, 256, grid=grid(256), stream=stream0) del buf3 del primals_3 buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [low_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_5.run(buf4, buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [low_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_6.run(buf4, buf7, buf8, primals_6, primals_7, buf9, 256, grid=grid(256), stream=stream0) del primals_7 buf10 = buf8; del buf8 # reuse buf11 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [mid_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_5.run(buf5, buf10, buf11, 64, grid=grid(64), stream=stream0) buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mid_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_6.run(buf5, buf10, buf11, primals_8, primals_9, buf12, 256, grid=grid(256), stream=stream0) del primals_9 buf13 = buf11; del buf11 # reuse buf14 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [hig_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_5.run(buf6, buf13, buf14, 64, grid=grid(64), stream=stream0) buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hig_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_6.run(buf6, buf13, buf14, primals_10, primals_11, buf15, 256, grid=grid(256), stream=stream0) del buf13 del buf14 del primals_11 return (buf9, buf12, buf15, primals_6, primals_8, primals_10, reinterpret_tensor(buf0, (192, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (192, 4), (4, 1), 0), buf4, buf5, buf6, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class GELU(nn.Module): """ Paper Section 3.4, last paragraph notice that BERT used the GELU instead of RELU came from : https://github.com/codertimo/BERT-pytorch/blob/master/bert_pytorch/model/utils/gelu.py """ def __init__(self): super(GELU, self).__init__() def forward(self, x): return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) class FFN(nn.Module): def __init__(self, embedding_dim, hidden_unit, dropout=0.0, eps=1e-08): super(FFN, self).__init__() self.fc1 = nn.Linear(embedding_dim, hidden_unit, bias=False) self.fc2 = nn.Linear(hidden_unit, embedding_dim, bias=False) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.low_ln = nn.LayerNorm(embedding_dim, eps=eps) self.mid_ln = nn.LayerNorm(embedding_dim, eps=eps) self.hig_ln = nn.LayerNorm(embedding_dim, eps=eps) self.act = GELU() def forward(self, low_vectors, mid_vectors, hig_vectors): low_num, mid_num, hig_num = low_vectors.size()[1], mid_vectors.size()[1 ], hig_vectors.size()[1] low_residual = low_vectors mid_residual = mid_vectors hig_residual = hig_vectors cated_vectors = torch.cat((low_vectors, mid_vectors, hig_vectors), dim=1) output = self.dropout2(self.fc2(self.dropout1(self.act(self.fc1( cated_vectors))))) low_vectors, mid_vectors, hig_vectors = torch.split(output, [ low_num, mid_num, hig_num], dim=1) low_vectors = low_residual + low_vectors mid_vectors = mid_residual + mid_vectors hig_vectors = hig_residual + hig_vectors low_vectors = self.low_ln(low_vectors) mid_vectors = self.mid_ln(mid_vectors) hig_vectors = self.hig_ln(hig_vectors) return low_vectors, mid_vectors, hig_vectors def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'embedding_dim': 4, 'hidden_unit': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 12 x0 = xindex % 16 x2 = xindex // 192 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (x0 + 16 * (-8 + x1) + 64 * x2), tmp11 & xmask, other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x3, tmp16, xmask) @triton.jit def triton_poi_fused_add_mul_pow_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = tmp0 * tmp0 tmp4 = tmp3 * tmp0 tmp5 = 0.044715 tmp6 = tmp4 * tmp5 tmp7 = tmp0 + tmp6 tmp8 = 0.7978845608028654 tmp9 = tmp7 * tmp8 tmp10 = libdevice.tanh(tmp9) tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp2 * tmp12 tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused_add_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = xindex // 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 192 * x1), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_add_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = xindex // 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + (64 + x0 + 192 * x1), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_add_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = xindex // 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + (128 + x0 + 192 * x1), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_native_layer_norm_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-08 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12, 4, 4), (192, 16, 4, 1), torch.float32 ) get_raw_stream(0) triton_poi_fused_cat_0[grid(768)](primals_1, primals_2, primals_3, buf0, 768, XBLOCK=128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((192, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (192, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 12, 4, 4), (192, 16, 4, 1), torch.float32 ) triton_poi_fused_add_mul_pow_tanh_1[grid(768)](buf1, buf2, 768, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((192, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (192, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_2[grid(256)](primals_1, buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_3[grid(256)](primals_2, buf3, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_4[grid(256)](primals_3, buf3, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 del primals_3 buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused_native_layer_norm_5[grid(64)](buf4, buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_6[grid(256)](buf4, buf7, buf8, primals_6, primals_7, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf10 = buf8 del buf8 buf11 = buf7 del buf7 triton_poi_fused_native_layer_norm_5[grid(64)](buf5, buf10, buf11, 64, XBLOCK=64, num_warps=1, num_stages=1) buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_6[grid(256)](buf5, buf10, buf11, primals_8, primals_9, buf12, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf13 = buf11 del buf11 buf14 = buf10 del buf10 triton_poi_fused_native_layer_norm_5[grid(64)](buf6, buf13, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_6[grid(256)](buf6, buf13, buf14, primals_10, primals_11, buf15, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf13 del buf14 del primals_11 return (buf9, buf12, buf15, primals_6, primals_8, primals_10, reinterpret_tensor(buf0, (192, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (192, 4), (4, 1), 0), buf4, buf5, buf6, primals_5) class GELU(nn.Module): """ Paper Section 3.4, last paragraph notice that BERT used the GELU instead of RELU came from : https://github.com/codertimo/BERT-pytorch/blob/master/bert_pytorch/model/utils/gelu.py """ def __init__(self): super(GELU, self).__init__() def forward(self, x): return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) class FFNNew(nn.Module): def __init__(self, embedding_dim, hidden_unit, dropout=0.0, eps=1e-08): super(FFNNew, self).__init__() self.fc1 = nn.Linear(embedding_dim, hidden_unit, bias=False) self.fc2 = nn.Linear(hidden_unit, embedding_dim, bias=False) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.low_ln = nn.LayerNorm(embedding_dim, eps=eps) self.mid_ln = nn.LayerNorm(embedding_dim, eps=eps) self.hig_ln = nn.LayerNorm(embedding_dim, eps=eps) self.act = GELU() def forward(self, input_0, input_1, input_2): primals_4 = self.fc1.weight primals_5 = self.fc2.weight primals_6 = self.low_ln.weight primals_7 = self.low_ln.bias primals_8 = self.mid_ln.weight primals_9 = self.mid_ln.bias primals_10 = self.hig_ln.weight primals_11 = self.hig_ln.bias primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0], output[1], output[2]
luyu-fan/LRCM
FFN
false
7,153
[ "MIT" ]
1
6b0e4d7998bc4969afa764eb753077e3f858f1ba
https://github.com/luyu-fan/LRCM/tree/6b0e4d7998bc4969afa764eb753077e3f858f1ba
import math import torch import torch.nn as nn class GELU(nn.Module): """ Paper Section 3.4, last paragraph notice that BERT used the GELU instead of RELU came from : https://github.com/codertimo/BERT-pytorch/blob/master/bert_pytorch/model/utils/gelu.py """ def __init__(self): super().__init__() def forward(self, x): return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) class Model(nn.Module): def __init__(self, embedding_dim, hidden_unit, dropout=0.0, eps=1e-08): super().__init__() self.fc1 = nn.Linear(embedding_dim, hidden_unit, bias=False) self.fc2 = nn.Linear(hidden_unit, embedding_dim, bias=False) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.low_ln = nn.LayerNorm(embedding_dim, eps=eps) self.mid_ln = nn.LayerNorm(embedding_dim, eps=eps) self.hig_ln = nn.LayerNorm(embedding_dim, eps=eps) self.act = GELU() def forward(self, low_vectors, mid_vectors, hig_vectors): low_num, mid_num, hig_num = low_vectors.size()[1], mid_vectors.size()[1 ], hig_vectors.size()[1] low_residual = low_vectors mid_residual = mid_vectors hig_residual = hig_vectors cated_vectors = torch.cat((low_vectors, mid_vectors, hig_vectors), dim=1) output = self.dropout2(self.fc2(self.dropout1(self.act(self.fc1( cated_vectors))))) low_vectors, mid_vectors, hig_vectors = torch.split(output, [ low_num, mid_num, hig_num], dim=1) low_vectors = low_residual + low_vectors mid_vectors = mid_residual + mid_vectors hig_vectors = hig_residual + hig_vectors low_vectors = self.low_ln(low_vectors) mid_vectors = self.mid_ln(mid_vectors) hig_vectors = self.hig_ln(hig_vectors) return low_vectors, mid_vectors, hig_vectors def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
CRN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/4d/c4d7os35bf4bckecmik4nlyqqsirmteh4sh3yxnab5lmuntnmwk2.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 128 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lf/clfcn5gfhri4nhvee4viezhjoojfy5qn3nygre4bx75qrms4qd3n.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 128 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x2) + (100*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/oa/coaftdaxqdmymqkwsf3jue6wikwr6e2kd4b3crc5ijigktwyfnc7.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 80 xnumel = 49 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (49*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x2) + (196*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/bq/cbqzqjopcg7rquo5pcfwokk5u2cqvyw4oleohxzzvguydmlqt543.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten._adaptive_avg_pool2d] # Source node to ATen node mapping: # x => _adaptive_avg_pool2d # Graph fragment: # %_adaptive_avg_pool2d : [num_users=4] = call_function[target=torch.ops.aten._adaptive_avg_pool2d.default](args = (%primals_1, [13, 13]), kwargs = {}) triton_poi_fused__adaptive_avg_pool2d_3 = async_compile.triton('triton_poi_fused__adaptive_avg_pool2d_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__adaptive_avg_pool2d_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__adaptive_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 52) % 13 x1 = (xindex // 4) % 13 x0 = xindex % 4 x3 = (xindex // 676) x6 = xindex tmp0 = ((4*x2) // 13) tmp1 = ((16 + (4*x2)) // 13) tmp2 = tmp0 < tmp1 tmp3 = ((4*x1) // 13) tmp4 = ((16 + (4*x1)) // 13) tmp5 = tmp3 < tmp4 tmp6 = tmp2 & tmp5 tmp7 = tl.load(in_ptr0 + ((4*((4*x2) // 13)) + (16*x0) + (64*x3) + ((4*x1) // 13)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = 1 + ((4*x1) // 13) tmp9 = tmp8 < tmp4 tmp10 = tmp2 & tmp9 tmp11 = tl.load(in_ptr0 + (1 + (4*((4*x2) // 13)) + (16*x0) + (64*x3) + ((4*x1) // 13)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp7 tmp13 = 1 + ((4*x2) // 13) tmp14 = tmp13 < tmp1 tmp15 = tmp14 & tmp5 tmp16 = tl.load(in_ptr0 + (4 + (4*((4*x2) // 13)) + (16*x0) + (64*x3) + ((4*x1) // 13)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp16 + tmp12 tmp18 = tmp14 & tmp9 tmp19 = tl.load(in_ptr0 + (5 + (4*((4*x2) // 13)) + (16*x0) + (64*x3) + ((4*x1) // 13)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 + tmp17 tmp21 = 1.0 tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype) tmp23 = tl.where(tmp6, tmp21, tmp22) tmp24 = tl.where(tmp10, tmp21, tmp22) tmp25 = tmp24 + tmp23 tmp26 = tl.where(tmp15, tmp21, tmp22) tmp27 = tmp26 + tmp25 tmp28 = tl.where(tmp18, tmp21, tmp22) tmp29 = tmp28 + tmp27 tmp30 = tmp20 / tmp29 tl.store(out_ptr0 + (x6), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/cz/cczxbirje7zmag4quxpbquw63c24dvrazbdkwdkw4fdmkxoba5sd.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_1 => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %relu_1, %relu_2], 1), kwargs = {}) triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 56784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 84 x1 = (xindex // 84) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((32*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 64, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + ((32*x1) + ((-32) + x0)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + ((-32) + x0), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 84, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tl.load(in_ptr4 + ((20*x1) + ((-64) + x0)), tmp22 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tl.load(in_ptr5 + ((-64) + x0), tmp22 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tmp25 + tmp26 tmp28 = triton_helpers.maximum(tmp8, tmp27) tmp29 = tl.full(tmp28.shape, 0.0, tmp28.dtype) tmp30 = tl.where(tmp22, tmp28, tmp29) tmp31 = tl.where(tmp15, tmp21, tmp30) tmp32 = tl.where(tmp4, tmp11, tmp31) tl.store(out_ptr0 + (x2), tmp32, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/c7/cc7vg3vp6rt7i5czyvtxc4u4srtr22u26lqgxea6dagdtwkjxhde.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_3 => add, add_1, convert_element_type, convert_element_type_1, iota, mul, mul_1 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 3.25), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_5 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_5(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 3.25 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ji/cjixe3kw6mcg4wg7ou63cb26cboath5eiifzkkwdha5rwajcikos.py # Topologically Sorted Source Nodes: [conv2d_3, x_2, x_3], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x_2 => relu_3 # x_3 => _unsafe_index # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_3, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_relu_6 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (0)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp1 = tl.full([XBLOCK], 13, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (13*tmp4) + (169*x2)), xmask, eviction_policy='evict_last') tmp12 = tmp9 + tmp11 tmp13 = tl.full([1], 0, tl.int32) tmp14 = triton_helpers.maximum(tmp13, tmp12) tl.store(out_ptr0 + (x4), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3h/c3hfbj6mk3kpl2k7vav7la4davtsxxy2gheyxcoxcfqfqj7pf7ep.py # Topologically Sorted Source Nodes: [conv2d_3, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x_2 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 676 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/we/cweie3u3hadgguqvfwjj6rti75pfxgznxvyfzvtvunbesaswu536.py # Topologically Sorted Source Nodes: [conv2d_2, x3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x3 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_adaptive_avg_pool2d, %primals_6, %primals_7, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_8 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 13520 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xl/cxl4x74l4avjy5s34pyd6st75c3nb76ytdignjkuu2wy34l4ompp.py # Topologically Sorted Source Nodes: [conv2d_1, x2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_adaptive_avg_pool2d, %primals_4, %primals_5, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_9 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 21632 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (32, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (32, ), (1, )) assert_size_stride(primals_4, (32, 4, 5, 5), (100, 25, 5, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (20, 4, 7, 7), (196, 49, 7, 1)) assert_size_stride(primals_7, (20, ), (1, )) assert_size_stride(primals_8, (1, 84, 1, 1), (84, 1, 1, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((32, 4, 3, 3), (36, 1, 12, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_2, buf0, 128, 9, grid=grid(128, 9), stream=stream0) del primals_2 buf1 = empty_strided_cuda((32, 4, 5, 5), (100, 1, 20, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_4, buf1, 128, 25, grid=grid(128, 25), stream=stream0) del primals_4 buf2 = empty_strided_cuda((20, 4, 7, 7), (196, 1, 28, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_6, buf2, 80, 49, grid=grid(80, 49), stream=stream0) del primals_6 buf3 = empty_strided_cuda((4, 4, 13, 13), (676, 1, 52, 4), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten._adaptive_avg_pool2d] triton_poi_fused__adaptive_avg_pool2d_3.run(primals_1, buf3, 2704, grid=grid(2704), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 13, 13), (5408, 1, 416, 32)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf3, buf1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 32, 13, 13), (5408, 1, 416, 32)) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf3, buf2, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 20, 13, 13), (3380, 1, 260, 20)) buf7 = empty_strided_cuda((4, 84, 13, 13), (14196, 1, 1092, 84), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf4, primals_3, buf5, primals_5, buf6, primals_7, buf7, 56784, grid=grid(56784), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 1, 13, 13), (169, 1, 13, 1)) buf9 = empty_strided_cuda((4, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_5.run(buf9, 4, grid=grid(4), stream=stream0) buf10 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, x_2, x_3], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] triton_poi_fused__unsafe_index_convolution_relu_6.run(buf9, buf8, primals_9, buf10, 64, grid=grid(64), stream=stream0) buf11 = empty_strided_cuda((4, 1, 13, 13), (169, 1, 13, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_7.run(buf8, primals_9, buf11, 676, grid=grid(676), stream=stream0) del buf8 del primals_9 buf12 = empty_strided_cuda((4, 20, 13, 13), (3380, 1, 260, 20), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, x3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_8.run(buf6, primals_7, buf12, 13520, grid=grid(13520), stream=stream0) del buf6 del primals_7 buf13 = empty_strided_cuda((4, 32, 13, 13), (5408, 1, 416, 32), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, x2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_9.run(buf5, primals_5, buf13, 21632, grid=grid(21632), stream=stream0) del buf5 del primals_5 buf14 = empty_strided_cuda((4, 32, 13, 13), (5408, 1, 416, 32), torch.bool) # Topologically Sorted Source Nodes: [conv2d, x1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_9.run(buf4, primals_3, buf14, 21632, grid=grid(21632), stream=stream0) del buf4 del primals_3 return (buf10, buf0, buf1, buf2, primals_8, buf3, buf7, buf9, buf11, buf12, buf13, buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 4, 5, 5), (100, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((20, 4, 7, 7), (196, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 84, 1, 1), (84, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F class CRN(torch.nn.Module): def __init__(self, dim): super(CRN, self).__init__() self.h_w = 13, 13 self.downsample = torch.nn.AdaptiveAvgPool2d(self.h_w) n_filters = [32, 32, 20] self.conv1 = torch.nn.Conv2d(dim, n_filters[0], 3, padding=1) self.conv2 = torch.nn.Conv2d(dim, n_filters[1], 5, padding=2) self.conv3 = torch.nn.Conv2d(dim, n_filters[2], 7, padding=3) self.conv_accum = torch.nn.Conv2d(sum(n_filters), 1, 1) for m in self.modules(): if isinstance(m, torch.nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: torch.nn.init.zeros_(m.bias) def forward(self, x): input_h_w = x.shape[2:] x = self.downsample(x) x1 = F.relu(self.conv1(x)) x2 = F.relu(self.conv2(x)) x3 = F.relu(self.conv3(x)) x = torch.cat((x1, x2, x3), dim=1) x = F.relu(self.conv_accum(x)) x = F.interpolate(x, input_h_w) assert x.shape[2:] == input_h_w return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 128 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 128 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 4 * x2 + 100 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 80 xnumel = 49 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 49 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 4 * x2 + 196 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__adaptive_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 52 % 13 x1 = xindex // 4 % 13 x0 = xindex % 4 x3 = xindex // 676 x6 = xindex tmp0 = 4 * x2 // 13 tmp1 = (16 + 4 * x2) // 13 tmp2 = tmp0 < tmp1 tmp3 = 4 * x1 // 13 tmp4 = (16 + 4 * x1) // 13 tmp5 = tmp3 < tmp4 tmp6 = tmp2 & tmp5 tmp7 = tl.load(in_ptr0 + (4 * (4 * x2 // 13) + 16 * x0 + 64 * x3 + 4 * x1 // 13), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = 1 + 4 * x1 // 13 tmp9 = tmp8 < tmp4 tmp10 = tmp2 & tmp9 tmp11 = tl.load(in_ptr0 + (1 + 4 * (4 * x2 // 13) + 16 * x0 + 64 * x3 + 4 * x1 // 13), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp7 tmp13 = 1 + 4 * x2 // 13 tmp14 = tmp13 < tmp1 tmp15 = tmp14 & tmp5 tmp16 = tl.load(in_ptr0 + (4 + 4 * (4 * x2 // 13) + 16 * x0 + 64 * x3 + 4 * x1 // 13), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp16 + tmp12 tmp18 = tmp14 & tmp9 tmp19 = tl.load(in_ptr0 + (5 + 4 * (4 * x2 // 13) + 16 * x0 + 64 * x3 + 4 * x1 // 13), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 + tmp17 tmp21 = 1.0 tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype) tmp23 = tl.where(tmp6, tmp21, tmp22) tmp24 = tl.where(tmp10, tmp21, tmp22) tmp25 = tmp24 + tmp23 tmp26 = tl.where(tmp15, tmp21, tmp22) tmp27 = tmp26 + tmp25 tmp28 = tl.where(tmp18, tmp21, tmp22) tmp29 = tmp28 + tmp27 tmp30 = tmp20 / tmp29 tl.store(out_ptr0 + x6, tmp30, xmask) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 56784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 84 x1 = xindex // 84 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (32 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 64, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (32 * x1 + (-32 + x0)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + (-32 + x0), tmp15 & xmask, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tl.full([1], 84, tl.int64) tmp25 = tl.load(in_ptr4 + (20 * x1 + (-64 + x0)), tmp22 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tl.load(in_ptr5 + (-64 + x0), tmp22 & xmask, eviction_policy= 'evict_last', other=0.0) tmp27 = tmp25 + tmp26 tmp28 = triton_helpers.maximum(tmp8, tmp27) tmp29 = tl.full(tmp28.shape, 0.0, tmp28.dtype) tmp30 = tl.where(tmp22, tmp28, tmp29) tmp31 = tl.where(tmp15, tmp21, tmp30) tmp32 = tl.where(tmp4, tmp11, tmp31) tl.store(out_ptr0 + x2, tmp32, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_5(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 3.25 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + 0) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp1 = tl.full([XBLOCK], 13, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 13 * tmp4 + 169 * x2), xmask, eviction_policy='evict_last') tmp12 = tmp9 + tmp11 tmp13 = tl.full([1], 0, tl.int32) tmp14 = triton_helpers.maximum(tmp13, tmp12) tl.store(out_ptr0 + x4, tmp14, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 676 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 13520 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 21632 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (32, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (32,), (1,)) assert_size_stride(primals_4, (32, 4, 5, 5), (100, 25, 5, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (20, 4, 7, 7), (196, 49, 7, 1)) assert_size_stride(primals_7, (20,), (1,)) assert_size_stride(primals_8, (1, 84, 1, 1), (84, 1, 1, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((32, 4, 3, 3), (36, 1, 12, 4), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(128, 9)](primals_2, buf0, 128, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((32, 4, 5, 5), (100, 1, 20, 4), torch.float32 ) triton_poi_fused_1[grid(128, 25)](primals_4, buf1, 128, 25, XBLOCK= 32, YBLOCK=32, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((20, 4, 7, 7), (196, 1, 28, 4), torch.float32 ) triton_poi_fused_2[grid(80, 49)](primals_6, buf2, 80, 49, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_6 buf3 = empty_strided_cuda((4, 4, 13, 13), (676, 1, 52, 4), torch. float32) triton_poi_fused__adaptive_avg_pool2d_3[grid(2704)](primals_1, buf3, 2704, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf4 = extern_kernels.convolution(buf3, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 13, 13), (5408, 1, 416, 32)) buf5 = extern_kernels.convolution(buf3, buf1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 32, 13, 13), (5408, 1, 416, 32)) buf6 = extern_kernels.convolution(buf3, buf2, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 20, 13, 13), (3380, 1, 260, 20)) buf7 = empty_strided_cuda((4, 84, 13, 13), (14196, 1, 1092, 84), torch.float32) triton_poi_fused_cat_4[grid(56784)](buf4, primals_3, buf5, primals_5, buf6, primals_7, buf7, 56784, XBLOCK=256, num_warps= 4, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 1, 13, 13), (169, 1, 13, 1)) buf9 = empty_strided_cuda((4,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_5[grid(4)](buf9, 4, XBLOCK =4, num_warps=1, num_stages=1) buf10 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_relu_6[grid(64)](buf9, buf8, primals_9, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) buf11 = empty_strided_cuda((4, 1, 13, 13), (169, 1, 13, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_7[grid(676)](buf8, primals_9, buf11, 676, XBLOCK=256, num_warps=4, num_stages=1) del buf8 del primals_9 buf12 = empty_strided_cuda((4, 20, 13, 13), (3380, 1, 260, 20), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_8[grid(13520)]( buf6, primals_7, buf12, 13520, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del primals_7 buf13 = empty_strided_cuda((4, 32, 13, 13), (5408, 1, 416, 32), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_9[grid(21632)]( buf5, primals_5, buf13, 21632, XBLOCK=256, num_warps=4, num_stages=1) del buf5 del primals_5 buf14 = empty_strided_cuda((4, 32, 13, 13), (5408, 1, 416, 32), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_9[grid(21632)]( buf4, primals_3, buf14, 21632, XBLOCK=256, num_warps=4, num_stages=1) del buf4 del primals_3 return (buf10, buf0, buf1, buf2, primals_8, buf3, buf7, buf9, buf11, buf12, buf13, buf14) class CRNNew(torch.nn.Module): def __init__(self, dim): super(CRNNew, self).__init__() self.h_w = 13, 13 self.downsample = torch.nn.AdaptiveAvgPool2d(self.h_w) n_filters = [32, 32, 20] self.conv1 = torch.nn.Conv2d(dim, n_filters[0], 3, padding=1) self.conv2 = torch.nn.Conv2d(dim, n_filters[1], 5, padding=2) self.conv3 = torch.nn.Conv2d(dim, n_filters[2], 7, padding=3) self.conv_accum = torch.nn.Conv2d(sum(n_filters), 1, 1) for m in self.modules(): if isinstance(m, torch.nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: torch.nn.init.zeros_(m.bias) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv_accum.weight primals_9 = self.conv_accum.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
lulor/project_vg
CRN
false
7,154
[ "MIT" ]
1
27b0c3b3038c5a666dde516a0a265ae8ddf2059f
https://github.com/lulor/project_vg/tree/27b0c3b3038c5a666dde516a0a265ae8ddf2059f
import torch import torch.nn.functional as F class Model(torch.nn.Module): def __init__(self, dim): super().__init__() self.h_w = 13, 13 self.downsample = torch.nn.AdaptiveAvgPool2d(self.h_w) n_filters = [32, 32, 20] self.conv1 = torch.nn.Conv2d(dim, n_filters[0], 3, padding=1) self.conv2 = torch.nn.Conv2d(dim, n_filters[1], 5, padding=2) self.conv3 = torch.nn.Conv2d(dim, n_filters[2], 7, padding=3) self.conv_accum = torch.nn.Conv2d(sum(n_filters), 1, 1) for m in self.modules(): if isinstance(m, torch.nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: torch.nn.init.zeros_(m.bias) def forward(self, x): input_h_w = x.shape[2:] x = self.downsample(x) x1 = F.relu(self.conv1(x)) x2 = F.relu(self.conv2(x)) x3 = F.relu(self.conv3(x)) x = torch.cat((x1, x2, x3), dim=1) x = F.relu(self.conv_accum(x)) x = F.interpolate(x, input_h_w) assert x.shape[2:] == input_h_w return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
DeepLiftRegressor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/pc/cpcm6y2qksezrhcucxc47wirc7wtng24a4ikidoby3abodsmpda3.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 691200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3456) % 50 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/yc/cycnvm4kffm6fth3l55jncg7vgtrc54kp7amgxb3id3mjgpmg7ew.py # Topologically Sorted Source Nodes: [conv2d_1, x_1, x_2], Original ATen: [aten.convolution, aten.relu, aten.mean, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # x_2 => mean # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_red_fused_convolution_mean_relu_threshold_backward_1 = async_compile.triton('triton_red_fused_convolution_mean_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[256, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_mean_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_convolution_mean_relu_threshold_backward_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 200 rnumel = 2816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 50 tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') _tmp6 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (r2 + (2816*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = _tmp6 + tmp5 _tmp6 = tl.where(rmask & xmask, tmp7, _tmp6) tmp8 = 0.0 tmp9 = tmp4 <= tmp8 tl.store(out_ptr0 + (r2 + (2816*x3)), tmp9, rmask & xmask) tmp6 = tl.sum(_tmp6, 1)[:, None] tmp10 = 2816.0 tmp11 = tmp6 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + (x3), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/h2/ch2bj6a3qcae5ehxm5i5i5fvfnshjpu6uyzbg3mozketmq5np3ka.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_3 => relu_2 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (50, 4, 1, 11), (44, 11, 11, 1)) assert_size_stride(primals_2, (50, ), (1, )) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (50, 50, 1, 11), (550, 11, 11, 1)) assert_size_stride(primals_5, (50, ), (1, )) assert_size_stride(primals_6, (50, 50), (50, 1)) assert_size_stride(primals_7, (50, ), (1, )) assert_size_stride(primals_8, (5, 50), (50, 1)) assert_size_stride(primals_9, (5, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 50, 64, 54), (172800, 3456, 54, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 691200, grid=grid(691200), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 50, 64, 44), (140800, 2816, 44, 1)) buf3 = empty_strided_cuda((4, 50), (50, 1), torch.float32) buf8 = empty_strided_cuda((4, 50, 64, 44), (140800, 2816, 44, 1), torch.bool) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1, x_2], Original ATen: [aten.convolution, aten.relu, aten.mean, aten.threshold_backward] triton_red_fused_convolution_mean_relu_threshold_backward_1.run(buf4, buf2, primals_5, buf8, 200, 2816, grid=grid(200), stream=stream0) del buf2 del primals_5 buf5 = empty_strided_cuda((4, 50), (50, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf4, reinterpret_tensor(primals_6, (50, 50), (1, 50), 0), out=buf5) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_2.run(buf6, primals_7, 200, grid=grid(200), stream=stream0) del primals_7 buf7 = empty_strided_cuda((4, 5), (5, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf6, reinterpret_tensor(primals_8, (50, 5), (1, 50), 0), alpha=1, beta=1, out=buf7) del primals_9 return (buf7, primals_1, primals_3, primals_4, buf1, buf4, buf6, primals_8, primals_6, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((50, 4, 1, 11), (44, 11, 11, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((50, 50, 1, 11), (550, 11, 11, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((50, 50), (50, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((5, 50), (50, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class DeepLiftRegressor(nn.Module): def __init__(self): super(DeepLiftRegressor, self).__init__() self.conv1 = nn.Conv2d(in_channels=4, out_channels=50, kernel_size= (1, 11)) self.conv2 = nn.Conv2d(in_channels=50, out_channels=50, kernel_size =(1, 11)) self.fc1 = nn.Linear(50, 50) self.dropout1 = nn.Dropout2d(p=0.5) self.fc2 = nn.Linear(50, 5) def forward(self, input): x = F.relu(self.conv1(input)) x = F.relu(self.conv2(x)) x = torch.mean(x.view(x.size(0), x.size(1), -1), dim=2) x = F.relu(self.fc1(x)) x = self.dropout1(x) x = self.fc2(x) return x def num_flat_features(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 691200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3456 % 50 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_red_fused_convolution_mean_relu_threshold_backward_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 200 rnumel = 2816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 50 tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') _tmp6 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (r2 + 2816 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = _tmp6 + tmp5 _tmp6 = tl.where(rmask & xmask, tmp7, _tmp6) tmp8 = 0.0 tmp9 = tmp4 <= tmp8 tl.store(out_ptr0 + (r2 + 2816 * x3), tmp9, rmask & xmask) tmp6 = tl.sum(_tmp6, 1)[:, None] tmp10 = 2816.0 tmp11 = tmp6 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + x3, tmp11, xmask) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (50, 4, 1, 11), (44, 11, 11, 1)) assert_size_stride(primals_2, (50,), (1,)) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (50, 50, 1, 11), (550, 11, 11, 1)) assert_size_stride(primals_5, (50,), (1,)) assert_size_stride(primals_6, (50, 50), (50, 1)) assert_size_stride(primals_7, (50,), (1,)) assert_size_stride(primals_8, (5, 50), (50, 1)) assert_size_stride(primals_9, (5,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 50, 64, 54), (172800, 3456, 54, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(691200)](buf1, primals_2, 691200, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 50, 64, 44), (140800, 2816, 44, 1)) buf3 = empty_strided_cuda((4, 50), (50, 1), torch.float32) buf8 = empty_strided_cuda((4, 50, 64, 44), (140800, 2816, 44, 1), torch.bool) buf4 = buf3 del buf3 triton_red_fused_convolution_mean_relu_threshold_backward_1[grid(200)]( buf4, buf2, primals_5, buf8, 200, 2816, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) del buf2 del primals_5 buf5 = empty_strided_cuda((4, 50), (50, 1), torch.float32) extern_kernels.mm(buf4, reinterpret_tensor(primals_6, (50, 50), (1, 50), 0), out=buf5) buf6 = buf5 del buf5 triton_poi_fused_relu_2[grid(200)](buf6, primals_7, 200, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf7 = empty_strided_cuda((4, 5), (5, 1), torch.float32) extern_kernels.addmm(primals_9, buf6, reinterpret_tensor(primals_8, (50, 5), (1, 50), 0), alpha=1, beta=1, out=buf7) del primals_9 return (buf7, primals_1, primals_3, primals_4, buf1, buf4, buf6, primals_8, primals_6, buf8) class DeepLiftRegressorNew(nn.Module): def __init__(self): super(DeepLiftRegressorNew, self).__init__() self.conv1 = nn.Conv2d(in_channels=4, out_channels=50, kernel_size= (1, 11)) self.conv2 = nn.Conv2d(in_channels=50, out_channels=50, kernel_size =(1, 11)) self.fc1 = nn.Linear(50, 50) self.dropout1 = nn.Dropout2d(p=0.5) self.fc2 = nn.Linear(50, 5) def num_flat_features(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
lzamparo/SeqDemote
DeepLiftRegressor
false
7,155
[ "MIT" ]
1
3eaf18e88c9dc6a3d1a69444ecdba9f9b5d9682a
https://github.com/lzamparo/SeqDemote/tree/3eaf18e88c9dc6a3d1a69444ecdba9f9b5d9682a
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(in_channels=4, out_channels=50, kernel_size= (1, 11)) self.conv2 = nn.Conv2d(in_channels=50, out_channels=50, kernel_size =(1, 11)) self.fc1 = nn.Linear(50, 50) self.dropout1 = nn.Dropout2d(p=0.5) self.fc2 = nn.Linear(50, 5) def forward(self, input): x = F.relu(self.conv1(input)) x = F.relu(self.conv2(x)) x = torch.mean(x.view(x.size(0), x.size(1), -1), dim=2) x = F.relu(self.fc1(x)) x = self.dropout1(x) x = self.fc2(x) return x def num_flat_features(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return []
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/rh/crhy6nilvaajphuuoyup37xl4ncuiyrcb3fnt5aboux6wyvcg7ie.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/oi/coiccv2naqo5guipwtokaoohzz54bpvgya5fumrfprestitumxks.py # Topologically Sorted Source Nodes: [scores, neg, pow_1, mul, add, scores_1], Original ATen: [aten.div, aten.neg, aten.pow, aten.mul, aten.add, aten.reciprocal] # Source node to ATen node mapping: # add => add # mul => mul # neg => neg # pow_1 => pow_1 # scores => div # scores_1 => mul_1, reciprocal # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%div,), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Scalar](args = (2.718281828459045, %neg), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 20), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add,), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1), kwargs = {}) triton_poi_fused_add_div_mul_neg_pow_reciprocal_1 = async_compile.triton('triton_poi_fused_add_div_mul_neg_pow_reciprocal_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_neg_pow_reciprocal_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_neg_pow_reciprocal_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = -tmp2 tmp4 = 2.718281828459045 tmp5 = libdevice.pow(tmp4, tmp3) tmp6 = 20.0 tmp7 = tmp5 * tmp6 tmp8 = tmp7 + tmp1 tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp9 / tmp8 tmp11 = tmp10 * tmp1 tl.store(out_ptr0 + (x0), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/mz/cmzlu2lip25blpsdqeby7ek5757op6xw3pdkxbdediou5szw32tx.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1) del primals_5 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 16, 1), (64, 16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf1, primals_6, buf3, 16, 16, grid=grid(16, 16), stream=stream0) del primals_6 buf4 = reinterpret_tensor(buf1, (4, 4, 1, 16), (64, 16, 16, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf0, primals_3, buf4, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 buf5 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 16), (16, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [scores, neg, pow_1, mul, add, scores_1], Original ATen: [aten.div, aten.neg, aten.pow, aten.mul, aten.add, aten.reciprocal] triton_poi_fused_add_div_mul_neg_pow_reciprocal_1.run(buf5, buf6, 4096, grid=grid(4096), stream=stream0) buf7 = reinterpret_tensor(buf0, (4, 4, 16, 1), (64, 16, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, primals_8, buf7, 16, 16, grid=grid(16, 16), stream=stream0) del primals_8 buf8 = reinterpret_tensor(buf2, (16, 16, 1), (16, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf6, (16, 16, 16), (256, 16, 1), 0), reinterpret_tensor(buf7, (16, 16, 1), (16, 1, 0), 0), out=buf8) buf9 = empty_strided_cuda((4, 16, 4, 1), (64, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf8, buf9, 64, 4, grid=grid(64, 4), stream=stream0) buf10 = reinterpret_tensor(buf8, (64, 4), (4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_11 return (reinterpret_tensor(buf10, (4, 16, 4), (64, 4, 1), 0), buf6, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), buf5, reinterpret_tensor(buf9, (64, 4), (4, 1), 0), primals_10, reinterpret_tensor(buf6, (16, 16, 16), (256, 1, 16), 0), reinterpret_tensor(buf7, (16, 1, 16), (16, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 16), (16, 1, 1), 0), reinterpret_tensor(buf4, (16, 16, 1), (16, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import numpy as np import torch.nn as nn def logistic(x, c=1, a=20, b=np.e): return c / (1 + a * b ** -x) def attention(q, k, v, d_k, mask=None, dropout=None): scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: mask = mask.unsqueeze(1) scores = scores.masked_fill(mask == 0, -1000000000.0) scores = logistic(scores) output = torch.matmul(scores, v) return output, scores class MultiHeadAttention(nn.Module): def __init__(self, heads, d_model, dropout=0.1, nheads=200, share_params=True): super().__init__() self.d_model = d_model self.d_k = d_model // heads self.h = heads if share_params is False: self.q_linear = simple_projection_3d(d_model, d_model, nheads) self.v_linear = simple_projection_3d(d_model, d_model, nheads) self.k_linear = simple_projection_3d(d_model, d_model, nheads) if share_params is True: self.q_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) self.out = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) k = self.k_linear(k).view(bs, -1, self.h, self.d_k) q = self.q_linear(q).view(bs, -1, self.h, self.d_k) v = self.v_linear(v).view(bs, -1, self.h, self.d_k) k = k.transpose(1, 2) q = q.transpose(1, 2) v = v.transpose(1, 2) scores, w = attention(q, k, v, self.d_k, mask, self.dropout) concat = scores.transpose(1, 2).contiguous().view(bs, -1, self.d_model) output = self.out(concat) return output, w def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'heads': 4, 'd_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_add_div_mul_neg_pow_reciprocal_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = -tmp2 tmp4 = 2.718281828459045 tmp5 = libdevice.pow(tmp4, tmp3) tmp6 = 20.0 tmp7 = tmp5 * tmp6 tmp8 = tmp7 + tmp1 tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp9 / tmp8 tmp11 = tmp10 * tmp1 tl.store(out_ptr0 + x0, tmp11, None) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1) del primals_5 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 16, 1), (64, 16, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 16)](buf1, primals_6, buf3, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_6 buf4 = reinterpret_tensor(buf1, (4, 4, 1, 16), (64, 16, 16, 1), 0) del buf1 triton_poi_fused_clone_0[grid(16, 16)](buf0, primals_3, buf4, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf5 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 16), (16, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch .float32) triton_poi_fused_add_div_mul_neg_pow_reciprocal_1[grid(4096)](buf5, buf6, 4096, XBLOCK=128, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf0, (4, 4, 16, 1), (64, 16, 1, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 16)](buf2, primals_8, buf7, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_8 buf8 = reinterpret_tensor(buf2, (16, 16, 1), (16, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf6, (16, 16, 16), (256, 16, 1), 0), reinterpret_tensor(buf7, (16, 16, 1), (16, 1, 0), 0), out=buf8) buf9 = empty_strided_cuda((4, 16, 4, 1), (64, 4, 1, 1), torch.float32) triton_poi_fused_clone_2[grid(64, 4)](buf8, buf9, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf10 = reinterpret_tensor(buf8, (64, 4), (4, 1), 0) del buf8 extern_kernels.addmm(primals_11, reinterpret_tensor(buf9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_11 return reinterpret_tensor(buf10, (4, 16, 4), (64, 4, 1), 0 ), buf6, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_9, (64, 4), (4, 1), 0 ), buf5, reinterpret_tensor(buf9, (64, 4), (4, 1), 0 ), primals_10, reinterpret_tensor(buf6, (16, 16, 16), (256, 1, 16), 0 ), reinterpret_tensor(buf7, (16, 1, 16), (16, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 16), (16, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 16, 1), (16, 1, 16), 0) def logistic(x, c=1, a=20, b=np.e): return c / (1 + a * b ** -x) def attention(q, k, v, d_k, mask=None, dropout=None): scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: mask = mask.unsqueeze(1) scores = scores.masked_fill(mask == 0, -1000000000.0) scores = logistic(scores) output = torch.matmul(scores, v) return output, scores class MultiHeadAttentionNew(nn.Module): def __init__(self, heads, d_model, dropout=0.1, nheads=200, share_params=True): super().__init__() self.d_model = d_model self.d_k = d_model // heads self.h = heads if share_params is False: self.q_linear = simple_projection_3d(d_model, d_model, nheads) self.v_linear = simple_projection_3d(d_model, d_model, nheads) self.k_linear = simple_projection_3d(d_model, d_model, nheads) if share_params is True: self.q_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) self.out = nn.Linear(d_model, d_model) def forward(self, input_0, input_1, input_2): primals_2 = self.q_linear.weight primals_3 = self.q_linear.bias primals_5 = self.v_linear.weight primals_6 = self.v_linear.bias primals_7 = self.k_linear.weight primals_8 = self.k_linear.bias primals_10 = self.out.weight primals_11 = self.out.bias primals_1 = input_0 primals_4 = input_1 primals_9 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0], output[1]
lysecret2/explainability-simulation
MultiHeadAttention
false
7,156
[ "MIT" ]
1
e558f6f527ac2ff66f00fcb37aeeaf404c32ff66
https://github.com/lysecret2/explainability-simulation/tree/e558f6f527ac2ff66f00fcb37aeeaf404c32ff66
import math import torch import numpy as np import torch.nn as nn def logistic(x, c=1, a=20, b=np.e): return c / (1 + a * b ** -x) def attention(q, k, v, d_k, mask=None, dropout=None): scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: mask = mask.unsqueeze(1) scores = scores.masked_fill(mask == 0, -1000000000.0) scores = logistic(scores) output = torch.matmul(scores, v) return output, scores class Model(nn.Module): def __init__(self, heads, d_model, dropout=0.1, nheads=200, share_params=True): super().__init__() self.d_model = d_model self.d_k = d_model // heads self.h = heads if share_params is False: self.q_linear = simple_projection_3d(d_model, d_model, nheads) self.v_linear = simple_projection_3d(d_model, d_model, nheads) self.k_linear = simple_projection_3d(d_model, d_model, nheads) if share_params is True: self.q_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) self.out = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) k = self.k_linear(k).view(bs, -1, self.h, self.d_k) q = self.q_linear(q).view(bs, -1, self.h, self.d_k) v = self.v_linear(v).view(bs, -1, self.h, self.d_k) k = k.transpose(1, 2) q = q.transpose(1, 2) v = v.transpose(1, 2) scores, w = attention(q, k, v, self.d_k, mask, self.dropout) concat = scores.transpose(1, 2).contiguous().view(bs, -1, self.d_model) output = self.out(concat) return output, w def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
L2Norm
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/w2/cw2qyt2fur3m5wcjxq34xum55a7h7iifg56c5zbipask4jcl4kpf.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.div] # Source node to ATen node mapping: # x => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %unsqueeze), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 1e-10 tmp13 = tmp11 + tmp12 tmp14 = libdevice.sqrt(tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class L2Norm(nn.Module): """l2-normalization as layer. """ def __init__(self, *, eps: float=1e-10) ->None: super().__init__() self.eps = eps def forward(self, x: 'torch.Tensor') ->torch.Tensor: norm = torch.sqrt(torch.sum(x * x, dim=-1) + self.eps) x = x / norm.unsqueeze(-1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 1e-10 tmp13 = tmp11 + tmp12 tmp14 = libdevice.sqrt(tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class L2NormNew(nn.Module): """l2-normalization as layer. """ def __init__(self, *, eps: float=1e-10) ->None: super().__init__() self.eps = eps def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
manyids2/mkd_pytorch
L2Norm
false
7,157
[ "MIT" ]
1
fb97c4285f93f38371b2aac904a133f970be247e
https://github.com/manyids2/mkd_pytorch/tree/fb97c4285f93f38371b2aac904a133f970be247e
import torch import torch.nn as nn class Model(nn.Module): """l2-normalization as layer. """ def __init__(self, *, eps: float=1e-10) ->None: super().__init__() self.eps = eps def forward(self, x: 'torch.Tensor') ->torch.Tensor: norm = torch.sqrt(torch.sum(x * x, dim=-1) + self.eps) x = x / norm.unsqueeze(-1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MLP_VAE
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/3q/c3qwr2d2rrpjzvnddomnmdy6cwva4hjlvrn2y5epemk4ak3k2m6c.py # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu] # Source node to ATen node mapping: # h1 => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_3), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 400 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3a/c3altqui4bw2inrmbr26ko7caryay6zlxm2w75x7ol5kkzotz753.py # Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # std => exp # z => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_2, 0.5), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%randn, %exp), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%addmm_1, %mul_1), kwargs = {}) triton_poi_fused_add_exp_mul_1 = async_compile.triton('triton_poi_fused_add_exp_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tl.load(in_ptr2 + (x0), xmask) tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 * tmp5 tmp7 = tmp0 + tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 1024), (1024, 1)) assert_size_stride(primals_2, (400, 1024), (1024, 1)) assert_size_stride(primals_3, (400, ), (1, )) assert_size_stride(primals_4, (4, 400), (400, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 400), (400, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (400, 4), (4, 1)) assert_size_stride(primals_9, (400, ), (1, )) assert_size_stride(primals_10, (1024, 400), (400, 1)) assert_size_stride(primals_11, (1024, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 400), (400, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (1024, 400), (1, 1024), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 1600, grid=grid(1600), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (400, 4), (1, 400), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [logvar], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf1, reinterpret_tensor(primals_6, (400, 4), (1, 400), 0), alpha=1, beta=1, out=buf3) del primals_7 # Topologically Sorted Source Nodes: [eps], Original ATen: [aten.randn_like] buf4 = torch.ops.aten.randn.default([4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add] triton_poi_fused_add_exp_mul_1.run(buf2, buf5, buf3, buf6, 16, grid=grid(16), stream=stream0) buf7 = empty_strided_cuda((4, 400), (400, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf6, reinterpret_tensor(primals_8, (4, 400), (1, 4), 0), out=buf7) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [h3], Original ATen: [aten.relu] triton_poi_fused_relu_0.run(buf8, primals_9, 1600, grid=grid(1600), stream=stream0) del primals_9 buf9 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [reconstruction_x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf8, reinterpret_tensor(primals_10, (400, 1024), (1, 400), 0), alpha=1, beta=1, out=buf9) del primals_11 return (buf9, buf2, buf3, primals_1, buf1, buf3, buf5, buf6, buf8, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((400, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((400, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1024, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class MLP_VAE(nn.Module): def __init__(self, ZDIMS): super().__init__() self.z_dims = ZDIMS self.fc1 = nn.Linear(1024, 400) self.relu = nn.ReLU() self.fc21 = nn.Linear(400, ZDIMS) self.fc22 = nn.Linear(400, ZDIMS) self.fc3 = nn.Linear(ZDIMS, 400) self.fc4 = nn.Linear(400, 1024) def encoder(self, x): """ Input vector x --> fully connected 1 --> RELU --> fully connected 21, fully connected 22 Parameters ---------- x: [batch size, 784], batch size number of digits of 28x28 pixels each Returns ------- (mu, logvar): ZDIMS mean units one for each latent dimension, ZDIMS variance units one for each latent dimension """ batch_size = x.shape[0] x = x.view(batch_size, -1) h1 = self.relu(self.fc1(x)) mu = self.fc21(h1) logvar = self.fc22(h1) return mu, logvar def reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return mu + eps * std def decoder(self, z): h3 = self.relu(self.fc3(z)) return self.fc4(h3) def forward(self, x): mu, logvar = self.encoder(x.view(-1, 1024)) z = self.reparameterize(mu, logvar) reconstruction_x = self.decoder(z) return reconstruction_x, mu, logvar def sample(self, n): with torch.no_grad(): z = torch.randn(n, self.z_dims) z = z samples = self.decoder(z) samples = torch.clamp(samples, 0, 1) return samples.cpu().numpy() def get_inputs(): return [torch.rand([4, 1024])] def get_init_inputs(): return [[], {'ZDIMS': 4}]
import torch from torch import device from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 400 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tl.load(in_ptr2 + x0, xmask) tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 * tmp5 tmp7 = tmp0 + tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 1024), (1024, 1)) assert_size_stride(primals_2, (400, 1024), (1024, 1)) assert_size_stride(primals_3, (400,), (1,)) assert_size_stride(primals_4, (4, 400), (400, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 400), (400, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (400, 4), (4, 1)) assert_size_stride(primals_9, (400,), (1,)) assert_size_stride(primals_10, (1024, 400), (400, 1)) assert_size_stride(primals_11, (1024,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 400), (400, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (1024, 400), (1, 1024), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(1600)](buf1, primals_3, 1600, XBLOCK= 128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (400, 4), (1, 400), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, buf1, reinterpret_tensor(primals_6, (400, 4), (1, 400), 0), alpha=1, beta=1, out=buf3) del primals_7 buf4 = torch.ops.aten.randn.default([4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_exp_mul_1[grid(16)](buf2, buf5, buf3, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 400), (400, 1), torch.float32) extern_kernels.mm(buf6, reinterpret_tensor(primals_8, (4, 400), (1, 4), 0), out=buf7) buf8 = buf7 del buf7 triton_poi_fused_relu_0[grid(1600)](buf8, primals_9, 1600, XBLOCK= 128, num_warps=4, num_stages=1) del primals_9 buf9 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) extern_kernels.addmm(primals_11, buf8, reinterpret_tensor( primals_10, (400, 1024), (1, 400), 0), alpha=1, beta=1, out=buf9) del primals_11 return (buf9, buf2, buf3, primals_1, buf1, buf3, buf5, buf6, buf8, primals_10, primals_8, primals_6, primals_4) class MLP_VAENew(nn.Module): def __init__(self, ZDIMS): super().__init__() self.z_dims = ZDIMS self.fc1 = nn.Linear(1024, 400) self.relu = nn.ReLU() self.fc21 = nn.Linear(400, ZDIMS) self.fc22 = nn.Linear(400, ZDIMS) self.fc3 = nn.Linear(ZDIMS, 400) self.fc4 = nn.Linear(400, 1024) def encoder(self, x): """ Input vector x --> fully connected 1 --> RELU --> fully connected 21, fully connected 22 Parameters ---------- x: [batch size, 784], batch size number of digits of 28x28 pixels each Returns ------- (mu, logvar): ZDIMS mean units one for each latent dimension, ZDIMS variance units one for each latent dimension """ batch_size = x.shape[0] x = x.view(batch_size, -1) h1 = self.relu(self.fc1(x)) mu = self.fc21(h1) logvar = self.fc22(h1) return mu, logvar def reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return mu + eps * std def decoder(self, z): h3 = self.relu(self.fc3(z)) return self.fc4(h3) def sample(self, n): with torch.no_grad(): z = torch.randn(n, self.z_dims) z = z samples = self.decoder(z) samples = torch.clamp(samples, 0, 1) return samples.cpu().numpy() def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc21.weight primals_5 = self.fc21.bias primals_6 = self.fc22.weight primals_7 = self.fc22.bias primals_8 = self.fc3.weight primals_9 = self.fc3.bias primals_10 = self.fc4.weight primals_11 = self.fc4.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0], output[1], output[2]
manuelladron/artistic_style_robotic_painting
MLP_VAE
false
7,158
[ "MIT" ]
1
3769fc470bb4f69d2ea77d2713e4eb9bf0eaa4e9
https://github.com/manuelladron/artistic_style_robotic_painting/tree/3769fc470bb4f69d2ea77d2713e4eb9bf0eaa4e9
import torch from torch import nn class Model(nn.Module): def __init__(self, ZDIMS): super().__init__() self.z_dims = ZDIMS self.fc1 = nn.Linear(1024, 400) self.relu = nn.ReLU() self.fc21 = nn.Linear(400, ZDIMS) self.fc22 = nn.Linear(400, ZDIMS) self.fc3 = nn.Linear(ZDIMS, 400) self.fc4 = nn.Linear(400, 1024) def encoder(self, x): """ Input vector x --> fully connected 1 --> RELU --> fully connected 21, fully connected 22 Parameters ---------- x: [batch size, 784], batch size number of digits of 28x28 pixels each Returns ------- (mu, logvar): ZDIMS mean units one for each latent dimension, ZDIMS variance units one for each latent dimension """ batch_size = x.shape[0] x = x.view(batch_size, -1) h1 = self.relu(self.fc1(x)) mu = self.fc21(h1) logvar = self.fc22(h1) return mu, logvar def reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return mu + eps * std def decoder(self, z): h3 = self.relu(self.fc3(z)) return self.fc4(h3) def forward(self, x): mu, logvar = self.encoder(x.view(-1, 1024)) z = self.reparameterize(mu, logvar) reconstruction_x = self.decoder(z) return reconstruction_x, mu, logvar def sample(self, n): with torch.no_grad(): z = torch.randn(n, self.z_dims) z = z samples = self.decoder(z) samples = torch.clamp(samples, 0, 1) return samples.cpu().numpy() def get_inputs(): return [torch.rand([4, 1024])] def get_init_inputs(): return [4]
SoftDiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/gd/cgdtd7ki7lurypoeyfwjebdfquygdeupjef4ltfbbbdk5u7owcpl.py # Topologically Sorted Source Nodes: [intersection, sum_1, sum_2, sum_3], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # intersection => mul # sum_1 => sum_1 # sum_2 => sum_2 # sum_3 => sum_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view, [1]), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_1, [1]), kwargs = {}) triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp2 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tmp12 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp14 = tl.where(xmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tl.store(out_ptr0 + (x0), tmp7, xmask) tl.store(out_ptr1 + (x0), tmp11, xmask) tl.store(out_ptr2 + (x0), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vq/cvqiixp4wmb73ig2cla6idbqq7i6vd5n3qmdluadrv32f52pdgw3.py # Topologically Sorted Source Nodes: [add, mul_1, add_1, add_2, score, sum_4, truediv_1, score_1], Original ATen: [aten.add, aten.mul, aten.div, aten.sum, aten.rsub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # mul_1 => mul_1 # score => div # score_1 => sub # sum_4 => sum_4 # truediv_1 => div_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 2.0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add_2), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%div,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_4, 4), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_1), kwargs = {}) triton_per_fused_add_div_mul_rsub_sum_1 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp5 = tl.load(in_ptr1 + (r0), None) tmp6 = tl.load(in_ptr2 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp7 + tmp1 tmp9 = tmp4 / tmp8 tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.sum(tmp10, 1)[:, None] tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp1 - tmp14 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp15, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.float32) buf1 = empty_strided_cuda((4, ), (1, ), torch.float32) buf2 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [intersection, sum_1, sum_2, sum_3], Original ATen: [aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_mul_sum_0.run(arg0_1, arg1_1, buf0, buf1, buf2, 4, 64, grid=grid(4), stream=stream0) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [add, mul_1, add_1, add_2, score, sum_4, truediv_1, score_1], Original ATen: [aten.add, aten.mul, aten.div, aten.sum, aten.rsub] triton_per_fused_add_div_mul_rsub_sum_1.run(buf4, buf0, buf1, buf2, 1, 4, grid=grid(1), stream=stream0) del buf0 del buf1 del buf2 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SoftDiceLoss(nn.Module): def __init__(self): super().__init__() def forward(self, logits, labels): probs = torch.sigmoid(logits) num = labels.size(0) m1 = probs.view(num, -1) m2 = labels.view(num, -1) intersection = m1 * m2 score = 2.0 * (intersection.sum(1) + 1) / (m1.sum(1) + m2.sum(1) + 1) score = 1 - score.sum() / num return score def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp2 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tmp12 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp14 = tl.where(xmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tl.store(out_ptr0 + x0, tmp7, xmask) tl.store(out_ptr1 + x0, tmp11, xmask) tl.store(out_ptr2 + x0, tmp15, xmask) @triton.jit def triton_per_fused_add_div_mul_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp5 = tl.load(in_ptr1 + r0, None) tmp6 = tl.load(in_ptr2 + r0, None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp7 + tmp1 tmp9 = tmp4 / tmp8 tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.sum(tmp10, 1)[:, None] tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp1 - tmp14 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp15, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) buf1 = empty_strided_cuda((4,), (1,), torch.float32) buf2 = empty_strided_cuda((4,), (1,), torch.float32) get_raw_stream(0) triton_per_fused_mul_sum_0[grid(4)](arg0_1, arg1_1, buf0, buf1, buf2, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3 del buf3 triton_per_fused_add_div_mul_rsub_sum_1[grid(1)](buf4, buf0, buf1, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf0 del buf1 del buf2 return buf4, class SoftDiceLossNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
marcomatteo/steel-segmentation-nbdev
SoftDiceLoss
false
7,159
[ "Apache-2.0" ]
1
dde19b0b3bf7657ab575e691bca1751592aecc67
https://github.com/marcomatteo/steel-segmentation-nbdev/tree/dde19b0b3bf7657ab575e691bca1751592aecc67
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, logits, labels): probs = torch.sigmoid(logits) num = labels.size(0) m1 = probs.view(num, -1) m2 = labels.view(num, -1) intersection = m1 * m2 score = 2.0 * (intersection.sum(1) + 1) / (m1.sum(1) + m2.sum(1) + 1) score = 1 - score.sum() / num return score def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ResizeTransform
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/2h/c2hzrtqhbvxaedsmk5yf4w3blae4viyram4eduvj75lltgf3jdhn.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add] # Source node to ATen node mapping: # x => _unsafe_index, _unsafe_index_1, add_1, clamp_max_1, clamp_min, clamp_min_1, convert_element_type, convert_element_type_1, iota, mul, mul_1, sub, sub_1 # x_1 => mul_2 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (1,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 0), kwargs = {}) # %clamp_min : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0.0), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min, torch.int64), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max]), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1]), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_1), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {}) # %clamp_max_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.25), kwargs = {}) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp1 - tmp0 tmp3 = 0.0 tmp4 = tmp2 * tmp3 tmp5 = tmp0 + tmp4 tmp6 = 0.25 tmp7 = tmp5 * tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add] stream0 = get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as nnf class ResizeTransform(nn.Module): """ Resize a transform, which involves resizing the vector field *and* rescaling it. """ def __init__(self, vel_resize, ndims): super().__init__() self.factor = 1.0 / vel_resize self.mode = 'linear' if ndims == 2: self.mode = 'bi' + self.mode elif ndims == 3: self.mode = 'tri' + self.mode def forward(self, x): if self.factor < 1: x = nnf.interpolate(x, align_corners=True, scale_factor=self. factor, mode=self.mode) x = self.factor * x elif self.factor > 1: x = self.factor * x x = nnf.interpolate(x, align_corners=True, scale_factor=self. factor, mode=self.mode) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'vel_resize': 4, 'ndims': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 - tmp0 tmp3 = 0.0 tmp4 = tmp2 * tmp3 tmp5 = tmp0 + tmp4 tmp6 = 0.25 tmp7 = tmp5 * tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid (16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 return buf0, class ResizeTransformNew(nn.Module): """ Resize a transform, which involves resizing the vector field *and* rescaling it. """ def __init__(self, vel_resize, ndims): super().__init__() self.factor = 1.0 / vel_resize self.mode = 'linear' if ndims == 2: self.mode = 'bi' + self.mode elif ndims == 3: self.mode = 'tri' + self.mode def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mariakesa/ZebraFishRegistrationPipeline
ResizeTransform
false
7,160
[ "MIT" ]
1
4955044eb69dc04c579f59ccb24e02e4451aebcc
https://github.com/mariakesa/ZebraFishRegistrationPipeline/tree/4955044eb69dc04c579f59ccb24e02e4451aebcc
import torch import torch.nn as nn import torch.nn.functional as nnf class Model(nn.Module): """ Resize a transform, which involves resizing the vector field *and* rescaling it. """ def __init__(self, vel_resize, ndims): super().__init__() self.factor = 1.0 / vel_resize self.mode = 'linear' if ndims == 2: self.mode = 'bi' + self.mode elif ndims == 3: self.mode = 'tri' + self.mode def forward(self, x): if self.factor < 1: x = nnf.interpolate(x, align_corners=True, scale_factor=self. factor, mode=self.mode) x = self.factor * x elif self.factor > 1: x = self.factor * x x = nnf.interpolate(x, align_corners=True, scale_factor=self. factor, mode=self.mode) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4]
BahdanauAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/uq/cuqtcap4fkr6ayb745ve57ljczzazno5ktair7zz4d5qsiqe3rvi.py # Topologically Sorted Source Nodes: [add, tanh], Original ATen: [aten.add, aten.tanh] # Source node to ATen node mapping: # add => add # tanh => tanh # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ts/ctscnzvbagjv4t25zui245b3recij5udu7nvujnr5rixcyo7elc6.py # Topologically Sorted Source Nodes: [attention_weight], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weight => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%squeeze, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/k6/ck6fz3qsfeqgn5jtm4ugikmu7cwvvlq3jpttijbb5kdniicwtyz6.py # Topologically Sorted Source Nodes: [attention_weight], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weight => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add, tanh], Original ATen: [aten.add, aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_add_tanh_0.run(buf2, buf1, 64, grid=grid(64), stream=stream0) del buf1 buf3 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [score], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 1), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_weight], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf3, buf4, 16, grid=grid(16), stream=stream0) buf5 = reinterpret_tensor(buf3, (4, 4), (4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [attention_weight], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf4, buf5, 16, grid=grid(16), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 1, 4), (4, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf5, (4, 1, 4), (4, 4, 1), 0), primals_4, out=buf6) return (buf5, reinterpret_tensor(buf6, (4, 4), (4, 1), 0), primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf2, buf5, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor import torch.nn as nn from typing import Tuple import torch.nn.functional as F class BahdanauAttention(nn.Module): def __init__(self, dec_dim: 'int', enc_dim: 'int', num_hiddens: 'int'): super().__init__() self.W1 = nn.Linear(dec_dim, num_hiddens, bias=False) self.W2 = nn.Linear(enc_dim, num_hiddens, bias=False) self.v = nn.Linear(num_hiddens, 1, False) def forward(self, query: 'Tensor', value: 'Tensor') ->Tuple[Tensor, Tensor ]: """ Args: value (Tensor(batch size, seq_len, encoder hidden dimension): the hidden_state of tokens in encoder query (Tensor(batch size, 1, decoder hidden dimension)): the hidden state of decoder at time step t Returns: attention_weight (Tensor) context_vector (Tensor) """ score = self.v(torch.tanh(self.W1(query) + self.W2(value))) attention_weight = F.softmax(score.squeeze(-1), dim=1) context_vector = torch.bmm(attention_weight.unsqueeze(1), value ).squeeze(1) return attention_weight, context_vector def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dec_dim': 4, 'enc_dim': 4, 'num_hiddens': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_tanh_0[grid(64)](buf2, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf1 buf3 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 1), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_1[grid(16)](buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf3, (4, 4), (4, 1), 0) del buf3 triton_poi_fused__softmax_2[grid(16)](buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 1, 4), (4, 4, 1), 0) del buf4 extern_kernels.bmm(reinterpret_tensor(buf5, (4, 1, 4), (4, 4, 1), 0 ), primals_4, out=buf6) return buf5, reinterpret_tensor(buf6, (4, 4), (4, 1), 0 ), primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), buf2, buf5, primals_5 class BahdanauAttentionNew(nn.Module): def __init__(self, dec_dim: 'int', enc_dim: 'int', num_hiddens: 'int'): super().__init__() self.W1 = nn.Linear(dec_dim, num_hiddens, bias=False) self.W2 = nn.Linear(enc_dim, num_hiddens, bias=False) self.v = nn.Linear(num_hiddens, 1, False) def forward(self, input_0, input_1): primals_1 = self.W1.weight primals_3 = self.W2.weight primals_5 = self.v.weight primals_2 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
manhtrantienhn/Sentiment-with-pretrain-model
BahdanauAttention
false
7,161
[ "MIT" ]
1
bbbbaa94cf481afcfe704cbcb27b602308f43de5
https://github.com/manhtrantienhn/Sentiment-with-pretrain-model/tree/bbbbaa94cf481afcfe704cbcb27b602308f43de5
import torch from torch import Tensor import torch.nn as nn from typing import Tuple import torch.nn.functional as F class Model(nn.Module): def __init__(self, dec_dim: 'int', enc_dim: 'int', num_hiddens: 'int'): super().__init__() self.W1 = nn.Linear(dec_dim, num_hiddens, bias=False) self.W2 = nn.Linear(enc_dim, num_hiddens, bias=False) self.v = nn.Linear(num_hiddens, 1, False) def forward(self, query: 'Tensor', value: 'Tensor') ->Tuple[Tensor, Tensor ]: """ Args: value (Tensor(batch size, seq_len, encoder hidden dimension): the hidden_state of tokens in encoder query (Tensor(batch size, 1, decoder hidden dimension)): the hidden state of decoder at time step t Returns: attention_weight (Tensor) context_vector (Tensor) """ score = self.v(torch.tanh(self.W1(query) + self.W2(value))) attention_weight = F.softmax(score.squeeze(-1), dim=1) context_vector = torch.bmm(attention_weight.unsqueeze(1), value ).squeeze(1) return attention_weight, context_vector def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
CRF
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/hf/chfy6golfkp5hyoqxyfqo3cuiy7r25sg3yr3dcq6fpt7nsbdq6zt.py # Topologically Sorted Source Nodes: [crf_scores], Original ATen: [aten.add] # Source node to ATen node mapping: # crf_scores => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, %unsqueeze_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 4) x4 = xindex % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x5), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [crf_scores], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data.dataloader import torch.nn class CRF(torch.nn.Module): """ Conditional Random Field Implementation according to sgrvinod (https://github.com/sgrvinod). Classifier which predicts single tag / class / label for given word based on not just the word, but also on previous seen annotations. """ def __init__(self, tag_dictionary, tagset_size: 'int', init_from_state_dict: 'bool'): """ :param tag_dictionary: tag dictionary in order to find ID for start and stop tags :param tagset_size: number of tag from tag dictionary :param init_from_state_dict: whether we load pretrained model from state dict """ super(CRF, self).__init__() self.tagset_size = tagset_size self.transitions = torch.nn.Parameter(torch.randn(tagset_size, tagset_size)) if not init_from_state_dict: self.transitions.detach()[tag_dictionary.get_idx_for_item( START_TAG), :] = -10000 self.transitions.detach()[:, tag_dictionary.get_idx_for_item( STOP_TAG)] = -10000 self def forward(self, features: 'torch.Tensor') ->torch.Tensor: """ Forward propagation of Conditional Random Field. :param features: output from RNN / Linear layer in shape (batch size, seq len, hidden size) :return: CRF scores (emission scores for each token + transitions prob from previous state) in shape (batch_size, seq len, tagset size, tagset size) """ batch_size, seq_len = features.size()[:2] emission_scores = features emission_scores = emission_scores.unsqueeze(-1).expand(batch_size, seq_len, self.tagset_size, self.tagset_size) crf_scores = emission_scores + self.transitions.unsqueeze(0).unsqueeze( 0) return crf_scores def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'tag_dictionary': 4, 'tagset_size': 4, 'init_from_state_dict': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data.dataloader import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 4 x4 = xindex % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x5, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, class CRFNew(torch.nn.Module): """ Conditional Random Field Implementation according to sgrvinod (https://github.com/sgrvinod). Classifier which predicts single tag / class / label for given word based on not just the word, but also on previous seen annotations. """ def __init__(self, tag_dictionary, tagset_size: 'int', init_from_state_dict: 'bool'): """ :param tag_dictionary: tag dictionary in order to find ID for start and stop tags :param tagset_size: number of tag from tag dictionary :param init_from_state_dict: whether we load pretrained model from state dict """ super(CRFNew, self).__init__() self.tagset_size = tagset_size self.transitions = torch.nn.Parameter(torch.randn(tagset_size, tagset_size)) if not init_from_state_dict: self.transitions.detach()[tag_dictionary.get_idx_for_item( START_TAG), :] = -10000 self.transitions.detach()[:, tag_dictionary.get_idx_for_item( STOP_TAG)] = -10000 self def forward(self, input_0): primals_2 = self.transitions primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
marleneDebatin/flair
CRF
false
7,162
[ "MIT" ]
1
4d17509f358158f66d43e85db1b6990523b0b095
https://github.com/marleneDebatin/flair/tree/4d17509f358158f66d43e85db1b6990523b0b095
import torch import torch.utils.data.dataloader import torch.nn class Model(torch.nn.Module): """ Conditional Random Field Implementation according to sgrvinod (https://github.com/sgrvinod). Classifier which predicts single tag / class / label for given word based on not just the word, but also on previous seen annotations. """ def __init__(self, tag_dictionary, tagset_size: 'int', init_from_state_dict: 'bool'): """ :param tag_dictionary: tag dictionary in order to find ID for start and stop tags :param tagset_size: number of tag from tag dictionary :param init_from_state_dict: whether we load pretrained model from state dict """ super().__init__() self.tagset_size = tagset_size self.transitions = torch.nn.Parameter(torch.randn(tagset_size, tagset_size)) if not init_from_state_dict: self.transitions.detach()[tag_dictionary.get_idx_for_item( START_TAG), :] = -10000 self.transitions.detach()[:, tag_dictionary.get_idx_for_item( STOP_TAG)] = -10000 self def forward(self, features: 'torch.Tensor') ->torch.Tensor: """ Forward propagation of Conditional Random Field. :param features: output from RNN / Linear layer in shape (batch size, seq len, hidden size) :return: CRF scores (emission scores for each token + transitions prob from previous state) in shape (batch_size, seq len, tagset size, tagset size) """ batch_size, seq_len = features.size()[:2] emission_scores = features emission_scores = emission_scores.unsqueeze(-1).expand(batch_size, seq_len, self.tagset_size, self.tagset_size) crf_scores = emission_scores + self.transitions.unsqueeze(0).unsqueeze( 0) return crf_scores def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'tag_dictionary': 4, 'tagset_size': 4, 'init_from_state_dict': 4}]
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/34/c34k3cchubxdqxplz72ypcl6x5y5m2we27einuhhp6e2qepedw3p.py # Topologically Sorted Source Nodes: [bce_loss, neg, pt, sub, pow_1, mul, focal_loss, mean], Original ATen: [aten.binary_cross_entropy_with_logits, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mul, aten.mean] # Source node to ATen node mapping: # bce_loss => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2 # focal_loss => mul_2 # mean => mean # mul => mul_1 # neg => neg_1 # pow_1 => pow_1 # pt => exp_1 # sub => sub_3 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sub_2,), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %sub_2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_2,), kwargs = {}) triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = -tmp12 tmp14 = tl_math.exp(tmp13) tmp15 = tmp1 - tmp14 tmp16 = tmp15 * tmp15 tmp17 = 0.5 tmp18 = tmp16 * tmp17 tmp19 = tmp18 * tmp12 tmp20 = tl.broadcast_to(tmp19, [RBLOCK]) tmp22 = triton_helpers.promote_to_tensor(tl.sum(tmp20, 0)) tmp23 = 256.0 tmp24 = tmp22 / tmp23 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp24, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [bce_loss, neg, pt, sub, pow_1, mul, focal_loss, mean], Original ATen: [aten.binary_cross_entropy_with_logits, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mul, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch import nn as nn class FocalLoss(nn.Module): """Focal loss function for imbalanced dataset. Args: alpha (float): weighing factor between 0 and 1. Alpha may be set by inverse class frequency gamma (float): modulating factor reduces the loss contribution from easy examples and extends the range in which an example receives low loss. Usually between 0 - 5. """ def __init__(self, alpha=0.5, gamma=2): super().__init__() self.alpha = alpha self.gamma = gamma def forward(self, logits, y): bce_loss = F.binary_cross_entropy_with_logits(logits, y, reduction= 'none') pt = torch.exp(-bce_loss) focal_loss = self.alpha * (1 - pt) ** self.gamma * bce_loss return focal_loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = -tmp12 tmp14 = tl_math.exp(tmp13) tmp15 = tmp1 - tmp14 tmp16 = tmp15 * tmp15 tmp17 = 0.5 tmp18 = tmp16 * tmp17 tmp19 = tmp18 * tmp12 tmp20 = tl.broadcast_to(tmp19, [RBLOCK]) tmp22 = triton_helpers.promote_to_tensor(tl.sum(tmp20, 0)) tmp23 = 256.0 tmp24 = tmp22 / tmp23 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp24, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0[ grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class FocalLossNew(nn.Module): """Focal loss function for imbalanced dataset. Args: alpha (float): weighing factor between 0 and 1. Alpha may be set by inverse class frequency gamma (float): modulating factor reduces the loss contribution from easy examples and extends the range in which an example receives low loss. Usually between 0 - 5. """ def __init__(self, alpha=0.5, gamma=2): super().__init__() self.alpha = alpha self.gamma = gamma def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
marshuang80/pe-slice-finder
FocalLoss
false
7,163
[ "Apache-2.0" ]
1
2426a55c404e8eb694110351d604d6bdd613e5ae
https://github.com/marshuang80/pe-slice-finder/tree/2426a55c404e8eb694110351d604d6bdd613e5ae
import torch import torch.nn.functional as F from torch import nn as nn class Model(nn.Module): """Focal loss function for imbalanced dataset. Args: alpha (float): weighing factor between 0 and 1. Alpha may be set by inverse class frequency gamma (float): modulating factor reduces the loss contribution from easy examples and extends the range in which an example receives low loss. Usually between 0 - 5. """ def __init__(self, alpha=0.5, gamma=2): super().__init__() self.alpha = alpha self.gamma = gamma def forward(self, logits, y): bce_loss = F.binary_cross_entropy_with_logits(logits, y, reduction= 'none') pt = torch.exp(-bce_loss) focal_loss = self.alpha * (1 - pt) ** self.gamma * bce_loss return focal_loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
TFBCELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/xo/cxojlva4uuyq2scwxej6apmzdandla3hahj5qvral7m5yzo4lp4y.py # Topologically Sorted Source Nodes: [relu_logits, mul, term1, abs_1, neg_abs_logits, exp, term2, loss, sum_1], Original ATen: [aten.relu, aten.mul, aten.sub, aten.abs, aten.neg, aten.exp, aten.log1p, aten.add, aten.sum] # Source node to ATen node mapping: # abs_1 => abs_1 # exp => exp # loss => add # mul => mul # neg_abs_logits => neg # relu_logits => relu # sum_1 => sum_1 # term1 => sub # term2 => log1p # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu, %mul), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %log1p), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add, [-1]), kwargs = {}) triton_poi_fused_abs_add_exp_log1p_mul_neg_relu_sub_sum_0 = async_compile.triton('triton_poi_fused_abs_add_exp_log1p_mul_neg_relu_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_exp_log1p_mul_neg_relu_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_add_exp_log1p_mul_neg_relu_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp0 * tmp3 tmp5 = tmp2 - tmp4 tmp6 = tl_math.abs(tmp0) tmp7 = -tmp6 tmp8 = tl_math.exp(tmp7) tmp9 = libdevice.log1p(tmp8) tmp10 = tmp5 + tmp9 tmp12 = triton_helpers.maximum(tmp1, tmp11) tmp14 = tmp11 * tmp13 tmp15 = tmp12 - tmp14 tmp16 = tl_math.abs(tmp11) tmp17 = -tmp16 tmp18 = tl_math.exp(tmp17) tmp19 = libdevice.log1p(tmp18) tmp20 = tmp15 + tmp19 tmp21 = tmp10 + tmp20 tmp23 = triton_helpers.maximum(tmp1, tmp22) tmp25 = tmp22 * tmp24 tmp26 = tmp23 - tmp25 tmp27 = tl_math.abs(tmp22) tmp28 = -tmp27 tmp29 = tl_math.exp(tmp28) tmp30 = libdevice.log1p(tmp29) tmp31 = tmp26 + tmp30 tmp32 = tmp21 + tmp31 tmp34 = triton_helpers.maximum(tmp1, tmp33) tmp36 = tmp33 * tmp35 tmp37 = tmp34 - tmp36 tmp38 = tl_math.abs(tmp33) tmp39 = -tmp38 tmp40 = tl_math.exp(tmp39) tmp41 = libdevice.log1p(tmp40) tmp42 = tmp37 + tmp41 tmp43 = tmp32 + tmp42 tl.store(out_ptr0 + (x0), tmp43, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kx/ckxdoomfej5mhehr32jl2nyeqf6tanuvuodvsv227nlcu244ph7y.py # Topologically Sorted Source Nodes: [loss_1], Original ATen: [aten.mean] # Source node to ATen node mapping: # loss_1 => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%sum_1, [-1]), kwargs = {}) triton_poi_fused_mean_1 = async_compile.triton('triton_poi_fused_mean_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [relu_logits, mul, term1, abs_1, neg_abs_logits, exp, term2, loss, sum_1], Original ATen: [aten.relu, aten.mul, aten.sub, aten.abs, aten.neg, aten.exp, aten.log1p, aten.add, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_abs_add_exp_log1p_mul_neg_relu_sub_sum_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [loss_1], Original ATen: [aten.mean] triton_poi_fused_mean_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0) del buf0 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class TFBCELoss(nn.Module): def __init__(self, pos_weight): super().__init__() self.pos_weight = pos_weight def forward(self, logits, targets): relu_logits = F.relu(logits) neg_abs_logits = -torch.abs(logits) term1 = relu_logits - logits * targets term2 = torch.log1p(torch.exp(neg_abs_logits)) loss = term1 + term2 loss = loss.sum(dim=-1).mean(dim=-1) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'pos_weight': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_abs_add_exp_log1p_mul_neg_relu_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp24 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp33 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp35 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp0 * tmp3 tmp5 = tmp2 - tmp4 tmp6 = tl_math.abs(tmp0) tmp7 = -tmp6 tmp8 = tl_math.exp(tmp7) tmp9 = libdevice.log1p(tmp8) tmp10 = tmp5 + tmp9 tmp12 = triton_helpers.maximum(tmp1, tmp11) tmp14 = tmp11 * tmp13 tmp15 = tmp12 - tmp14 tmp16 = tl_math.abs(tmp11) tmp17 = -tmp16 tmp18 = tl_math.exp(tmp17) tmp19 = libdevice.log1p(tmp18) tmp20 = tmp15 + tmp19 tmp21 = tmp10 + tmp20 tmp23 = triton_helpers.maximum(tmp1, tmp22) tmp25 = tmp22 * tmp24 tmp26 = tmp23 - tmp25 tmp27 = tl_math.abs(tmp22) tmp28 = -tmp27 tmp29 = tl_math.exp(tmp28) tmp30 = libdevice.log1p(tmp29) tmp31 = tmp26 + tmp30 tmp32 = tmp21 + tmp31 tmp34 = triton_helpers.maximum(tmp1, tmp33) tmp36 = tmp33 * tmp35 tmp37 = tmp34 - tmp36 tmp38 = tl_math.abs(tmp33) tmp39 = -tmp38 tmp40 = tl_math.exp(tmp39) tmp41 = libdevice.log1p(tmp40) tmp42 = tmp37 + tmp41 tmp43 = tmp32 + tmp42 tl.store(out_ptr0 + x0, tmp43, xmask) @triton.jit def triton_poi_fused_mean_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_abs_add_exp_log1p_mul_neg_relu_sub_sum_0[grid(64)]( arg0_1, arg1_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_mean_1[grid(16)](buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf0 return buf1, class TFBCELossNew(nn.Module): def __init__(self, pos_weight): super().__init__() self.pos_weight = pos_weight def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
marload/DAFT
TFBCELoss
false
7,164
[ "Apache-2.0" ]
1
22ebe1cc1d1ca8d4b1f7557bf5833983c63ba330
https://github.com/marload/DAFT/tree/22ebe1cc1d1ca8d4b1f7557bf5833983c63ba330
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, pos_weight): super().__init__() self.pos_weight = pos_weight def forward(self, logits, targets): relu_logits = F.relu(logits) neg_abs_logits = -torch.abs(logits) term1 = relu_logits - logits * targets term2 = torch.log1p(torch.exp(neg_abs_logits)) loss = term1 + term2 loss = loss.sum(dim=-1).mean(dim=-1) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
PyramidDown
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/gy/cgyfx47penjbxrnlqdpur6wznrc2npiddss2rmhvsk53kjjd4wdb.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution, %convolution_1, %convolution_2, %convolution_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (4*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + (4*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr3 + (x0 + (4*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x3), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 1, 5, 5), (25, 25, 5, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 0), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 2, 2), (4, 4, 2, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 16), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 2, 2), (4, 4, 2, 1)) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 32), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 2, 2), (4, 4, 2, 1)) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 48), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 2, 2), (4, 4, 2, 1)) del arg0_1 del arg1_1 buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, buf1, buf2, buf3, buf4, 64, grid=grid(64), stream=stream0) del buf0 del buf1 del buf2 del buf3 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((1, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F class PyramidDown(nn.Module): def __init__(self) ->None: super(PyramidDown, self).__init__() self.filter = nn.Parameter(torch.tensor([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]], dtype=torch.float).reshape(1, 1, 5, 5) / 256, requires_grad=False) def forward(self, x: 'torch.Tensor') ->torch.Tensor: results = [] for i in range(x.shape[1]): results.append(F.conv2d(x[:, i:i + 1, :, :], self.filter, padding=2, stride=2)) return torch.cat(results, dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 4 * x2), tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + 4 * x2), tmp14 & xmask, eviction_policy ='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 4, tl.int64) tmp19 = tl.load(in_ptr3 + (x0 + 4 * x2), tmp16 & xmask, eviction_policy ='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x3, tmp22, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 1, 5, 5), (25, 25, 5, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 0), arg1_1, stride=(2, 2), padding=(2, 2 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 2, 2), (4, 4, 2, 1)) buf1 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 16), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 2, 2), (4, 4, 2, 1)) buf2 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 32), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 2, 2), (4, 4, 2, 1)) buf3 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 48), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 2, 2), (4, 4, 2, 1)) del arg0_1 del arg1_1 buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(64)](buf0, buf1, buf2, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del buf1 del buf2 del buf3 return buf4, class PyramidDownNew(nn.Module): def __init__(self) ->None: super(PyramidDownNew, self).__init__() self.filter = nn.Parameter(torch.tensor([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]], dtype=torch.float).reshape(1, 1, 5, 5) / 256, requires_grad=False) def forward(self, input_0): arg1_1 = self.filter arg0_1 = input_0 output = call([arg0_1, arg1_1]) return output[0]
masanorihirano/pytorch_extra_mhirano
PyramidDown
false
7,165
[ "MIT" ]
1
d19e07445567c069793b7ca1a22a846d7cbce58d
https://github.com/masanorihirano/pytorch_extra_mhirano/tree/d19e07445567c069793b7ca1a22a846d7cbce58d
import torch import torch.nn as nn from torch.nn import functional as F class Model(nn.Module): def __init__(self) ->None: super().__init__() self.filter = nn.Parameter(torch.tensor([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]], dtype=torch.float).reshape(1, 1, 5, 5) / 256, requires_grad=False) def forward(self, x: 'torch.Tensor') ->torch.Tensor: results = [] for i in range(x.shape[1]): results.append(F.conv2d(x[:, i:i + 1, :, :], self.filter, padding=2, stride=2)) return torch.cat(results, dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/v3/cv3hbcc77t43qvhdwsbud75pm4bbv4e7bc4hsezz7oxunbuwitzv.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 400) % 10 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/j7/cj7ibqexk6ivanurr6dwb3nxx6m2qysl2tiw3v7k3mwp5sdwo7rq.py # Topologically Sorted Source Nodes: [max_pool2d, x], Original ATen: [aten.max_pool2d_with_indices, aten.relu] # Source node to ATen node mapping: # max_pool2d => _low_memory_max_pool2d_with_offsets, getitem_1 # x => relu # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem,), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_relu_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 10 x1 = (xindex // 10) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (40*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (40*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (20 + (2*x0) + (40*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (21 + (2*x0) + (40*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tmp17 = tl.full([1], 0, tl.int32) tmp18 = triton_helpers.maximum(tmp17, tmp16) tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vc/cvcco7d3skvxpcw6soqmc2gai56s47m5gx5maj6poaozwjp2jilz.py # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2880 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 36) % 20 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/uh/cuhjbrwzmkx3ucrmix635v4jijiphbyjajem22lkdhipzywvav5e.py # Topologically Sorted Source Nodes: [max_pool2d_1, x_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # max_pool2d_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # x_1 => relu_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem_2,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 720 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = (xindex // 3) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (12*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (12*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (6 + (2*x0) + (12*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (7 + (2*x0) + (12*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tmp17 = tl.full([1], 0, tl.int32) tmp18 = triton_helpers.maximum(tmp17, tmp16) tmp19 = 0.0 tmp20 = tmp18 <= tmp19 tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp18, xmask) tl.store(out_ptr2 + (x2), tmp20, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xi/cxiouqdy3aqmwg2p7remcu57ny7vnw4f263cpqtavvo5sya77u64.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_3 => relu_2 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/u6/cu6h2do6fxp5xndssweqjlj424anye3onmy3qdp667s6ssb2acmm.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, exp, log, sub, sub_1, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_per_fused__log_softmax_5 = async_compile.triton('triton_per_fused__log_softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 8], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_5(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 8 RBLOCK: tl.constexpr = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (8*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl_math.log(tmp10) tmp12 = tmp5 - tmp11 tl.store(out_ptr2 + (r1 + (8*x0)), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (10, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (10, ), (1, )) assert_size_stride(primals_3, (4, 3, 24, 24), (1728, 576, 24, 1)) assert_size_stride(primals_4, (20, 10, 5, 5), (250, 25, 5, 1)) assert_size_stride(primals_5, (20, ), (1, )) assert_size_stride(primals_6, (50, 180), (180, 1)) assert_size_stride(primals_7, (50, ), (1, )) assert_size_stride(primals_8, (8, 50), (50, 1)) assert_size_stride(primals_9, (8, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 10, 20, 20), (4000, 400, 20, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 16000, grid=grid(16000), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 10, 10, 10), (1000, 100, 10, 1), torch.int8) buf3 = empty_strided_cuda((4, 10, 10, 10), (1000, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [max_pool2d, x], Original ATen: [aten.max_pool2d_with_indices, aten.relu] triton_poi_fused_max_pool2d_with_indices_relu_1.run(buf1, buf2, buf3, 4000, grid=grid(4000), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 20, 6, 6), (720, 36, 6, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_5, 2880, grid=grid(2880), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 20, 3, 3), (180, 9, 3, 1), torch.int8) buf7 = empty_strided_cuda((4, 20, 3, 3), (180, 9, 3, 1), torch.float32) buf14 = empty_strided_cuda((4, 20, 3, 3), (180, 9, 3, 1), torch.bool) # Topologically Sorted Source Nodes: [max_pool2d_1, x_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.threshold_backward] triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3.run(buf5, buf6, buf7, buf14, 720, grid=grid(720), stream=stream0) buf8 = empty_strided_cuda((4, 50), (50, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (4, 180), (180, 1), 0), reinterpret_tensor(primals_6, (180, 50), (1, 180), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf9, primals_7, 200, grid=grid(200), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8, (50, 8), (1, 50), 0), alpha=1, beta=1, out=buf10) del primals_9 buf13 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_per_fused__log_softmax_5.run(buf10, buf13, 4, 8, grid=grid(4), stream=stream0) del buf10 return (buf13, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 180), (180, 1), 0), buf9, buf13, primals_8, primals_6, buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((10, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 24, 24), (1728, 576, 24, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((20, 10, 5, 5), (250, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((50, 180), (180, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((8, 50), (50, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(180, 50) self.fc2 = nn.Linear(50, 8) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 180) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 3, 24, 24])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 400 % 10 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 10 x1 = xindex // 10 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 40 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 40 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (20 + 2 * x0 + 40 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (21 + 2 * x0 + 40 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tmp17 = tl.full([1], 0, tl.int32) tmp18 = triton_helpers.maximum(tmp17, tmp16) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp18, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 2880 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 36 % 20 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 720 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = xindex // 3 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 12 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 12 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (6 + 2 * x0 + 12 * x1), xmask, eviction_policy ='evict_last') tmp12 = tl.load(in_ptr0 + (7 + 2 * x0 + 12 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tmp17 = tl.full([1], 0, tl.int32) tmp18 = triton_helpers.maximum(tmp17, tmp16) tmp19 = 0.0 tmp20 = tmp18 <= tmp19 tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp18, xmask) tl.store(out_ptr2 + x2, tmp20, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_per_fused__log_softmax_5(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 8 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl_math.log(tmp10) tmp12 = tmp5 - tmp11 tl.store(out_ptr2 + (r1 + 8 * x0), tmp12, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (10, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (10,), (1,)) assert_size_stride(primals_3, (4, 3, 24, 24), (1728, 576, 24, 1)) assert_size_stride(primals_4, (20, 10, 5, 5), (250, 25, 5, 1)) assert_size_stride(primals_5, (20,), (1,)) assert_size_stride(primals_6, (50, 180), (180, 1)) assert_size_stride(primals_7, (50,), (1,)) assert_size_stride(primals_8, (8, 50), (50, 1)) assert_size_stride(primals_9, (8,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 10, 20, 20), (4000, 400, 20, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16000)](buf1, primals_2, 16000, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 10, 10, 10), (1000, 100, 10, 1), torch.int8) buf3 = empty_strided_cuda((4, 10, 10, 10), (1000, 100, 10, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_relu_1[grid(4000)](buf1, buf2, buf3, 4000, XBLOCK=128, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 20, 6, 6), (720, 36, 6, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(2880)](buf5, primals_5, 2880, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 20, 3, 3), (180, 9, 3, 1), torch.int8) buf7 = empty_strided_cuda((4, 20, 3, 3), (180, 9, 3, 1), torch.float32) buf14 = empty_strided_cuda((4, 20, 3, 3), (180, 9, 3, 1), torch.bool) triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3[grid (720)](buf5, buf6, buf7, buf14, 720, XBLOCK=256, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 50), (50, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 180), (180, 1), 0), reinterpret_tensor(primals_6, (180, 50), (1, 180), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(200)](buf9, primals_7, 200, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8, (50, 8), (1, 50), 0), alpha=1, beta=1, out=buf10) del primals_9 buf13 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_per_fused__log_softmax_5[grid(4)](buf10, buf13, 4, 8, XBLOCK =1, num_warps=2, num_stages=1) del buf10 return (buf13, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 180), (180, 1), 0), buf9, buf13, primals_8, primals_6, buf14) class NetNew(nn.Module): def __init__(self): super(NetNew, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(180, 50) self.fc2 = nn.Linear(50, 8) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
lzhbrian/FashionAI-1
Net
false
7,166
[ "MIT" ]
1
1fede16044c8a4516ba4dd6766add44d47245f6b
https://github.com/lzhbrian/FashionAI-1/tree/1fede16044c8a4516ba4dd6766add44d47245f6b
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(180, 50) self.fc2 = nn.Linear(50, 8) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 180) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 3, 24, 24])] def get_init_inputs(): return []
DotProductAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/r6/cr6neze6yovkog6kjrk5k2db63h47ozkojywfys6karxe7dlumrz.py # Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [2], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py # Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [q], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_2 del primals_3 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [a], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(buf5, reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), out=buf6) return (buf6, buf5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), buf5, reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import warnings from typing import Optional from typing import Tuple import torch.nn as nn class DotProductAttention(nn.Module): """DotProductAttention. .. math:: \\mathrm{DotProductAttention}(Q, K, V) &=& \\mathrm{softmax}(qk^T) v q &=& QW_1 + b_1 k &=& KW_2 + b_2 v &=& VW_3 + b_3 Args: qdim: dimension of the model, i.e., dimension of Q hidden_dim: dimension of hidden layer, i.e., dimension of q, k, v. Default: 512 output_dim: dimension of output layer, i.e., dimension of output. Default: None dropout: a Dropout layer on attn_output_weights. Default: 0.0. transform: q = Q, k = K, v = V if it is False. Default: True bias: add bias as module parameter. Default: True. same_embd: W1 = W2 = W3, b1 = b2 = b3 if it is True. Default: True add_bias_kv: add bias to the key and value sequences at dim=0. kdim: total number of features in key. Default: None. vdim: total number of features in key. Default: None. Note: if kdim and vdim are None, they will be set to embed_dim such that query, key, and value have the same number of features. Examples:: >>> attn = DotProductAttention(query_dim) >>> attn_output, attn_output_weights = attn(query, key, value) """ def __init__(self, qdim: 'int', output_dim: 'Optional[int]'=None, dropout: 'float'=0.0, transform: 'bool'=True, bias: 'bool'=True, same_embd: 'bool'=True, add_bias_kv: 'Optional[bool]'=None, kdim: 'Optional[int]'=None, vdim: 'Optional[int]'=None, batch_first: 'bool'=True, scaled: 'bool'=False) ->None: super(DotProductAttention, self).__init__() self.qdim: 'int' = qdim self.transform: 'bool' = transform self.bias: 'bool' = bias self.same_embd: 'bool' = same_embd self.kdim: 'int' = kdim if kdim is not None else self.qdim self.vdim: 'int' = vdim if vdim is not None else self.qdim self.output_dim: 'int' = (output_dim if output_dim is not None else self.vdim) if self.same_embd and (self.qdim != self.kdim or self.qdim != self.vdim ): raise AssertionError( 'qdim, kdim, vdim should be the same dimensions if same_embd is True' ) self.add_bias_kv: 'bool' = (add_bias_kv if add_bias_kv is not None else self.bias) if self.same_embd and self.bias != self.add_bias_kv: raise AssertionError( 'bias and add_bias_kv should be the same if same_embd is True') self.batch_first: 'bool' = batch_first self.scaled: 'bool' = scaled self.fc_q: 'nn.Module' = nn.Linear(self.qdim, self.output_dim, bias =bias) self.fc_k: 'nn.Module' self.fc_v: 'nn.Module' if self.same_embd: self.fc_k = self.fc_q self.fc_v = self.fc_k else: self.fc_k = nn.Linear(self.kdim, self.output_dim, bias=self. add_bias_kv) self.fc_v = nn.Linear(self.vdim, self.output_dim, bias=self. add_bias_kv) self.dropout: 'nn.Module' = nn.Dropout(p=dropout) self.softmax: 'nn.Module' = nn.Softmax(dim=2) def forward(self, query: 'torch.Tensor', key: 'torch.Tensor', value: 'torch.Tensor', key_padding_mask: 'Optional[torch.Tensor]'=None, attn_mask: 'Optional[torch.Tensor]'=None) ->Tuple[torch.Tensor, torch.Tensor]: if key_padding_mask is not None: warnings.warn( "'key_padding_mask' in 'DotProductAttention' is currently an experimental version.When you use this, please check if this is working correctly or not very carefully." ) if not self.batch_first: query = torch.transpose(query, 0, 1) key = torch.transpose(key, 0, 1) value = torch.transpose(value, 0, 1) bsz, _tgt_len, _ = query.size() q = self.fc_q(query) q = self.dropout(q) k = self.fc_k(key) k = self.dropout(k) v = self.fc_v(value) v = self.dropout(v) if k.size() != v.size(): raise AssertionError( 'The sizes of key and value should be the same.') src_len = k.size(1) if key_padding_mask is not None: if key_padding_mask.size(0) != bsz: raise AssertionError( 'The first dimension of kay padding mask size must be the same as batch size' ) if key_padding_mask.size(1) != src_len: raise AssertionError( 'The second dimension of key padding mask size must be the same as source length' ) a = torch.bmm(q, torch.transpose(k, 1, 2)) if self.scaled: a /= math.sqrt(self.output_dim) if attn_mask is not None: a += attn_mask if key_padding_mask is not None: a = a.masked_fill(key_padding_mask.unsqueeze(1), float('-inf')) attn = self.softmax(a) output = torch.bmm(attn, v) if not self.batch_first: output = torch.transpose(output, 0, 1) return output, attn def generate_square_subsequent_mask(self, sz: 'int') ->torch.Tensor: """Generate a square mask for the sequence. The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0). """ mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill( mask == 1, float(0.0)) return mask def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'qdim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from typing import Optional import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf2) del primals_2 del primals_3 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = buf3 del buf3 triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = buf4 del buf4 extern_kernels.bmm(buf5, reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), out=buf6) return buf6, buf5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_5, (16, 4), (4, 1), 0 ), buf5, reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) class DotProductAttentionNew(nn.Module): """DotProductAttention. .. math:: \\mathrm{DotProductAttention}(Q, K, V) &=& \\mathrm{softmax}(qk^T) v q &=& QW_1 + b_1 k &=& KW_2 + b_2 v &=& VW_3 + b_3 Args: qdim: dimension of the model, i.e., dimension of Q hidden_dim: dimension of hidden layer, i.e., dimension of q, k, v. Default: 512 output_dim: dimension of output layer, i.e., dimension of output. Default: None dropout: a Dropout layer on attn_output_weights. Default: 0.0. transform: q = Q, k = K, v = V if it is False. Default: True bias: add bias as module parameter. Default: True. same_embd: W1 = W2 = W3, b1 = b2 = b3 if it is True. Default: True add_bias_kv: add bias to the key and value sequences at dim=0. kdim: total number of features in key. Default: None. vdim: total number of features in key. Default: None. Note: if kdim and vdim are None, they will be set to embed_dim such that query, key, and value have the same number of features. Examples:: >>> attn = DotProductAttention(query_dim) >>> attn_output, attn_output_weights = attn(query, key, value) """ def __init__(self, qdim: 'int', output_dim: 'Optional[int]'=None, dropout: 'float'=0.0, transform: 'bool'=True, bias: 'bool'=True, same_embd: 'bool'=True, add_bias_kv: 'Optional[bool]'=None, kdim: 'Optional[int]'=None, vdim: 'Optional[int]'=None, batch_first: 'bool'=True, scaled: 'bool'=False) ->None: super(DotProductAttentionNew, self).__init__() self.qdim: 'int' = qdim self.transform: 'bool' = transform self.bias: 'bool' = bias self.same_embd: 'bool' = same_embd self.kdim: 'int' = kdim if kdim is not None else self.qdim self.vdim: 'int' = vdim if vdim is not None else self.qdim self.output_dim: 'int' = (output_dim if output_dim is not None else self.vdim) if self.same_embd and (self.qdim != self.kdim or self.qdim != self.vdim ): raise AssertionError( 'qdim, kdim, vdim should be the same dimensions if same_embd is True' ) self.add_bias_kv: 'bool' = (add_bias_kv if add_bias_kv is not None else self.bias) if self.same_embd and self.bias != self.add_bias_kv: raise AssertionError( 'bias and add_bias_kv should be the same if same_embd is True') self.batch_first: 'bool' = batch_first self.scaled: 'bool' = scaled self.fc_q: 'nn.Module' = nn.Linear(self.qdim, self.output_dim, bias =bias) self.fc_k: 'nn.Module' self.fc_v: 'nn.Module' if self.same_embd: self.fc_k = self.fc_q self.fc_v = self.fc_k else: self.fc_k = nn.Linear(self.kdim, self.output_dim, bias=self. add_bias_kv) self.fc_v = nn.Linear(self.vdim, self.output_dim, bias=self. add_bias_kv) self.dropout: 'nn.Module' = nn.Dropout(p=dropout) self.softmax: 'nn.Module' = nn.Softmax(dim=2) def generate_square_subsequent_mask(self, sz: 'int') ->torch.Tensor: """Generate a square mask for the sequence. The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0). """ mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill( mask == 1, float(0.0)) return mask def forward(self, input_0, input_1, input_2): primals_2 = self.fc_q.weight primals_3 = self.fc_q.bias primals_1 = input_0 primals_4 = input_1 primals_5 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
masanorihirano/pytorch_extra_mhirano
DotProductAttention
false
7,167
[ "MIT" ]
1
d19e07445567c069793b7ca1a22a846d7cbce58d
https://github.com/masanorihirano/pytorch_extra_mhirano/tree/d19e07445567c069793b7ca1a22a846d7cbce58d
import math import torch import warnings from typing import Optional from typing import Tuple import torch.nn as nn class Model(nn.Module): """DotProductAttention. .. math:: \\mathrm{DotProductAttention}(Q, K, V) &=& \\mathrm{softmax}(qk^T) v q &=& QW_1 + b_1 k &=& KW_2 + b_2 v &=& VW_3 + b_3 Args: qdim: dimension of the model, i.e., dimension of Q hidden_dim: dimension of hidden layer, i.e., dimension of q, k, v. Default: 512 output_dim: dimension of output layer, i.e., dimension of output. Default: None dropout: a Dropout layer on attn_output_weights. Default: 0.0. transform: q = Q, k = K, v = V if it is False. Default: True bias: add bias as module parameter. Default: True. same_embd: W1 = W2 = W3, b1 = b2 = b3 if it is True. Default: True add_bias_kv: add bias to the key and value sequences at dim=0. kdim: total number of features in key. Default: None. vdim: total number of features in key. Default: None. Note: if kdim and vdim are None, they will be set to embed_dim such that query, key, and value have the same number of features. Examples:: >>> attn = DotProductAttention(query_dim) >>> attn_output, attn_output_weights = attn(query, key, value) """ def __init__(self, qdim: 'int', output_dim: 'Optional[int]'=None, dropout: 'float'=0.0, transform: 'bool'=True, bias: 'bool'=True, same_embd: 'bool'=True, add_bias_kv: 'Optional[bool]'=None, kdim: 'Optional[int]'=None, vdim: 'Optional[int]'=None, batch_first: 'bool'=True, scaled: 'bool'=False) ->None: super().__init__() self.qdim: 'int' = qdim self.transform: 'bool' = transform self.bias: 'bool' = bias self.same_embd: 'bool' = same_embd self.kdim: 'int' = kdim if kdim is not None else self.qdim self.vdim: 'int' = vdim if vdim is not None else self.qdim self.output_dim: 'int' = (output_dim if output_dim is not None else self.vdim) if self.same_embd and (self.qdim != self.kdim or self.qdim != self.vdim ): raise AssertionError( 'qdim, kdim, vdim should be the same dimensions if same_embd is True' ) self.add_bias_kv: 'bool' = (add_bias_kv if add_bias_kv is not None else self.bias) if self.same_embd and self.bias != self.add_bias_kv: raise AssertionError( 'bias and add_bias_kv should be the same if same_embd is True') self.batch_first: 'bool' = batch_first self.scaled: 'bool' = scaled self.fc_q: 'nn.Module' = nn.Linear(self.qdim, self.output_dim, bias =bias) self.fc_k: 'nn.Module' self.fc_v: 'nn.Module' if self.same_embd: self.fc_k = self.fc_q self.fc_v = self.fc_k else: self.fc_k = nn.Linear(self.kdim, self.output_dim, bias=self. add_bias_kv) self.fc_v = nn.Linear(self.vdim, self.output_dim, bias=self. add_bias_kv) self.dropout: 'nn.Module' = nn.Dropout(p=dropout) self.softmax: 'nn.Module' = nn.Softmax(dim=2) def forward(self, query: 'torch.Tensor', key: 'torch.Tensor', value: 'torch.Tensor', key_padding_mask: 'Optional[torch.Tensor]'=None, attn_mask: 'Optional[torch.Tensor]'=None) ->Tuple[torch.Tensor, torch.Tensor]: if key_padding_mask is not None: warnings.warn( "'key_padding_mask' in 'DotProductAttention' is currently an experimental version.When you use this, please check if this is working correctly or not very carefully." ) if not self.batch_first: query = torch.transpose(query, 0, 1) key = torch.transpose(key, 0, 1) value = torch.transpose(value, 0, 1) bsz, _tgt_len, _ = query.size() # ... truncated (>4000 chars) for memory efficiency
KLDivLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/je/cjecll24hlvz7r62a3tl4rp6ndcpgavf4ti4czumksi7lopih6y6.py # Topologically Sorted Source Nodes: [kl_div, log_input], Original ATen: [aten.xlogy, aten.log, aten.mul, aten.sub, aten.mean] # Source node to ATen node mapping: # kl_div => eq, full_default, full_default_1, isnan, log_1, mean, mul, mul_1, sub, where, where_1 # log_input => log # Graph fragment: # %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%arg1_1,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg1_1, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %log_1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %log), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {}) triton_per_fused_log_mean_mul_sub_xlogy_0 = async_compile.triton('triton_per_fused_log_mean_mul_sub_xlogy_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log_mean_mul_sub_xlogy_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_log_mean_mul_sub_xlogy_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr1 + (r0), None) tmp1 = libdevice.isnan(tmp0).to(tl.int1) tmp2 = 0.0 tmp3 = tmp0 == tmp2 tmp4 = tl_math.log(tmp0) tmp5 = tmp0 * tmp4 tmp6 = tl.where(tmp3, tmp2, tmp5) tmp7 = float("nan") tmp8 = tl.where(tmp1, tmp7, tmp6) tmp10 = tl_math.log(tmp9) tmp11 = tmp0 * tmp10 tmp12 = tmp8 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [kl_div, log_input], Original ATen: [aten.xlogy, aten.log, aten.mul, aten.sub, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_log_mean_mul_sub_xlogy_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from typing import Optional from torch.nn import functional as F from torch.nn.modules.loss import _Loss class KLDivLoss(_Loss): def __init__(self, size_average: 'Optional[bool]'=None, reduce: 'Optional[bool]'=None, reduction: 'str'='mean') ->None: super(KLDivLoss, self).__init__(size_average, reduce, reduction) def forward(self, inputs: 'torch.Tensor', targets: 'torch.Tensor' ) ->torch.Tensor: log_input = torch.log(inputs) return F.kl_div(log_input, targets, reduction=self.reduction) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from typing import Optional from torch.nn.modules.loss import _Loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_log_mean_mul_sub_xlogy_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr1 + r0, None) tmp1 = libdevice.isnan(tmp0).to(tl.int1) tmp2 = 0.0 tmp3 = tmp0 == tmp2 tmp4 = tl_math.log(tmp0) tmp5 = tmp0 * tmp4 tmp6 = tl.where(tmp3, tmp2, tmp5) tmp7 = float('nan') tmp8 = tl.where(tmp1, tmp7, tmp6) tmp10 = tl_math.log(tmp9) tmp11 = tmp0 * tmp10 tmp12 = tmp8 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_log_mean_mul_sub_xlogy_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class KLDivLossNew(_Loss): def __init__(self, size_average: 'Optional[bool]'=None, reduce: 'Optional[bool]'=None, reduction: 'str'='mean') ->None: super(KLDivLossNew, self).__init__(size_average, reduce, reduction) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
masanorihirano/pytorch_extra_mhirano
KLDivLoss
false
7,168
[ "MIT" ]
1
d19e07445567c069793b7ca1a22a846d7cbce58d
https://github.com/masanorihirano/pytorch_extra_mhirano/tree/d19e07445567c069793b7ca1a22a846d7cbce58d
import torch from typing import Optional from torch.nn import functional as F from torch.nn.modules.loss import _Loss class Model(_Loss): def __init__(self, size_average: 'Optional[bool]'=None, reduce: 'Optional[bool]'=None, reduction: 'str'='mean') ->None: super().__init__(size_average, reduce, reduction) def forward(self, inputs: 'torch.Tensor', targets: 'torch.Tensor' ) ->torch.Tensor: log_input = torch.log(inputs) return F.kl_div(log_input, targets, reduction=self.reduction) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
VGGBase
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/f7/cf7tayhctr3m6ezk7xezotpdlc5h4drokdkbz4vy2pfkbdxnmn4q.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (27*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xq/cxq75w43anllid5ys7ss3yyizuoeph3vvaqlvm5lo434hrywtyle.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/nw/cnwm6ljuusoqjcwr2jdx6p2ue7ldghxjdr3oe62stiuqhsboiczy.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/32/c32xiwptfqtyhbnde262mvq5tzywzo6zquurttkv7sztqnze6yni.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jj/cjjz4tpbucpuc3faa2ky32crfwhb5fbnssd6o2yfkgdcjg2acfmo.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/tg/ctgdsxjd3rciejxtjvi3y2w5fmmggh5lm3mivuygvkdzeb3zulmc.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_6 = async_compile.triton('triton_poi_fused_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 65536 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/e7/ce7jqsdrj5poslb2hpufqd2wdux5xiab5n2auqal3ztzvkzrmnzl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_7 = async_compile.triton('triton_poi_fused_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 131072 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ks/ckso6iiq5yfqfxmx7ilr6ufrmz6mlkiy75pexzhyf3ierq4pu3zl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_8 = async_compile.triton('triton_poi_fused_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 262144 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/cq/ccq66rrhrzjmgxnrmkqjfjou7btyc5dncveqmqkrdoivqkmduchd.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_9 = async_compile.triton('triton_poi_fused_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_9(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 524288 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/y7/cy74ayecev2pcofz3fyu6lc473nqeaato7assx62kzcpdkdyzi7o.py # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # out => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/mv/cmvofpunraye55pqf22y3ewvph2z6nefokvusriez7hf4qcucdfo.py # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_11 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) % 32 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (128*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4160 + x0 + (128*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/n3/cn34mbt2rtob3eeqb7butchvtwaa2lxs5ritiirymjwyzcwqeits.py # Topologically Sorted Source Nodes: [conv2d_2, out_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # out_3 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_12 = async_compile.triton('triton_poi_fused_convolution_relu_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/il/cilq2hip74d6rz7ttvmpmzknbqn3td7uoov3rzjb5ny3apynoqme.py # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_5 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_13 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) % 16 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (256*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + (256*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (256*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4224 + x0 + (256*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/r4/cr4cxr5slxie5num5fkjya5y6p2mpesokrymomcbss4ipccdadwk.py # Topologically Sorted Source Nodes: [conv2d_4, out_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # out_6 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_14 = async_compile.triton('triton_poi_fused_convolution_relu_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/n3/cn35qanq7ew2y4riv4ein355sody4dyznrtk6o5akgf2oqgx5ok7.py # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_9 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_15 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_15(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) % 8 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (512*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (512*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4352 + x0 + (512*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/63/c63ymadmqa5pewt6lz2e5vbnqla654yqubhkwemi5viikn2tjwlb.py # Topologically Sorted Source Nodes: [conv2d_7, out_10], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # out_10 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) triton_poi_fused_convolution_relu_16 = async_compile.triton('triton_poi_fused_convolution_relu_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_16', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/zu/czunwyy22bkt66zyeary3r6wtcheigfh75hfciirz6pkqyjbo5yl.py # Topologically Sorted Source Nodes: [conv2d_9, out_12], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_9 => convolution_9 # out_12 => relu_9 # Graph fragment: # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_8, %primals_20, %primals_21, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_9,), kwargs = {}) triton_poi_fused_convolution_relu_17 = async_compile.triton('triton_poi_fused_convolution_relu_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 64], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_17(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 512 y1 = (yindex // 512) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (512*x2) + (32768*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x2 + (64*y3)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/bz/cbzo2gj6jhtht3ai6xpbsoye3rtape6hpo2rq4zzug767jhtvlrx.py # Topologically Sorted Source Nodes: [out_13], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_13 => getitem_6, getitem_7 # Graph fragment: # %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {}) # %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_18 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_18(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex % 4 x3 = (xindex // 4) y4 = yindex x5 = xindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + ((2*x2) + (16*x3) + (64*y4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x2) + (16*x3) + (64*y4)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (8 + (2*x2) + (16*x3) + (64*y4)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (9 + (2*x2) + (16*x3) + (64*y4)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1, 1], 1, tl.int8) tmp9 = tl.full([1, 1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1, 1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1, 1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (y0 + (512*x5) + (8192*y1)), tmp6, xmask) tl.store(out_ptr1 + (y0 + (512*x5) + (8192*y1)), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pq/cpqwtybzwrjxjgxnzovhuhgkbi64boj6znsrze46xhxgut5r5rks.py # Topologically Sorted Source Nodes: [conv2d_10, out_14], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_10 => convolution_10 # out_14 => relu_10 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) triton_poi_fused_convolution_relu_19 = async_compile.triton('triton_poi_fused_convolution_relu_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_19', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_19(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/g6/cg64wx5bddwxgg5xvvugg3wdo2tuwcmeybxsisjz2myhpd3oii5q.py # Topologically Sorted Source Nodes: [out_17], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_17 => getitem_8, getitem_9 # Graph fragment: # %getitem_8 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 0), kwargs = {}) # %getitem_9 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_20 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_20(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 2048) % 4 x1 = (xindex // 512) % 4 x6 = xindex tmp0 = (-1) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-2560) + x6), tmp10, other=float("-inf")) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-2048) + x6), tmp16, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-1536) + x6), tmp23, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-512) + x6), tmp30, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x6), tmp33, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (512 + x6), tmp36, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1536 + x6), tmp43, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (2048 + x6), tmp46, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (2560 + x6), tmp49, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + (x6), tmp51, None) tl.store(out_ptr1 + (x6), tmp76, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/j4/cj4skfvetxhoc7uzi7rl2fedifxp4uvrfozvckid3ugnt2vuch3n.py # Topologically Sorted Source Nodes: [conv2d_13, out_18], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_13 => convolution_13 # out_18 => relu_13 # Graph fragment: # %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_8, %primals_28, %primals_29, [1, 1], [6, 6], [6, 6], False, [0, 0], 1), kwargs = {}) # %relu_13 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_13,), kwargs = {}) triton_poi_fused_convolution_relu_21 = async_compile.triton('triton_poi_fused_convolution_relu_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_21', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_21(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/tr/ctrhf6y6tp7beclzz7ocdp4ysczz3oyym47rdpqgsowyowvnsrd6.py # Topologically Sorted Source Nodes: [conv2d_14, conv7_feats], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_14 => convolution_14 # conv7_feats => relu_14 # Graph fragment: # %convolution_14 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_13, %primals_30, %primals_31, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_14 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_14,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_14, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_22 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_22(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 1024 y1 = (yindex // 1024) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (1024*x2) + (16384*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (16*y3)), tmp4, xmask) tl.store(out_ptr1 + (y0 + (1024*x2) + (16384*y1)), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31 = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256, ), (1, )) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256, ), (1, )) assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (512, ), (1, )) assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_19, (512, ), (1, )) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512, ), (1, )) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512, ), (1, )) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512, ), (1, )) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512, ), (1, )) assert_size_stride(primals_28, (1024, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_29, (1024, ), (1, )) assert_size_stride(primals_30, (1024, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_31, (1024, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 192, 9, grid=grid(192, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_4 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_6, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_6 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_8, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_8 buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_10, buf5, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_10 buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(primals_12, buf6, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_12 buf7 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(primals_14, buf7, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_14 buf8 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_7.run(primals_16, buf8, 131072, 9, grid=grid(131072, 9), stream=stream0) del primals_16 buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_18, buf9, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_18 buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_20, buf10, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_20 buf11 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_22, buf11, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_22 buf12 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_24, buf12, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_24 buf13 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_26, buf13, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_26 buf14 = empty_strided_cuda((1024, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_9.run(primals_28, buf14, 524288, 9, grid=grid(524288, 9), stream=stream0) del primals_28 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf16 = buf15; del buf15 # reuse # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_10.run(buf16, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf18 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_10.run(buf18, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 buf19 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32) buf20 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_11.run(buf18, buf19, buf20, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf19, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf22 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [conv2d_2, out_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_12.run(buf22, primals_7, 524288, grid=grid(524288), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf23 = extern_kernels.convolution(buf22, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf24 = buf23; del buf23 # reuse # Topologically Sorted Source Nodes: [conv2d_3, out_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_12.run(buf24, primals_9, 524288, grid=grid(524288), stream=stream0) del primals_9 buf25 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.float32) buf26 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.int8) # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_13.run(buf24, buf25, buf26, 131072, grid=grid(131072), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf27 = extern_kernels.convolution(buf25, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf28 = buf27; del buf27 # reuse # Topologically Sorted Source Nodes: [conv2d_4, out_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_14.run(buf28, primals_11, 262144, grid=grid(262144), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf29 = extern_kernels.convolution(buf28, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf29, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf30 = buf29; del buf29 # reuse # Topologically Sorted Source Nodes: [conv2d_5, out_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_14.run(buf30, primals_13, 262144, grid=grid(262144), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf31 = extern_kernels.convolution(buf30, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf32 = buf31; del buf31 # reuse # Topologically Sorted Source Nodes: [conv2d_6, out_8], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_14.run(buf32, primals_15, 262144, grid=grid(262144), stream=stream0) del primals_15 buf33 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32) buf34 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_15.run(buf32, buf33, buf34, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf35 = extern_kernels.convolution(buf33, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf36 = buf35; del buf35 # reuse # Topologically Sorted Source Nodes: [conv2d_7, out_10], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_16.run(buf36, primals_17, 131072, grid=grid(131072), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf37 = extern_kernels.convolution(buf36, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf37, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf38 = buf37; del buf37 # reuse # Topologically Sorted Source Nodes: [conv2d_8, out_11], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_16.run(buf38, primals_19, 131072, grid=grid(131072), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf39 = extern_kernels.convolution(buf38, buf10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf40 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_9, out_12], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_17.run(buf39, primals_21, buf40, 2048, 64, grid=grid(2048, 64), stream=stream0) del buf39 del primals_21 buf41 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf42 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) # Topologically Sorted Source Nodes: [out_13], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_18.run(buf40, buf41, buf42, 2048, 16, grid=grid(2048, 16), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf43 = extern_kernels.convolution(buf41, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf44 = buf43; del buf43 # reuse # Topologically Sorted Source Nodes: [conv2d_10, out_14], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_19.run(buf44, primals_23, 32768, grid=grid(32768), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf45 = extern_kernels.convolution(buf44, buf12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf46 = buf45; del buf45 # reuse # Topologically Sorted Source Nodes: [conv2d_11, out_15], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_19.run(buf46, primals_25, 32768, grid=grid(32768), stream=stream0) del primals_25 # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] buf47 = extern_kernels.convolution(buf46, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf47, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf48 = buf47; del buf47 # reuse # Topologically Sorted Source Nodes: [conv2d_12, out_16], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_19.run(buf48, primals_27, 32768, grid=grid(32768), stream=stream0) del primals_27 buf49 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf50 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) # Topologically Sorted Source Nodes: [out_17], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_20.run(buf48, buf49, buf50, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution] buf51 = extern_kernels.convolution(buf49, buf14, stride=(1, 1), padding=(6, 6), dilation=(6, 6), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf51, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf52 = buf51; del buf51 # reuse # Topologically Sorted Source Nodes: [conv2d_13, out_18], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_21.run(buf52, primals_29, 65536, grid=grid(65536), stream=stream0) del primals_29 # Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution] buf53 = extern_kernels.convolution(buf52, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf53, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf54 = empty_strided_cuda((4, 1024, 4, 4), (16384, 16, 4, 1), torch.float32) buf55 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.bool) # Topologically Sorted Source Nodes: [conv2d_14, conv7_feats], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_22.run(buf53, primals_31, buf54, buf55, 4096, 16, grid=grid(4096, 16), stream=stream0) del buf53 del primals_31 return (buf40, buf54, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf10, buf11, buf12, buf13, buf14, primals_30, buf16, buf18, buf19, buf20, buf22, buf24, buf25, buf26, buf28, buf30, buf32, buf33, buf34, buf36, buf38, buf40, buf41, buf42, buf44, buf46, buf48, buf49, buf50, buf52, buf55, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((1024, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((1024, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torchvision from torch import nn import torch.nn.functional as F from itertools import product as product import torch.optim import torch.utils.data def decimate(tensor, m): """ Decimate a tensor by a factor 'm', i.e. downsample by keeping every 'm'th value. This is used when we convert FC layers to equivalent Convolutional layers, BUT of a smaller size. :param tensor: tensor to be decimated :param m: list of decimation factors for each dimension of the tensor; None if not to be decimated along a dimension :return: decimated tensor """ assert tensor.dim() == len(m) for d in range(tensor.dim()): if m[d] is not None: tensor = tensor.index_select(dim=d, index=torch.arange(start=0, end=tensor.size(d), step=m[d]).long()) return tensor class VGGBase(nn.Module): """ VGG base convolutions to produce lower-level feature maps. """ def __init__(self): super(VGGBase, self).__init__() self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1) self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1) self.load_pretrained_layers() def forward(self, image): """ Forward propagation. :param image: images, a tensor of dimensions (N, 3, 300, 300) :return: lower-level feature maps conv4_3 and conv7 """ out = F.relu(self.conv1_1(image)) out = F.relu(self.conv1_2(out)) out = self.pool1(out) out = F.relu(self.conv2_1(out)) out = F.relu(self.conv2_2(out)) out = self.pool2(out) out = F.relu(self.conv3_1(out)) out = F.relu(self.conv3_2(out)) out = F.relu(self.conv3_3(out)) out = self.pool3(out) out = F.relu(self.conv4_1(out)) out = F.relu(self.conv4_2(out)) out = F.relu(self.conv4_3(out)) conv4_3_feats = out out = self.pool4(out) out = F.relu(self.conv5_1(out)) out = F.relu(self.conv5_2(out)) out = F.relu(self.conv5_3(out)) out = self.pool5(out) out = F.relu(self.conv6(out)) conv7_feats = F.relu(self.conv7(out)) return conv4_3_feats, conv7_feats def load_pretrained_layers(self): """ As in the paper, we use a VGG-16 pretrained on the ImageNet task as the base network. There's one available in PyTorch, see https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.vgg16 We copy these parameters into our network. It's straightforward for conv1 to conv5. However, the original VGG-16 does not contain the conv6 and con7 layers. Therefore, we convert fc6 and fc7 into convolutional layers, and subsample by decimation. See 'decimate' in utils.py. """ state_dict = self.state_dict() param_names = list(state_dict.keys()) pretrained_state_dict = torchvision.models.vgg16(pretrained=True ).state_dict() pretrained_param_names = list(pretrained_state_dict.keys()) for i, param in enumerate(param_names[:-4]): state_dict[param] = pretrained_state_dict[pretrained_param_names[i] ] conv_fc6_weight = pretrained_state_dict['classifier.0.weight'].view( 4096, 512, 7, 7) conv_fc6_bias = pretrained_state_dict['classifier.0.bias'] state_dict['conv6.weight'] = decimate(conv_fc6_weight, m=[4, None, 3, 3]) state_dict['conv6.bias'] = decimate(conv_fc6_bias, m=[4]) conv_fc7_weight = pretrained_state_dict['classifier.3.weight'].view( 4096, 4096, 1, 1) conv_fc7_bias = pretrained_state_dict['classifier.3.bias'] state_dict['conv7.weight'] = decimate(conv_fc7_weight, m=[4, 4, None, None]) state_dict['conv7.bias'] = decimate(conv_fc7_bias, m=[4]) self.load_state_dict(state_dict) None def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torchvision from torch import nn from itertools import product as product import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_9(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 32 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 128 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4160 + x0 + 128 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 % 16 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 256 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 256 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4224 + x0 + 256 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_15(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 % 8 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 512 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4352 + x0 + 512 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_17(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 512 y1 = yindex // 512 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 512 * x2 + 32768 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x2 + 64 * y3), tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_18(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex % 4 x3 = xindex // 4 y4 = yindex x5 = xindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (2 * x2 + 16 * x3 + 64 * y4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x2 + 16 * x3 + 64 * y4), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (8 + 2 * x2 + 16 * x3 + 64 * y4), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (9 + 2 * x2 + 16 * x3 + 64 * y4), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1, 1], 1, tl.int8) tmp9 = tl.full([1, 1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1, 1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1, 1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (y0 + 512 * x5 + 8192 * y1), tmp6, xmask) tl.store(out_ptr1 + (y0 + 512 * x5 + 8192 * y1), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_19(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_20(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 2048 % 4 x1 = xindex // 512 % 4 x6 = xindex tmp0 = -1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-2560 + x6), tmp10, other=float('-inf')) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-2048 + x6), tmp16, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-1536 + x6), tmp23, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-512 + x6), tmp30, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x6, tmp33, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (512 + x6), tmp36, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1536 + x6), tmp43, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (2048 + x6), tmp46, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (2560 + x6), tmp49, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x6, tmp51, None) tl.store(out_ptr1 + x6, tmp76, None) @triton.jit def triton_poi_fused_convolution_relu_21(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_22(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 1024 y1 = yindex // 1024 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 1024 * x2 + 16384 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 16 * y3), tmp4, xmask) tl.store(out_ptr1 + (y0 + 1024 * x2 + 16384 * y1), tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31) = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (512,), (1,)) assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_19, (512,), (1,)) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512,), (1,)) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512,), (1,)) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512,), (1,)) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512,), (1,)) assert_size_stride(primals_28, (1024, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_29, (1024,), (1,)) assert_size_stride(primals_30, (1024, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_31, (1024,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(192, 9)](primals_1, buf0, 192, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_2[grid(4096, 9)](primals_4, buf2, 4096, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_3[grid(8192, 9)](primals_6, buf3, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_4[grid(16384, 9)](primals_8, buf4, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_5[grid(32768, 9)](primals_10, buf5, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_6[grid(65536, 9)](primals_12, buf6, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_12 buf7 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_6[grid(65536, 9)](primals_14, buf7, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_14 buf8 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_7[grid(131072, 9)](primals_16, buf8, 131072, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_16 buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_18, buf9, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_18 buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_20, buf10, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_20 buf11 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_22, buf11, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_22 buf12 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_24, buf12, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_24 buf13 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_26, buf13, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_26 buf14 = empty_strided_cuda((1024, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_9[grid(524288, 9)](primals_28, buf14, 524288, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_28 buf15 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf16 = buf15 del buf15 triton_poi_fused_convolution_relu_10[grid(1048576)](buf16, primals_2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf17 = extern_kernels.convolution(buf16, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf18 = buf17 del buf17 triton_poi_fused_convolution_relu_10[grid(1048576)](buf18, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf19 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32) buf20 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_11[grid(262144)](buf18, buf19, buf20, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf21 = extern_kernels.convolution(buf19, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf22 = buf21 del buf21 triton_poi_fused_convolution_relu_12[grid(524288)](buf22, primals_7, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf23 = extern_kernels.convolution(buf22, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf24 = buf23 del buf23 triton_poi_fused_convolution_relu_12[grid(524288)](buf24, primals_9, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf25 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.float32) buf26 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.int8) triton_poi_fused_max_pool2d_with_indices_13[grid(131072)](buf24, buf25, buf26, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf27 = extern_kernels.convolution(buf25, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf28 = buf27 del buf27 triton_poi_fused_convolution_relu_14[grid(262144)](buf28, primals_11, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_11 buf29 = extern_kernels.convolution(buf28, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf29, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf30 = buf29 del buf29 triton_poi_fused_convolution_relu_14[grid(262144)](buf30, primals_13, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_13 buf31 = extern_kernels.convolution(buf30, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf32 = buf31 del buf31 triton_poi_fused_convolution_relu_14[grid(262144)](buf32, primals_15, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_15 buf33 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32) buf34 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) triton_poi_fused_max_pool2d_with_indices_15[grid(65536)](buf32, buf33, buf34, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf35 = extern_kernels.convolution(buf33, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf36 = buf35 del buf35 triton_poi_fused_convolution_relu_16[grid(131072)](buf36, primals_17, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_17 buf37 = extern_kernels.convolution(buf36, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf37, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf38 = buf37 del buf37 triton_poi_fused_convolution_relu_16[grid(131072)](buf38, primals_19, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_19 buf39 = extern_kernels.convolution(buf38, buf10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf40 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch .float32) triton_poi_fused_convolution_relu_17[grid(2048, 64)](buf39, primals_21, buf40, 2048, 64, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf39 del primals_21 buf41 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf42 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) triton_poi_fused_max_pool2d_with_indices_18[grid(2048, 16)](buf40, buf41, buf42, 2048, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) buf43 = extern_kernels.convolution(buf41, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf44 = buf43 del buf43 triton_poi_fused_convolution_relu_19[grid(32768)](buf44, primals_23, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 buf45 = extern_kernels.convolution(buf44, buf12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf46 = buf45 del buf45 triton_poi_fused_convolution_relu_19[grid(32768)](buf46, primals_25, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_25 buf47 = extern_kernels.convolution(buf46, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf47, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf48 = buf47 del buf47 triton_poi_fused_convolution_relu_19[grid(32768)](buf48, primals_27, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_27 buf49 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf50 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) triton_poi_fused_max_pool2d_with_indices_20[grid(32768)](buf48, buf49, buf50, 32768, XBLOCK=256, num_warps=4, num_stages=1) buf51 = extern_kernels.convolution(buf49, buf14, stride=(1, 1), padding=(6, 6), dilation=(6, 6), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf51, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf52 = buf51 del buf51 triton_poi_fused_convolution_relu_21[grid(65536)](buf52, primals_29, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_29 buf53 = extern_kernels.convolution(buf52, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf53, (4, 1024, 4, 4), (16384, 1, 4096, 1024)) buf54 = empty_strided_cuda((4, 1024, 4, 4), (16384, 16, 4, 1), torch.float32) buf55 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_22[grid(4096, 16) ](buf53, primals_31, buf54, buf55, 4096, 16, XBLOCK=16, YBLOCK= 64, num_warps=4, num_stages=1) del buf53 del primals_31 return (buf40, buf54, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf10, buf11, buf12, buf13, buf14, primals_30, buf16, buf18, buf19, buf20, buf22, buf24, buf25, buf26, buf28, buf30, buf32, buf33, buf34, buf36, buf38, buf40, buf41, buf42, buf44, buf46, buf48, buf49, buf50, buf52, buf55) def decimate(tensor, m): """ Decimate a tensor by a factor 'm', i.e. downsample by keeping every 'm'th value. This is used when we convert FC layers to equivalent Convolutional layers, BUT of a smaller size. :param tensor: tensor to be decimated :param m: list of decimation factors for each dimension of the tensor; None if not to be decimated along a dimension :return: decimated tensor """ assert tensor.dim() == len(m) for d in range(tensor.dim()): if m[d] is not None: tensor = tensor.index_select(dim=d, index=torch.arange(start=0, end=tensor.size(d), step=m[d]).long()) return tensor class VGGBaseNew(nn.Module): """ VGG base convolutions to produce lower-level feature maps. """ def __init__(self): super(VGGBaseNew, self).__init__() self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1) self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1) self.load_pretrained_layers() def load_pretrained_layers(self): """ As in the paper, we use a VGG-16 pretrained on the ImageNet task as the base network. There's one available in PyTorch, see https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.vgg16 We copy these parameters into our network. It's straightforward for conv1 to conv5. However, the original VGG-16 does not contain the conv6 and con7 layers. Therefore, we convert fc6 and fc7 into convolutional layers, and subsample by decimation. See 'decimate' in utils.py. """ state_dict = self.state_dict() param_names = list(state_dict.keys()) pretrained_state_dict = torchvision.models.vgg16(pretrained=True ).state_dict() pretrained_param_names = list(pretrained_state_dict.keys()) for i, param in enumerate(param_names[:-4]): state_dict[param] = pretrained_state_dict[pretrained_param_names[i] ] conv_fc6_weight = pretrained_state_dict['classifier.0.weight'].view( 4096, 512, 7, 7) conv_fc6_bias = pretrained_state_dict['classifier.0.bias'] state_dict['conv6.weight'] = decimate(conv_fc6_weight, m=[4, None, 3, 3]) state_dict['conv6.bias'] = decimate(conv_fc6_bias, m=[4]) conv_fc7_weight = pretrained_state_dict['classifier.3.weight'].view( 4096, 4096, 1, 1) conv_fc7_bias = pretrained_state_dict['classifier.3.bias'] state_dict['conv7.weight'] = decimate(conv_fc7_weight, m=[4, 4, None, None]) state_dict['conv7.bias'] = decimate(conv_fc7_bias, m=[4]) self.load_state_dict(state_dict) None def forward(self, input_0): primals_1 = self.conv1_1.weight primals_2 = self.conv1_1.bias primals_4 = self.conv1_2.weight primals_5 = self.conv1_2.bias primals_6 = self.conv2_1.weight primals_7 = self.conv2_1.bias primals_8 = self.conv2_2.weight primals_9 = self.conv2_2.bias primals_10 = self.conv3_1.weight primals_11 = self.conv3_1.bias primals_12 = self.conv3_2.weight primals_13 = self.conv3_2.bias primals_14 = self.conv3_3.weight primals_15 = self.conv3_3.bias primals_16 = self.conv4_1.weight primals_17 = self.conv4_1.bias primals_18 = self.conv4_2.weight primals_19 = self.conv4_2.bias primals_20 = self.conv4_3.weight primals_21 = self.conv4_3.bias primals_22 = self.conv5_1.weight primals_23 = self.conv5_1.bias primals_24 = self.conv5_2.weight primals_25 = self.conv5_2.bias primals_26 = self.conv5_3.weight primals_27 = self.conv5_3.bias primals_28 = self.conv6.weight primals_29 = self.conv6.bias primals_30 = self.conv7.weight primals_31 = self.conv7.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31]) return output[0], output[1]
dee-walia20/SSD-Implementation-using-Pytorch
VGGBase
false
7,169
[ "MIT" ]
1
2a7dcdcea2787f4bffd45f335819f08af2b525dd
https://github.com/dee-walia20/SSD-Implementation-using-Pytorch/tree/2a7dcdcea2787f4bffd45f335819f08af2b525dd
import torch import torchvision from torch import nn import torch.nn.functional as F from itertools import product as product import torch.optim import torch.utils.data def decimate(tensor, m): """ Decimate a tensor by a factor 'm', i.e. downsample by keeping every 'm'th value. This is used when we convert FC layers to equivalent Convolutional layers, BUT of a smaller size. :param tensor: tensor to be decimated :param m: list of decimation factors for each dimension of the tensor; None if not to be decimated along a dimension :return: decimated tensor """ assert tensor.dim() == len(m) for d in range(tensor.dim()): if m[d] is not None: tensor = tensor.index_select(dim=d, index=torch.arange(start=0, end=tensor.size(d), step=m[d]).long()) return tensor class Model(nn.Module): """ VGG base convolutions to produce lower-level feature maps. """ def __init__(self): super().__init__() self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1) self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1) self.load_pretrained_layers() def forward(self, image): """ Forward propagation. :param image: images, a tensor of dimensions (N, 3, 300, 300) :return: lower-level feature maps conv4_3 and conv7 """ out = F.relu(self.conv1_1(image)) out = F.relu(self.conv1_2(out)) out = self.pool1(out) out = F.relu(self.conv2_1(out)) out = F.relu(self.conv2_2(out)) out = self.pool2(out) out = F.relu(self.conv3_1(out)) out = F.relu(self.conv3_2(out)) out = F.relu(self.conv3_3(out)) out = self.pool3(out) out = F.relu(self.conv4_1(out)) out = F.relu(self.conv4_2(out)) out = F.relu(self.conv4_3(out)) conv4_3_feats = out out = self.pool4(out) out = F.relu(self.conv5_1(out)) out = F.relu(self.conv5_2(out)) out = F.relu(self.conv5_3(out)) out = self.pool5(out) out = F.relu(self.conv6(out)) conv7_feats = F.relu(self.conv7(out)) return conv4_3_feats, conv7_feats def load_pretrained_layers(self): """ As in the paper, we use a VGG-16 pretrained on the ImageNet task as the base network. There's one available in PyTorch, see https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.vgg16 We copy these parameters into our network. It's straightforward for conv1 to conv5. However, the original VGG-16 does not contain the conv6 and con7 layers. Therefore, we convert fc6 and fc7 into convolutional layers, and subsample by decimation. See 'decimate' in utils.py. # ... truncated (>4000 chars) for memory efficiency
ComprehensionLayer_step1
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ow/cowyljxxhhhrqkmxr23ihg4kcpprrlgqunzly74nv22djt5aqkj7.py # Topologically Sorted Source Nodes: [cated_vectors], Original ATen: [aten.cat] # Source node to ATen node mapping: # cated_vectors => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 12 x0 = xindex % 4 x2 = (xindex // 48) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (4*((-4) + x1)) + (16*x2)), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + (x0 + (4*((-8) + x1)) + (16*x2)), tmp11 & xmask, other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fu/cfux5iy7gwfyitws74d2sqyzewfwia5syjzb4xq2c6sywtehanw5.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pq/cpqnfrogm4dnzim2vyszfmugd6fc43gfnmxicoezmiidejzudrdz.py # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # atte_weights => exp # Graph fragment: # %mul_tensor_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_17, 1), kwargs = {}) # %amax_default_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_2, [-1], True), kwargs = {}) # %sub_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_2, %amax_default_2), kwargs = {}) # %div_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_2, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_2,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # atte_weights => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ik/cikz5geipmyqd3kxpjnofzkxsr4kjdrgxpkjbc7og7eef7udyeww.py # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_2 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_4,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (16 + y0 + (4*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6z/c6zedbmwm2d35e7yvn5vdphlli3jag3job4zogz7e4gvhmq5kh6l.py # Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_4 => clone_8 # Graph fragment: # %clone_8 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_8,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (32 + y0 + (4*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hi/chiryqwbirf2zgxbhddu72p6gbwic76xwpvmrw5z73sc4dacnodq.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_33, %view_34, %view_35], 1), kwargs = {}) triton_poi_fused_cat_6 = async_compile.triton('triton_poi_fused_cat_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 12 x0 = xindex % 4 x2 = (xindex // 48) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x0) + (16*x2) + x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x0) + (16*x2) + ((-4) + x1)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x0) + (16*x2) + ((-8) + x1)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gz/cgze2dqh77rq4l6otvwzef2pxeh5ld4ph4dekt5m2esoelqh6vvp.py # Topologically Sorted Source Nodes: [low_vectors_1], Original ATen: [aten.add] # Source node to ATen node mapping: # low_vectors_1 => add # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %getitem_9), kwargs = {}) triton_poi_fused_add_7 = async_compile.triton('triton_poi_fused_add_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (48*x1)), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hg/chg5uwxkvmi4rtqt7thpdxsai7g2vlek3ymk6zqqs7s62bl3dhjf.py # Topologically Sorted Source Nodes: [mid_vectors_1], Original ATen: [aten.add] # Source node to ATen node mapping: # mid_vectors_1 => add_1 # Graph fragment: # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %getitem_10), kwargs = {}) triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0 + (48*x1)), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5k/c5ks6x23whu2i3x3i5iuwqehxdelpbuooovoprqj3xtugqfhvgv6.py # Topologically Sorted Source Nodes: [hig_vectors_1], Original ATen: [aten.add] # Source node to ATen node mapping: # hig_vectors_1 => add_2 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %getitem_11), kwargs = {}) triton_poi_fused_add_9 = async_compile.triton('triton_poi_fused_add_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (32 + x0 + (48*x1)), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/4n/c4nmkn7t2fqsvg3giqxpycghdjkwlyjfnumznxo5wouesupsbkoc.py # Topologically Sorted Source Nodes: [low_vectors_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # low_vectors_2 => add_3, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_12, 1e-08), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {}) triton_poi_fused_native_layer_norm_10 = async_compile.triton('triton_poi_fused_native_layer_norm_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-08 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/73/c73z2hfes5izl473wn57vaku4rt2ae7swkdamlriywh5x5xt7g3z.py # Topologically Sorted Source Nodes: [low_vectors_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # low_vectors_2 => add_3, add_4, mul, mul_1, rsqrt, sub_3, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_12, 1e-08), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_13), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_8), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_9), kwargs = {}) triton_poi_fused_native_layer_norm_11 = async_compile.triton('triton_poi_fused_native_layer_norm_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_11(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12, 4), (48, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cated_vectors], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 192, grid=grid(192), stream=stream0) buf1 = empty_strided_cuda((48, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [query], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (48, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((48, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [key], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (48, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((48, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [value], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (48, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3) del primals_6 buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf1, buf4, 16, 4, grid=grid(16, 4), stream=stream0) buf5 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf2, buf5, 16, 4, grid=grid(16, 4), stream=stream0) buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf6, buf7, 256, grid=grid(256), stream=stream0) buf8 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf7, buf8, 256, grid=grid(256), stream=stream0) buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf3, buf9, 16, 4, grid=grid(16, 4), stream=stream0) buf10 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf1, buf11, 16, 4, grid=grid(16, 4), stream=stream0) buf12 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf2, buf12, 16, 4, grid=grid(16, 4), stream=stream0) buf13 = reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf11, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf12, (16, 1, 4), (4, 0, 1), 0), out=buf13) buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [atte_weights_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf13, buf14, 256, grid=grid(256), stream=stream0) buf15 = reinterpret_tensor(buf13, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf13 # reuse # Topologically Sorted Source Nodes: [atte_weights_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf14, buf15, 256, grid=grid(256), stream=stream0) buf16 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf3, buf16, 16, 4, grid=grid(16, 4), stream=stream0) buf17 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf15, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf16, (16, 4, 1), (4, 1, 0), 0), out=buf17) buf18 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf1, buf18, 16, 4, grid=grid(16, 4), stream=stream0) del buf1 buf19 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf2, buf19, 16, 4, grid=grid(16, 4), stream=stream0) buf20 = reinterpret_tensor(buf14, (16, 4, 4), (16, 4, 1), 0); del buf14 # reuse # Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf18, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf19, (16, 1, 4), (4, 0, 1), 0), out=buf20) buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [atte_weights_4], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf20, buf21, 256, grid=grid(256), stream=stream0) buf22 = reinterpret_tensor(buf20, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf20 # reuse # Topologically Sorted Source Nodes: [atte_weights_4], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf21, buf22, 256, grid=grid(256), stream=stream0) del buf21 buf23 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf3, buf23, 16, 4, grid=grid(16, 4), stream=stream0) buf24 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf22, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf23, (16, 4, 1), (4, 1, 0), 0), out=buf24) buf25 = reinterpret_tensor(buf3, (4, 12, 4), (48, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_6.run(buf10, buf17, buf24, buf25, 192, grid=grid(192), stream=stream0) buf26 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf25, (48, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf26) buf27 = reinterpret_tensor(buf24, (4, 4, 4), (16, 4, 1), 0); del buf24 # reuse # Topologically Sorted Source Nodes: [low_vectors_1], Original ATen: [aten.add] triton_poi_fused_add_7.run(primals_1, buf26, buf27, 64, grid=grid(64), stream=stream0) del primals_1 buf28 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0); del buf17 # reuse # Topologically Sorted Source Nodes: [mid_vectors_1], Original ATen: [aten.add] triton_poi_fused_add_8.run(primals_2, buf26, buf28, 64, grid=grid(64), stream=stream0) del primals_2 buf29 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [hig_vectors_1], Original ATen: [aten.add] triton_poi_fused_add_9.run(primals_3, buf26, buf29, 64, grid=grid(64), stream=stream0) del buf26 del primals_3 buf30 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf31 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [low_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_10.run(buf27, buf30, buf31, 16, grid=grid(16), stream=stream0) buf32 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [low_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_11.run(buf27, buf30, buf31, primals_8, primals_9, buf32, 64, grid=grid(64), stream=stream0) del primals_9 buf33 = buf31; del buf31 # reuse buf34 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [mid_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_10.run(buf28, buf33, buf34, 16, grid=grid(16), stream=stream0) buf35 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mid_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_11.run(buf28, buf33, buf34, primals_10, primals_11, buf35, 64, grid=grid(64), stream=stream0) del primals_11 buf36 = buf34; del buf34 # reuse buf37 = buf33; del buf33 # reuse # Topologically Sorted Source Nodes: [hig_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_10.run(buf29, buf36, buf37, 16, grid=grid(16), stream=stream0) buf38 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hig_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_11.run(buf29, buf36, buf37, primals_12, primals_13, buf38, 64, grid=grid(64), stream=stream0) del buf36 del buf37 del primals_13 return (buf32, buf35, buf38, buf8, buf15, buf22, primals_8, primals_10, primals_12, reinterpret_tensor(buf0, (48, 4), (4, 1), 0), buf8, buf15, buf22, reinterpret_tensor(buf25, (48, 4), (4, 1), 0), buf27, buf28, buf29, primals_7, reinterpret_tensor(buf23, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf16, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf11, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf12, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class ScaledDotProductAttention(nn.Module): def __init__(self, dropout=0.0): super(ScaledDotProductAttention, self).__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value): assert query.size()[-1] == key.size()[-1] dim = query.size()[-1] tmp_raw_scores = torch.div(torch.matmul(query, key.transpose(-2, -1 )), math.sqrt(dim)) atte_weights = torch.softmax(tmp_raw_scores, dim=-1) atte_weights = self.dropout(atte_weights) output = torch.matmul(atte_weights, value) return output, atte_weights class MultiHeadAttention(nn.Module): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(MultiHeadAttention, self).__init__() assert reduced_dim % n_head == 0 self.n_head = n_head self.embedding_dim = embedding_dim self.reduced_dim = reduced_dim self.Wq = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wk = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wv = nn.Linear(embedding_dim, reduced_dim, bias=False) self.inner_attention = ScaledDotProductAttention(dropout) self.Wo = nn.Linear(reduced_dim, embedding_dim, bias=False) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, query): residual = query value = key = query query = self.Wq(query) key = self.Wk(key) value = self.Wv(value) b, n, _ = query.size() query = query.reshape(b, n, self.n_head, self.reduced_dim // self. n_head) b, m, _ = key.size() key = key.reshape(b, m, self.n_head, self.reduced_dim // self.n_head) value = value.reshape(b, m, self.n_head, self.reduced_dim // self. n_head) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) query, atte_weights = self.inner_attention(query, key, value) query = query.transpose(1, 2).reshape(b, n, self.reduced_dim) query = self.dropout(self.Wo(query)) query = query + residual query = self.ln(query) return query, atte_weights class ComprehensionLayer_step1(MultiHeadAttention): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(ComprehensionLayer_step1, self).__init__(embedding_dim, reduced_dim, n_head, dropout) del self.ln self.low_ln = nn.LayerNorm(embedding_dim, eps=eps) self.mid_ln = nn.LayerNorm(embedding_dim, eps=eps) self.hig_ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, low_vectors, mid_vectors, hig_vectors): b = low_vectors.size()[0] low_num, mid_num, hig_num = low_vectors.size()[1], mid_vectors.size()[1 ], hig_vectors.size()[1] low_residual = low_vectors mid_residual = mid_vectors hig_residual = hig_vectors cated_vectors = torch.cat((low_vectors, mid_vectors, hig_vectors), dim=1) query = self.Wq(cated_vectors) key = self.Wk(cated_vectors) value = self.Wv(cated_vectors) low_query, mid_query, hig_query = torch.split(query, [low_num, mid_num, hig_num], dim=1) low_key, mid_key, hig_key = torch.split(key, [low_num, mid_num, hig_num], dim=1) low_value, mid_value, hig_value = torch.split(value, [low_num, mid_num, hig_num], dim=1) low_query = low_query.reshape(b, low_num, self.n_head, self. reduced_dim // self.n_head) low_key = low_key.reshape(b, low_num, self.n_head, self.reduced_dim // self.n_head) low_value = low_value.reshape(b, low_num, self.n_head, self. reduced_dim // self.n_head) low_query = low_query.transpose(1, 2) low_key = low_key.transpose(1, 2) low_value = low_value.transpose(1, 2) mid_query = mid_query.reshape(b, mid_num, self.n_head, self. reduced_dim // self.n_head) mid_key = mid_key.reshape(b, mid_num, self.n_head, self.reduced_dim // self.n_head) mid_value = mid_value.reshape(b, mid_num, self.n_head, self. reduced_dim // self.n_head) mid_query = mid_query.transpose(1, 2) mid_key = mid_key.transpose(1, 2) mid_value = mid_value.transpose(1, 2) hig_query = hig_query.reshape(b, hig_num, self.n_head, self. reduced_dim // self.n_head) hig_key = hig_key.reshape(b, hig_num, self.n_head, self.reduced_dim // self.n_head) hig_value = hig_value.reshape(b, hig_num, self.n_head, self. reduced_dim // self.n_head) hig_query = hig_query.transpose(1, 2) hig_key = hig_key.transpose(1, 2) hig_value = hig_value.transpose(1, 2) low_query, low_weights = self.inner_attention(low_query, low_key, low_value) mid_query, mid_weights = self.inner_attention(mid_query, mid_key, mid_value) hig_query, hig_weights = self.inner_attention(hig_query, hig_key, hig_value) low_query = low_query.transpose(1, 2).reshape(b, low_num, self. reduced_dim) mid_query = mid_query.transpose(1, 2).reshape(b, mid_num, self. reduced_dim) hig_query = hig_query.transpose(1, 2).reshape(b, hig_num, self. reduced_dim) output = self.dropout(self.Wo(torch.cat((low_query, mid_query, hig_query), dim=1))) low_vectors, mid_vectors, hig_vectors = torch.split(output, [ low_num, mid_num, hig_num], dim=1) low_vectors = low_residual + low_vectors mid_vectors = mid_residual + mid_vectors hig_vectors = hig_residual + hig_vectors low_vectors = self.low_ln(low_vectors) mid_vectors = self.mid_ln(mid_vectors) hig_vectors = self.hig_ln(hig_vectors) return (low_vectors, mid_vectors, hig_vectors, low_weights, mid_weights, hig_weights) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'embedding_dim': 4, 'reduced_dim': 4, 'n_head': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 12 x0 = xindex % 4 x2 = xindex // 48 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 4 * (-4 + x1) + 16 * x2), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (x0 + 4 * (-8 + x1) + 16 * x2), tmp11 & xmask, other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x3, tmp16, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (16 + y0 + 4 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (32 + y0 + 4 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_cat_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 12 x0 = xindex % 4 x2 = xindex // 48 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * x2 + x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x0 + 16 * x2 + (-4 + x1)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x0 + 16 * x2 + (-8 + x1)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x3, tmp16, xmask) @triton.jit def triton_poi_fused_add_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 48 * x1), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_add_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + (16 + x0 + 48 * x1), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_add_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + (32 + x0 + 48 * x1), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_native_layer_norm_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-08 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_11(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12, 4), (48, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(192)](primals_1, primals_2, primals_3, buf0, 192, XBLOCK=128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((48, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (48, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((48, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (48, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((48, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (48, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3) del primals_6 buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_1[grid(16, 4)](buf1, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(16, 4)](buf2, buf5, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) buf8 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf6 triton_poi_fused__softmax_3[grid(256)](buf7, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_1[grid(16, 4)](buf3, buf9, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf10 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf1, buf11, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf12 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf2, buf12, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf13 = reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0) del buf7 extern_kernels.bmm(reinterpret_tensor(buf11, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf12, (16, 1, 4), (4, 0, 1), 0), out=buf13) buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf13, buf14, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf15 = reinterpret_tensor(buf13, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf13 triton_poi_fused__softmax_3[grid(256)](buf14, buf15, 256, XBLOCK= 128, num_warps=4, num_stages=1) buf16 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf3, buf16, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf15, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf16, (16, 4, 1), (4, 1, 0), 0), out=buf17) buf18 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_5[grid(16, 4)](buf1, buf18, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf1 buf19 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(16, 4)](buf2, buf19, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf20 = reinterpret_tensor(buf14, (16, 4, 4), (16, 4, 1), 0) del buf14 extern_kernels.bmm(reinterpret_tensor(buf18, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf19, (16, 1, 4), (4, 0, 1), 0), out=buf20) buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf20, buf21, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf22 = reinterpret_tensor(buf20, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf20 triton_poi_fused__softmax_3[grid(256)](buf21, buf22, 256, XBLOCK= 128, num_warps=4, num_stages=1) del buf21 buf23 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_5[grid(16, 4)](buf3, buf23, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf24 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf22, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf23, (16, 4, 1), (4, 1, 0), 0), out=buf24) buf25 = reinterpret_tensor(buf3, (4, 12, 4), (48, 4, 1), 0) del buf3 triton_poi_fused_cat_6[grid(192)](buf10, buf17, buf24, buf25, 192, XBLOCK=128, num_warps=4, num_stages=1) buf26 = buf2 del buf2 extern_kernels.mm(reinterpret_tensor(buf25, (48, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf26) buf27 = reinterpret_tensor(buf24, (4, 4, 4), (16, 4, 1), 0) del buf24 triton_poi_fused_add_7[grid(64)](primals_1, buf26, buf27, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf28 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0) del buf17 triton_poi_fused_add_8[grid(64)](primals_2, buf26, buf28, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf29 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0) del buf10 triton_poi_fused_add_9[grid(64)](primals_3, buf26, buf29, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf26 del primals_3 buf30 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf31 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_native_layer_norm_10[grid(16)](buf27, buf30, buf31, 16, XBLOCK=16, num_warps=1, num_stages=1) buf32 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_11[grid(64)](buf27, buf30, buf31, primals_8, primals_9, buf32, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 buf33 = buf31 del buf31 buf34 = buf30 del buf30 triton_poi_fused_native_layer_norm_10[grid(16)](buf28, buf33, buf34, 16, XBLOCK=16, num_warps=1, num_stages=1) buf35 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_11[grid(64)](buf28, buf33, buf34, primals_10, primals_11, buf35, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_11 buf36 = buf34 del buf34 buf37 = buf33 del buf33 triton_poi_fused_native_layer_norm_10[grid(16)](buf29, buf36, buf37, 16, XBLOCK=16, num_warps=1, num_stages=1) buf38 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_11[grid(64)](buf29, buf36, buf37, primals_12, primals_13, buf38, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf36 del buf37 del primals_13 return (buf32, buf35, buf38, buf8, buf15, buf22, primals_8, primals_10, primals_12, reinterpret_tensor(buf0, (48, 4), (4, 1), 0), buf8, buf15, buf22, reinterpret_tensor(buf25, (48, 4), (4, 1), 0), buf27, buf28, buf29, primals_7, reinterpret_tensor(buf23, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf16, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf11, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf12, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0)) class ScaledDotProductAttention(nn.Module): def __init__(self, dropout=0.0): super(ScaledDotProductAttention, self).__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value): assert query.size()[-1] == key.size()[-1] dim = query.size()[-1] tmp_raw_scores = torch.div(torch.matmul(query, key.transpose(-2, -1 )), math.sqrt(dim)) atte_weights = torch.softmax(tmp_raw_scores, dim=-1) atte_weights = self.dropout(atte_weights) output = torch.matmul(atte_weights, value) return output, atte_weights class MultiHeadAttention(nn.Module): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(MultiHeadAttention, self).__init__() assert reduced_dim % n_head == 0 self.n_head = n_head self.embedding_dim = embedding_dim self.reduced_dim = reduced_dim self.Wq = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wk = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wv = nn.Linear(embedding_dim, reduced_dim, bias=False) self.inner_attention = ScaledDotProductAttention(dropout) self.Wo = nn.Linear(reduced_dim, embedding_dim, bias=False) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, query): residual = query value = key = query query = self.Wq(query) key = self.Wk(key) value = self.Wv(value) b, n, _ = query.size() query = query.reshape(b, n, self.n_head, self.reduced_dim // self. n_head) b, m, _ = key.size() key = key.reshape(b, m, self.n_head, self.reduced_dim // self.n_head) value = value.reshape(b, m, self.n_head, self.reduced_dim // self. n_head) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) query, atte_weights = self.inner_attention(query, key, value) query = query.transpose(1, 2).reshape(b, n, self.reduced_dim) query = self.dropout(self.Wo(query)) query = query + residual query = self.ln(query) return query, atte_weights class ComprehensionLayer_step1New(MultiHeadAttention): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(ComprehensionLayer_step1New, self).__init__(embedding_dim, reduced_dim, n_head, dropout) del self.ln self.low_ln = nn.LayerNorm(embedding_dim, eps=eps) self.mid_ln = nn.LayerNorm(embedding_dim, eps=eps) self.hig_ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, input_0, input_1, input_2): primals_4 = self.Wq.weight primals_5 = self.Wk.weight primals_6 = self.Wv.weight primals_7 = self.Wo.weight primals_8 = self.low_ln.weight primals_9 = self.low_ln.bias primals_10 = self.mid_ln.weight primals_11 = self.mid_ln.bias primals_12 = self.hig_ln.weight primals_13 = self.hig_ln.bias primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0], output[1], output[2], output[3], output[4], output[5]
luyu-fan/LRCM
ComprehensionLayer_step1
false
7,170
[ "MIT" ]
1
6b0e4d7998bc4969afa764eb753077e3f858f1ba
https://github.com/luyu-fan/LRCM/tree/6b0e4d7998bc4969afa764eb753077e3f858f1ba
import math import torch import torch.nn as nn class ScaledDotProductAttention(nn.Module): def __init__(self, dropout=0.0): super().__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value): assert query.size()[-1] == key.size()[-1] dim = query.size()[-1] tmp_raw_scores = torch.div(torch.matmul(query, key.transpose(-2, -1 )), math.sqrt(dim)) atte_weights = torch.softmax(tmp_raw_scores, dim=-1) atte_weights = self.dropout(atte_weights) output = torch.matmul(atte_weights, value) return output, atte_weights class MultiHeadAttention(nn.Module): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super().__init__() assert reduced_dim % n_head == 0 self.n_head = n_head self.embedding_dim = embedding_dim self.reduced_dim = reduced_dim self.Wq = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wk = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wv = nn.Linear(embedding_dim, reduced_dim, bias=False) self.inner_attention = ScaledDotProductAttention(dropout) self.Wo = nn.Linear(reduced_dim, embedding_dim, bias=False) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, query): residual = query value = key = query query = self.Wq(query) key = self.Wk(key) value = self.Wv(value) b, n, _ = query.size() query = query.reshape(b, n, self.n_head, self.reduced_dim // self. n_head) b, m, _ = key.size() key = key.reshape(b, m, self.n_head, self.reduced_dim // self.n_head) value = value.reshape(b, m, self.n_head, self.reduced_dim // self. n_head) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) query, atte_weights = self.inner_attention(query, key, value) query = query.transpose(1, 2).reshape(b, n, self.reduced_dim) query = self.dropout(self.Wo(query)) query = query + residual query = self.ln(query) return query, atte_weights class Model(MultiHeadAttention): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super().__init__(embedding_dim, reduced_dim, n_head, dropout) del self.ln self.low_ln = nn.LayerNorm(embedding_dim, eps=eps) self.mid_ln = nn.LayerNorm(embedding_dim, eps=eps) self.hig_ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, low_vectors, mid_vectors, hig_vectors): b = low_vectors.size()[0] low_num, mid_num, hig_num = low_vectors.size()[1], mid_vectors.size()[1 ], hig_vectors.size()[1] low_residual = low_vectors mid_residual = mid_vectors hig_residual = hig_vectors cated_vectors = torch.cat((low_vectors, mid_vectors, hig_vectors), dim=1) query = self.Wq(cated_vectors) key = self.Wk(cated_vectors) value = self.Wv(cated_vectors) low_query, mid_query, hig_query = torch.split(query, [low_num, mid_num, hig_num], dim=1) low_key, mid_key, hig_key = torch.split(key, [low_num, mid_num, hig_num], dim=1) low_value, mid_value, hig_value = torch.split(value, [low_num, mid_num, hig_num], dim=1) low_query = low_query.reshape(b, low_num, self.n_head, self. reduced_dim // self.n_head) low_key = low_key.reshape(b, low_num, self.n_head, self.reduced_dim // self.n_head) low_value = low_value.reshape(b, low_num, self.n_head, self. reduced_dim // self.n_head) low_query = low_query.transpose(1, 2) low_key = low_key.transpose(1, 2) low_value = low_value.transpose(1, 2) mid_que # ... truncated (>4000 chars) for memory efficiency
PyramidUp
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/oj/cojl5mb3pzv5jbmfzjkbac5hekbmpvb72kof6ouyyasitrogdd6n.py # Topologically Sorted Source Nodes: [upsample], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # upsample => _unsafe_index # Graph fragment: # %_unsafe_index : [num_users=4] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %unsqueeze, %convert_element_type_3]), kwargs = {}) triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/tf/ctfpfu7wmre7nsn3ualydv64rwcj6t2a5ldiko4qeb7hyfhiqx56.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution, %convolution_1, %convolution_2, %convolution_3], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 64) % 4 x0 = xindex % 64 x2 = (xindex // 256) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (64*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr3 + (x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x3), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 1, 5, 5), (25, 25, 5, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [upsample], Original ATen: [aten._unsafe_index] stream0 = get_raw_stream(0) triton_poi_fused__unsafe_index_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0) del arg0_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 1, 8, 8), (256, 0, 8, 1), 0), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 8, 8), (64, 64, 8, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 1, 8, 8), (256, 64, 8, 1), 64), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 8, 8), (64, 64, 8, 1)) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 1, 8, 8), (256, 64, 8, 1), 128), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 8, 8), (64, 64, 8, 1)) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 1, 8, 8), (256, 64, 8, 1), 192), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 1, 8, 8), (64, 64, 8, 1)) del arg1_1 buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf1, buf2, buf3, buf4, buf5, 1024, grid=grid(1024), stream=stream0) del buf1 del buf2 del buf3 del buf4 return (buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((1, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F class PyramidUp(nn.Module): def __init__(self) ->None: super(PyramidUp, self).__init__() self.filter = nn.Parameter(torch.tensor([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]], dtype=torch.float).reshape(1, 1, 5, 5) / 256, requires_grad=False) def forward(self, x: 'torch.Tensor') ->torch.Tensor: upsample = F.interpolate(x, scale_factor=2) results = [] for i in range(x.shape[1]): results.append(F.conv2d(upsample[:, i:i + 1, :, :], self.filter, padding=2)) return torch.cat(results, dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 64 % 4 x0 = xindex % 64 x2 = xindex // 256 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 64 * x2), tmp9 & xmask, eviction_policy ='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + 64 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 4, tl.int64) tmp19 = tl.load(in_ptr3 + (x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x3, tmp22, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 1, 5, 5), (25, 25, 5, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused__unsafe_index_0[grid(1024)](arg0_1, buf0, 1024, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 1, 8, 8), (256, 0, 8, 1), 0), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 8, 8), (64, 64, 8, 1)) buf2 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 1, 8, 8), (256, 64, 8, 1), 64), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 8, 8), (64, 64, 8, 1)) buf3 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 1, 8, 8), (256, 64, 8, 1), 128), arg1_1, stride=(1, 1), padding=(2, 2 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 8, 8), (64, 64, 8, 1)) buf4 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 1, 8, 8), (256, 64, 8, 1), 192), arg1_1, stride=(1, 1), padding=(2, 2 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 1, 8, 8), (64, 64, 8, 1)) del arg1_1 buf5 = buf0 del buf0 triton_poi_fused_cat_1[grid(1024)](buf1, buf2, buf3, buf4, buf5, 1024, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del buf2 del buf3 del buf4 return buf5, class PyramidUpNew(nn.Module): def __init__(self) ->None: super(PyramidUpNew, self).__init__() self.filter = nn.Parameter(torch.tensor([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]], dtype=torch.float).reshape(1, 1, 5, 5) / 256, requires_grad=False) def forward(self, input_0): arg1_1 = self.filter arg0_1 = input_0 output = call([arg0_1, arg1_1]) return output[0]
masanorihirano/pytorch_extra_mhirano
PyramidUp
false
7,171
[ "MIT" ]
1
d19e07445567c069793b7ca1a22a846d7cbce58d
https://github.com/masanorihirano/pytorch_extra_mhirano/tree/d19e07445567c069793b7ca1a22a846d7cbce58d
import torch import torch.nn as nn from torch.nn import functional as F class Model(nn.Module): def __init__(self) ->None: super().__init__() self.filter = nn.Parameter(torch.tensor([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]], dtype=torch.float).reshape(1, 1, 5, 5) / 256, requires_grad=False) def forward(self, x: 'torch.Tensor') ->torch.Tensor: upsample = F.interpolate(x, scale_factor=2) results = [] for i in range(x.shape[1]): results.append(F.conv2d(upsample[:, i:i + 1, :, :], self.filter, padding=2)) return torch.cat(results, dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ComprehensionLayer_step2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/7j/c7jury2hid4lpdpl3qjbeeviqbffqxg2vp7bn64rpbpyjzvft5k3.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_2, %primals_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 8 x0 = xindex % 4 x2 = (xindex // 32) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (4*((-4) + x1)) + (16*x2)), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/qg/cqgxf25farkr5u4ohhxxpb4hhbzxrbznilkzcx5b7euz6n5daguo.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pq/cpqnfrogm4dnzim2vyszfmugd6fc43gfnmxicoezmiidejzudrdz.py # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # atte_weights => exp # Graph fragment: # %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_14, 1), kwargs = {}) # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_1, [-1], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %amax_default_1), kwargs = {}) # %div_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # atte_weights => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hn/chn3ye3i7w5cpzxsptflgjdgyjx6j2ypvogbnh4bhpvf7lszwu6k.py # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_2 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_4,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (16 + y0 + (4*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2z/c2zikqwxmvg44bd3fza5ifapibefnqdnry3euzznggqb3w4ts7cs.py # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_3 => cat_3 # Graph fragment: # %cat_3 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_24, %view_25], 1), kwargs = {}) triton_poi_fused_cat_5 = async_compile.triton('triton_poi_fused_cat_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 8 x0 = xindex % 4 x2 = (xindex // 32) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x0) + (16*x2) + x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x0) + (16*x2) + ((-4) + x1)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3u/c3u4j73fpz5jymyhzjjmmrfvwqhshzjtzll7i6khdsrgkpakyxvs.py # Topologically Sorted Source Nodes: [mid_vectors_1], Original ATen: [aten.add] # Source node to ATen node mapping: # mid_vectors_1 => add # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %getitem_6), kwargs = {}) triton_poi_fused_add_6 = async_compile.triton('triton_poi_fused_add_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (32*x1)), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7z/c7zq3k45gqeqgraar3vhubrfnclwsr2hnjpvf2pjxrlrjw3z5alj.py # Topologically Sorted Source Nodes: [hig_vectors_1], Original ATen: [aten.add] # Source node to ATen node mapping: # hig_vectors_1 => add_1 # Graph fragment: # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %getitem_7), kwargs = {}) triton_poi_fused_add_7 = async_compile.triton('triton_poi_fused_add_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0 + (32*x1)), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ej/cej3lg77y73a2isa3ob65cyo32xdfs6l7ngaykptyx5ifjbpupjn.py # Topologically Sorted Source Nodes: [mid_vectors_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # mid_vectors_2 => add_2, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-08), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) triton_poi_fused_native_layer_norm_8 = async_compile.triton('triton_poi_fused_native_layer_norm_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-08 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/4d/c4dqmytly5zolisxgude22db5p3pbommvxualmvn6ercwtoppkm7.py # Topologically Sorted Source Nodes: [mid_vectors_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # mid_vectors_2 => add_2, add_3, mul, mul_1, rsqrt, sub_2, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-08), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_9), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_8), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_9), kwargs = {}) triton_poi_fused_native_layer_norm_9 = async_compile.triton('triton_poi_fused_native_layer_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_2, primals_3, buf0, 128, grid=grid(128), stream=stream0) buf1 = empty_strided_cuda((32, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [query], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (32, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(primals_1, primals_2, buf2, 128, grid=grid(128), stream=stream0) del primals_1 buf3 = empty_strided_cuda((32, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [key], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (32, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3) del primals_5 buf4 = empty_strided_cuda((32, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [value], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (32, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) del primals_6 buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf1, buf5, 16, 4, grid=grid(16, 4), stream=stream0) buf6 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf3, buf6, 16, 4, grid=grid(16, 4), stream=stream0) buf7 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf6, (16, 1, 4), (4, 0, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf7, buf8, 256, grid=grid(256), stream=stream0) buf9 = reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [atte_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf8, buf9, 256, grid=grid(256), stream=stream0) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf4, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf11 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf1, buf12, 16, 4, grid=grid(16, 4), stream=stream0) del buf1 buf13 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf3, buf13, 16, 4, grid=grid(16, 4), stream=stream0) buf14 = reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf12, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf13, (16, 1, 4), (4, 0, 1), 0), out=buf14) buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [atte_weights_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf14, buf15, 256, grid=grid(256), stream=stream0) buf16 = reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf14 # reuse # Topologically Sorted Source Nodes: [atte_weights_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf15, buf16, 256, grid=grid(256), stream=stream0) del buf15 buf17 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf4, buf17, 16, 4, grid=grid(16, 4), stream=stream0) buf18 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf16, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf17, (16, 4, 1), (4, 1, 0), 0), out=buf18) buf19 = reinterpret_tensor(buf4, (4, 8, 4), (32, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] triton_poi_fused_cat_5.run(buf11, buf18, buf19, 128, grid=grid(128), stream=stream0) buf20 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf19, (32, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf20) buf21 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0); del buf18 # reuse # Topologically Sorted Source Nodes: [mid_vectors_1], Original ATen: [aten.add] triton_poi_fused_add_6.run(primals_2, buf20, buf21, 64, grid=grid(64), stream=stream0) del primals_2 buf22 = reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [hig_vectors_1], Original ATen: [aten.add] triton_poi_fused_add_7.run(primals_3, buf20, buf22, 64, grid=grid(64), stream=stream0) del buf20 del primals_3 buf23 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf24 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [mid_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_8.run(buf21, buf23, buf24, 16, grid=grid(16), stream=stream0) buf25 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mid_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_9.run(buf21, buf23, buf24, primals_8, primals_9, buf25, 64, grid=grid(64), stream=stream0) del primals_9 buf26 = buf24; del buf24 # reuse buf27 = buf23; del buf23 # reuse # Topologically Sorted Source Nodes: [hig_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_8.run(buf22, buf26, buf27, 16, grid=grid(16), stream=stream0) buf28 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hig_vectors_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_9.run(buf22, buf26, buf27, primals_10, primals_11, buf28, 64, grid=grid(64), stream=stream0) del buf26 del buf27 del primals_11 return (buf25, buf28, buf9, buf16, primals_8, primals_10, reinterpret_tensor(buf0, (32, 4), (4, 1), 0), reinterpret_tensor(buf2, (32, 4), (4, 1), 0), buf9, buf16, reinterpret_tensor(buf19, (32, 4), (4, 1), 0), buf21, buf22, primals_7, reinterpret_tensor(buf17, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf12, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf13, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class ScaledDotProductAttention(nn.Module): def __init__(self, dropout=0.0): super(ScaledDotProductAttention, self).__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value): assert query.size()[-1] == key.size()[-1] dim = query.size()[-1] tmp_raw_scores = torch.div(torch.matmul(query, key.transpose(-2, -1 )), math.sqrt(dim)) atte_weights = torch.softmax(tmp_raw_scores, dim=-1) atte_weights = self.dropout(atte_weights) output = torch.matmul(atte_weights, value) return output, atte_weights class MultiHeadAttention(nn.Module): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(MultiHeadAttention, self).__init__() assert reduced_dim % n_head == 0 self.n_head = n_head self.embedding_dim = embedding_dim self.reduced_dim = reduced_dim self.Wq = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wk = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wv = nn.Linear(embedding_dim, reduced_dim, bias=False) self.inner_attention = ScaledDotProductAttention(dropout) self.Wo = nn.Linear(reduced_dim, embedding_dim, bias=False) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, query): residual = query value = key = query query = self.Wq(query) key = self.Wk(key) value = self.Wv(value) b, n, _ = query.size() query = query.reshape(b, n, self.n_head, self.reduced_dim // self. n_head) b, m, _ = key.size() key = key.reshape(b, m, self.n_head, self.reduced_dim // self.n_head) value = value.reshape(b, m, self.n_head, self.reduced_dim // self. n_head) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) query, atte_weights = self.inner_attention(query, key, value) query = query.transpose(1, 2).reshape(b, n, self.reduced_dim) query = self.dropout(self.Wo(query)) query = query + residual query = self.ln(query) return query, atte_weights class ComprehensionLayer_step2(MultiHeadAttention): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(ComprehensionLayer_step2, self).__init__(embedding_dim, reduced_dim, n_head, dropout) del self.ln self.mid_ln = nn.LayerNorm(embedding_dim, eps=eps) self.hig_ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, low_vectors, mid_vectors, hig_vectors): b = low_vectors.size()[0] low_num, mid_num, hig_num = low_vectors.size()[1], mid_vectors.size()[1 ], hig_vectors.size()[1] mid_residual = mid_vectors hig_residual = hig_vectors query = self.Wq(torch.cat((mid_vectors, hig_vectors), dim=1)) key = self.Wk(torch.cat((low_vectors, mid_vectors), dim=1)) value = self.Wv(torch.cat((low_vectors, mid_vectors), dim=1)) mid_query, hig_query = torch.split(query, [mid_num, hig_num], dim=1) low_key, mid_key = torch.split(key, [low_num, mid_num], dim=1) low_value, mid_value = torch.split(value, [low_num, mid_num], dim=1) low_key = low_key.reshape(b, low_num, self.n_head, self.reduced_dim // self.n_head) low_value = low_value.reshape(b, low_num, self.n_head, self. reduced_dim // self.n_head) low_key = low_key.transpose(1, 2) low_value = low_value.transpose(1, 2) mid_query = mid_query.reshape(b, mid_num, self.n_head, self. reduced_dim // self.n_head) mid_key = mid_key.reshape(b, mid_num, self.n_head, self.reduced_dim // self.n_head) mid_value = mid_value.reshape(b, mid_num, self.n_head, self. reduced_dim // self.n_head) mid_query = mid_query.transpose(1, 2) mid_key = mid_key.transpose(1, 2) mid_value = mid_value.transpose(1, 2) hig_query = hig_query.reshape(b, hig_num, self.n_head, self. reduced_dim // self.n_head) hig_query = hig_query.transpose(1, 2) mid_query, mid_low_weights = self.inner_attention(mid_query, low_key, low_value) hig_query, hig_mid_weights = self.inner_attention(hig_query, mid_key, mid_value) mid_query = mid_query.transpose(1, 2).reshape(b, mid_num, self. reduced_dim) hig_query = hig_query.transpose(1, 2).reshape(b, hig_num, self. reduced_dim) output = self.dropout(self.Wo(torch.cat((mid_query, hig_query), dim=1)) ) mid_vectors, hig_vectors = torch.split(output, [mid_num, hig_num], dim=1) mid_vectors = mid_residual + mid_vectors hig_vectors = hig_residual + hig_vectors mid_vectors = self.mid_ln(mid_vectors) hig_vectors = self.hig_ln(hig_vectors) return mid_vectors, hig_vectors, mid_low_weights, hig_mid_weights def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'embedding_dim': 4, 'reduced_dim': 4, 'n_head': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 8 x0 = xindex % 4 x2 = xindex // 32 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 4 * (-4 + x1) + 16 * x2), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (16 + y0 + 4 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_cat_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 8 x0 = xindex % 4 x2 = xindex // 32 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * x2 + x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x0 + 16 * x2 + (-4 + x1)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_add_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 32 * x1), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_add_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + (16 + x0 + 32 * x1), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_native_layer_norm_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-08 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_2, primals_3, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((32, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (32, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32) triton_poi_fused_cat_0[grid(128)](primals_1, primals_2, buf2, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf3 = empty_strided_cuda((32, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (32, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3) del primals_5 buf4 = empty_strided_cuda((32, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (32, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) del primals_6 buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_1[grid(16, 4)](buf1, buf5, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(16, 4)](buf3, buf6, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf6, (16, 1, 4), (4, 0, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf7 triton_poi_fused__softmax_3[grid(256)](buf8, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_1[grid(16, 4)](buf4, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf11 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf1, buf12, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf1 buf13 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf3, buf13, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf14 = reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0) del buf8 extern_kernels.bmm(reinterpret_tensor(buf12, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf13, (16, 1, 4), (4, 0, 1), 0), out=buf14) buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf14, buf15, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf16 = reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf14 triton_poi_fused__softmax_3[grid(256)](buf15, buf16, 256, XBLOCK= 128, num_warps=4, num_stages=1) del buf15 buf17 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf4, buf17, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf16, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf17, (16, 4, 1), (4, 1, 0), 0), out=buf18) buf19 = reinterpret_tensor(buf4, (4, 8, 4), (32, 4, 1), 0) del buf4 triton_poi_fused_cat_5[grid(128)](buf11, buf18, buf19, 128, XBLOCK= 128, num_warps=4, num_stages=1) buf20 = buf3 del buf3 extern_kernels.mm(reinterpret_tensor(buf19, (32, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf20) buf21 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0) del buf18 triton_poi_fused_add_6[grid(64)](primals_2, buf20, buf21, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf22 = reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0) del buf11 triton_poi_fused_add_7[grid(64)](primals_3, buf20, buf22, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf20 del primals_3 buf23 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf24 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_native_layer_norm_8[grid(16)](buf21, buf23, buf24, 16, XBLOCK=16, num_warps=1, num_stages=1) buf25 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_9[grid(64)](buf21, buf23, buf24, primals_8, primals_9, buf25, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 buf26 = buf24 del buf24 buf27 = buf23 del buf23 triton_poi_fused_native_layer_norm_8[grid(16)](buf22, buf26, buf27, 16, XBLOCK=16, num_warps=1, num_stages=1) buf28 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_9[grid(64)](buf22, buf26, buf27, primals_10, primals_11, buf28, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf26 del buf27 del primals_11 return (buf25, buf28, buf9, buf16, primals_8, primals_10, reinterpret_tensor(buf0, (32, 4), (4, 1), 0), reinterpret_tensor( buf2, (32, 4), (4, 1), 0), buf9, buf16, reinterpret_tensor(buf19, ( 32, 4), (4, 1), 0), buf21, buf22, primals_7, reinterpret_tensor( buf17, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf12, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf13, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 4), 0)) class ScaledDotProductAttention(nn.Module): def __init__(self, dropout=0.0): super(ScaledDotProductAttention, self).__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value): assert query.size()[-1] == key.size()[-1] dim = query.size()[-1] tmp_raw_scores = torch.div(torch.matmul(query, key.transpose(-2, -1 )), math.sqrt(dim)) atte_weights = torch.softmax(tmp_raw_scores, dim=-1) atte_weights = self.dropout(atte_weights) output = torch.matmul(atte_weights, value) return output, atte_weights class MultiHeadAttention(nn.Module): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(MultiHeadAttention, self).__init__() assert reduced_dim % n_head == 0 self.n_head = n_head self.embedding_dim = embedding_dim self.reduced_dim = reduced_dim self.Wq = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wk = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wv = nn.Linear(embedding_dim, reduced_dim, bias=False) self.inner_attention = ScaledDotProductAttention(dropout) self.Wo = nn.Linear(reduced_dim, embedding_dim, bias=False) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, query): residual = query value = key = query query = self.Wq(query) key = self.Wk(key) value = self.Wv(value) b, n, _ = query.size() query = query.reshape(b, n, self.n_head, self.reduced_dim // self. n_head) b, m, _ = key.size() key = key.reshape(b, m, self.n_head, self.reduced_dim // self.n_head) value = value.reshape(b, m, self.n_head, self.reduced_dim // self. n_head) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) query, atte_weights = self.inner_attention(query, key, value) query = query.transpose(1, 2).reshape(b, n, self.reduced_dim) query = self.dropout(self.Wo(query)) query = query + residual query = self.ln(query) return query, atte_weights class ComprehensionLayer_step2New(MultiHeadAttention): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super(ComprehensionLayer_step2New, self).__init__(embedding_dim, reduced_dim, n_head, dropout) del self.ln self.mid_ln = nn.LayerNorm(embedding_dim, eps=eps) self.hig_ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, input_0, input_1, input_2): primals_4 = self.Wq.weight primals_5 = self.Wk.weight primals_6 = self.Wv.weight primals_7 = self.Wo.weight primals_8 = self.mid_ln.weight primals_9 = self.mid_ln.bias primals_10 = self.hig_ln.weight primals_11 = self.hig_ln.bias primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0], output[1], output[2], output[3]
luyu-fan/LRCM
ComprehensionLayer_step2
false
7,172
[ "MIT" ]
1
6b0e4d7998bc4969afa764eb753077e3f858f1ba
https://github.com/luyu-fan/LRCM/tree/6b0e4d7998bc4969afa764eb753077e3f858f1ba
import math import torch import torch.nn as nn class ScaledDotProductAttention(nn.Module): def __init__(self, dropout=0.0): super().__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value): assert query.size()[-1] == key.size()[-1] dim = query.size()[-1] tmp_raw_scores = torch.div(torch.matmul(query, key.transpose(-2, -1 )), math.sqrt(dim)) atte_weights = torch.softmax(tmp_raw_scores, dim=-1) atte_weights = self.dropout(atte_weights) output = torch.matmul(atte_weights, value) return output, atte_weights class MultiHeadAttention(nn.Module): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super().__init__() assert reduced_dim % n_head == 0 self.n_head = n_head self.embedding_dim = embedding_dim self.reduced_dim = reduced_dim self.Wq = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wk = nn.Linear(embedding_dim, reduced_dim, bias=False) self.Wv = nn.Linear(embedding_dim, reduced_dim, bias=False) self.inner_attention = ScaledDotProductAttention(dropout) self.Wo = nn.Linear(reduced_dim, embedding_dim, bias=False) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, query): residual = query value = key = query query = self.Wq(query) key = self.Wk(key) value = self.Wv(value) b, n, _ = query.size() query = query.reshape(b, n, self.n_head, self.reduced_dim // self. n_head) b, m, _ = key.size() key = key.reshape(b, m, self.n_head, self.reduced_dim // self.n_head) value = value.reshape(b, m, self.n_head, self.reduced_dim // self. n_head) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) query, atte_weights = self.inner_attention(query, key, value) query = query.transpose(1, 2).reshape(b, n, self.reduced_dim) query = self.dropout(self.Wo(query)) query = query + residual query = self.ln(query) return query, atte_weights class Model(MultiHeadAttention): def __init__(self, embedding_dim, reduced_dim, n_head, dropout=0.0, eps =1e-08): super().__init__(embedding_dim, reduced_dim, n_head, dropout) del self.ln self.mid_ln = nn.LayerNorm(embedding_dim, eps=eps) self.hig_ln = nn.LayerNorm(embedding_dim, eps=eps) def forward(self, low_vectors, mid_vectors, hig_vectors): b = low_vectors.size()[0] low_num, mid_num, hig_num = low_vectors.size()[1], mid_vectors.size()[1 ], hig_vectors.size()[1] mid_residual = mid_vectors hig_residual = hig_vectors query = self.Wq(torch.cat((mid_vectors, hig_vectors), dim=1)) key = self.Wk(torch.cat((low_vectors, mid_vectors), dim=1)) value = self.Wv(torch.cat((low_vectors, mid_vectors), dim=1)) mid_query, hig_query = torch.split(query, [mid_num, hig_num], dim=1) low_key, mid_key = torch.split(key, [low_num, mid_num], dim=1) low_value, mid_value = torch.split(value, [low_num, mid_num], dim=1) low_key = low_key.reshape(b, low_num, self.n_head, self.reduced_dim // self.n_head) low_value = low_value.reshape(b, low_num, self.n_head, self. reduced_dim // self.n_head) low_key = low_key.transpose(1, 2) low_value = low_value.transpose(1, 2) mid_query = mid_query.reshape(b, mid_num, self.n_head, self. reduced_dim // self.n_head) mid_key = mid_key.reshape(b, mid_num, self.n_head, self.reduced_dim // self.n_head) mid_value = mid_value.reshape(b, mid_num, self.n_head, self. reduced_dim // self.n_head) mid_query = mid_query.transpo # ... truncated (>4000 chars) for memory efficiency
ClassHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/tn/ctngadf5wjmxyiyxcthxpsc746ohbupgtib27hmksylwrnku36ja.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # out_3 => amax, clone, sub # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%view,), kwargs = {memory_format: torch.contiguous_format}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 98304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x4 = xindex % 6 x5 = (xindex // 2) x1 = (xindex // 2) % 3 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x4), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2*x5), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (2*x1), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (2*x5)), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (2*x1)), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp8 = tmp6 + tmp7 tmp9 = triton_helpers.maximum(tmp5, tmp8) tmp10 = tmp2 - tmp9 tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2j/c2jyydmw7qz6h2ff5q2usux5vna5jexqqq5irspqybkrepnonpty.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten._log_softmax, aten._log_softmax_backward_data] # Source node to ATen node mapping: # out_3 => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__log_softmax__log_softmax_backward_data_2 = async_compile.triton('triton_poi_fused__log_softmax__log_softmax_backward_data_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax__log_softmax_backward_data_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax__log_softmax_backward_data_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 98304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x1 = (xindex // 2) tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (2*x1), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (2*x1)), None, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp6 = tl_math.log(tmp5) tmp7 = tmp0 - tmp6 tmp8 = tl_math.exp(tmp7) tl.store(out_ptr0 + (x2), tmp7, None) tl.store(out_ptr1 + (x2), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (6, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_2, (6, ), (1, )) assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 6, 64, 64), (24576, 1, 384, 6)) buf2 = empty_strided_cuda((4, 64, 64, 3, 2), (24576, 384, 6, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf1, primals_2, buf2, 98304, grid=grid(98304), stream=stream0) del primals_2 buf3 = reinterpret_tensor(buf1, (4, 64, 64, 3, 2), (24576, 384, 6, 2, 1), 0); del buf1 # reuse buf4 = empty_strided_cuda((4, 64, 64, 3, 2), (24576, 384, 6, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten._log_softmax, aten._log_softmax_backward_data] triton_poi_fused__log_softmax__log_softmax_backward_data_2.run(buf2, buf3, buf4, 98304, grid=grid(98304), stream=stream0) del buf2 return (reinterpret_tensor(buf3, (4, 12288, 2), (24576, 2, 1), 0), primals_1, buf0, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((6, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ClassHead(nn.Module): def __init__(self, inchannels=512, num_anchors=3): super(ClassHead, self).__init__() self.num_anchors = num_anchors self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0) self.output_act = nn.LogSoftmax(dim=-1) def forward(self, x): out = self.conv1x1(x) out = out.permute(0, 2, 3, 1) b, h, w, _c = out.shape out = out.view(b, h, w, self.num_anchors, 2) out = self.output_act(out) return out.contiguous().view(out.shape[0], -1, 2) def get_inputs(): return [torch.rand([4, 512, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x4 = xindex % 6 x5 = xindex // 2 x1 = xindex // 2 % 3 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x4, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + 2 * x5, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + 2 * x1, None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 2 * x5), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 2 * x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp8 = tmp6 + tmp7 tmp9 = triton_helpers.maximum(tmp5, tmp8) tmp10 = tmp2 - tmp9 tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused__log_softmax__log_softmax_backward_data_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x1 = xindex // 2 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + 2 * x1, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 2 * x1), None, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp6 = tl_math.log(tmp5) tmp7 = tmp0 - tmp6 tmp8 = tl_math.exp(tmp7) tl.store(out_ptr0 + x2, tmp7, None) tl.store(out_ptr1 + x2, tmp8, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (6, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_2, (6,), (1,)) assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512 ), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(2048, 4096)](primals_3, buf0, 2048, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_3 buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 6, 64, 64), (24576, 1, 384, 6)) buf2 = empty_strided_cuda((4, 64, 64, 3, 2), (24576, 384, 6, 2, 1), torch.float32) triton_poi_fused__log_softmax_1[grid(98304)](buf1, primals_2, buf2, 98304, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf3 = reinterpret_tensor(buf1, (4, 64, 64, 3, 2), (24576, 384, 6, 2, 1), 0) del buf1 buf4 = empty_strided_cuda((4, 64, 64, 3, 2), (24576, 384, 6, 2, 1), torch.float32) triton_poi_fused__log_softmax__log_softmax_backward_data_2[grid(98304) ](buf2, buf3, buf4, 98304, XBLOCK=512, num_warps=8, num_stages=1) del buf2 return reinterpret_tensor(buf3, (4, 12288, 2), (24576, 2, 1), 0 ), primals_1, buf0, buf4 class ClassHeadNew(nn.Module): def __init__(self, inchannels=512, num_anchors=3): super(ClassHeadNew, self).__init__() self.num_anchors = num_anchors self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0) self.output_act = nn.LogSoftmax(dim=-1) def forward(self, input_0): primals_1 = self.conv1x1.weight primals_2 = self.conv1x1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
lurenjia307/RetinaPedestrian_Pytorch
ClassHead
false
7,173
[ "MIT" ]
1
59c4aa50f3ef2ecb1113ad3b9950e8bbbff1206f
https://github.com/lurenjia307/RetinaPedestrian_Pytorch/tree/59c4aa50f3ef2ecb1113ad3b9950e8bbbff1206f
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, inchannels=512, num_anchors=3): super().__init__() self.num_anchors = num_anchors self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0) self.output_act = nn.LogSoftmax(dim=-1) def forward(self, x): out = self.conv1x1(x) out = out.permute(0, 2, 3, 1) b, h, w, _c = out.shape out = out.view(b, h, w, self.num_anchors, 2) out = self.output_act(out) return out.contiguous().view(out.shape[0], -1, 2) def get_inputs(): return [torch.rand([4, 512, 64, 64])] def get_init_inputs(): return []
LaplacianPyramidLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/gy/cgyfx47penjbxrnlqdpur6wznrc2npiddss2rmhvsk53kjjd4wdb.py # Topologically Sorted Source Nodes: [down], Original ATen: [aten.cat] # Source node to ATen node mapping: # down => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution, %convolution_1, %convolution_2, %convolution_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (4*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + (4*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr3 + (x0 + (4*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x3), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/un/cun4zkovw4qwlct3fch6tiatbs5f3sfjlujal64kew2sdgtghgii.py # Topologically Sorted Source Nodes: [upsample], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # upsample => _unsafe_index # Graph fragment: # %_unsafe_index : [num_users=4] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%cat, [None, None, %unsqueeze, %convert_element_type_3]), kwargs = {}) triton_poi_fused__unsafe_index_1 = async_compile.triton('triton_poi_fused__unsafe_index_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + (2*tmp4) + (4*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vm/cvmkwryfo4cwodqac64c6pdxt5wkrnc62udspire6hpqqwyhfk4t.py # Topologically Sorted Source Nodes: [remade, diff], Original ATen: [aten.cat, aten.sub] # Source node to ATen node mapping: # diff => sub # remade => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution_4, %convolution_5, %convolution_6, %convolution_7], 1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %cat_1), kwargs = {}) triton_poi_fused_cat_sub_2 = async_compile.triton('triton_poi_fused_cat_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_sub_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 4 x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp23 = tl.load(in_ptr4 + (x3), xmask) tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (16*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + (16*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr3 + (x0 + (16*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tmp24 = tmp23 - tmp22 tl.store(out_ptr0 + (x3), tmp22, xmask) tl.store(out_ptr1 + (x3), tmp24, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 1, 5, 5), (25, 25, 5, 1)) assert_size_stride(arg2_1, (1, 1, 5, 5), (25, 25, 5, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 0), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 2, 2), (4, 4, 2, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 16), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 2, 2), (4, 4, 2, 1)) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 32), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 2, 2), (4, 4, 2, 1)) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 48), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 2, 2), (4, 4, 2, 1)) del arg1_1 buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [down], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, buf1, buf2, buf3, buf4, 64, grid=grid(64), stream=stream0) del buf0 del buf1 del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [upsample], Original ATen: [aten._unsafe_index] triton_poi_fused__unsafe_index_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 1, 4, 4), (64, 0, 4, 1), 0), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 1, 4, 4), (16, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 1, 4, 4), (64, 16, 4, 1), 16), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 1, 4, 4), (16, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 1, 4, 4), (64, 16, 4, 1), 32), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 1, 4, 4), (16, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 1, 4, 4), (64, 16, 4, 1), 48), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 1, 4, 4), (16, 16, 4, 1)) del arg2_1 buf10 = buf5; del buf5 # reuse buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [remade, diff], Original ATen: [aten.cat, aten.sub] triton_poi_fused_cat_sub_2.run(buf6, buf7, buf8, buf9, arg0_1, buf10, buf11, 256, grid=grid(256), stream=stream0) del arg0_1 del buf6 del buf7 del buf8 del buf9 return (buf11, buf4, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((1, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((1, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from typing import Tuple import torch.nn as nn from torch.nn import functional as F class PyramidDown(nn.Module): def __init__(self) ->None: super(PyramidDown, self).__init__() self.filter = nn.Parameter(torch.tensor([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]], dtype=torch.float).reshape(1, 1, 5, 5) / 256, requires_grad=False) def forward(self, x: 'torch.Tensor') ->torch.Tensor: results = [] for i in range(x.shape[1]): results.append(F.conv2d(x[:, i:i + 1, :, :], self.filter, padding=2, stride=2)) return torch.cat(results, dim=1) class PyramidUp(nn.Module): def __init__(self) ->None: super(PyramidUp, self).__init__() self.filter = nn.Parameter(torch.tensor([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]], dtype=torch.float).reshape(1, 1, 5, 5) / 256, requires_grad=False) def forward(self, x: 'torch.Tensor') ->torch.Tensor: upsample = F.interpolate(x, scale_factor=2) results = [] for i in range(x.shape[1]): results.append(F.conv2d(upsample[:, i:i + 1, :, :], self.filter, padding=2)) return torch.cat(results, dim=1) class LaplacianPyramidLayer(nn.Module): def __init__(self) ->None: super(LaplacianPyramidLayer, self).__init__() self.pyramid_down = PyramidDown() self.pyramid_up = PyramidUp() def forward(self, x: 'torch.Tensor') ->Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: y = x if x.shape[-1] % 2 != 0: y = torch.cat([y, torch.zeros(y.shape[:-1]).unsqueeze(dim=-1)], dim=-1) if x.shape[-2] % 2 != 0: y = y.transpose(-1, -2) y = torch.cat([y, torch.zeros(y.shape[:-1]).unsqueeze(dim=-1)], dim=-1) y = y.transpose(-1, -2) down: 'torch.Tensor' = self.pyramid_down(y) remade: 'torch.Tensor' = self.pyramid_up(down) diff: 'torch.Tensor' = y - remade if x.shape[-1] % 2 != 0: diff = diff[:, :, :, :-1] if x.shape[-1] % 2 != 0: diff = diff[:, :, :-1, :] return diff, down, remade def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.nn import functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 4 * x2), tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + 4 * x2), tmp14 & xmask, eviction_policy ='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 4, tl.int64) tmp19 = tl.load(in_ptr3 + (x0 + 4 * x2), tmp16 & xmask, eviction_policy ='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x3, tmp22, xmask) @triton.jit def triton_poi_fused__unsafe_index_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + 2 * tmp4 + 4 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_cat_sub_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp23 = tl.load(in_ptr4 + x3, xmask) tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 16 * x2), tmp9 & xmask, eviction_policy ='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + 16 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 4, tl.int64) tmp19 = tl.load(in_ptr3 + (x0 + 16 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tmp24 = tmp23 - tmp22 tl.store(out_ptr0 + x3, tmp22, xmask) tl.store(out_ptr1 + x3, tmp24, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 1, 5, 5), (25, 25, 5, 1)) assert_size_stride(arg2_1, (1, 1, 5, 5), (25, 25, 5, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 0), arg1_1, stride=(2, 2), padding=(2, 2 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 2, 2), (4, 4, 2, 1)) buf1 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 16), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 2, 2), (4, 4, 2, 1)) buf2 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 32), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 2, 2), (4, 4, 2, 1)) buf3 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 48), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 2, 2), (4, 4, 2, 1)) del arg1_1 buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(64)](buf0, buf1, buf2, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del buf1 del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__unsafe_index_1[grid(256)](buf4, buf5, 256, XBLOCK =128, num_warps=4, num_stages=1) buf6 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 1, 4, 4), (64, 0, 4, 1), 0), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 1, 4, 4), (16, 16, 4, 1)) buf7 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 1, 4, 4), (64, 16, 4, 1), 16), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 1, 4, 4), (16, 16, 4, 1)) buf8 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 1, 4, 4), (64, 16, 4, 1), 32), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 1, 4, 4), (16, 16, 4, 1)) buf9 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 1, 4, 4), (64, 16, 4, 1), 48), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 1, 4, 4), (16, 16, 4, 1)) del arg2_1 buf10 = buf5 del buf5 buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_cat_sub_2[grid(256)](buf6, buf7, buf8, buf9, arg0_1, buf10, buf11, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del buf6 del buf7 del buf8 del buf9 return buf11, buf4, buf10 class PyramidDown(nn.Module): def __init__(self) ->None: super(PyramidDown, self).__init__() self.filter = nn.Parameter(torch.tensor([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]], dtype=torch.float).reshape(1, 1, 5, 5) / 256, requires_grad=False) def forward(self, x: 'torch.Tensor') ->torch.Tensor: results = [] for i in range(x.shape[1]): results.append(F.conv2d(x[:, i:i + 1, :, :], self.filter, padding=2, stride=2)) return torch.cat(results, dim=1) class PyramidUp(nn.Module): def __init__(self) ->None: super(PyramidUp, self).__init__() self.filter = nn.Parameter(torch.tensor([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]], dtype=torch.float).reshape(1, 1, 5, 5) / 256, requires_grad=False) def forward(self, x: 'torch.Tensor') ->torch.Tensor: upsample = F.interpolate(x, scale_factor=2) results = [] for i in range(x.shape[1]): results.append(F.conv2d(upsample[:, i:i + 1, :, :], self.filter, padding=2)) return torch.cat(results, dim=1) class LaplacianPyramidLayerNew(nn.Module): def __init__(self) ->None: super(LaplacianPyramidLayerNew, self).__init__() self.pyramid_down = PyramidDown() self.pyramid_up = PyramidUp() def forward(self, input_0): arg1_1 = self.pyramid_down.filter arg2_1 = self.pyramid_up.filter arg0_1 = input_0 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1], output[2]
masanorihirano/pytorch_extra_mhirano
LaplacianPyramidLayer
false
7,174
[ "MIT" ]
1
d19e07445567c069793b7ca1a22a846d7cbce58d
https://github.com/masanorihirano/pytorch_extra_mhirano/tree/d19e07445567c069793b7ca1a22a846d7cbce58d
import torch from typing import Tuple import torch.nn as nn from torch.nn import functional as F class PyramidDown(nn.Module): def __init__(self) ->None: super().__init__() self.filter = nn.Parameter(torch.tensor([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]], dtype=torch.float).reshape(1, 1, 5, 5) / 256, requires_grad=False) def forward(self, x: 'torch.Tensor') ->torch.Tensor: results = [] for i in range(x.shape[1]): results.append(F.conv2d(x[:, i:i + 1, :, :], self.filter, padding=2, stride=2)) return torch.cat(results, dim=1) class PyramidUp(nn.Module): def __init__(self) ->None: super().__init__() self.filter = nn.Parameter(torch.tensor([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]], dtype=torch.float).reshape(1, 1, 5, 5) / 256, requires_grad=False) def forward(self, x: 'torch.Tensor') ->torch.Tensor: upsample = F.interpolate(x, scale_factor=2) results = [] for i in range(x.shape[1]): results.append(F.conv2d(upsample[:, i:i + 1, :, :], self.filter, padding=2)) return torch.cat(results, dim=1) class Model(nn.Module): def __init__(self) ->None: super().__init__() self.pyramid_down = PyramidDown() self.pyramid_up = PyramidUp() def forward(self, x: 'torch.Tensor') ->Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: y = x if x.shape[-1] % 2 != 0: y = torch.cat([y, torch.zeros(y.shape[:-1]).unsqueeze(dim=-1)], dim=-1) if x.shape[-2] % 2 != 0: y = y.transpose(-1, -2) y = torch.cat([y, torch.zeros(y.shape[:-1]).unsqueeze(dim=-1)], dim=-1) y = y.transpose(-1, -2) down: 'torch.Tensor' = self.pyramid_down(y) remade: 'torch.Tensor' = self.pyramid_up(down) diff: 'torch.Tensor' = y - remade if x.shape[-1] % 2 != 0: diff = diff[:, :, :, :-1] if x.shape[-1] % 2 != 0: diff = diff[:, :, :-1, :] return diff, down, remade def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ActorNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/xs/cxsx2jlz7qi3eerscrmq6daj5pyplc3rcuj6cilxq2zofbhntrow.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_1 => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_3, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 2560 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 40 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ui/cui6sxfzttgecmgtvnw2gevr54jsmp7y3t6fwxqjhor3rpwdmuui.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_2 => gt_1, mul_1, where_1 # Graph fragment: # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_5, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 0.01), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %view_5, %mul_1), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 3200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2o/c2osggm77pqxxx5r32gyjemu3ryhpfi3fx5zzrm7y43ln3qjxt2k.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_3 => gt_2, mul_2, where_2 # Graph fragment: # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_7, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, 0.01), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %view_7, %mul_2), kwargs = {}) triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 30 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gc/cgcgqaqngs7z7n2pbstvkxhguyvvx7auk4jaz3wlw25y3neeo5vn.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_4 => gt_3, mul_3, where_3 # Graph fragment: # %gt_3 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_9, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_9, 0.01), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %view_9, %mul_3), kwargs = {}) triton_poi_fused_leaky_relu_3 = async_compile.triton('triton_poi_fused_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 12 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (40, 20), (20, 1)) assert_size_stride(primals_5, (40, ), (1, )) assert_size_stride(primals_6, (50, 40), (40, 1)) assert_size_stride(primals_7, (50, ), (1, )) assert_size_stride(primals_8, (30, 50), (50, 1)) assert_size_stride(primals_9, (30, ), (1, )) assert_size_stride(primals_10, (12, 30), (30, 1)) assert_size_stride(primals_11, (12, ), (1, )) assert_size_stride(primals_12, (2, 12), (12, 1)) assert_size_stride(primals_13, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 40), (40, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (20, 40), (1, 20), 0), out=buf1) buf2 = empty_strided_cuda((4, 4, 4, 40), (640, 160, 40, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 40), (640, 160, 40, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf1, primals_5, buf2, buf3, 2560, grid=grid(2560), stream=stream0) del buf1 del primals_5 buf4 = empty_strided_cuda((64, 50), (50, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 40), (40, 1), 0), reinterpret_tensor(primals_6, (40, 50), (1, 40), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf4, primals_7, buf5, buf6, 3200, grid=grid(3200), stream=stream0) del buf4 del primals_7 buf7 = empty_strided_cuda((64, 30), (30, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf6, (64, 50), (50, 1), 0), reinterpret_tensor(primals_8, (50, 30), (1, 50), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch.bool) buf9 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_2.run(buf7, primals_9, buf8, buf9, 1920, grid=grid(1920), stream=stream0) del buf7 del primals_9 buf10 = empty_strided_cuda((64, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf9, (64, 30), (30, 1), 0), reinterpret_tensor(primals_10, (30, 12), (1, 30), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.bool) buf12 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_3.run(buf10, primals_11, buf11, buf12, 768, grid=grid(768), stream=stream0) del buf10 del primals_11 buf13 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, reinterpret_tensor(buf12, (64, 12), (12, 1), 0), reinterpret_tensor(primals_12, (12, 2), (1, 12), 0), alpha=1, beta=1, out=buf13) del primals_13 return (reinterpret_tensor(buf13, (4, 4, 4, 2), (32, 8, 2, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, buf2, reinterpret_tensor(buf3, (64, 40), (40, 1), 0), buf5, reinterpret_tensor(buf6, (64, 50), (50, 1), 0), buf8, reinterpret_tensor(buf9, (64, 30), (30, 1), 0), buf11, reinterpret_tensor(buf12, (64, 12), (12, 1), 0), primals_12, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((20, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((40, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((40, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((50, 40), (40, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((30, 50), (50, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((30, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((12, 30), (30, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((2, 12), (12, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ActorNet(nn.Module): def __init__(self): super(ActorNet, self).__init__() self.fc1 = nn.Linear(4, 20) self.fc2 = nn.Linear(20, 40) self.fc3 = nn.Linear(40, 50) self.fc4 = nn.Linear(50, 30) self.fc5 = nn.Linear(30, 12) self.fc6 = nn.Linear(12, 2) def forward(self, x): x = self.fc1(x) x = F.leaky_relu(self.fc2(x)) x = F.leaky_relu(self.fc3(x)) x = F.leaky_relu(self.fc4(x)) x = F.leaky_relu(self.fc5(x)) x = self.fc6(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 2560 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 40 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 3200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 30 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 12 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (40, 20), (20, 1)) assert_size_stride(primals_5, (40,), (1,)) assert_size_stride(primals_6, (50, 40), (40, 1)) assert_size_stride(primals_7, (50,), (1,)) assert_size_stride(primals_8, (30, 50), (50, 1)) assert_size_stride(primals_9, (30,), (1,)) assert_size_stride(primals_10, (12, 30), (30, 1)) assert_size_stride(primals_11, (12,), (1,)) assert_size_stride(primals_12, (2, 12), (12, 1)) assert_size_stride(primals_13, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 40), (40, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (20, 40), (1, 20), 0), out=buf1) buf2 = empty_strided_cuda((4, 4, 4, 40), (640, 160, 40, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 40), (640, 160, 40, 1), torch. float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(2560)](buf1, primals_5, buf2, buf3, 2560, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del primals_5 buf4 = empty_strided_cuda((64, 50), (50, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 40), (40, 1), 0), reinterpret_tensor(primals_6, (40, 50), (1, 40), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch. float32) triton_poi_fused_leaky_relu_1[grid(3200)](buf4, primals_7, buf5, buf6, 3200, XBLOCK=256, num_warps=4, num_stages=1) del buf4 del primals_7 buf7 = empty_strided_cuda((64, 30), (30, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (64, 50), (50, 1), 0), reinterpret_tensor(primals_8, (50, 30), (1, 50), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch.bool) buf9 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch. float32) triton_poi_fused_leaky_relu_2[grid(1920)](buf7, primals_9, buf8, buf9, 1920, XBLOCK=128, num_warps=4, num_stages=1) del buf7 del primals_9 buf10 = empty_strided_cuda((64, 12), (12, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf9, (64, 30), (30, 1), 0), reinterpret_tensor(primals_10, (30, 12), (1, 30), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.bool) buf12 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch. float32) triton_poi_fused_leaky_relu_3[grid(768)](buf10, primals_11, buf11, buf12, 768, XBLOCK=128, num_warps=4, num_stages=1) del buf10 del primals_11 buf13 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_13, reinterpret_tensor(buf12, (64, 12), (12, 1), 0), reinterpret_tensor(primals_12, (12, 2), (1, 12), 0 ), alpha=1, beta=1, out=buf13) del primals_13 return reinterpret_tensor(buf13, (4, 4, 4, 2), (32, 8, 2, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, buf2, reinterpret_tensor(buf3, (64, 40), (40, 1), 0 ), buf5, reinterpret_tensor(buf6, (64, 50), (50, 1), 0 ), buf8, reinterpret_tensor(buf9, (64, 30), (30, 1), 0 ), buf11, reinterpret_tensor(buf12, (64, 12), (12, 1), 0 ), primals_12, primals_10, primals_8, primals_6, primals_4 class ActorNetNew(nn.Module): def __init__(self): super(ActorNetNew, self).__init__() self.fc1 = nn.Linear(4, 20) self.fc2 = nn.Linear(20, 40) self.fc3 = nn.Linear(40, 50) self.fc4 = nn.Linear(50, 30) self.fc5 = nn.Linear(30, 12) self.fc6 = nn.Linear(12, 2) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_10 = self.fc5.weight primals_11 = self.fc5.bias primals_12 = self.fc6.weight primals_13 = self.fc6.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
mathildebadoual/RL_power_systems
ActorNet
false
7,175
[ "MIT" ]
1
825e60bad16129e0a0229d15af5110b26e0a1577
https://github.com/mathildebadoual/RL_power_systems/tree/825e60bad16129e0a0229d15af5110b26e0a1577
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(4, 20) self.fc2 = nn.Linear(20, 40) self.fc3 = nn.Linear(40, 50) self.fc4 = nn.Linear(50, 30) self.fc5 = nn.Linear(30, 12) self.fc6 = nn.Linear(12, 2) def forward(self, x): x = self.fc1(x) x = F.leaky_relu(self.fc2(x)) x = F.leaky_relu(self.fc3(x)) x = F.leaky_relu(self.fc4(x)) x = F.leaky_relu(self.fc5(x)) x = self.fc6(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MyKernelTorch
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/yb/cybsjfmgf75kwyq3kyez46wzwjgjffwtsqe2uwa7bdzwlb6l22gt.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 20), (20, 1)) assert_size_stride(primals_5, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf3, 1280, grid=grid(1280), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 20), (20, 1), 0), reinterpret_tensor(primals_4, (20, 2), (1, 20), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 20), (20, 1), 0), primals_4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((20, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MyKernelTorch(nn.Module): def __init__(self, n_features: 'int'): super().__init__() self.dense1 = nn.Linear(n_features, 20) self.dense2 = nn.Linear(20, 2) def forward(self, x: 'torch.Tensor') ->torch.Tensor: x = nn.ReLU()(self.dense1(x)) return self.dense2(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 20), (20, 1)) assert_size_stride(primals_5, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1280)](buf1, primals_2, buf3, 1280, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 20), (20, 1), 0), reinterpret_tensor(primals_4, (20, 2), (1, 20), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 20), (20, 1), 0), primals_4, buf3 class MyKernelTorchNew(nn.Module): def __init__(self, n_features: 'int'): super().__init__() self.dense1 = nn.Linear(n_features, 20) self.dense2 = nn.Linear(20, 2) def forward(self, input_0): primals_1 = self.dense1.weight primals_2 = self.dense1.bias primals_4 = self.dense2.weight primals_5 = self.dense2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
maxpark/alibi-detect
MyKernelTorch
false
7,176
[ "Apache-2.0" ]
1
84384297a85764c18537aa1c8699c4ad040cf7cd
https://github.com/maxpark/alibi-detect/tree/84384297a85764c18537aa1c8699c4ad040cf7cd
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, n_features: 'int'): super().__init__() self.dense1 = nn.Linear(n_features, 20) self.dense2 = nn.Linear(20, 2) def forward(self, x: 'torch.Tensor') ->torch.Tensor: x = nn.ReLU()(self.dense1(x)) return self.dense2(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
ResidualConnection
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/n6/cn6mgjcngocfze5qgo2hju7qfnotg6mtpbuctnnlrhye2luxouz5.py # Topologically Sorted Source Nodes: [add, truediv], Original ATen: [aten.add, aten.div] # Source node to ATen node mapping: # add => add # truediv => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 2.0), kwargs = {}) triton_poi_fused_add_div_0 = async_compile.triton('triton_poi_fused_add_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 + tmp0 tmp2 = 0.5 tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, truediv], Original ATen: [aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ResidualConnection(nn.Module): def __init__(self, *layers): super(ResidualConnection, self).__init__() self.layers = nn.Sequential(*layers) def forward(self, input): return (input + self.layers(input)) / 2.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 + tmp0 tmp2 = 0.5 tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class ResidualConnectionNew(nn.Module): def __init__(self, *layers): super(ResidualConnectionNew, self).__init__() self.layers = nn.Sequential(*layers) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
maxkvant/LinearizedNNs
ResidualConnection
false
7,177
[ "Apache-2.0" ]
1
eb0198be70ca55e7463b97a5023d2f6ffe0f8ba6
https://github.com/maxkvant/LinearizedNNs/tree/eb0198be70ca55e7463b97a5023d2f6ffe0f8ba6
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, *layers): super().__init__() self.layers = nn.Sequential(*layers) def forward(self, input): return (input + self.layers(input)) / 2.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
NormalizeImages
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/vk/cvktkyqkbrs4hp44g2v5fsjqeerqa54umgdv2pbxazbcvuw73y73.py # Topologically Sorted Source Nodes: [mp, sub, std, truediv], Original ATen: [aten.mean, aten.sub, aten.std, aten.div] # Source node to ATen node mapping: # mp => mean # std => var # sub => sub # truediv => div # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1]), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %expand), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [1]), kwargs = {correction: 1.0}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %expand_1), kwargs = {}) triton_per_fused_div_mean_std_sub_0 = async_compile.triton('triton_per_fused_div_mean_std_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mean_std_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp4 / tmp19 tmp21 = tmp0 - tmp20 tmp22 = 63.0 tmp23 = tmp18 / tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 1e-07 tmp26 = tmp24 + tmp25 tmp27 = tmp21 / tmp26 tl.store(out_ptr2 + (r1 + (64*x0)), tmp27, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mp, sub, std, truediv], Original ATen: [aten.mean, aten.sub, aten.std, aten.div] stream0 = get_raw_stream(0) triton_per_fused_div_mean_std_sub_0.run(arg0_1, buf4, 4, 64, grid=grid(4), stream=stream0) del arg0_1 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class NormalizeImages(nn.Module): def __init__(self): super().__init__() def forward(self, x): flat = x.view(x.size(0), -1) mp = torch.mean(flat, dim=1) sp = torch.std(flat, dim=1) + 1e-07 return (x - mp.detach().unsqueeze(-1).unsqueeze(-1).unsqueeze(-1). expand_as(x)) / sp.detach().unsqueeze(-1).unsqueeze(-1).unsqueeze(1 ).expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_mean_std_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp4 / tmp19 tmp21 = tmp0 - tmp20 tmp22 = 63.0 tmp23 = tmp18 / tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 1e-07 tmp26 = tmp24 + tmp25 tmp27 = tmp21 / tmp26 tl.store(out_ptr2 + (r1 + 64 * x0), tmp27, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_div_mean_std_sub_0[grid(4)](arg0_1, buf4, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf4, class NormalizeImagesNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
matteo-ronchetti/IKA
NormalizeImages
false
7,178
[ "MIT" ]
1
29d1752a059c3ab7659b332b72bf8c1506e7dd20
https://github.com/matteo-ronchetti/IKA/tree/29d1752a059c3ab7659b332b72bf8c1506e7dd20
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x): flat = x.view(x.size(0), -1) mp = torch.mean(flat, dim=1) sp = torch.std(flat, dim=1) + 1e-07 return (x - mp.detach().unsqueeze(-1).unsqueeze(-1).unsqueeze(-1). expand_as(x)) / sp.detach().unsqueeze(-1).unsqueeze(-1).unsqueeze(1 ).expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SoftmaxAttention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/b3/cb35lfgojdtaj2fnq2zxtf4ul7ez7i5xdvfuqztkpfoiqg5brilt.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6v/c6v5qkna4b7ktybiouwzycows6tqpfi3a57j64smwq7gu44oewoh.py # Topologically Sorted Source Nodes: [mul, result, result_1, sum_1], Original ATen: [aten.mul, aten._softmax, aten.sum] # Source node to ATen node mapping: # mul => mul # result => amax, div, exp, sub, sum_1 # result_1 => mul_1 # sum_1 => sum_2 # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %view_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1], True), kwargs = {}) triton_poi_fused__softmax_mul_sum_1 = async_compile.triton('triton_poi_fused__softmax_mul_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*(x0 // 4)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*(x0 // 4))), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*(x0 // 4))), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*(x0 // 4))), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 * tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 * tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tmp16 / tmp25 tmp27 = tmp26 * tmp1 tmp28 = tmp18 / tmp25 tmp29 = tmp28 * tmp4 tmp30 = tmp27 + tmp29 tmp31 = tmp21 / tmp25 tmp32 = tmp31 * tmp8 tmp33 = tmp30 + tmp32 tmp34 = tmp24 / tmp25 tmp35 = tmp34 * tmp12 tmp36 = tmp33 + tmp35 tl.store(out_ptr0 + (x0), tmp14, xmask) tl.store(out_ptr1 + (x0), tmp25, xmask) tl.store(out_ptr2 + (x0), tmp36, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/is/ciswv4nv4tnmcgltqwrg467dpzyhzsbsfuhmwaqhrfirgvy2wlj3.py # Topologically Sorted Source Nodes: [mul, result, result_1, add, result_2], Original ATen: [aten.mul, aten._softmax, aten.add, aten.div] # Source node to ATen node mapping: # add => add # mul => mul # result => amax, div, exp, sub # result_1 => mul_1 # result_2 => div_1 # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %view_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 1e-13), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add), kwargs = {}) triton_poi_fused__softmax_add_div_mul_2 = async_compile.triton('triton_poi_fused__softmax_add_div_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_div_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (4*(x1 // 4))), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tmp8 = tmp7 * tmp1 tmp10 = 1e-13 tmp11 = tmp9 + tmp10 tmp12 = tmp8 / tmp11 tl.store(out_ptr0 + (x2), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jp/cjprp4gkdednpeuxi4f7cltxj3u3gp6fwnvqfpxsisvgw5wmd2kv.py # Topologically Sorted Source Nodes: [contiguous_4, attended_premises], Original ATen: [aten.clone, aten.mul] # Source node to ATen node mapping: # attended_premises => mul_4 # contiguous_4 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_2,), kwargs = {memory_format: torch.contiguous_format}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm_1, %clone_4), kwargs = {}) triton_poi_fused_clone_mul_3 = async_compile.triton('triton_poi_fused_clone_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_mul_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_mul_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/un/cunrsbrp6jdeyt2khuxbnbybp45l4w5j3v646exq5ecwb4qtljaf.py # Topologically Sorted Source Nodes: [mul_2, result_3, result_4, sum_2], Original ATen: [aten.mul, aten._softmax, aten.sum] # Source node to ATen node mapping: # mul_2 => mul_2 # result_3 => amax_1, div_2, exp_1, sub_1, sum_3 # result_4 => mul_3 # sum_2 => sum_4 # Graph fragment: # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %view_4), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_2, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_3), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %view_4), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [-1], True), kwargs = {}) triton_poi_fused__softmax_mul_sum_4 = async_compile.triton('triton_poi_fused__softmax_mul_sum_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_sum_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + ((16*(x0 // 4)) + (x0 % 4)), xmask) tmp1 = tl.load(in_ptr1 + (4*(x0 // 4)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + (16*(x0 // 4)) + (x0 % 4)), xmask) tmp4 = tl.load(in_ptr1 + (1 + (4*(x0 // 4))), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (8 + (16*(x0 // 4)) + (x0 % 4)), xmask) tmp8 = tl.load(in_ptr1 + (2 + (4*(x0 // 4))), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (12 + (16*(x0 // 4)) + (x0 % 4)), xmask) tmp12 = tl.load(in_ptr1 + (3 + (4*(x0 // 4))), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 * tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 * tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tmp16 / tmp25 tmp27 = tmp26 * tmp1 tmp28 = tmp18 / tmp25 tmp29 = tmp28 * tmp4 tmp30 = tmp27 + tmp29 tmp31 = tmp21 / tmp25 tmp32 = tmp31 * tmp8 tmp33 = tmp30 + tmp32 tmp34 = tmp24 / tmp25 tmp35 = tmp34 * tmp12 tmp36 = tmp33 + tmp35 tl.store(out_ptr0 + (x0), tmp14, xmask) tl.store(out_ptr1 + (x0), tmp25, xmask) tl.store(out_ptr2 + (x0), tmp36, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lc/clclcxx7qvisvs673o3jouryicpphx7lqleeokcpqyqjj6bqri7s.py # Topologically Sorted Source Nodes: [mul_2, result_3, result_4, add_1, result_5], Original ATen: [aten.mul, aten._softmax, aten.add, aten.div] # Source node to ATen node mapping: # add_1 => add_1 # mul_2 => mul_2 # result_3 => amax_1, div_2, exp_1, sub_1 # result_4 => mul_3 # result_5 => div_3 # Graph fragment: # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %view_4), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_2, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_3), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %view_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_4, 1e-13), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_3, %add_1), kwargs = {}) triton_poi_fused__softmax_add_div_mul_5 = async_compile.triton('triton_poi_fused__softmax_add_div_mul_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_mul_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_div_mul_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + ((4*x1) + (16*(y0 // 4)) + (y0 % 4)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1 + (4*(y0 // 4))), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (y0), ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (y0), ymask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tmp8 = tmp7 * tmp1 tmp10 = 1e-13 tmp11 = tmp9 + tmp10 tmp12 = tmp8 / tmp11 tl.store(out_ptr0 + (x1 + (4*y0)), tmp12, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) assert_size_stride(arg3_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg1_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous, similarity_matrix], Original ATen: [aten.clone, aten.bmm] extern_kernels.bmm(arg0_1, buf0, out=buf1) buf2 = empty_strided_cuda((16, 1), (1, 16), torch.float32) buf3 = empty_strided_cuda((16, 1), (1, 16), torch.float32) buf4 = empty_strided_cuda((16, 1), (1, 16), torch.float32) # Topologically Sorted Source Nodes: [mul, result, result_1, sum_1], Original ATen: [aten.mul, aten._softmax, aten.sum] triton_poi_fused__softmax_mul_sum_1.run(buf1, arg2_1, buf2, buf3, buf4, 16, grid=grid(16), stream=stream0) buf5 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [mul, result, result_1, add, result_2], Original ATen: [aten.mul, aten._softmax, aten.add, aten.div] triton_poi_fused__softmax_add_div_mul_2.run(buf1, arg2_1, buf2, buf3, buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [weighted_sum], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0), arg1_1, out=buf6) del arg1_1 buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [contiguous_4, attended_premises], Original ATen: [aten.clone, aten.mul] triton_poi_fused_clone_mul_3.run(buf7, arg3_1, 64, grid=grid(64), stream=stream0) buf8 = buf4; del buf4 # reuse buf9 = buf3; del buf3 # reuse buf10 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [mul_2, result_3, result_4, sum_2], Original ATen: [aten.mul, aten._softmax, aten.sum] triton_poi_fused__softmax_mul_sum_4.run(buf1, arg3_1, buf8, buf9, buf10, 16, grid=grid(16), stream=stream0) buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_2, result_3, result_4, add_1, result_5], Original ATen: [aten.mul, aten._softmax, aten.add, aten.div] triton_poi_fused__softmax_add_div_mul_5.run(buf1, arg3_1, buf8, buf9, buf10, buf11, 16, 4, grid=grid(16, 4), stream=stream0) del arg3_1 del buf10 del buf8 del buf9 buf12 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [weighted_sum_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), arg0_1, out=buf12) del arg0_1 buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [contiguous_5, attended_hypotheses], Original ATen: [aten.clone, aten.mul] triton_poi_fused_clone_mul_3.run(buf13, arg2_1, 64, grid=grid(64), stream=stream0) del arg2_1 return (buf7, buf13, reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def masked_softmax(tensor, mask): """ Apply a masked softmax on the last dimension of a tensor. The input tensor and mask should be of size (batch, *, sequence_length). Args: tensor: The tensor on which the softmax function must be applied along the last dimension. mask: A mask of the same size as the tensor with 0s in the positions of the values that must be masked and 1s everywhere else. Returns: A tensor of the same size as the inputs containing the result of the softmax. """ tensor_shape = tensor.size() reshaped_tensor = tensor.view(-1, tensor_shape[-1]) while mask.dim() < tensor.dim(): mask = mask.unsqueeze(1) mask = mask.expand_as(tensor).contiguous().float() reshaped_mask = mask.view(-1, mask.size()[-1]) result = nn.functional.softmax(reshaped_tensor * reshaped_mask, dim=-1) result = result * reshaped_mask result = result / (result.sum(dim=-1, keepdim=True) + 1e-13) return result.view(*tensor_shape) def weighted_sum(tensor, weights, mask): """ Apply a weighted sum on the vectors along the last dimension of 'tensor', and mask the vectors in the result with 'mask'. Args: tensor: A tensor of vectors on which a weighted sum must be applied. weights: The weights to use in the weighted sum. mask: A mask to apply on the result of the weighted sum. Returns: A new tensor containing the result of the weighted sum after the mask has been applied on it. """ weighted_sum = weights.bmm(tensor) while mask.dim() < weighted_sum.dim(): mask = mask.unsqueeze(1) mask = mask.transpose(-1, -2) mask = mask.expand_as(weighted_sum).contiguous().float() return weighted_sum * mask class SoftmaxAttention(nn.Module): """ Attention layer taking premises and hypotheses encoded by an RNN as input and computing the soft attention between their elements. The dot product of the encoded vectors in the premises and hypotheses is first computed. The softmax of the result is then used in a weighted sum of the vectors of the premises for each element of the hypotheses, and conversely for the elements of the premises. """ def forward(self, premise_batch, premise_mask, hypothesis_batch, hypothesis_mask): """ Args: premise_batch: A batch of sequences of vectors representing the premises in some NLI task. The batch is assumed to have the size (batch, sequences, vector_dim). premise_mask: A mask for the sequences in the premise batch, to ignore padding data in the sequences during the computation of the attention. hypothesis_batch: A batch of sequences of vectors representing the hypotheses in some NLI task. The batch is assumed to have the size (batch, sequences, vector_dim). hypothesis_mask: A mask for the sequences in the hypotheses batch, to ignore padding data in the sequences during the computation of the attention. Returns: attended_premises: The sequences of attention vectors for the premises in the input batch. attended_hypotheses: The sequences of attention vectors for the hypotheses in the input batch. prem_hyp_attn: TODO hyp_prem_attn: TODO """ similarity_matrix = premise_batch.bmm(hypothesis_batch.transpose(2, 1).contiguous()) prem_hyp_attn = masked_softmax(similarity_matrix, hypothesis_mask) hyp_prem_attn = masked_softmax(similarity_matrix.transpose(1, 2). contiguous(), premise_mask) attended_premises = weighted_sum(hypothesis_batch, prem_hyp_attn, premise_mask) attended_hypotheses = weighted_sum(premise_batch, hyp_prem_attn, hypothesis_mask) return (attended_premises, attended_hypotheses, prem_hyp_attn, hyp_prem_attn) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4]), torch.rand([4, 4, 4] ), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__softmax_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * (x0 // 4), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * (x0 // 4)), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * (x0 // 4)), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * (x0 // 4)), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 * tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 * tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tmp16 / tmp25 tmp27 = tmp26 * tmp1 tmp28 = tmp18 / tmp25 tmp29 = tmp28 * tmp4 tmp30 = tmp27 + tmp29 tmp31 = tmp21 / tmp25 tmp32 = tmp31 * tmp8 tmp33 = tmp30 + tmp32 tmp34 = tmp24 / tmp25 tmp35 = tmp34 * tmp12 tmp36 = tmp33 + tmp35 tl.store(out_ptr0 + x0, tmp14, xmask) tl.store(out_ptr1 + x0, tmp25, xmask) tl.store(out_ptr2 + x0, tmp36, xmask) @triton.jit def triton_poi_fused__softmax_add_div_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 4 * (x1 // 4)), xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tmp8 = tmp7 * tmp1 tmp10 = 1e-13 tmp11 = tmp9 + tmp10 tmp12 = tmp8 / tmp11 tl.store(out_ptr0 + x2, tmp12, xmask) @triton.jit def triton_poi_fused_clone_mul_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_mul_sum_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16 * (x0 // 4) + x0 % 4), xmask) tmp1 = tl.load(in_ptr1 + 4 * (x0 // 4), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (4 + 16 * (x0 // 4) + x0 % 4), xmask) tmp4 = tl.load(in_ptr1 + (1 + 4 * (x0 // 4)), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr0 + (8 + 16 * (x0 // 4) + x0 % 4), xmask) tmp8 = tl.load(in_ptr1 + (2 + 4 * (x0 // 4)), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (12 + 16 * (x0 // 4) + x0 % 4), xmask) tmp12 = tl.load(in_ptr1 + (3 + 4 * (x0 // 4)), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 * tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 * tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tmp16 / tmp25 tmp27 = tmp26 * tmp1 tmp28 = tmp18 / tmp25 tmp29 = tmp28 * tmp4 tmp30 = tmp27 + tmp29 tmp31 = tmp21 / tmp25 tmp32 = tmp31 * tmp8 tmp33 = tmp30 + tmp32 tmp34 = tmp24 / tmp25 tmp35 = tmp34 * tmp12 tmp36 = tmp33 + tmp35 tl.store(out_ptr0 + x0, tmp14, xmask) tl.store(out_ptr1 + x0, tmp25, xmask) tl.store(out_ptr2 + x0, tmp36, xmask) @triton.jit def triton_poi_fused__softmax_add_div_mul_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (4 * x1 + 16 * (y0 // 4) + y0 % 4), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1 + 4 * (y0 // 4)), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + y0, ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + y0, ymask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tmp8 = tmp7 * tmp1 tmp10 = 1e-13 tmp11 = tmp9 + tmp10 tmp12 = tmp8 / tmp11 tl.store(out_ptr0 + (x1 + 4 * y0), tmp12, xmask & ymask) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) assert_size_stride(arg3_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](arg1_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(arg0_1, buf0, out=buf1) buf2 = empty_strided_cuda((16, 1), (1, 16), torch.float32) buf3 = empty_strided_cuda((16, 1), (1, 16), torch.float32) buf4 = empty_strided_cuda((16, 1), (1, 16), torch.float32) triton_poi_fused__softmax_mul_sum_1[grid(16)](buf1, arg2_1, buf2, buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0) del buf0 triton_poi_fused__softmax_add_div_mul_2[grid(64)](buf1, arg2_1, buf2, buf3, buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0), arg1_1, out=buf6) del arg1_1 buf7 = buf6 del buf6 triton_poi_fused_clone_mul_3[grid(64)](buf7, arg3_1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf8 = buf4 del buf4 buf9 = buf3 del buf3 buf10 = buf2 del buf2 triton_poi_fused__softmax_mul_sum_4[grid(16)](buf1, arg3_1, buf8, buf9, buf10, 16, XBLOCK=16, num_warps=1, num_stages=1) buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused__softmax_add_div_mul_5[grid(16, 4)](buf1, arg3_1, buf8, buf9, buf10, buf11, 16, 4, XBLOCK=4, YBLOCK=8, num_warps= 1, num_stages=1) del arg3_1 del buf10 del buf8 del buf9 buf12 = buf1 del buf1 extern_kernels.bmm(reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), arg0_1, out=buf12) del arg0_1 buf13 = buf12 del buf12 triton_poi_fused_clone_mul_3[grid(64)](buf13, arg2_1, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg2_1 return buf7, buf13, reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0) def masked_softmax(tensor, mask): """ Apply a masked softmax on the last dimension of a tensor. The input tensor and mask should be of size (batch, *, sequence_length). Args: tensor: The tensor on which the softmax function must be applied along the last dimension. mask: A mask of the same size as the tensor with 0s in the positions of the values that must be masked and 1s everywhere else. Returns: A tensor of the same size as the inputs containing the result of the softmax. """ tensor_shape = tensor.size() reshaped_tensor = tensor.view(-1, tensor_shape[-1]) while mask.dim() < tensor.dim(): mask = mask.unsqueeze(1) mask = mask.expand_as(tensor).contiguous().float() reshaped_mask = mask.view(-1, mask.size()[-1]) result = nn.functional.softmax(reshaped_tensor * reshaped_mask, dim=-1) result = result * reshaped_mask result = result / (result.sum(dim=-1, keepdim=True) + 1e-13) return result.view(*tensor_shape) def weighted_sum(tensor, weights, mask): """ Apply a weighted sum on the vectors along the last dimension of 'tensor', and mask the vectors in the result with 'mask'. Args: tensor: A tensor of vectors on which a weighted sum must be applied. weights: The weights to use in the weighted sum. mask: A mask to apply on the result of the weighted sum. Returns: A new tensor containing the result of the weighted sum after the mask has been applied on it. """ weighted_sum = weights.bmm(tensor) while mask.dim() < weighted_sum.dim(): mask = mask.unsqueeze(1) mask = mask.transpose(-1, -2) mask = mask.expand_as(weighted_sum).contiguous().float() return weighted_sum * mask class SoftmaxAttentionNew(nn.Module): """ Attention layer taking premises and hypotheses encoded by an RNN as input and computing the soft attention between their elements. The dot product of the encoded vectors in the premises and hypotheses is first computed. The softmax of the result is then used in a weighted sum of the vectors of the premises for each element of the hypotheses, and conversely for the elements of the premises. """ def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg2_1 = input_1 arg1_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0], output[1], output[2], output[3]
marvosyntactical/fs2018ex3viz
SoftmaxAttention
false
7,179
[ "Apache-2.0" ]
1
9002133a45b52c596efa91d842f691fe1f066a6c
https://github.com/marvosyntactical/fs2018ex3viz/tree/9002133a45b52c596efa91d842f691fe1f066a6c
import torch import torch.nn as nn def masked_softmax(tensor, mask): """ Apply a masked softmax on the last dimension of a tensor. The input tensor and mask should be of size (batch, *, sequence_length). Args: tensor: The tensor on which the softmax function must be applied along the last dimension. mask: A mask of the same size as the tensor with 0s in the positions of the values that must be masked and 1s everywhere else. Returns: A tensor of the same size as the inputs containing the result of the softmax. """ tensor_shape = tensor.size() reshaped_tensor = tensor.view(-1, tensor_shape[-1]) while mask.dim() < tensor.dim(): mask = mask.unsqueeze(1) mask = mask.expand_as(tensor).contiguous().float() reshaped_mask = mask.view(-1, mask.size()[-1]) result = nn.functional.softmax(reshaped_tensor * reshaped_mask, dim=-1) result = result * reshaped_mask result = result / (result.sum(dim=-1, keepdim=True) + 1e-13) return result.view(*tensor_shape) def weighted_sum(tensor, weights, mask): """ Apply a weighted sum on the vectors along the last dimension of 'tensor', and mask the vectors in the result with 'mask'. Args: tensor: A tensor of vectors on which a weighted sum must be applied. weights: The weights to use in the weighted sum. mask: A mask to apply on the result of the weighted sum. Returns: A new tensor containing the result of the weighted sum after the mask has been applied on it. """ weighted_sum = weights.bmm(tensor) while mask.dim() < weighted_sum.dim(): mask = mask.unsqueeze(1) mask = mask.transpose(-1, -2) mask = mask.expand_as(weighted_sum).contiguous().float() return weighted_sum * mask class Model(nn.Module): """ Attention layer taking premises and hypotheses encoded by an RNN as input and computing the soft attention between their elements. The dot product of the encoded vectors in the premises and hypotheses is first computed. The softmax of the result is then used in a weighted sum of the vectors of the premises for each element of the hypotheses, and conversely for the elements of the premises. """ def forward(self, premise_batch, premise_mask, hypothesis_batch, hypothesis_mask): """ Args: premise_batch: A batch of sequences of vectors representing the premises in some NLI task. The batch is assumed to have the size (batch, sequences, vector_dim). premise_mask: A mask for the sequences in the premise batch, to ignore padding data in the sequences during the computation of the attention. hypothesis_batch: A batch of sequences of vectors representing the hypotheses in some NLI task. The batch is assumed to have the size (batch, sequences, vector_dim). hypothesis_mask: A mask for the sequences in the hypotheses batch, to ignore padding data in the sequences during the computation of the attention. Returns: attended_premises: The sequences of attention vectors for the premises in the input batch. attended_hypotheses: The sequences of attention vectors for the hypotheses in the input batch. prem_hyp_attn: TODO hyp_prem_attn: TODO """ similarity_matrix = premise_batch.bmm(hypothesis_batch.transpose(2, 1).contiguous()) prem_hyp_attn = masked_softmax(similarity_matrix, hypothesis_mask) hyp_prem_attn = masked_softmax(similarity_matrix.transpose(1, 2). contiguous(), premise_mask) attended_premises = weighted_sum(hypothesis_batch, prem_hyp_attn, premise_mask) attended_hypotheses = weig # ... truncated (>4000 chars) for memory efficiency
_leaky_relu
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/js/cjszscodslnfyiv2d7igvqacsrgsys76rucgsdtlfb7q6ntp2vru.py # Topologically Sorted Source Nodes: [x_neg, max_1], Original ATen: [aten.mul, aten.maximum] # Source node to ATen node mapping: # max_1 => maximum # x_neg => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.1), kwargs = {}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%mul, %arg0_1), kwargs = {}) triton_poi_fused_maximum_mul_0 = async_compile.triton('triton_poi_fused_maximum_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_maximum_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_maximum_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.1 tmp2 = tmp0 * tmp1 tmp3 = triton_helpers.maximum(tmp2, tmp0) tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_neg, max_1], Original ATen: [aten.mul, aten.maximum] stream0 = get_raw_stream(0) triton_poi_fused_maximum_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class _leaky_relu(nn.Module): def __init__(self): super(_leaky_relu, self).__init__() def forward(self, x): x_neg = 0.1 * x return torch.max(x_neg, x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_maximum_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.1 tmp2 = tmp0 * tmp1 tmp3 = triton_helpers.maximum(tmp2, tmp0) tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_maximum_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) del arg0_1 return buf0, class _leaky_reluNew(nn.Module): def __init__(self): super(_leaky_reluNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
maxuanquang/SfmLearner-Redesign
_leaky_relu
false
7,180
[ "MIT" ]
1
0250a9cc443b5754ba45f69153a03ca26f903a7b
https://github.com/maxuanquang/SfmLearner-Redesign/tree/0250a9cc443b5754ba45f69153a03ca26f903a7b
import torch from torch import nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x): x_neg = 0.1 * x return torch.max(x_neg, x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CriticNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/xs/cxsx2jlz7qi3eerscrmq6daj5pyplc3rcuj6cilxq2zofbhntrow.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_1 => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_3, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 2560 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 40 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5v/c5vn7uggpfqtlchl6swvsdgcgavhwaeod4idwzjydfczuqulpenk.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_2 => gt_1, mul_1, where_1 # Graph fragment: # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_5, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 0.01), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %view_5, %mul_1), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 30 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7u/c7uibvrhz722pvnfpzp3uhgihgkfifzjsn2rpnnsjorfgng2msxf.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_3 => gt_2, mul_2, where_2 # Graph fragment: # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_7, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, 0.01), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %view_7, %mul_2), kwargs = {}) triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (40, 20), (20, 1)) assert_size_stride(primals_5, (40, ), (1, )) assert_size_stride(primals_6, (30, 40), (40, 1)) assert_size_stride(primals_7, (30, ), (1, )) assert_size_stride(primals_8, (8, 30), (30, 1)) assert_size_stride(primals_9, (8, ), (1, )) assert_size_stride(primals_10, (1, 8), (8, 1)) assert_size_stride(primals_11, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 40), (40, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (20, 40), (1, 20), 0), out=buf1) buf2 = empty_strided_cuda((4, 4, 4, 40), (640, 160, 40, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 40), (640, 160, 40, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf1, primals_5, buf2, buf3, 2560, grid=grid(2560), stream=stream0) del buf1 del primals_5 buf4 = empty_strided_cuda((64, 30), (30, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 40), (40, 1), 0), reinterpret_tensor(primals_6, (40, 30), (1, 40), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf4, primals_7, buf5, buf6, 1920, grid=grid(1920), stream=stream0) del buf4 del primals_7 buf7 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf6, (64, 30), (30, 1), 0), reinterpret_tensor(primals_8, (30, 8), (1, 30), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) buf9 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_2.run(buf7, primals_9, buf8, buf9, 512, grid=grid(512), stream=stream0) del buf7 del primals_9 buf11 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf9, (64, 8), (8, 1), 0), reinterpret_tensor(primals_10, (8, 1), (1, 8), 0), alpha=1, beta=1, out=buf11) del primals_11 return (reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, buf2, reinterpret_tensor(buf3, (64, 40), (40, 1), 0), buf5, reinterpret_tensor(buf6, (64, 30), (30, 1), 0), buf8, reinterpret_tensor(buf9, (64, 8), (8, 1), 0), primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((20, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((40, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((40, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((30, 40), (40, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((30, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((8, 30), (30, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class CriticNet(nn.Module): def __init__(self): super(CriticNet, self).__init__() self.fc1 = nn.Linear(4, 20) self.fc2 = nn.Linear(20, 40) self.fc3 = nn.Linear(40, 30) self.fc4 = nn.Linear(30, 8) self.fc5 = nn.Linear(8, 1) def forward(self, x): x = self.fc1(x) x = F.leaky_relu(self.fc2(x)) x = F.leaky_relu(self.fc3(x)) x = F.leaky_relu(self.fc4(x)) x = self.fc5(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 2560 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 40 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 30 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (40, 20), (20, 1)) assert_size_stride(primals_5, (40,), (1,)) assert_size_stride(primals_6, (30, 40), (40, 1)) assert_size_stride(primals_7, (30,), (1,)) assert_size_stride(primals_8, (8, 30), (30, 1)) assert_size_stride(primals_9, (8,), (1,)) assert_size_stride(primals_10, (1, 8), (8, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 40), (40, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (20, 40), (1, 20), 0), out=buf1) buf2 = empty_strided_cuda((4, 4, 4, 40), (640, 160, 40, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 40), (640, 160, 40, 1), torch. float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(2560)](buf1, primals_5, buf2, buf3, 2560, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_5 buf4 = empty_strided_cuda((64, 30), (30, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 40), (40, 1), 0), reinterpret_tensor(primals_6, (40, 30), (1, 40), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch. float32) triton_poi_fused_leaky_relu_1[grid(1920)](buf4, primals_7, buf5, buf6, 1920, XBLOCK=128, num_warps=4, num_stages=1) del buf4 del primals_7 buf7 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (64, 30), (30, 1), 0), reinterpret_tensor(primals_8, (30, 8), (1, 30), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) buf9 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) triton_poi_fused_leaky_relu_2[grid(512)](buf7, primals_9, buf8, buf9, 512, XBLOCK=256, num_warps=4, num_stages=1) del buf7 del primals_9 buf11 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf9, (64, 8), (8, 1), 0), reinterpret_tensor(primals_10, (8, 1), (1, 8), 0), alpha=1, beta=1, out=buf11) del primals_11 return reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, buf2, reinterpret_tensor(buf3, (64, 40), (40, 1), 0 ), buf5, reinterpret_tensor(buf6, (64, 30), (30, 1), 0 ), buf8, reinterpret_tensor(buf9, (64, 8), (8, 1), 0 ), primals_10, primals_8, primals_6, primals_4 class CriticNetNew(nn.Module): def __init__(self): super(CriticNetNew, self).__init__() self.fc1 = nn.Linear(4, 20) self.fc2 = nn.Linear(20, 40) self.fc3 = nn.Linear(40, 30) self.fc4 = nn.Linear(30, 8) self.fc5 = nn.Linear(8, 1) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_10 = self.fc5.weight primals_11 = self.fc5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
mathildebadoual/RL_power_systems
CriticNet
false
7,181
[ "MIT" ]
1
825e60bad16129e0a0229d15af5110b26e0a1577
https://github.com/mathildebadoual/RL_power_systems/tree/825e60bad16129e0a0229d15af5110b26e0a1577
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(4, 20) self.fc2 = nn.Linear(20, 40) self.fc3 = nn.Linear(40, 30) self.fc4 = nn.Linear(30, 8) self.fc5 = nn.Linear(8, 1) def forward(self, x): x = self.fc1(x) x = F.leaky_relu(self.fc2(x)) x = F.leaky_relu(self.fc3(x)) x = F.leaky_relu(self.fc4(x)) x = self.fc5(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ZeroConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/tg/ctgaykn2ev5vsympbzywhnbmo5fz5ljycgt452vxtvv7ybt7r3gf.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # out => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 1.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 6 x0 = xindex % 6 x2 = (xindex // 36) x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=1.0) tl.store(out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3i/c3iaqwcts6h3wpjzfzg6woukwoyx2igoqvo3awmc4fkavsodfyss.py # Topologically Sorted Source Nodes: [out_1, mul, exp, out_2], Original ATen: [aten.convolution, aten.mul, aten.exp] # Source node to ATen node mapping: # exp => exp # mul => mul # out_1 => convolution # out_2 => mul_1 # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 3), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %exp), kwargs = {}) triton_poi_fused_convolution_exp_mul_1 = async_compile.triton('triton_poi_fused_convolution_exp_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_exp_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_exp_mul_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = 3.0 tmp5 = tmp3 * tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1, mul, exp, out_2], Original ATen: [aten.convolution, aten.mul, aten.exp] triton_poi_fused_convolution_exp_mul_1.run(buf2, primals_3, primals_4, buf3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf3, primals_2, primals_4, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F class ZeroConv2d(nn.Module): def __init__(self, in_channel, out_channel, padding=1): super().__init__() self.conv = nn.Conv2d(in_channel, out_channel, 3, padding=0) self.conv.weight.data.zero_() self.conv.bias.data.zero_() self.scale = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) def forward(self, input): out = F.pad(input, [1, 1, 1, 1], value=1) out = self.conv(out) out = out * torch.exp(self.scale * 3) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channel': 4, 'out_channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 6 x0 = xindex % 6 x2 = xindex // 36 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=1.0) tl.store(out_ptr0 + x4, tmp11, xmask) @triton.jit def triton_poi_fused_convolution_exp_mul_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = 3.0 tmp5 = tmp3 * tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(576)](primals_1, buf0, 576, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_convolution_exp_mul_1[grid(256)](buf2, primals_3, primals_4, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf3, primals_2, primals_4, buf0, buf2 class ZeroConv2dNew(nn.Module): def __init__(self, in_channel, out_channel, padding=1): super().__init__() self.conv = nn.Conv2d(in_channel, out_channel, 3, padding=0) self.conv.weight.data.zero_() self.conv.bias.data.zero_() self.scale = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) def forward(self, input_0): primals_4 = self.scale primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
mbaddar1/glow-pytorch
ZeroConv2d
false
7,182
[ "MIT" ]
1
e07ca542ce4dd93ddf680c51eda25d1f9db252a1
https://github.com/mbaddar1/glow-pytorch/tree/e07ca542ce4dd93ddf680c51eda25d1f9db252a1
import torch from torch import nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, in_channel, out_channel, padding=1): super().__init__() self.conv = nn.Conv2d(in_channel, out_channel, 3, padding=0) self.conv.weight.data.zero_() self.conv.bias.data.zero_() self.scale = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) def forward(self, input): out = F.pad(input, [1, 1, 1, 1], value=1) out = self.conv(out) out = out * torch.exp(self.scale * 3) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
BasicGraphConvolutionLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/jp/cjpt3hzytizdpfnexpdpxvh4az4p257tvla46eoequf2fpegj4du.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.add] # Source node to ATen node mapping: # output => add_1 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_plus_mm, %primals_5), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [potential_msgs], Original ATen: [aten.mm] extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] extern_kernels._mm_plus_mm(primals_3, buf0, primals_2, primals_4, out=buf1) del buf0 del primals_4 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf2, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 return (buf2, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn.parameter import Parameter class BasicGraphConvolutionLayer(torch.nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.W2 = Parameter(torch.rand((in_channels, out_channels), dtype= torch.float32)) self.W1 = Parameter(torch.rand((in_channels, out_channels), dtype= torch.float32)) self.bias = Parameter(torch.zeros(out_channels, dtype=torch.float32)) def forward(self, X, A): potential_msgs = torch.mm(X, self.W2) propagated_msgs = torch.mm(A, potential_msgs) root_update = torch.mm(X, self.W1) output = propagated_msgs + root_update + self.bias return output def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels._mm_plus_mm(primals_3, buf0, primals_2, primals_4, out=buf1) del buf0 del primals_4 buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_0[grid(16)](buf2, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 return buf2, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0) class BasicGraphConvolutionLayerNew(torch.nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.W2 = Parameter(torch.rand((in_channels, out_channels), dtype= torch.float32)) self.W1 = Parameter(torch.rand((in_channels, out_channels), dtype= torch.float32)) self.bias = Parameter(torch.zeros(out_channels, dtype=torch.float32)) def forward(self, input_0, input_1): primals_1 = self.W2 primals_2 = self.W1 primals_5 = self.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
mbrukman/machine-learning-book
BasicGraphConvolutionLayer
false
7,183
[ "MIT" ]
1
f29a0f8aafa63a77081f3bcec68866e33dd41776
https://github.com/mbrukman/machine-learning-book/tree/f29a0f8aafa63a77081f3bcec68866e33dd41776
import torch from torch.nn.parameter import Parameter class Model(torch.nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.W2 = Parameter(torch.rand((in_channels, out_channels), dtype= torch.float32)) self.W1 = Parameter(torch.rand((in_channels, out_channels), dtype= torch.float32)) self.bias = Parameter(torch.zeros(out_channels, dtype=torch.float32)) def forward(self, X, A): potential_msgs = torch.mm(X, self.W2) propagated_msgs = torch.mm(A, potential_msgs) root_update = torch.mm(X, self.W1) output = propagated_msgs + root_update + self.bias return output def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
InvConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/2v/c2vp4wevd4mmk6p3qeilou7zqojjaarvm3pedrgkmrhhjbggkpqu.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/4m/c4mesezrsrzdxpuuyqxvdzjuqjyrphys7ucdqbdgokmbugszibng.py # Topologically Sorted Source Nodes: [double], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # double => convert_element_type # Graph fragment: # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%squeeze, torch.float64), kwargs = {}) triton_poi_fused__to_copy_1 = async_compile.triton('triton_poi_fused__to_copy_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0.to(tl.float64) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lz/clzjrdoqlebi4pdm72l7bnqxgktieirugz3rrrldxhmugh4eiwfe.py # Topologically Sorted Source Nodes: [float_1, logdet], Original ATen: [aten._to_copy, aten.mul] # Source node to ATen node mapping: # float_1 => convert_element_type_1 # logdet => mul # Graph fragment: # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%getitem_1, torch.float32), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, 16), kwargs = {}) triton_poi_fused__to_copy_mul_2 = async_compile.triton('triton_poi_fused__to_copy_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1], filename=__file__, triton_meta={'signature': {0: '*fp64', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_mul_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tmp1.to(tl.float32) tmp3 = 16.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (1, 4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_2, buf0, 4, 4, grid=grid(4, 4), stream=stream0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_1, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) del buf0 buf2 = empty_strided_cuda((4, 4), (1, 4), torch.float64) # Topologically Sorted Source Nodes: [double], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_1.run(primals_2, buf2, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [double, slogdet], Original ATen: [aten._to_copy, aten._linalg_slogdet] buf3 = torch.ops.aten._linalg_slogdet.default(buf2) del buf2 buf5 = buf3[1] buf6 = buf3[2] buf7 = buf3[3] del buf3 buf8 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [float_1, logdet], Original ATen: [aten._to_copy, aten.mul] triton_poi_fused__to_copy_mul_2.run(buf5, buf8, 1, grid=grid(1), stream=stream0) del buf5 return (buf1, buf8, primals_1, primals_2, buf6, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (1, 4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F class InvConv2d(nn.Module): def __init__(self, in_channel): super().__init__() weight = torch.randn(in_channel, in_channel) q, _ = torch.qr(weight) weight = q.unsqueeze(2).unsqueeze(3) self.weight = nn.Parameter(weight) def forward(self, input): _, _, height, width = input.shape out = F.conv2d(input, self.weight) logdet = height * width * torch.slogdet(self.weight.squeeze().double() )[1].float() return out, logdet def reverse(self, output): return F.conv2d(output, self.weight.squeeze().inverse().unsqueeze(2 ).unsqueeze(3)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torch.nn import functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__to_copy_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0.to(tl.float64) tl.store(out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused__to_copy_mul_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tmp1.to(tl.float32) tmp3 = 16.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp4, None) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (1, 4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(4, 4)](primals_2, buf0, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(primals_1, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) del buf0 buf2 = empty_strided_cuda((4, 4), (1, 4), torch.float64) triton_poi_fused__to_copy_1[grid(16)](primals_2, buf2, 16, XBLOCK= 16, num_warps=1, num_stages=1) buf3 = torch.ops.aten._linalg_slogdet.default(buf2) del buf2 buf5 = buf3[1] buf6 = buf3[2] buf7 = buf3[3] del buf3 buf8 = empty_strided_cuda((), (), torch.float32) triton_poi_fused__to_copy_mul_2[grid(1)](buf5, buf8, 1, XBLOCK=1, num_warps=1, num_stages=1) del buf5 return buf1, buf8, primals_1, primals_2, buf6, buf7 class InvConv2dNew(nn.Module): def __init__(self, in_channel): super().__init__() weight = torch.randn(in_channel, in_channel) q, _ = torch.qr(weight) weight = q.unsqueeze(2).unsqueeze(3) self.weight = nn.Parameter(weight) def reverse(self, output): return F.conv2d(output, self.weight.squeeze().inverse().unsqueeze(2 ).unsqueeze(3)) def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0], output[1]
mbaddar1/glow-pytorch
InvConv2d
false
7,184
[ "MIT" ]
1
e07ca542ce4dd93ddf680c51eda25d1f9db252a1
https://github.com/mbaddar1/glow-pytorch/tree/e07ca542ce4dd93ddf680c51eda25d1f9db252a1
import torch from torch import nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, in_channel): super().__init__() weight = torch.randn(in_channel, in_channel) q, _ = torch.qr(weight) weight = q.unsqueeze(2).unsqueeze(3) self.weight = nn.Parameter(weight) def forward(self, input): _, _, height, width = input.shape out = F.conv2d(input, self.weight) logdet = height * width * torch.slogdet(self.weight.squeeze().double() )[1].float() return out, logdet def reverse(self, output): return F.conv2d(output, self.weight.squeeze().inverse().unsqueeze(2 ).unsqueeze(3)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
ScaledDotProductAttention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/fz/cfzmg4qtw6jgry4nhlwopodzjz62ll3n3ykfox77hwd2crdnlh2w.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(buf2, arg2_1, out=buf3) del arg2_1 return (buf3, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.optim.lr_scheduler import torch.nn as nn class ScaledDotProductAttention(nn.Module): def __init__(self, d_model, attention_dropout=0.1): super(ScaledDotProductAttention, self).__init__() self.temper = d_model ** 0.5 self.dropout = nn.Dropout(attention_dropout) self.softmax = nn.Softmax(dim=-1) def forward(self, q, k, v, attn_mask=None): attn = torch.bmm(q, k.transpose(1, 2)) / self.temper if attn_mask is not None: assert attn_mask.size() == attn.size( ), 'Attention mask shape {} mismatch with Attention logit tensor shape {}.'.format( attn_mask.size(), attn.size()) attn.data.masked_fill_(attn_mask, -float('inf')) attn = self.softmax(attn) attn = self.dropout(attn) output = torch.bmm(attn, v) return output, attn def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'d_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.optim.lr_scheduler import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), ( 16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = buf0 del buf0 triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = buf1 del buf1 extern_kernels.bmm(buf2, arg2_1, out=buf3) del arg2_1 return buf3, buf2 class ScaledDotProductAttentionNew(nn.Module): def __init__(self, d_model, attention_dropout=0.1): super(ScaledDotProductAttentionNew, self).__init__() self.temper = d_model ** 0.5 self.dropout = nn.Dropout(attention_dropout) self.softmax = nn.Softmax(dim=-1) def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
mcoavoux/self-attentive-parser
ScaledDotProductAttention
false
7,185
[ "MIT" ]
1
fa5814ecfdbf4fde329ea725e1d2ddaa55f247d6
https://github.com/mcoavoux/self-attentive-parser/tree/fa5814ecfdbf4fde329ea725e1d2ddaa55f247d6
import torch import torch.optim.lr_scheduler import torch.nn as nn class Model(nn.Module): def __init__(self, d_model, attention_dropout=0.1): super().__init__() self.temper = d_model ** 0.5 self.dropout = nn.Dropout(attention_dropout) self.softmax = nn.Softmax(dim=-1) def forward(self, q, k, v, attn_mask=None): attn = torch.bmm(q, k.transpose(1, 2)) / self.temper if attn_mask is not None: assert attn_mask.size() == attn.size( ), 'Attention mask shape {} mismatch with Attention logit tensor shape {}.'.format( attn_mask.size(), attn.size()) attn.data.masked_fill_(attn_mask, -float('inf')) attn = self.softmax(attn) attn = self.dropout(attn) output = torch.bmm(attn, v) return output, attn def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [4]
LayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/p5/cp56rg7mpbf3ekga7gqadrbxvyrlzzia7mkho3ecsunbsiae7n7a.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_1 => add, clone, rsqrt, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x2), tmp8, xmask) tl.store(out_ptr1 + (x2), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/74/c74lpbw2rq4iu6ghsieimw7wwph5kzk2iiojo5f22stwavema7ym.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_1 => add, add_1, clone, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x3 = xindex y2 = (yindex // 16) y4 = yindex % 16 y5 = yindex y0 = yindex % 4 y1 = (yindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (y4 + (16*x3) + (64*y2)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y5), ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (y5), ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x3), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x3), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x3 + (4*y1) + (16*y0) + (64*y2)), tmp8, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 64, 4, grid=grid(64, 4), stream=stream0) del buf0 del buf1 del primals_2 del primals_3 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 1, 4, 16), 0), primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.multiprocessing from torch import nn from torch.nn import functional as F import torch.optim import torch.utils.data import torch.distributed class LayerNorm(nn.Module): def __init__(self, channels: 'int', eps: 'float'=1e-05): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1) x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose(1, -1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.multiprocessing from torch import nn import torch.optim import torch.utils.data import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x2, tmp8, xmask) tl.store(out_ptr1 + x2, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x3 = xindex y2 = yindex // 16 y4 = yindex % 16 y5 = yindex y0 = yindex % 4 y1 = yindex // 4 % 4 tmp0 = tl.load(in_ptr0 + (y4 + 16 * x3 + 64 * y2), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y5, ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + y5, ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x3, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x3, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x3 + 4 * y1 + 16 * y0 + 64 * y2), tmp8, xmask & ymask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(64)](primals_1, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64, 4)](primals_1, buf0, buf1, primals_2, primals_3, buf2, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del buf0 del buf1 del primals_2 del primals_3 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 1, 4, 16), 0), primals_1 class LayerNormNew(nn.Module): def __init__(self, channels: 'int', eps: 'float'=1e-05): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, input_0): primals_2 = self.gamma primals_3 = self.beta primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mbarnig/vits-train
LayerNorm
false
7,186
[ "MIT" ]
1
cfb8a0fc91daad868fe3d062ebf85d62edbd7506
https://github.com/mbarnig/vits-train/tree/cfb8a0fc91daad868fe3d062ebf85d62edbd7506
import torch import torch.multiprocessing from torch import nn from torch.nn import functional as F import torch.optim import torch.utils.data import torch.distributed class Model(nn.Module): def __init__(self, channels: 'int', eps: 'float'=1e-05): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1) x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose(1, -1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
AvgPoolShortening
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/yr/cyrgajo5a5abqha3m42zm7eckzjdefosqmg6mj3cpa2rfivywiav.py # Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # avg_pool1d => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%unsqueeze, [1, 4], [1, 4], [0, 0], True), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (1, 4, 4), (1, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class AvgPoolShortening(Module): """ ### Average pool shortening This down-samples by a given factor with average pooling """ def __init__(self, k: 'int'): """ * `k` is the shortening factor """ super().__init__() self.pool = nn.AvgPool1d(k, ceil_mode=True) def forward(self, x: 'torch.Tensor'): """ * `x` is of shape `[seq_len, batch_size, d_model]` """ return self.pool(x.permute(1, 2, 0)).permute(2, 0, 1) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'k': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (16 + x0), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (1, 4, 4), (1, 4, 1), 0), class AvgPoolShorteningNew(Module): """ ### Average pool shortening This down-samples by a given factor with average pooling """ def __init__(self, k: 'int'): """ * `k` is the shortening factor """ super().__init__() self.pool = nn.AvgPool1d(k, ceil_mode=True) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mcx/annotated_deep_learning_paper_implementations
AvgPoolShortening
false
7,187
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ ### Average pool shortening This down-samples by a given factor with average pooling """ def __init__(self, k: 'int'): """ * `k` is the shortening factor """ super().__init__() self.pool = nn.AvgPool1d(k, ceil_mode=True) def forward(self, x: 'torch.Tensor'): """ * `x` is of shape `[seq_len, batch_size, d_model]` """ return self.pool(x.permute(1, 2, 0)).permute(2, 0, 1) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
AttentionNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ej/cejfrwnzxinkchwn6symdb72fdtj7gix5hy2vuswodhbeh45mrae.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7z/c7zuih2ysjtir5rh5seep5ijnhokjlgkyjw2edhf257ahvz4iipr.py # Topologically Sorted Source Nodes: [y2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # y2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xq/cxqz2dr7nh2qabrtemj52pazmhrknj5ltcy32ka252ia6a3jgpqi.py # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_4 => convolution_2 # x_5 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pr/cpri5daxkfbmt5ostbhb5o2avircr64a2rmdkxfackaxyjfc7owe.py # Topologically Sorted Source Nodes: [y2_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # y2_1 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/of/cof37d5wbqzvtkioj7k4me7wqpvfv55rs62ytonj7gij2o3abnod.py # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_8 => convolution_4 # x_9 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/4y/c4yi677k2khitgtsgyfed4k33ti5roqfeskmbxbx6lxxqvdbx2bm.py # Topologically Sorted Source Nodes: [x2], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x2 => convert_element_type_1 # Graph fragment: # %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) triton_poi_fused__to_copy_5 = async_compile.triton('triton_poi_fused__to_copy_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_5(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/md/cmdzb3g7ta6wjq6r3fstpbzeaul3ol5l3xra37jbj2vydlmdmvsb.py # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x2 => add_1, clamp_max # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {}) # %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_1, 15), kwargs = {}) triton_poi_fused_add_clamp_6 = async_compile.triton('triton_poi_fused_add_clamp_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_6(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 15, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/bo/cbopvl3gqicrov7xowxovrkp6amyvpvxr7d7id6h2qyxy5qpmrr2.py # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x2 => add, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul, sub, sub_2 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 0.5), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dp/cdpaggpdddpnqjqbuombdevdldilxunrofiu4bqqmupcln7ot7fy.py # Topologically Sorted Source Nodes: [x_10, x_11, x2], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # x2 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_4, add_5, mul_2, mul_3, mul_4, sub_3, sub_4, sub_6 # x_10 => convolution_5 # x_11 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_12, %primals_13, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=5] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_5, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_5, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_5, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_5, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_8 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*fp32', 6: '*i64', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_8(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 32) % 32 x0 = xindex % 32 x5 = (xindex // 1024) x2 = (xindex // 1024) % 256 x6 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (16*tmp4) + (256*x5)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp15 = tmp14 + tmp1 tmp16 = tmp14 < 0 tmp17 = tl.where(tmp16, tmp15, tmp14) tmp18 = tl.load(in_ptr2 + (tmp17 + (16*tmp4) + (256*x5)), None, eviction_policy='evict_last') tmp19 = tmp18 + tmp10 tmp20 = triton_helpers.maximum(tmp12, tmp19) tmp21 = tmp20 - tmp13 tmp23 = tmp21 * tmp22 tmp24 = tmp13 + tmp23 tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp8 + (16*tmp28) + (256*x5)), None, eviction_policy='evict_last') tmp30 = tmp29 + tmp10 tmp31 = triton_helpers.maximum(tmp12, tmp30) tmp32 = tl.load(in_ptr2 + (tmp17 + (16*tmp28) + (256*x5)), None, eviction_policy='evict_last') tmp33 = tmp32 + tmp10 tmp34 = triton_helpers.maximum(tmp12, tmp33) tmp35 = tmp34 - tmp31 tmp36 = tmp35 * tmp22 tmp37 = tmp31 + tmp36 tmp38 = tmp37 - tmp24 tmp40 = tmp38 * tmp39 tl.store(out_ptr0 + (x6), tmp24, None) tl.store(out_ptr1 + (x6), tmp40, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/yd/cydevr7tg7eqnke2m5at7mbt2q2ln7fsm4jiuhcfnhfuhusbiqdn.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_3, %add_6], 1), kwargs = {}) triton_poi_fused_cat_9 = async_compile.triton('triton_poi_fused_cat_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_9(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1572864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 1024) % 384 x0 = xindex % 1024 x2 = (xindex // 393216) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (1024*x1) + (131072*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 384, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (1024*((-128) + x1)) + (262144*x2)), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (x0 + (1024*((-128) + x1)) + (262144*x2)), tmp6, other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + (x3), tmp14, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ni/cniq2f6daq5t46e6qe2fkvxb264u2jsxwi4ve5g4nxjnnvswffw3.py # Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x2_1 => convert_element_type_5 # Graph fragment: # %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {}) triton_poi_fused__to_copy_10 = async_compile.triton('triton_poi_fused__to_copy_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_10(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pv/cpv5mon3db2275vzj6vzbbzn5bnpvw33ca7brydombeog7ukrdkt.py # Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x2_1 => add_8, clamp_max_4 # Graph fragment: # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {}) # %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_8, 31), kwargs = {}) triton_poi_fused_add_clamp_11 = async_compile.triton('triton_poi_fused_add_clamp_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_11(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 31, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/nx/cnxxrpmizvmn7bc4n46jide7fktikqdg5ugsihibsemngrexcrrc.py # Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x2_1 => add_7, clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, iota_2, mul_5, sub_7, sub_9 # Graph fragment: # %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_2, torch.float32), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.5), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_7, 0.5), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_5, 0.5), kwargs = {}) # %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_7, 0.0), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {}) # %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_9, 0.0), kwargs = {}) # %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wv/cwv7kfzc3llfmzv7nv5r5gayvjdtpwlbwtvpwkn2dmgomldzye3f.py # Topologically Sorted Source Nodes: [x_14, x_15, x2_1], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # x2_1 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_11, add_12, mul_7, mul_8, mul_9, sub_10, sub_11, sub_13 # x_14 => convolution_7 # x_15 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_6, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=5] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_7, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {}) # %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_7, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {}) # %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_7, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {}) # %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_7, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %clamp_max_6), kwargs = {}) # %add_11 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_7), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_6), kwargs = {}) # %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_8), kwargs = {}) # %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_12, %add_11), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %clamp_max_7), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_13 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*fp32', 6: '*i64', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_13(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 2097152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 64) % 64 x0 = xindex % 64 x5 = (xindex // 4096) x2 = (xindex // 4096) % 128 x6 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (32*tmp4) + (1024*x5)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp15 = tmp14 + tmp1 tmp16 = tmp14 < 0 tmp17 = tl.where(tmp16, tmp15, tmp14) tmp18 = tl.load(in_ptr2 + (tmp17 + (32*tmp4) + (1024*x5)), None, eviction_policy='evict_last') tmp19 = tmp18 + tmp10 tmp20 = triton_helpers.maximum(tmp12, tmp19) tmp21 = tmp20 - tmp13 tmp23 = tmp21 * tmp22 tmp24 = tmp13 + tmp23 tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp8 + (32*tmp28) + (1024*x5)), None, eviction_policy='evict_last') tmp30 = tmp29 + tmp10 tmp31 = triton_helpers.maximum(tmp12, tmp30) tmp32 = tl.load(in_ptr2 + (tmp17 + (32*tmp28) + (1024*x5)), None, eviction_policy='evict_last') tmp33 = tmp32 + tmp10 tmp34 = triton_helpers.maximum(tmp12, tmp33) tmp35 = tmp34 - tmp31 tmp36 = tmp35 * tmp22 tmp37 = tmp31 + tmp36 tmp38 = tmp37 - tmp24 tmp40 = tmp38 * tmp39 tl.store(out_ptr0 + (x6), tmp24, None) tl.store(out_ptr1 + (x6), tmp40, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/o2/co2wtxqpyglobhahytbmlui2bz54bijqrhf23q5eqmfyydc4xwjz.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_1, %add_13], 1), kwargs = {}) triton_poi_fused_cat_14 = async_compile.triton('triton_poi_fused_cat_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_14(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3145728 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 192 x0 = xindex % 4096 x2 = (xindex // 786432) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (262144*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 192, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-64) + x1)) + (524288*x2)), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (x0 + (4096*((-64) + x1)) + (524288*x2)), tmp6, other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + (x3), tmp14, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/bq/cbqhd5jnhupbgc2iqkdvblj2dhf7oqvkurq7tlc3hcaievsm4jdp.py # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_20 => convolution_10 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_9, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_15 = async_compile.triton('triton_poi_fused_convolution_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hh/chh3c6ssaz7eobl7f4qcmbxg5zyvo4pizyqmdpko6a2s7pqtslff.py # Topologically Sorted Source Nodes: [x_14, x_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_14 => convolution_7 # x_15 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_6, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=5] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_16 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5h/c5hl75ncttq3lk7mlvyxqmzfiikhcuuhomaciav64cpk7egkajir.py # Topologically Sorted Source Nodes: [x_10, x_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_10 => convolution_5 # x_11 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_12, %primals_13, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=5] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_17 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256, ), (1, )) assert_size_stride(primals_14, (128, 384, 3, 3), (3456, 9, 3, 1)) assert_size_stride(primals_15, (128, ), (1, )) assert_size_stride(primals_16, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_17, (128, ), (1, )) assert_size_stride(primals_18, (64, 192, 3, 3), (1728, 9, 3, 1)) assert_size_stride(primals_19, (64, ), (1, )) assert_size_stride(primals_20, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_21, (64, ), (1, )) assert_size_stride(primals_22, (1, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_23, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) buf5 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.int8) # Topologically Sorted Source Nodes: [y2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf3, buf4, buf5, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf7, primals_7, 524288, grid=grid(524288), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf9, primals_9, 524288, grid=grid(524288), stream=stream0) del primals_9 buf10 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.int8) # Topologically Sorted Source Nodes: [y2_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf9, buf10, buf11, 131072, grid=grid(131072), stream=stream0) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 16, 16), (65536, 256, 16, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf13, primals_11, 262144, grid=grid(262144), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 16, 16), (65536, 256, 16, 1)) buf15 = empty_strided_cuda((32, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x2], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_5.run(buf15, 32, grid=grid(32), stream=stream0) buf16 = empty_strided_cuda((32, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_6.run(buf16, 32, grid=grid(32), stream=stream0) buf17 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_5.run(buf17, 32, grid=grid(32), stream=stream0) buf18 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_6.run(buf18, 32, grid=grid(32), stream=stream0) buf19 = empty_strided_cuda((32, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7.run(buf19, 32, grid=grid(32), stream=stream0) buf21 = empty_strided_cuda((32, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7.run(buf21, 32, grid=grid(32), stream=stream0) buf20 = empty_strided_cuda((4, 256, 32, 32), (262144, 1024, 32, 1), torch.float32) buf22 = empty_strided_cuda((4, 256, 32, 32), (262144, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [x_10, x_11, x2], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_8.run(buf15, buf17, buf14, primals_13, buf18, buf19, buf16, buf21, buf20, buf22, 1048576, grid=grid(1048576), stream=stream0) buf23 = empty_strided_cuda((4, 384, 32, 32), (393216, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_9.run(buf9, buf20, buf22, buf23, 1572864, grid=grid(1572864), stream=stream0) del buf20 del buf22 # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf25 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf25, primals_15, 524288, grid=grid(524288), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf25, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf27 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_10.run(buf27, 64, grid=grid(64), stream=stream0) buf28 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_11.run(buf28, 64, grid=grid(64), stream=stream0) buf29 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_10.run(buf29, 64, grid=grid(64), stream=stream0) buf30 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_11.run(buf30, 64, grid=grid(64), stream=stream0) buf31 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12.run(buf31, 64, grid=grid(64), stream=stream0) buf33 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12.run(buf33, 64, grid=grid(64), stream=stream0) buf32 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32) buf34 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x_14, x_15, x2_1], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_13.run(buf27, buf29, buf26, primals_17, buf30, buf31, buf28, buf33, buf32, buf34, 2097152, grid=grid(2097152), stream=stream0) buf35 = empty_strided_cuda((4, 192, 64, 64), (786432, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_14.run(buf3, buf32, buf34, buf35, 3145728, grid=grid(3145728), stream=stream0) del buf32 del buf34 # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.convolution] buf36 = extern_kernels.convolution(buf35, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf37 = buf36; del buf36 # reuse # Topologically Sorted Source Nodes: [x_16, x_17], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf37, primals_19, 1048576, grid=grid(1048576), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf39 = buf38; del buf38 # reuse # Topologically Sorted Source Nodes: [x_18, x_19], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf39, primals_21, 1048576, grid=grid(1048576), stream=stream0) del primals_21 # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.convolution] buf40 = extern_kernels.convolution(buf39, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf40, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf41 = buf40; del buf40 # reuse # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.convolution] triton_poi_fused_convolution_15.run(buf41, primals_23, 16384, grid=grid(16384), stream=stream0) del primals_23 buf42 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [x_14, x_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_16.run(buf26, primals_17, buf42, 524288, grid=grid(524288), stream=stream0) del buf26 del primals_17 buf43 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [x_10, x_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_17.run(buf14, primals_13, buf43, 262144, grid=grid(262144), stream=stream0) del buf14 del primals_13 return (buf41, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13, buf15, buf16, buf17, buf18, buf19, buf21, buf23, buf25, buf27, buf28, buf29, buf30, buf31, buf33, buf35, buf37, buf39, buf42, buf43, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((128, 384, 3, 3), (3456, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((64, 192, 3, 3), (1728, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((1, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.functional def conv3x3(in_, out): return nn.Conv2d(in_, out, 3, padding=1) class ConvRelu(nn.Module): def __init__(self, in_, out): super().__init__() self.conv = conv3x3(in_, out) self.activation = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.activation(x) return x class ConvRelu2(nn.Module): def __init__(self, _in, _out): super(ConvRelu2, self).__init__() self.cr1 = ConvRelu(_in, _out) self.cr2 = ConvRelu(_out, _out) def forward(self, x): x = self.cr1(x) x = self.cr2(x) return x class Coder(nn.Module): def __init__(self, in_size, out_size): super(Coder, self).__init__() self.conv = ConvRelu2(in_size, out_size) self.down = nn.MaxPool2d(2, 2) def forward(self, x): y1 = self.conv(x) y2 = self.down(y1) return y2, y1 class Decoder(nn.Module): def __init__(self, in_size, out_size): super(Decoder, self).__init__() self.conv = ConvRelu2(in_size, out_size) self.up = F.interpolate def forward(self, x1, x2): x2 = self.up(x2, scale_factor=2, mode='bilinear', align_corners=False) return self.conv(torch.cat([x1, x2], 1)) class AttentionNet(nn.Module): def __init__(self, in_channels=3, out_channels=1): super(AttentionNet, self).__init__() self.in_channels = in_channels self.out_channels = out_channels filters = [64, 128, 256] self.down1 = Coder(in_channels, filters[0]) self.down2 = Coder(filters[0], filters[1]) self.center = ConvRelu2(filters[1], filters[2]) self.up2 = Decoder(filters[2] + filters[1], filters[1]) self.up1 = Decoder(filters[1] + filters[0], filters[0]) self.final = nn.Conv2d(filters[0], out_channels, 1) def forward(self, x): x, befdown1 = self.down1(x) x, befdown2 = self.down2(x) x = self.center(x) x = self.up2(befdown2, x) x = self.up1(befdown1, x) x = self.final(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F import torch.nn.functional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused__to_copy_5(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_6(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 15, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_8(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 32 % 32 x0 = xindex % 32 x5 = xindex // 1024 x2 = xindex // 1024 % 256 x6 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 16 * tmp4 + 256 * x5), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp15 = tmp14 + tmp1 tmp16 = tmp14 < 0 tmp17 = tl.where(tmp16, tmp15, tmp14) tmp18 = tl.load(in_ptr2 + (tmp17 + 16 * tmp4 + 256 * x5), None, eviction_policy='evict_last') tmp19 = tmp18 + tmp10 tmp20 = triton_helpers.maximum(tmp12, tmp19) tmp21 = tmp20 - tmp13 tmp23 = tmp21 * tmp22 tmp24 = tmp13 + tmp23 tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp8 + 16 * tmp28 + 256 * x5), None, eviction_policy='evict_last') tmp30 = tmp29 + tmp10 tmp31 = triton_helpers.maximum(tmp12, tmp30) tmp32 = tl.load(in_ptr2 + (tmp17 + 16 * tmp28 + 256 * x5), None, eviction_policy='evict_last') tmp33 = tmp32 + tmp10 tmp34 = triton_helpers.maximum(tmp12, tmp33) tmp35 = tmp34 - tmp31 tmp36 = tmp35 * tmp22 tmp37 = tmp31 + tmp36 tmp38 = tmp37 - tmp24 tmp40 = tmp38 * tmp39 tl.store(out_ptr0 + x6, tmp24, None) tl.store(out_ptr1 + x6, tmp40, None) @triton.jit def triton_poi_fused_cat_9(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 1024 % 384 x0 = xindex % 1024 x2 = xindex // 393216 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 1024 * x1 + 131072 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 384, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 1024 * (-128 + x1) + 262144 * x2), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (x0 + 1024 * (-128 + x1) + 262144 * x2), tmp6, other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + x3, tmp14, None) @triton.jit def triton_poi_fused__to_copy_10(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_11(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 31, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_13(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 64 % 64 x0 = xindex % 64 x5 = xindex // 4096 x2 = xindex // 4096 % 128 x6 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 32 * tmp4 + 1024 * x5), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp15 = tmp14 + tmp1 tmp16 = tmp14 < 0 tmp17 = tl.where(tmp16, tmp15, tmp14) tmp18 = tl.load(in_ptr2 + (tmp17 + 32 * tmp4 + 1024 * x5), None, eviction_policy='evict_last') tmp19 = tmp18 + tmp10 tmp20 = triton_helpers.maximum(tmp12, tmp19) tmp21 = tmp20 - tmp13 tmp23 = tmp21 * tmp22 tmp24 = tmp13 + tmp23 tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp8 + 32 * tmp28 + 1024 * x5), None, eviction_policy='evict_last') tmp30 = tmp29 + tmp10 tmp31 = triton_helpers.maximum(tmp12, tmp30) tmp32 = tl.load(in_ptr2 + (tmp17 + 32 * tmp28 + 1024 * x5), None, eviction_policy='evict_last') tmp33 = tmp32 + tmp10 tmp34 = triton_helpers.maximum(tmp12, tmp33) tmp35 = tmp34 - tmp31 tmp36 = tmp35 * tmp22 tmp37 = tmp31 + tmp36 tmp38 = tmp37 - tmp24 tmp40 = tmp38 * tmp39 tl.store(out_ptr0 + x6, tmp24, None) tl.store(out_ptr1 + x6, tmp40, None) @triton.jit def triton_poi_fused_cat_14(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 192 x0 = xindex % 4096 x2 = xindex // 786432 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 262144 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 192, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-64 + x1) + 524288 * x2), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (x0 + 4096 * (-64 + x1) + 524288 * x2), tmp6, other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + x3, tmp14, None) @triton.jit def triton_poi_fused_convolution_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 ) = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (128, 384, 3, 3), (3456, 9, 3, 1)) assert_size_stride(primals_15, (128,), (1,)) assert_size_stride(primals_16, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_17, (128,), (1,)) assert_size_stride(primals_18, (64, 192, 3, 3), (1728, 9, 3, 1)) assert_size_stride(primals_19, (64,), (1,)) assert_size_stride(primals_20, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_21, (64,), (1,)) assert_size_stride(primals_22, (1, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_23, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(1048576)](buf1, primals_2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_0[grid(1048576)](buf3, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) buf5 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(262144)](buf3, buf4, buf5, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_2[grid(524288)](buf7, primals_7, 524288, XBLOCK=512, num_warps=8, num_stages=1) del primals_7 buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_2[grid(524288)](buf9, primals_9, 524288, XBLOCK=512, num_warps=8, num_stages=1) del primals_9 buf10 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(131072)](buf9, buf10, buf11, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 16, 16), (65536, 256, 16, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_4[grid(262144)](buf13, primals_11, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_11 buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 16, 16), (65536, 256, 16, 1)) buf15 = empty_strided_cuda((32, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_5[grid(32)](buf15, 32, XBLOCK=32, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((32, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_6[grid(32)](buf16, 32, XBLOCK=32, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused__to_copy_5[grid(32)](buf17, 32, XBLOCK=32, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused_add_clamp_6[grid(32)](buf18, 32, XBLOCK=32, num_warps=1, num_stages=1) buf19 = empty_strided_cuda((32,), (1,), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7[grid(32)](buf19, 32, XBLOCK=32, num_warps=1, num_stages=1) buf21 = empty_strided_cuda((32, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7[grid(32)](buf21, 32, XBLOCK=32, num_warps=1, num_stages=1) buf20 = empty_strided_cuda((4, 256, 32, 32), (262144, 1024, 32, 1), torch.float32) buf22 = empty_strided_cuda((4, 256, 32, 32), (262144, 1024, 32, 1), torch.float32) triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_8[grid( 1048576)](buf15, buf17, buf14, primals_13, buf18, buf19, buf16, buf21, buf20, buf22, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) buf23 = empty_strided_cuda((4, 384, 32, 32), (393216, 1024, 32, 1), torch.float32) triton_poi_fused_cat_9[grid(1572864)](buf9, buf20, buf22, buf23, 1572864, XBLOCK=1024, num_warps=4, num_stages=1) del buf20 del buf22 buf24 = extern_kernels.convolution(buf23, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf25 = buf24 del buf24 triton_poi_fused_convolution_relu_2[grid(524288)](buf25, primals_15, 524288, XBLOCK=512, num_warps=8, num_stages=1) del primals_15 buf26 = extern_kernels.convolution(buf25, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf27 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_10[grid(64)](buf27, 64, XBLOCK=64, num_warps=1, num_stages=1) buf28 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_11[grid(64)](buf28, 64, XBLOCK=64, num_warps=1, num_stages=1) buf29 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused__to_copy_10[grid(64)](buf29, 64, XBLOCK=64, num_warps=1, num_stages=1) buf30 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_add_clamp_11[grid(64)](buf30, 64, XBLOCK=64, num_warps=1, num_stages=1) buf31 = empty_strided_cuda((64,), (1,), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12[grid(64)](buf31, 64, XBLOCK=64, num_warps=1, num_stages=1) buf33 = empty_strided_cuda((64, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12[grid(64)](buf33, 64, XBLOCK=64, num_warps=1, num_stages=1) buf32 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32) buf34 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32) triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_13[grid (2097152)](buf27, buf29, buf26, primals_17, buf30, buf31, buf28, buf33, buf32, buf34, 2097152, XBLOCK=512, num_warps=8, num_stages=1 ) buf35 = empty_strided_cuda((4, 192, 64, 64), (786432, 4096, 64, 1), torch.float32) triton_poi_fused_cat_14[grid(3145728)](buf3, buf32, buf34, buf35, 3145728, XBLOCK=1024, num_warps=4, num_stages=1) del buf32 del buf34 buf36 = extern_kernels.convolution(buf35, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf37 = buf36 del buf36 triton_poi_fused_convolution_relu_0[grid(1048576)](buf37, primals_19, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_19 buf38 = extern_kernels.convolution(buf37, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf39 = buf38 del buf38 triton_poi_fused_convolution_relu_0[grid(1048576)](buf39, primals_21, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_21 buf40 = extern_kernels.convolution(buf39, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf40, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf41 = buf40 del buf40 triton_poi_fused_convolution_15[grid(16384)](buf41, primals_23, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 buf42 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_16[grid(524288)]( buf26, primals_17, buf42, 524288, XBLOCK=512, num_warps=8, num_stages=1) del buf26 del primals_17 buf43 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_17[grid(262144)]( buf14, primals_13, buf43, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf14 del primals_13 return (buf41, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13, buf15, buf16, buf17, buf18, buf19, buf21, buf23, buf25, buf27, buf28, buf29, buf30, buf31, buf33, buf35, buf37, buf39, buf42, buf43) def conv3x3(in_, out): return nn.Conv2d(in_, out, 3, padding=1) class ConvRelu(nn.Module): def __init__(self, in_, out): super().__init__() self.conv = conv3x3(in_, out) self.activation = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.activation(x) return x class ConvRelu2(nn.Module): def __init__(self, _in, _out): super(ConvRelu2, self).__init__() self.cr1 = ConvRelu(_in, _out) self.cr2 = ConvRelu(_out, _out) def forward(self, x): x = self.cr1(x) x = self.cr2(x) return x class Coder(nn.Module): def __init__(self, in_size, out_size): super(Coder, self).__init__() self.conv = ConvRelu2(in_size, out_size) self.down = nn.MaxPool2d(2, 2) def forward(self, x): y1 = self.conv(x) y2 = self.down(y1) return y2, y1 class Decoder(nn.Module): def __init__(self, in_size, out_size): super(Decoder, self).__init__() self.conv = ConvRelu2(in_size, out_size) self.up = F.interpolate def forward(self, x1, x2): x2 = self.up(x2, scale_factor=2, mode='bilinear', align_corners=False) return self.conv(torch.cat([x1, x2], 1)) class AttentionNetNew(nn.Module): def __init__(self, in_channels=3, out_channels=1): super(AttentionNetNew, self).__init__() self.in_channels = in_channels self.out_channels = out_channels filters = [64, 128, 256] self.down1 = Coder(in_channels, filters[0]) self.down2 = Coder(filters[0], filters[1]) self.center = ConvRelu2(filters[1], filters[2]) self.up2 = Decoder(filters[2] + filters[1], filters[1]) self.up1 = Decoder(filters[1] + filters[0], filters[0]) self.final = nn.Conv2d(filters[0], out_channels, 1) def forward(self, input_0): primals_1 = self.down1.conv.cr1.conv.weight primals_2 = self.down1.conv.cr1.conv.bias primals_4 = self.down1.conv.cr2.conv.weight primals_5 = self.down1.conv.cr2.conv.bias primals_6 = self.down2.conv.cr1.conv.weight primals_7 = self.down2.conv.cr1.conv.bias primals_8 = self.down2.conv.cr2.conv.weight primals_9 = self.down2.conv.cr2.conv.bias primals_10 = self.center.cr1.conv.weight primals_11 = self.center.cr1.conv.bias primals_12 = self.center.cr2.conv.weight primals_13 = self.center.cr2.conv.bias primals_14 = self.up2.conv.cr1.conv.weight primals_15 = self.up2.conv.cr1.conv.bias primals_16 = self.up2.conv.cr2.conv.weight primals_17 = self.up2.conv.cr2.conv.bias primals_18 = self.up1.conv.cr1.conv.weight primals_19 = self.up1.conv.cr1.conv.bias primals_20 = self.up1.conv.cr2.conv.weight primals_21 = self.up1.conv.cr2.conv.bias primals_22 = self.final.weight primals_23 = self.final.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23]) return output[0]
lvxiuwang/ferattention
AttentionNet
false
7,188
[ "MIT" ]
1
02e97df4a12129ed6706bddf0d2109650eae8765
https://github.com/lvxiuwang/ferattention/tree/02e97df4a12129ed6706bddf0d2109650eae8765
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.functional def conv3x3(in_, out): return nn.Conv2d(in_, out, 3, padding=1) class ConvRelu(nn.Module): def __init__(self, in_, out): super().__init__() self.conv = conv3x3(in_, out) self.activation = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.activation(x) return x class ConvRelu2(nn.Module): def __init__(self, _in, _out): super().__init__() self.cr1 = ConvRelu(_in, _out) self.cr2 = ConvRelu(_out, _out) def forward(self, x): x = self.cr1(x) x = self.cr2(x) return x class Coder(nn.Module): def __init__(self, in_size, out_size): super().__init__() self.conv = ConvRelu2(in_size, out_size) self.down = nn.MaxPool2d(2, 2) def forward(self, x): y1 = self.conv(x) y2 = self.down(y1) return y2, y1 class Decoder(nn.Module): def __init__(self, in_size, out_size): super().__init__() self.conv = ConvRelu2(in_size, out_size) self.up = F.interpolate def forward(self, x1, x2): x2 = self.up(x2, scale_factor=2, mode='bilinear', align_corners=False) return self.conv(torch.cat([x1, x2], 1)) class Model(nn.Module): def __init__(self, in_channels=3, out_channels=1): super().__init__() self.in_channels = in_channels self.out_channels = out_channels filters = [64, 128, 256] self.down1 = Coder(in_channels, filters[0]) self.down2 = Coder(filters[0], filters[1]) self.center = ConvRelu2(filters[1], filters[2]) self.up2 = Decoder(filters[2] + filters[1], filters[1]) self.up1 = Decoder(filters[1] + filters[0], filters[0]) self.final = nn.Conv2d(filters[0], out_channels, 1) def forward(self, x): x, befdown1 = self.down1(x) x, befdown2 = self.down2(x) x = self.center(x) x = self.up2(befdown2, x) x = self.up1(befdown1, x) x = self.final(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
MaxPool3x3
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/sf/csfwn4jjx3wjja53qogk34jyei2gmukxbwonjk7dxkt253ety24o.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem # Graph fragment: # %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + x4), tmp10 & xmask, other=float("-inf")) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + x4), tmp16 & xmask, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + x4), tmp23 & xmask, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + x4), tmp30 & xmask, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x4), tmp33 & xmask, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36 & xmask, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + x4), tmp43 & xmask, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + x4), tmp46 & xmask, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + x4), tmp49 & xmask, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tl.store(out_ptr0 + (x4), tmp51, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] stream0 = get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class MaxPool3x3(nn.Module): """3x3 max pool with no subsampling.""" def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(MaxPool3x3, self).__init__() self.maxpool = nn.MaxPool2d(kernel_size, stride, padding) def forward(self, x): x = self.maxpool(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + x4), tmp10 & xmask, other=float('-inf')) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + x4), tmp16 & xmask, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + x4), tmp23 & xmask, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + x4), tmp30 & xmask, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x4, tmp33 & xmask, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36 & xmask, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + x4), tmp43 & xmask, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + x4), tmp46 & xmask, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + x4), tmp49 & xmask, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tl.store(out_ptr0 + x4, tmp51, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class MaxPool3x3New(nn.Module): """3x3 max pool with no subsampling.""" def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(MaxPool3x3New, self).__init__() self.maxpool = nn.MaxPool2d(kernel_size, stride, padding) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mc-nya/unnas
MaxPool3x3
false
7,189
[ "MIT" ]
1
f778bb743144cf56ce2a48ccca20e9f3a97a7b84
https://github.com/mc-nya/unnas/tree/f778bb743144cf56ce2a48ccca20e9f3a97a7b84
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): """3x3 max pool with no subsampling.""" def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super().__init__() self.maxpool = nn.MaxPool2d(kernel_size, stride, padding) def forward(self, x): x = self.maxpool(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/v2/cv2ha4mes2yy34yfp3rs7w4jsqgoyz7khozf7gmpk6lmpcslkegp.py # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] # Source node to ATen node mapping: # truediv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute, 1.0), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/au/cau4pihcaptiev5y2ewn2o2nvrwhk7hogc72cofmmtbyv4rxc2oy.py # Topologically Sorted Source Nodes: [k], Original ATen: [aten.convolution] # Source node to ATen node mapping: # k => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_6, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/tt/cttmvktt3m2x2nl56afa7l3abaxt7wlehowakdzngkhgs35f3n7u.py # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] # Source node to ATen node mapping: # p_attn => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] # Source node to ATen node mapping: # p_attn => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_10, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [q], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_6, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_6, primals_7, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4), (16, 4, 1)) buf3 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(buf3, primals_2, 64, grid=grid(64), stream=stream0) del primals_2 buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [k], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf4, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [scores], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf6, buf7, 256, grid=grid(256), stream=stream0) del buf6 buf8 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [v], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf8, primals_8, 64, grid=grid(64), stream=stream0) del primals_8 buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0), primals_9, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4), (16, 4, 1)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf11, primals_10, 64, grid=grid(64), stream=stream0) del primals_10 return (buf11, buf7, primals_1, primals_3, primals_4, primals_6, primals_7, primals_9, buf7, reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import typing import torch.multiprocessing from torch import nn from torch.nn import functional as F import torch.optim import torch.utils.data import torch.distributed class MultiHeadAttention(nn.Module): def __init__(self, channels: 'int', out_channels: 'int', n_heads: 'int', p_dropout: 'float'=0.0, window_size: 'typing.Optional[int]'=None, heads_share: 'bool'=True, block_length: 'typing.Optional[int]'=None, proximal_bias: 'bool'=False, proximal_init: 'bool'=False): super().__init__() assert channels % n_heads == 0 self.channels = channels self.out_channels = out_channels self.n_heads = n_heads self.p_dropout = p_dropout self.window_size = window_size self.heads_share = heads_share self.block_length = block_length self.proximal_bias = proximal_bias self.proximal_init = proximal_init self.attn = None self.k_channels = channels // n_heads self.conv_q = nn.Conv1d(channels, channels, 1) self.conv_k = nn.Conv1d(channels, channels, 1) self.conv_v = nn.Conv1d(channels, channels, 1) self.conv_o = nn.Conv1d(channels, out_channels, 1) self.drop = nn.Dropout(p_dropout) if window_size is not None: n_heads_rel = 1 if heads_share else n_heads rel_stddev = self.k_channels ** -0.5 self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) nn.init.xavier_uniform_(self.conv_q.weight) nn.init.xavier_uniform_(self.conv_k.weight) nn.init.xavier_uniform_(self.conv_v.weight) if proximal_init: with torch.no_grad(): self.conv_k.weight.copy_(self.conv_q.weight) self.conv_k.bias.copy_(self.conv_q.bias) def forward(self, x, c, attn_mask=None): q = self.conv_q(x) k = self.conv_k(c) v = self.conv_v(c) x, self.attn = self.attention(q, k, v, mask=attn_mask) x = self.conv_o(x) return x def attention(self, query, key, value, mask=None): b, d, t_s, t_t = *key.size(), query.size(2) query = query.view(b, self.n_heads, self.k_channels, t_t).transpose( 2, 3) key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) value = value.view(b, self.n_heads, self.k_channels, t_s).transpose( 2, 3) scores = torch.matmul(query / math.sqrt(self.k_channels), key. transpose(-2, -1)) if self.window_size is not None: assert t_s == t_t, 'Relative attention is only available for self-attention.' key_relative_embeddings = self._get_relative_embeddings(self. emb_rel_k, t_s) rel_logits = self._matmul_with_relative_keys(query / math.sqrt( self.k_channels), key_relative_embeddings) scores_local = self._relative_position_to_absolute_position( rel_logits) scores = scores + scores_local if self.proximal_bias: assert t_s == t_t, 'Proximal bias is only available for self-attention.' scores = scores + self._attention_bias_proximal(t_s).type_as(scores ) if mask is not None: scores = scores.masked_fill(mask == 0, -10000.0) if self.block_length is not None: assert t_s == t_t, 'Local attention is only available for self-attention.' block_mask = torch.ones_like(scores).triu(-self.block_length ).tril(self.block_length) scores = scores.masked_fill(block_mask == 0, -10000.0) p_attn = F.softmax(scores, dim=-1) p_attn = self.drop(p_attn) output = torch.matmul(p_attn, value) if self.window_size is not None: relative_weights = self._absolute_position_to_relative_position( p_attn) value_relative_embeddings = self._get_relative_embeddings(self. emb_rel_v, t_s) output = output + self._matmul_with_relative_values( relative_weights, value_relative_embeddings) output = output.transpose(2, 3).contiguous().view(b, d, t_t) return output, p_attn def _matmul_with_relative_values(self, x, y): """ x: [b, h, l, m] y: [h or 1, m, d] ret: [b, h, l, d] """ ret = torch.matmul(x, y.unsqueeze(0)) return ret def _matmul_with_relative_keys(self, x, y): """ x: [b, h, l, d] y: [h or 1, m, d] ret: [b, h, l, m] """ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) return ret def _get_relative_embeddings(self, relative_embeddings, length): pad_length = max(length - (self.window_size + 1), 0) slice_start_position = max(self.window_size + 1 - length, 0) slice_end_position = slice_start_position + 2 * length - 1 if pad_length > 0: padded_relative_embeddings = F.pad(relative_embeddings, (0, 0, pad_length, pad_length, 0, 0)) else: padded_relative_embeddings = relative_embeddings used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position] return used_relative_embeddings def _relative_position_to_absolute_position(self, x): """ x: [b, h, l, 2*l-1] ret: [b, h, l, l] """ batch, heads, length, _ = x.size() x = F.pad(x, (0, 1, 0, 0, 0, 0, 0, 0)) x_flat = x.view([batch, heads, length * 2 * length]) x_flat = F.pad(x_flat, (0, length - 1, 0, 0, 0, 0)) x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1:] return x_final def _absolute_position_to_relative_position(self, x): """ x: [b, h, l, l] ret: [b, h, l, 2*l-1] """ batch, heads, length, _ = x.size() x = F.pad(x, (0, length - 1, 0, 0, 0, 0, 0, 0)) x_flat = x.view([batch, heads, length * length + length * (length - 1)] ) x_flat = F.pad(x_flat, (length, 0, 0, 0, 0, 0)) x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] return x_final def _attention_bias_proximal(self, length): """Bias for self-attention to encourage attention to close positions. Args: length: an integer scalar. Returns: a Tensor with shape [1, 1, length, length] """ r = torch.arange(length, dtype=torch.float32) diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff) ), 0), 0) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4, 'out_channels': 4, 'n_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math import typing import torch.multiprocessing from torch import nn from torch.nn import functional as F import torch.optim import torch.utils.data import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_10, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) buf1 = extern_kernels.convolution(primals_6, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = extern_kernels.convolution(primals_6, primals_7, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4), (16, 4, 1)) buf3 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_div_0[grid(64)](buf3, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf4 = buf1 del buf1 triton_poi_fused_convolution_1[grid(64)](buf4, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf6 buf8 = buf2 del buf2 triton_poi_fused_convolution_1[grid(64)](buf8, primals_8, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_8 buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = extern_kernels.convolution(reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0), primals_9, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4), (16, 4, 1)) buf11 = buf10 del buf10 triton_poi_fused_convolution_1[grid(64)](buf11, primals_10, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_10 return (buf11, buf7, primals_1, primals_3, primals_4, primals_6, primals_7, primals_9, buf7, reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)) class MultiHeadAttentionNew(nn.Module): def __init__(self, channels: 'int', out_channels: 'int', n_heads: 'int', p_dropout: 'float'=0.0, window_size: 'typing.Optional[int]'=None, heads_share: 'bool'=True, block_length: 'typing.Optional[int]'=None, proximal_bias: 'bool'=False, proximal_init: 'bool'=False): super().__init__() assert channels % n_heads == 0 self.channels = channels self.out_channels = out_channels self.n_heads = n_heads self.p_dropout = p_dropout self.window_size = window_size self.heads_share = heads_share self.block_length = block_length self.proximal_bias = proximal_bias self.proximal_init = proximal_init self.attn = None self.k_channels = channels // n_heads self.conv_q = nn.Conv1d(channels, channels, 1) self.conv_k = nn.Conv1d(channels, channels, 1) self.conv_v = nn.Conv1d(channels, channels, 1) self.conv_o = nn.Conv1d(channels, out_channels, 1) self.drop = nn.Dropout(p_dropout) if window_size is not None: n_heads_rel = 1 if heads_share else n_heads rel_stddev = self.k_channels ** -0.5 self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) nn.init.xavier_uniform_(self.conv_q.weight) nn.init.xavier_uniform_(self.conv_k.weight) nn.init.xavier_uniform_(self.conv_v.weight) if proximal_init: with torch.no_grad(): self.conv_k.weight.copy_(self.conv_q.weight) self.conv_k.bias.copy_(self.conv_q.bias) def attention(self, query, key, value, mask=None): b, d, t_s, t_t = *key.size(), query.size(2) query = query.view(b, self.n_heads, self.k_channels, t_t).transpose( 2, 3) key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) value = value.view(b, self.n_heads, self.k_channels, t_s).transpose( 2, 3) scores = torch.matmul(query / math.sqrt(self.k_channels), key. transpose(-2, -1)) if self.window_size is not None: assert t_s == t_t, 'Relative attention is only available for self-attention.' key_relative_embeddings = self._get_relative_embeddings(self. emb_rel_k, t_s) rel_logits = self._matmul_with_relative_keys(query / math.sqrt( self.k_channels), key_relative_embeddings) scores_local = self._relative_position_to_absolute_position( rel_logits) scores = scores + scores_local if self.proximal_bias: assert t_s == t_t, 'Proximal bias is only available for self-attention.' scores = scores + self._attention_bias_proximal(t_s).type_as(scores ) if mask is not None: scores = scores.masked_fill(mask == 0, -10000.0) if self.block_length is not None: assert t_s == t_t, 'Local attention is only available for self-attention.' block_mask = torch.ones_like(scores).triu(-self.block_length ).tril(self.block_length) scores = scores.masked_fill(block_mask == 0, -10000.0) p_attn = F.softmax(scores, dim=-1) p_attn = self.drop(p_attn) output = torch.matmul(p_attn, value) if self.window_size is not None: relative_weights = self._absolute_position_to_relative_position( p_attn) value_relative_embeddings = self._get_relative_embeddings(self. emb_rel_v, t_s) output = output + self._matmul_with_relative_values( relative_weights, value_relative_embeddings) output = output.transpose(2, 3).contiguous().view(b, d, t_t) return output, p_attn def _matmul_with_relative_values(self, x, y): """ x: [b, h, l, m] y: [h or 1, m, d] ret: [b, h, l, d] """ ret = torch.matmul(x, y.unsqueeze(0)) return ret def _matmul_with_relative_keys(self, x, y): """ x: [b, h, l, d] y: [h or 1, m, d] ret: [b, h, l, m] """ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) return ret def _get_relative_embeddings(self, relative_embeddings, length): pad_length = max(length - (self.window_size + 1), 0) slice_start_position = max(self.window_size + 1 - length, 0) slice_end_position = slice_start_position + 2 * length - 1 if pad_length > 0: padded_relative_embeddings = F.pad(relative_embeddings, (0, 0, pad_length, pad_length, 0, 0)) else: padded_relative_embeddings = relative_embeddings used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position] return used_relative_embeddings def _relative_position_to_absolute_position(self, x): """ x: [b, h, l, 2*l-1] ret: [b, h, l, l] """ batch, heads, length, _ = x.size() x = F.pad(x, (0, 1, 0, 0, 0, 0, 0, 0)) x_flat = x.view([batch, heads, length * 2 * length]) x_flat = F.pad(x_flat, (0, length - 1, 0, 0, 0, 0)) x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1:] return x_final def _absolute_position_to_relative_position(self, x): """ x: [b, h, l, l] ret: [b, h, l, 2*l-1] """ batch, heads, length, _ = x.size() x = F.pad(x, (0, length - 1, 0, 0, 0, 0, 0, 0)) x_flat = x.view([batch, heads, length * length + length * (length - 1)] ) x_flat = F.pad(x_flat, (length, 0, 0, 0, 0, 0)) x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] return x_final def _attention_bias_proximal(self, length): """Bias for self-attention to encourage attention to close positions. Args: length: an integer scalar. Returns: a Tensor with shape [1, 1, length, length] """ r = torch.arange(length, dtype=torch.float32) diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff) ), 0), 0) def forward(self, input_0, input_1): primals_1 = self.conv_q.weight primals_2 = self.conv_q.bias primals_4 = self.conv_k.weight primals_5 = self.conv_k.bias primals_7 = self.conv_v.weight primals_8 = self.conv_v.bias primals_9 = self.conv_o.weight primals_10 = self.conv_o.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
mbarnig/vits-train
MultiHeadAttention
false
7,190
[ "MIT" ]
1
cfb8a0fc91daad868fe3d062ebf85d62edbd7506
https://github.com/mbarnig/vits-train/tree/cfb8a0fc91daad868fe3d062ebf85d62edbd7506
import math import torch import typing import torch.multiprocessing from torch import nn from torch.nn import functional as F import torch.optim import torch.utils.data import torch.distributed class Model(nn.Module): def __init__(self, channels: 'int', out_channels: 'int', n_heads: 'int', p_dropout: 'float'=0.0, window_size: 'typing.Optional[int]'=None, heads_share: 'bool'=True, block_length: 'typing.Optional[int]'=None, proximal_bias: 'bool'=False, proximal_init: 'bool'=False): super().__init__() assert channels % n_heads == 0 self.channels = channels self.out_channels = out_channels self.n_heads = n_heads self.p_dropout = p_dropout self.window_size = window_size self.heads_share = heads_share self.block_length = block_length self.proximal_bias = proximal_bias self.proximal_init = proximal_init self.attn = None self.k_channels = channels // n_heads self.conv_q = nn.Conv1d(channels, channels, 1) self.conv_k = nn.Conv1d(channels, channels, 1) self.conv_v = nn.Conv1d(channels, channels, 1) self.conv_o = nn.Conv1d(channels, out_channels, 1) self.drop = nn.Dropout(p_dropout) if window_size is not None: n_heads_rel = 1 if heads_share else n_heads rel_stddev = self.k_channels ** -0.5 self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) nn.init.xavier_uniform_(self.conv_q.weight) nn.init.xavier_uniform_(self.conv_k.weight) nn.init.xavier_uniform_(self.conv_v.weight) if proximal_init: with torch.no_grad(): self.conv_k.weight.copy_(self.conv_q.weight) self.conv_k.bias.copy_(self.conv_q.bias) def forward(self, x, c, attn_mask=None): q = self.conv_q(x) k = self.conv_k(c) v = self.conv_v(c) x, self.attn = self.attention(q, k, v, mask=attn_mask) x = self.conv_o(x) return x def attention(self, query, key, value, mask=None): b, d, t_s, t_t = *key.size(), query.size(2) query = query.view(b, self.n_heads, self.k_channels, t_t).transpose( 2, 3) key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) value = value.view(b, self.n_heads, self.k_channels, t_s).transpose( 2, 3) scores = torch.matmul(query / math.sqrt(self.k_channels), key. transpose(-2, -1)) if self.window_size is not None: assert t_s == t_t, 'Relative attention is only available for self-attention.' key_relative_embeddings = self._get_relative_embeddings(self. emb_rel_k, t_s) rel_logits = self._matmul_with_relative_keys(query / math.sqrt( self.k_channels), key_relative_embeddings) scores_local = self._relative_position_to_absolute_position( rel_logits) scores = scores + scores_local if self.proximal_bias: assert t_s == t_t, 'Proximal bias is only available for self-attention.' scores = scores + self._attention_bias_proximal(t_s).type_as(scores ) if mask is not None: scores = scores.masked_fill(mask == 0, -10000.0) if self.block_length is not None: assert t_s == t_t, 'Local attention is only available for self-attention.' block_mask = torch.ones_like(scores).triu(-self.block_length ).tril(self.block_length) scores = scores.masked_fill(block_mask == 0, -10000.0) p_attn = F.softmax(scores, dim=-1) p_attn = self.drop(p_attn) output = torch.matmul(p_attn, value) # ... truncated (>4000 chars) for memory efficiency
ChannelNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/i7/ci7t7iiz7rvr7feeg7u3oqbndzrc2eexgichqwatlcys5unofv7u.py # Topologically Sorted Source Nodes: [mean, pow_1, mean_x2, pow_2, var, sub_1, add, sqrt, x_norm, mul, x_norm_1], Original ATen: [aten.mean, aten.pow, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mean => mean # mean_x2 => mean_1 # mul => mul # pow_1 => pow_1 # pow_2 => pow_2 # sqrt => sqrt # sub_1 => sub_1 # var => sub # x_norm => div # x_norm_1 => add_1 # Graph fragment: # %mean : [num_users=3] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1], True), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mean, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean_1, %pow_2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %mean), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1e-05), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %div), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_2), kwargs = {}) triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp18 = tl.load(in_ptr1 + (0)) tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp23 = tl.load(in_ptr2 + (0)) tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = tmp0 * tmp0 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = 64.0 tmp11 = tmp4 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tmp11 * tmp11 tmp14 = tmp12 - tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp20 = tmp0 - tmp11 tmp21 = tmp20 / tmp17 tmp22 = tmp19 * tmp21 tmp25 = tmp22 + tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp11, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp17, xmask) tl.store(out_ptr0 + (r1 + (64*x0)), tmp25, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf2 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0); del buf0 # reuse buf3 = reinterpret_tensor(buf2, (4, 1, 1), (1, 1, 1), 0); del buf2 # reuse buf4 = empty_strided_cuda((4, 1, 64), (64, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, pow_1, mean_x2, pow_2, var, sub_1, add, sqrt, x_norm, mul, x_norm_1], Original ATen: [aten.mean, aten.pow, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0.run(buf1, buf3, primals_1, primals_2, primals_3, buf4, 4, 64, grid=grid(4), stream=stream0) del primals_2 del primals_3 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class ChannelNorm(Module): """ ## Channel Normalization This is similar to [Group Normalization](../group_norm/index.html) but affine transform is done group wise. """ def __init__(self, channels, groups, eps: 'float'=1e-05, affine: 'bool' =True): """ * `groups` is the number of groups the features are divided into * `channels` is the number of features in the input * `eps` is $\\epsilon$, used in $\\sqrt{Var[x^{(k)}] + \\epsilon}$ for numerical stability * `affine` is whether to scale and shift the normalized value """ super().__init__() self.channels = channels self.groups = groups self.eps = eps self.affine = affine if self.affine: self.scale = nn.Parameter(torch.ones(groups)) self.shift = nn.Parameter(torch.zeros(groups)) def forward(self, x: 'torch.Tensor'): """ `x` is a tensor of shape `[batch_size, channels, *]`. `*` denotes any number of (possibly 0) dimensions. For example, in an image (2D) convolution this will be `[batch_size, channels, height, width]` """ x_shape = x.shape batch_size = x_shape[0] assert self.channels == x.shape[1] x = x.view(batch_size, self.groups, -1) mean = x.mean(dim=[-1], keepdim=True) mean_x2 = (x ** 2).mean(dim=[-1], keepdim=True) var = mean_x2 - mean ** 2 x_norm = (x - mean) / torch.sqrt(var + self.eps) if self.affine: x_norm = self.scale.view(1, -1, 1) * x_norm + self.shift.view(1, -1, 1) return x_norm.view(x_shape) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4, 'groups': 1}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp18 = tl.load(in_ptr1 + 0) tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp23 = tl.load(in_ptr2 + 0) tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = tmp0 * tmp0 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = 64.0 tmp11 = tmp4 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tmp11 * tmp11 tmp14 = tmp12 - tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp20 = tmp0 - tmp11 tmp21 = tmp20 / tmp17 tmp22 = tmp19 * tmp21 tmp25 = tmp22 + tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp11, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp17, xmask) tl.store(out_ptr0 + (r1 + 64 * x0), tmp25, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf2 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0) del buf0 buf3 = reinterpret_tensor(buf2, (4, 1, 1), (1, 1, 1), 0) del buf2 buf4 = empty_strided_cuda((4, 1, 64), (64, 64, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_mul_pow_sqrt_sub_0[grid(4)](buf1, buf3, primals_1, primals_2, primals_3, buf4, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_2 del primals_3 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, buf1, buf3 class ChannelNormNew(Module): """ ## Channel Normalization This is similar to [Group Normalization](../group_norm/index.html) but affine transform is done group wise. """ def __init__(self, channels, groups, eps: 'float'=1e-05, affine: 'bool' =True): """ * `groups` is the number of groups the features are divided into * `channels` is the number of features in the input * `eps` is $\\epsilon$, used in $\\sqrt{Var[x^{(k)}] + \\epsilon}$ for numerical stability * `affine` is whether to scale and shift the normalized value """ super().__init__() self.channels = channels self.groups = groups self.eps = eps self.affine = affine if self.affine: self.scale = nn.Parameter(torch.ones(groups)) self.shift = nn.Parameter(torch.zeros(groups)) def forward(self, input_0): primals_2 = self.scale primals_3 = self.shift primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mcx/annotated_deep_learning_paper_implementations
ChannelNorm
false
7,191
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ ## Channel Normalization This is similar to [Group Normalization](../group_norm/index.html) but affine transform is done group wise. """ def __init__(self, channels, groups, eps: 'float'=1e-05, affine: 'bool' =True): """ * `groups` is the number of groups the features are divided into * `channels` is the number of features in the input * `eps` is $\\epsilon$, used in $\\sqrt{Var[x^{(k)}] + \\epsilon}$ for numerical stability * `affine` is whether to scale and shift the normalized value """ super().__init__() self.channels = channels self.groups = groups self.eps = eps self.affine = affine if self.affine: self.scale = nn.Parameter(torch.ones(groups)) self.shift = nn.Parameter(torch.zeros(groups)) def forward(self, x: 'torch.Tensor'): """ `x` is a tensor of shape `[batch_size, channels, *]`. `*` denotes any number of (possibly 0) dimensions. For example, in an image (2D) convolution this will be `[batch_size, channels, height, width]` """ x_shape = x.shape batch_size = x_shape[0] assert self.channels == x.shape[1] x = x.view(batch_size, self.groups, -1) mean = x.mean(dim=[-1], keepdim=True) mean_x2 = (x ** 2).mean(dim=[-1], keepdim=True) var = mean_x2 - mean ** 2 x_norm = (x - mean) / torch.sqrt(var + self.eps) if self.affine: x_norm = self.scale.view(1, -1, 1) * x_norm + self.shift.view(1, -1, 1) return x_norm.view(x_shape) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 1]
NodeNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/gd/cgdkwbgll3qv33h27jvqqssey37x43ic2aqfujlpcwlrzderhg35.py # Topologically Sorted Source Nodes: [output, x], Original ATen: [aten.add, aten.clamp, aten.ge] # Source node to ATen node mapping: # output => add_1 # x => clamp_min # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_plus_mm_1, %primals_5), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_1, 0), kwargs = {}) # %ge_1 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add_1, 0), kwargs = {}) triton_poi_fused_add_clamp_ge_0 = async_compile.triton('triton_poi_fused_add_clamp_ge_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_ge_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_ge_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tmp2 >= tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/qf/cqfba74b3yhmr4smax2cvjl7whxhynb3lorxdgir7eilewsighvu.py # Topologically Sorted Source Nodes: [add_2, output_1, x_1], Original ATen: [aten.add, aten.clamp, aten.ge] # Source node to ATen node mapping: # add_2 => mm_plus_mm # output_1 => add_3 # x_1 => clamp_min_1 # Graph fragment: # %mm_plus_mm : [num_users=1] = call_function[target=torch._inductor.fx_passes.post_grad.mm_plus_mm](args = (), kwargs = {mat1: %primals_3, mat2: %mm_3, mat3: %clamp_min, mat4: %primals_7}) # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_plus_mm, %primals_8), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_3, 0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add_3, 0), kwargs = {}) triton_poi_fused_add_clamp_ge_1 = async_compile.triton('triton_poi_fused_add_clamp_ge_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_ge_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_ge_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = tmp4 >= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/w4/cw4mbfaglppoilurhnlij4aivvpd6du5dgvm56bnk7ylgctpb4hw.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 2) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (2*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (2*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 - tmp3 tmp7 = tl_math.exp(tmp6) tmp8 = tmp2 - tmp3 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tmp5 / tmp10 tl.store(out_ptr0 + (x2), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 32), (32, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 32), (32, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (32, 32), (32, 1)) assert_size_stride(primals_7, (32, 32), (32, 1)) assert_size_stride(primals_8, (32, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (16, 32), (32, 1)) assert_size_stride(primals_11, (16, ), (1, )) assert_size_stride(primals_12, (2, 16), (16, 1)) assert_size_stride(primals_13, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [potential_msgs], Original ATen: [aten.mm] extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] extern_kernels._mm_plus_mm(primals_3, buf0, primals_2, primals_4, out=buf1) del primals_4 buf2 = buf0; del buf0 # reuse buf12 = empty_strided_cuda((4, 32), (32, 1), torch.bool) # Topologically Sorted Source Nodes: [output, x], Original ATen: [aten.add, aten.clamp, aten.ge] stream0 = get_raw_stream(0) triton_poi_fused_add_clamp_ge_0.run(buf1, primals_5, buf2, buf12, 128, grid=grid(128), stream=stream0) del primals_5 buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [potential_msgs_1], Original ATen: [aten.mm] extern_kernels.mm(buf2, primals_6, out=buf3) buf4 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [add_2], Original ATen: [aten.add] extern_kernels.mm(primals_3, buf3, out=buf4) buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [add_2], Original ATen: [aten.add] extern_kernels.mm(buf2, primals_7, out=buf5) buf6 = empty_strided_cuda((4, 32), (32, 1), torch.float32) buf11 = empty_strided_cuda((4, 32), (32, 1), torch.bool) # Topologically Sorted Source Nodes: [add_2, output_1, x_1], Original ATen: [aten.add, aten.clamp, aten.ge] triton_poi_fused_add_clamp_ge_1.run(buf4, buf5, primals_8, buf6, buf11, 128, grid=grid(128), stream=stream0) del buf4 del primals_8 buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [add_2, output_1, x_1, output_2], Original ATen: [aten.add, aten.clamp, aten.mm] extern_kernels.mm(primals_9, buf6, out=buf7) del buf6 buf8 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf7, reinterpret_tensor(primals_10, (32, 16), (1, 32), 0), alpha=1, beta=1, out=buf8) del primals_11 buf9 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [output_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, buf8, reinterpret_tensor(primals_12, (16, 2), (1, 16), 0), alpha=1, beta=1, out=buf9) del primals_13 buf10 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf9, buf10, 8, grid=grid(8), stream=stream0) del buf9 return (buf10, buf7, buf8, buf10, primals_12, primals_10, reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), buf11, reinterpret_tensor(buf2, (32, 4), (1, 32), 0), reinterpret_tensor(primals_7, (32, 32), (1, 32), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_6, (32, 32), (1, 32), 0), buf12, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((16, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((2, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch.nn.parameter import Parameter def global_sum_pool(X, batch_mat): if batch_mat is None or batch_mat.dim() == 1: return torch.sum(X, dim=0).unsqueeze(0) else: return torch.mm(batch_mat, X) class BasicGraphConvolutionLayer(torch.nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.W2 = Parameter(torch.rand((in_channels, out_channels), dtype= torch.float32)) self.W1 = Parameter(torch.rand((in_channels, out_channels), dtype= torch.float32)) self.bias = Parameter(torch.zeros(out_channels, dtype=torch.float32)) def forward(self, X, A): potential_msgs = torch.mm(X, self.W2) propagated_msgs = torch.mm(A, potential_msgs) root_update = torch.mm(X, self.W1) output = propagated_msgs + root_update + self.bias return output class NodeNetwork(torch.nn.Module): def __init__(self, input_features): super().__init__() self.conv_1 = BasicGraphConvolutionLayer(input_features, 32) self.conv_2 = BasicGraphConvolutionLayer(32, 32) self.fc_1 = torch.nn.Linear(32, 16) self.out_layer = torch.nn.Linear(16, 2) def forward(self, X, A, batch_mat): x = self.conv_1(X, A).clamp(0) x = self.conv_2(x, A).clamp(0) output = global_sum_pool(x, batch_mat) output = self.fc_1(output) output = self.out_layer(output) return F.softmax(output, dim=1) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_clamp_ge_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tmp2 >= tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp5, xmask) @triton.jit def triton_poi_fused_add_clamp_ge_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = tmp4 >= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 2 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 - tmp3 tmp7 = tl_math.exp(tmp6) tmp8 = tmp2 - tmp3 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tmp5 / tmp10 tl.store(out_ptr0 + x2, tmp11, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 32), (32, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 32), (32, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (32, 32), (32, 1)) assert_size_stride(primals_7, (32, 32), (32, 1)) assert_size_stride(primals_8, (32,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (16, 32), (32, 1)) assert_size_stride(primals_11, (16,), (1,)) assert_size_stride(primals_12, (2, 16), (16, 1)) assert_size_stride(primals_13, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels._mm_plus_mm(primals_3, buf0, primals_2, primals_4, out=buf1) del primals_4 buf2 = buf0 del buf0 buf12 = empty_strided_cuda((4, 32), (32, 1), torch.bool) get_raw_stream(0) triton_poi_fused_add_clamp_ge_0[grid(128)](buf1, primals_5, buf2, buf12, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf3 = buf1 del buf1 extern_kernels.mm(buf2, primals_6, out=buf3) buf4 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels.mm(primals_3, buf3, out=buf4) buf5 = buf3 del buf3 extern_kernels.mm(buf2, primals_7, out=buf5) buf6 = empty_strided_cuda((4, 32), (32, 1), torch.float32) buf11 = empty_strided_cuda((4, 32), (32, 1), torch.bool) triton_poi_fused_add_clamp_ge_1[grid(128)](buf4, buf5, primals_8, buf6, buf11, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf4 del primals_8 buf7 = buf5 del buf5 extern_kernels.mm(primals_9, buf6, out=buf7) del buf6 buf8 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.addmm(primals_11, buf7, reinterpret_tensor( primals_10, (32, 16), (1, 32), 0), alpha=1, beta=1, out=buf8) del primals_11 buf9 = empty_strided_cuda((4, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_13, buf8, reinterpret_tensor( primals_12, (16, 2), (1, 16), 0), alpha=1, beta=1, out=buf9) del primals_13 buf10 = empty_strided_cuda((4, 2), (2, 1), torch.float32) triton_poi_fused__softmax_2[grid(8)](buf9, buf10, 8, XBLOCK=8, num_warps=1, num_stages=1) del buf9 return (buf10, buf7, buf8, buf10, primals_12, primals_10, reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), buf11, reinterpret_tensor(buf2, (32, 4), (1, 32), 0), reinterpret_tensor( primals_7, (32, 32), (1, 32), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_6, (32, 32), (1, 32), 0), buf12, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0)) def global_sum_pool(X, batch_mat): if batch_mat is None or batch_mat.dim() == 1: return torch.sum(X, dim=0).unsqueeze(0) else: return torch.mm(batch_mat, X) class BasicGraphConvolutionLayer(torch.nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.W2 = Parameter(torch.rand((in_channels, out_channels), dtype= torch.float32)) self.W1 = Parameter(torch.rand((in_channels, out_channels), dtype= torch.float32)) self.bias = Parameter(torch.zeros(out_channels, dtype=torch.float32)) def forward(self, X, A): potential_msgs = torch.mm(X, self.W2) propagated_msgs = torch.mm(A, potential_msgs) root_update = torch.mm(X, self.W1) output = propagated_msgs + root_update + self.bias return output class NodeNetworkNew(torch.nn.Module): def __init__(self, input_features): super().__init__() self.conv_1 = BasicGraphConvolutionLayer(input_features, 32) self.conv_2 = BasicGraphConvolutionLayer(32, 32) self.fc_1 = torch.nn.Linear(32, 16) self.out_layer = torch.nn.Linear(16, 2) def forward(self, input_0, input_1, input_2): primals_1 = self.conv_1.W2 primals_4 = self.conv_1.W1 primals_5 = self.conv_1.bias primals_6 = self.conv_2.W2 primals_7 = self.conv_2.W1 primals_8 = self.conv_2.bias primals_10 = self.fc_1.weight primals_11 = self.fc_1.bias primals_12 = self.out_layer.weight primals_13 = self.out_layer.bias primals_2 = input_0 primals_3 = input_1 primals_9 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
mbrukman/machine-learning-book
NodeNetwork
false
7,192
[ "MIT" ]
1
f29a0f8aafa63a77081f3bcec68866e33dd41776
https://github.com/mbrukman/machine-learning-book/tree/f29a0f8aafa63a77081f3bcec68866e33dd41776
import torch import torch.nn.functional as F from torch.nn.parameter import Parameter def global_sum_pool(X, batch_mat): if batch_mat is None or batch_mat.dim() == 1: return torch.sum(X, dim=0).unsqueeze(0) else: return torch.mm(batch_mat, X) class BasicGraphConvolutionLayer(torch.nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.W2 = Parameter(torch.rand((in_channels, out_channels), dtype= torch.float32)) self.W1 = Parameter(torch.rand((in_channels, out_channels), dtype= torch.float32)) self.bias = Parameter(torch.zeros(out_channels, dtype=torch.float32)) def forward(self, X, A): potential_msgs = torch.mm(X, self.W2) propagated_msgs = torch.mm(A, potential_msgs) root_update = torch.mm(X, self.W1) output = propagated_msgs + root_update + self.bias return output class Model(torch.nn.Module): def __init__(self, input_features): super().__init__() self.conv_1 = BasicGraphConvolutionLayer(input_features, 32) self.conv_2 = BasicGraphConvolutionLayer(32, 32) self.fc_1 = torch.nn.Linear(32, 16) self.out_layer = torch.nn.Linear(16, 2) def forward(self, X, A, batch_mat): x = self.conv_1(X, A).clamp(0) x = self.conv_2(x, A).clamp(0) output = global_sum_pool(x, batch_mat) output = self.fc_1(output) output = self.out_layer(output) return F.softmax(output, dim=1) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4]
FFN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/pf/cpfm5wdpxnjdoxwc64lkd5hti4p2apuv2blizip6w7zx245e2zdx.py # Topologically Sorted Source Nodes: [mul, x], Original ATen: [aten.mul, aten.constant_pad_nd] # Source node to ATen node mapping: # mul => mul # x => constant_pad_nd # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%mul, [1, 2, 0, 0, 0, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_mul_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 112 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 7 x1 = (xindex // 7) x2 = xindex tmp0 = (-1) + x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + ((-1) + x0 + (4*x1)), tmp5 & xmask, other=0.0) tmp7 = tl.load(in_ptr1 + ((-1) + x0 + (4*x1)), tmp5 & xmask, other=0.0) tmp8 = tmp6 * tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp5, tmp8, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fg/cfgllpb4gyvdjlh7fdxswezh7emhepgm4i7bapbduuzso44m6c2f.py # Topologically Sorted Source Nodes: [x_1, x_2, mul_1, x_4], Original ATen: [aten.convolution, aten.relu, aten.mul, aten.constant_pad_nd] # Source node to ATen node mapping: # mul_1 => mul_1 # x_1 => convolution # x_2 => relu # x_4 => constant_pad_nd_1 # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_3, %primals_4, [1], [0], [1], False, [0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %primals_2), kwargs = {}) # %constant_pad_nd_1 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%mul_1, [1, 2, 0, 0, 0, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_convolution_mul_relu_1 = async_compile.triton('triton_poi_fused_constant_pad_nd_convolution_mul_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_convolution_mul_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_convolution_mul_relu_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 112 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 7 x3 = (xindex // 7) x1 = (xindex // 7) % 4 x4 = xindex tmp0 = (-1) + x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + ((-1) + x0 + (4*x3)), tmp5 & xmask, other=0.0) tmp7 = tl.load(in_ptr1 + (x1), tmp5 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = tl.load(in_ptr2 + ((-1) + x0 + (4*x3)), tmp5 & xmask, other=0.0) tmp12 = tmp10 * tmp11 tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp5, tmp12, tmp13) tl.store(out_ptr0 + (x4), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/p4/cp4nytdwbukq45muq2audhwinyxcui5jzm35yncgordm6rei7uos.py # Topologically Sorted Source Nodes: [x_5, mul_2], Original ATen: [aten.convolution, aten.mul] # Source node to ATen node mapping: # mul_2 => mul_2 # x_5 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd_1, %primals_5, %primals_6, [1], [0], [1], False, [0], 1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, %primals_2), kwargs = {}) triton_poi_fused_convolution_mul_2 = async_compile.triton('triton_poi_fused_convolution_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wy/cwyc5bi426x3ud3par7mhtpup3hm766bdsmojwrlcobttexvf7oe.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => convolution # x_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_3, %primals_4, [1], [0], [1], False, [0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, x], Original ATen: [aten.mul, aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_mul_0.run(primals_1, primals_2, buf0, 112, grid=grid(112), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2, mul_1, x_4], Original ATen: [aten.convolution, aten.relu, aten.mul, aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_convolution_mul_relu_1.run(buf1, primals_4, primals_2, buf2, 112, grid=grid(112), stream=stream0) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4), (16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [x_5, mul_2], Original ATen: [aten.convolution, aten.mul] triton_poi_fused_convolution_mul_2.run(buf4, primals_6, primals_2, 64, grid=grid(64), stream=stream0) del primals_6 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_3.run(buf1, primals_4, buf5, 64, grid=grid(64), stream=stream0) del buf1 del primals_4 return (buf4, primals_2, primals_3, primals_5, buf0, buf2, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import typing import torch.multiprocessing from torch import nn from torch.nn import functional as F import torch.optim import torch.utils.data import torch.distributed class FFN(nn.Module): def __init__(self, in_channels: 'int', out_channels: 'int', filter_channels: 'int', kernel_size: 'int', p_dropout: 'float'=0.0, activation: 'typing.Optional[str]'=None, causal: 'bool'=False): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.p_dropout = p_dropout self.activation = activation self.causal = causal if causal: self.padding = self._causal_padding else: self.padding = self._same_padding self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) self.drop = nn.Dropout(p_dropout) def forward(self, x, x_mask): x = self.conv_1(self.padding(x * x_mask)) if self.activation == 'gelu': x = x * torch.sigmoid(1.702 * x) else: x = torch.relu(x) x = self.drop(x) x = self.conv_2(self.padding(x * x_mask)) return x * x_mask def _causal_padding(self, x): if self.kernel_size == 1: return x pad_l = self.kernel_size - 1 pad_r = 0 x = F.pad(x, (pad_l, pad_r, 0, 0, 0, 0)) return x def _same_padding(self, x): if self.kernel_size == 1: return x pad_l = (self.kernel_size - 1) // 2 pad_r = self.kernel_size // 2 x = F.pad(x, (pad_l, pad_r, 0, 0, 0, 0)) return x def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'filter_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import typing import torch.multiprocessing from torch import nn from torch.nn import functional as F import torch.optim import torch.utils.data import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 112 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 7 x1 = xindex // 7 x2 = xindex tmp0 = -1 + x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1), tmp5 & xmask, other=0.0) tmp7 = tl.load(in_ptr1 + (-1 + x0 + 4 * x1), tmp5 & xmask, other=0.0) tmp8 = tmp6 * tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp5, tmp8, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_convolution_mul_relu_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 112 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 7 x3 = xindex // 7 x1 = xindex // 7 % 4 x4 = xindex tmp0 = -1 + x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (-1 + x0 + 4 * x3), tmp5 & xmask, other=0.0) tmp7 = tl.load(in_ptr1 + x1, tmp5 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = tl.load(in_ptr2 + (-1 + x0 + 4 * x3), tmp5 & xmask, other=0.0) tmp12 = tmp10 * tmp11 tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp5, tmp12, tmp13) tl.store(out_ptr0 + x4, tmp14, xmask) @triton.jit def triton_poi_fused_convolution_mul_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_mul_0[grid(112)](primals_1, primals_2, buf0, 112, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) triton_poi_fused_constant_pad_nd_convolution_mul_relu_1[grid(112)](buf1 , primals_4, primals_2, buf2, 112, XBLOCK=128, num_warps=4, num_stages=1) buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4), (16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_mul_2[grid(64)](buf4, primals_6, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_6 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_3[grid(64)](buf1, primals_4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf1 del primals_4 return buf4, primals_2, primals_3, primals_5, buf0, buf2, buf5 class FFNNew(nn.Module): def __init__(self, in_channels: 'int', out_channels: 'int', filter_channels: 'int', kernel_size: 'int', p_dropout: 'float'=0.0, activation: 'typing.Optional[str]'=None, causal: 'bool'=False): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.p_dropout = p_dropout self.activation = activation self.causal = causal if causal: self.padding = self._causal_padding else: self.padding = self._same_padding self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) self.drop = nn.Dropout(p_dropout) def _causal_padding(self, x): if self.kernel_size == 1: return x pad_l = self.kernel_size - 1 pad_r = 0 x = F.pad(x, (pad_l, pad_r, 0, 0, 0, 0)) return x def _same_padding(self, x): if self.kernel_size == 1: return x pad_l = (self.kernel_size - 1) // 2 pad_r = self.kernel_size // 2 x = F.pad(x, (pad_l, pad_r, 0, 0, 0, 0)) return x def forward(self, input_0, input_1): primals_1 = self.conv_1.weight primals_4 = self.conv_1.bias primals_2 = self.conv_2.weight primals_6 = self.conv_2.bias primals_3 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
mbarnig/vits-train
FFN
false
7,193
[ "MIT" ]
1
cfb8a0fc91daad868fe3d062ebf85d62edbd7506
https://github.com/mbarnig/vits-train/tree/cfb8a0fc91daad868fe3d062ebf85d62edbd7506
import torch import typing import torch.multiprocessing from torch import nn from torch.nn import functional as F import torch.optim import torch.utils.data import torch.distributed class Model(nn.Module): def __init__(self, in_channels: 'int', out_channels: 'int', filter_channels: 'int', kernel_size: 'int', p_dropout: 'float'=0.0, activation: 'typing.Optional[str]'=None, causal: 'bool'=False): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.p_dropout = p_dropout self.activation = activation self.causal = causal if causal: self.padding = self._causal_padding else: self.padding = self._same_padding self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) self.drop = nn.Dropout(p_dropout) def forward(self, x, x_mask): x = self.conv_1(self.padding(x * x_mask)) if self.activation == 'gelu': x = x * torch.sigmoid(1.702 * x) else: x = torch.relu(x) x = self.drop(x) x = self.conv_2(self.padding(x * x_mask)) return x * x_mask def _causal_padding(self, x): if self.kernel_size == 1: return x pad_l = self.kernel_size - 1 pad_r = 0 x = F.pad(x, (pad_l, pad_r, 0, 0, 0, 0)) return x def _same_padding(self, x): if self.kernel_size == 1: return x pad_l = (self.kernel_size - 1) // 2 pad_r = self.kernel_size // 2 x = F.pad(x, (pad_l, pad_r, 0, 0, 0, 0)) return x def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'filter_channels': 4, 'kernel_size': 4}]
DiscriminatorLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/6k/c6keogbsbczhv7za5qvdnqtoyslxmpkn26o5ri5y2uquynatq3pp.py # Topologically Sorted Source Nodes: [sub, relu, mean], Original ATen: [aten.rsub, aten.relu, aten.mean] # Source node to ATen node mapping: # mean => mean # relu => relu # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%relu,), kwargs = {}) triton_per_fused_mean_relu_rsub_0 = async_compile.triton('triton_per_fused_mean_relu_rsub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_relu_rsub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_relu_rsub_0(in_out_ptr0, in_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = 256.0 tmp9 = tmp7 / tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lj/cljvcit4p6vjtwmejklnkzpuexfn22rbffq5dyzgt4sefx3jy3zk.py # Topologically Sorted Source Nodes: [add, relu_1, mean_1], Original ATen: [aten.add, aten.relu, aten.mean] # Source node to ATen node mapping: # add => add # mean_1 => mean_1 # relu_1 => relu_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, 1), kwargs = {}) # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%relu_1,), kwargs = {}) triton_per_fused_add_mean_relu_1 = async_compile.triton('triton_per_fused_add_mean_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_relu_1(in_out_ptr0, in_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = 256.0 tmp9 = tmp7 / tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp9, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, relu, mean], Original ATen: [aten.rsub, aten.relu, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_relu_rsub_0.run(buf2, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add, relu_1, mean_1], Original ATen: [aten.add, aten.relu, aten.mean] triton_per_fused_add_mean_relu_1.run(buf3, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg1_1 return (buf2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.nn.functional as F import torch.utils.data import torch.nn.functional import torch.autograd class DiscriminatorLoss(Module): """ ## Discriminator Loss We want to find $w$ to maximize $$\\mathbb{E}_{x \\sim \\mathbb{P}_r} [f_w(x)]- \\mathbb{E}_{z \\sim p(z)} [f_w(g_ heta(z))]$$, so we minimize, $$- rac{1}{m} \\sum_{i=1}^m f_w ig(x^{(i)} ig) + rac{1}{m} \\sum_{i=1}^m f_w ig( g_ heta(z^{(i)}) ig)$$ """ def forward(self, f_real: 'torch.Tensor', f_fake: 'torch.Tensor'): """ * `f_real` is $f_w(x)$ * `f_fake` is $f_w(g_ heta(z))$ This returns the a tuple with losses for $f_w(x)$ and $f_w(g_ heta(z))$, which are later added. They are kept separate for logging. """ return F.relu(1 - f_real).mean(), F.relu(1 + f_fake).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_relu_rsub_0(in_out_ptr0, in_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = 256.0 tmp9 = tmp7 / tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp9, None) @triton.jit def triton_per_fused_add_mean_relu_1(in_out_ptr0, in_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = 256.0 tmp9 = tmp7 / tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp9, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_relu_rsub_0[grid(1)](buf2, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf3 = buf1 del buf1 triton_per_fused_add_mean_relu_1[grid(1)](buf3, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg1_1 return buf2, buf3 class DiscriminatorLossNew(Module): """ ## Discriminator Loss We want to find $w$ to maximize $$\\mathbb{E}_{x \\sim \\mathbb{P}_r} [f_w(x)]- \\mathbb{E}_{z \\sim p(z)} [f_w(g_ heta(z))]$$, so we minimize, $$- rac{1}{m} \\sum_{i=1}^m f_w ig(x^{(i)} ig) + rac{1}{m} \\sum_{i=1}^m f_w ig( g_ heta(z^{(i)}) ig)$$ """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0], output[1]
mcx/annotated_deep_learning_paper_implementations
DiscriminatorLoss
false
7,194
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch import torch.nn.functional as F import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ ## Discriminator Loss We want to find $w$ to maximize $$\\mathbb{E}_{x \\sim \\mathbb{P}_r} [f_w(x)]- \\mathbb{E}_{z \\sim p(z)} [f_w(g_ heta(z))]$$, so we minimize, $$- rac{1}{m} \\sum_{i=1}^m f_w ig(x^{(i)} ig) + rac{1}{m} \\sum_{i=1}^m f_w ig( g_ heta(z^{(i)}) ig)$$ """ def forward(self, f_real: 'torch.Tensor', f_fake: 'torch.Tensor'): """ * `f_real` is $f_w(x)$ * `f_fake` is $f_w(g_ heta(z))$ This returns the a tuple with losses for $f_w(x)$ and $f_w(g_ heta(z))$, which are later added. They are kept separate for logging. """ return F.relu(1 - f_real).mean(), F.relu(1 + f_fake).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Model
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/jq/cjqaq2meov3vkcgfealq7w4w35tw2oemvmhneuxmigeoumva22p7.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_1 => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_3 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_3 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0) del buf3 return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Model, self).__init__() self.layer1 = nn.Linear(input_size, hidden_size) self.layer2 = nn.Linear(hidden_size, output_size) def forward(self, x): x = self.layer1(x) x = nn.Sigmoid()(x) x = self.layer2(x) x = nn.Softmax(dim=1)(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(256)](buf1, primals_2, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf4, primals_4 class ModelNew(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(ModelNew, self).__init__() self.layer1 = nn.Linear(input_size, hidden_size) self.layer2 = nn.Linear(hidden_size, output_size) def forward(self, input_0): primals_1 = self.layer1.weight primals_2 = self.layer1.bias primals_4 = self.layer2.weight primals_5 = self.layer2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
mbrukman/machine-learning-book
Model
false
7,195
[ "MIT" ]
1
f29a0f8aafa63a77081f3bcec68866e33dd41776
https://github.com/mbrukman/machine-learning-book/tree/f29a0f8aafa63a77081f3bcec68866e33dd41776
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Model, self).__init__() self.layer1 = nn.Linear(input_size, hidden_size) self.layer2 = nn.Linear(hidden_size, output_size) def forward(self, x): x = self.layer1(x) x = nn.Sigmoid()(x) x = self.layer2(x) x = nn.Softmax(dim=1)(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
ClippedValueFunctionLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ux/cuxyq6jg627wu3buhxoipzlue5jekgs24d5ikz7kqoqhqlliw5dg.py # Topologically Sorted Source Nodes: [sub_1, pow_1, sub, neg, clamp, clipped_value, sub_2, pow_2, vf_loss, mean, mul], Original ATen: [aten.sub, aten.pow, aten.neg, aten.clamp, aten.add, aten.maximum, aten.mean, aten.mul] # Source node to ATen node mapping: # clamp => clamp_max, clamp_min # clipped_value => add # mean => mean # mul => mul # neg => neg # pow_1 => pow_1 # pow_2 => pow_2 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # vf_loss => maximum # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg3_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg2_1,), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.Tensor](args = (%sub, %neg), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.Tensor](args = (%clamp_min, %arg2_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %clamp_max), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %arg3_1), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%pow_1, %pow_2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%maximum,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {}) triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0 = async_compile.triton('triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp4 = tl.load(in_ptr2 + (r0), None) tmp6 = tl.load(in_ptr3 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp5 = tmp0 - tmp4 tmp7 = -tmp6 tmp8 = triton_helpers.maximum(tmp5, tmp7) tmp9 = triton_helpers.minimum(tmp8, tmp6) tmp10 = tmp4 + tmp9 tmp11 = tmp10 - tmp1 tmp12 = tmp11 * tmp11 tmp13 = triton_helpers.maximum(tmp3, tmp12) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tmp19 = 0.5 tmp20 = tmp18 * tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp20, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub_1, pow_1, sub, neg, clamp, clipped_value, sub_2, pow_2, vf_loss, mean, mul], Original ATen: [aten.sub, aten.pow, aten.neg, aten.clamp, aten.add, aten.maximum, aten.mean, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0.run(buf1, arg0_1, arg3_1, arg1_1, arg2_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class ClippedValueFunctionLoss(Module): """ ## Clipped Value Function Loss Similarly we clip the value function update also. egin{align} V^{\\pi_ heta}_{CLIP}(s_t) &= clip\\Bigl(V^{\\pi_ heta}(s_t) - \\hat{V_t}, -\\epsilon, +\\epsilon\\Bigr) \\ \\mathcal{L}^{VF}( heta) &= rac{1}{2} \\mathbb{E} iggl[ max\\Bigl(igl(V^{\\pi_ heta}(s_t) - R_tigr)^2, igl(V^{\\pi_ heta}_{CLIP}(s_t) - R_tigr)^2\\Bigr) iggr] \\end{align} Clipping makes sure the value function $V_ heta$ doesn't deviate significantly from $V_{ heta_{OLD}}$. """ def forward(self, value: 'torch.Tensor', sampled_value: 'torch.Tensor', sampled_return: 'torch.Tensor', clip: 'float'): clipped_value = sampled_value + (value - sampled_value).clamp(min=- clip, max=clip) vf_loss = torch.max((value - sampled_return) ** 2, (clipped_value - sampled_return) ** 2) return 0.5 * vf_loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp4 = tl.load(in_ptr2 + r0, None) tmp6 = tl.load(in_ptr3 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp5 = tmp0 - tmp4 tmp7 = -tmp6 tmp8 = triton_helpers.maximum(tmp5, tmp7) tmp9 = triton_helpers.minimum(tmp8, tmp6) tmp10 = tmp4 + tmp9 tmp11 = tmp10 - tmp1 tmp12 = tmp11 * tmp11 tmp13 = triton_helpers.maximum(tmp3, tmp12) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tmp19 = 0.5 tmp20 = tmp18 * tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_clamp_maximum_mean_mul_neg_pow_sub_0[grid(1)](buf1 , arg0_1, arg3_1, arg1_1, arg2_1, 1, 256, num_warps=2, num_stages=1 ) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return buf1, class ClippedValueFunctionLossNew(Module): """ ## Clipped Value Function Loss Similarly we clip the value function update also. egin{align} V^{\\pi_ heta}_{CLIP}(s_t) &= clip\\Bigl(V^{\\pi_ heta}(s_t) - \\hat{V_t}, -\\epsilon, +\\epsilon\\Bigr) \\ \\mathcal{L}^{VF}( heta) &= rac{1}{2} \\mathbb{E} iggl[ max\\Bigl(igl(V^{\\pi_ heta}(s_t) - R_tigr)^2, igl(V^{\\pi_ heta}_{CLIP}(s_t) - R_tigr)^2\\Bigr) iggr] \\end{align} Clipping makes sure the value function $V_ heta$ doesn't deviate significantly from $V_{ heta_{OLD}}$. """ def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0]
mcx/annotated_deep_learning_paper_implementations
ClippedValueFunctionLoss
false
7,196
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ ## Clipped Value Function Loss Similarly we clip the value function update also. egin{align} V^{\\pi_ heta}_{CLIP}(s_t) &= clip\\Bigl(V^{\\pi_ heta}(s_t) - \\hat{V_t}, -\\epsilon, +\\epsilon\\Bigr) \\ \\mathcal{L}^{VF}( heta) &= rac{1}{2} \\mathbb{E} iggl[ max\\Bigl(igl(V^{\\pi_ heta}(s_t) - R_tigr)^2, igl(V^{\\pi_ heta}_{CLIP}(s_t) - R_tigr)^2\\Bigr) iggr] \\end{align} Clipping makes sure the value function $V_ heta$ doesn't deviate significantly from $V_{ heta_{OLD}}$. """ def forward(self, value: 'torch.Tensor', sampled_value: 'torch.Tensor', sampled_return: 'torch.Tensor', clip: 'float'): clipped_value = sampled_value + (value - sampled_value).clamp(min=- clip, max=clip) vf_loss = torch.max((value - sampled_return) ** 2, (clipped_value - sampled_return) ** 2) return 0.5 * vf_loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CrossEntropyBayesRisk
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/f7/cf7j4pwlu55ah6fc4huqphitmbwk5lpjrsflp3g4iowoictloibu.py # Topologically Sorted Source Nodes: [alpha, strength], Original ATen: [aten.add, aten.sum] # Source node to ATen node mapping: # alpha => add # strength => sum_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add, [-1]), kwargs = {}) triton_poi_fused_add_sum_0 = async_compile.triton('triton_poi_fused_add_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = tmp2 + tmp4 tmp7 = tmp6 + tmp1 tmp8 = tmp5 + tmp7 tmp10 = tmp9 + tmp1 tmp11 = tmp8 + tmp10 tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ng/cng3qs5i7l7nydt5poohpevomfjvgc4tpjnfgxynhzf2fuov5xde.py # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten.add] # Source node to ATen node mapping: # alpha => add # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vn/cvnzeqhjxijtgpwsm3a57xbuknnkhkk7k3udzcqfvczkfyomgkmt.py # Topologically Sorted Source Nodes: [sub, mul, loss, mean], Original ATen: [aten.sub, aten.mul, aten.sum, aten.mean] # Source node to ATen node mapping: # loss => sum_2 # mean => mean # mul => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %digamma_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %sub), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {}) triton_per_fused_mean_mul_sub_sum_2 = async_compile.triton('triton_per_fused_mean_mul_sub_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_sub_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_mul_sub_sum_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r2 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (4*r3), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + ((4*r0) + (16*r2)), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (4*r3), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*r3)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (1 + (4*r0) + (16*r2)), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + (1 + (4*r3)), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + (4*r3)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (2 + (4*r0) + (16*r2)), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (2 + (4*r3)), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (3 + (4*r3)), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (3 + (4*r0) + (16*r2)), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr2 + (3 + (4*r3)), None, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp4 = tmp0 * tmp3 tmp8 = tmp6 - tmp7 tmp9 = tmp5 * tmp8 tmp10 = tmp4 + tmp9 tmp14 = tmp12 - tmp13 tmp15 = tmp11 * tmp14 tmp16 = tmp10 + tmp15 tmp20 = tmp18 - tmp19 tmp21 = tmp17 * tmp20 tmp22 = tmp16 + tmp21 tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tmp25 = tl.sum(tmp23, 1)[:, None] tmp26 = 64.0 tmp27 = tmp25 / tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp27, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [alpha, strength], Original ATen: [aten.add, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_add_sum_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [alpha, strength, digamma], Original ATen: [aten.add, aten.sum, aten.digamma] buf1 = torch.ops.aten.digamma.default(buf0) del buf0 buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten.add] triton_poi_fused_add_1.run(arg0_1, buf3, 256, grid=grid(256), stream=stream0) del arg0_1 # Topologically Sorted Source Nodes: [alpha, digamma_1], Original ATen: [aten.add, aten.digamma] buf4 = torch.ops.aten.digamma.default(buf3) del buf3 buf5 = buf4 del buf4 buf7 = empty_strided_cuda((), (), torch.float32) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [sub, mul, loss, mean], Original ATen: [aten.sub, aten.mul, aten.sum, aten.mean] triton_per_fused_mean_mul_sub_sum_2.run(buf8, arg1_1, buf2, buf5, 1, 64, grid=grid(1), stream=stream0) del arg1_1 del buf2 del buf5 return (buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class CrossEntropyBayesRisk(Module): """ <a id="CrossEntropyBayesRisk"></a> ## Bayes Risk with Cross Entropy Loss Bayes risk is the overall maximum cost of making incorrect estimates. It takes a cost function that gives the cost of making an incorrect estimate and sums it over all possible outcomes based on probability distribution. Here the cost function is cross-entropy loss, for one-hot coded $\\mathbf{y}$ $$\\sum_{k=1}^K -y_k \\log p_k$$ We integrate this cost over all $\\mathbf{p}$ egin{align} \\mathcal{L}(\\Theta) &= -\\log \\Bigg( \\int \\Big[ \\sum_{k=1}^K -y_k \\log p_k \\Big] rac{1}{B( extcolor{orange}{\\mathbf{lpha}})} \\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1} d\\mathbf{p} \\Bigg ) \\ &= \\sum_{k=1}^K y_k igg( \\psi(S) - \\psi( extcolor{orange}{lpha_k} ) igg) \\end{align} where $\\psi(\\cdot)$ is the $digamma$ function. """ def forward(self, evidence: 'torch.Tensor', target: 'torch.Tensor'): """ * `evidence` is $\\mathbf{e} \\ge 0$ with shape `[batch_size, n_classes]` * `target` is $\\mathbf{y}$ with shape `[batch_size, n_classes]` """ alpha = evidence + 1.0 strength = alpha.sum(dim=-1) loss = (target * (torch.digamma(strength)[:, None] - torch.digamma( alpha))).sum(dim=-1) return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = tmp2 + tmp4 tmp7 = tmp6 + tmp1 tmp8 = tmp5 + tmp7 tmp10 = tmp9 + tmp1 tmp11 = tmp8 + tmp10 tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused_add_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused_mean_mul_sub_sum_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r2 = rindex // 16 tmp0 = tl.load(in_ptr0 + 4 * r3, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4 * r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr2 + 4 * r3, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * r3), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (1 + 4 * r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr2 + (1 + 4 * r3), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + 4 * r3), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (2 + 4 * r0 + 16 * r2), None, eviction_policy ='evict_last') tmp13 = tl.load(in_ptr2 + (2 + 4 * r3), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (3 + 4 * r3), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (3 + 4 * r0 + 16 * r2), None, eviction_policy ='evict_last') tmp19 = tl.load(in_ptr2 + (3 + 4 * r3), None, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp4 = tmp0 * tmp3 tmp8 = tmp6 - tmp7 tmp9 = tmp5 * tmp8 tmp10 = tmp4 + tmp9 tmp14 = tmp12 - tmp13 tmp15 = tmp11 * tmp14 tmp16 = tmp10 + tmp15 tmp20 = tmp18 - tmp19 tmp21 = tmp17 * tmp20 tmp22 = tmp16 + tmp21 tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tmp25 = tl.sum(tmp23, 1)[:, None] tmp26 = 64.0 tmp27 = tmp25 / tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp27, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_sum_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = torch.ops.aten.digamma.default(buf0) del buf0 buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_1[grid(256)](arg0_1, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 buf4 = torch.ops.aten.digamma.default(buf3) del buf3 buf5 = buf4 del buf4 buf7 = empty_strided_cuda((), (), torch.float32) buf8 = buf7 del buf7 triton_per_fused_mean_mul_sub_sum_2[grid(1)](buf8, arg1_1, buf2, buf5, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg1_1 del buf2 del buf5 return buf8, class CrossEntropyBayesRiskNew(Module): """ <a id="CrossEntropyBayesRisk"></a> ## Bayes Risk with Cross Entropy Loss Bayes risk is the overall maximum cost of making incorrect estimates. It takes a cost function that gives the cost of making an incorrect estimate and sums it over all possible outcomes based on probability distribution. Here the cost function is cross-entropy loss, for one-hot coded $\\mathbf{y}$ $$\\sum_{k=1}^K -y_k \\log p_k$$ We integrate this cost over all $\\mathbf{p}$ egin{align} \\mathcal{L}(\\Theta) &= -\\log \\Bigg( \\int \\Big[ \\sum_{k=1}^K -y_k \\log p_k \\Big] rac{1}{B( extcolor{orange}{\\mathbf{lpha}})} \\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1} d\\mathbf{p} \\Bigg ) \\ &= \\sum_{k=1}^K y_k igg( \\psi(S) - \\psi( extcolor{orange}{lpha_k} ) igg) \\end{align} where $\\psi(\\cdot)$ is the $digamma$ function. """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
mcx/annotated_deep_learning_paper_implementations
CrossEntropyBayesRisk
false
7,197
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ <a id="CrossEntropyBayesRisk"></a> ## Bayes Risk with Cross Entropy Loss Bayes risk is the overall maximum cost of making incorrect estimates. It takes a cost function that gives the cost of making an incorrect estimate and sums it over all possible outcomes based on probability distribution. Here the cost function is cross-entropy loss, for one-hot coded $\\mathbf{y}$ $$\\sum_{k=1}^K -y_k \\log p_k$$ We integrate this cost over all $\\mathbf{p}$ egin{align} \\mathcal{L}(\\Theta) &= -\\log \\Bigg( \\int \\Big[ \\sum_{k=1}^K -y_k \\log p_k \\Big] rac{1}{B( extcolor{orange}{\\mathbf{lpha}})} \\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1} d\\mathbf{p} \\Bigg ) \\ &= \\sum_{k=1}^K y_k igg( \\psi(S) - \\psi( extcolor{orange}{lpha_k} ) igg) \\end{align} where $\\psi(\\cdot)$ is the $digamma$ function. """ def forward(self, evidence: 'torch.Tensor', target: 'torch.Tensor'): """ * `evidence` is $\\mathbf{e} \\ge 0$ with shape `[batch_size, n_classes]` * `target` is $\\mathbf{y}$ with shape `[batch_size, n_classes]` """ alpha = evidence + 1.0 strength = alpha.sum(dim=-1) loss = (target * (torch.digamma(strength)[:, None] - torch.digamma( alpha))).sum(dim=-1) return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
DPFP
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/nk/cnkn4azjs7p23wvexd663q3licov6bhbhf2h5uynp4fgwugfkg6g.py # Topologically Sorted Source Nodes: [cat, x, roll, k, sum_1, add, truediv], Original ATen: [aten.cat, aten.relu, aten.roll, aten.mul, aten.sum, aten.add, aten.div] # Source node to ATen node mapping: # add => add_1 # cat => cat # k => mul # roll => index # sum_1 => sum_1 # truediv => div # x => relu # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %neg], -1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%cat,), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%relu, [None, None, None, %fmod]), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %index), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1], True), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add_1), kwargs = {}) triton_per_fused_add_cat_div_mul_relu_roll_sum_0 = async_compile.triton('triton_per_fused_add_cat_div_mul_relu_roll_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 8], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_cat_div_mul_relu_roll_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_cat_div_mul_relu_roll_sum_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 8 RBLOCK: tl.constexpr = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = r1 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x0) + r1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1, 1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + ((4*x0) + ((-4) + r1)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = -tmp9 tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype) tmp12 = tl.where(tmp6, tmp10, tmp11) tmp13 = tl.where(tmp4, tmp5, tmp12) tmp14 = tl.full([1, 1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp16 = (7 + r1) % 8 tmp17 = tmp16 >= tmp1 tmp18 = tmp16 < tmp3 tmp19 = tl.load(in_ptr0 + ((4*x0) + ((7 + r1) % 8)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp16 >= tmp3 tmp21 = tmp16 < tmp7 tmp22 = tl.load(in_ptr0 + ((4*x0) + ((-4) + ((7 + r1) % 8))), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = -tmp22 tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp20, tmp23, tmp24) tmp26 = tl.where(tmp18, tmp19, tmp25) tmp27 = triton_helpers.maximum(tmp14, tmp26) tmp28 = tmp15 * tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.where(xmask, tmp29, 0) tmp32 = tl.sum(tmp31, 1)[:, None] tmp33 = 1e-06 tmp34 = tmp32 + tmp33 tmp35 = tmp28 / tmp34 tl.store(out_ptr2 + (r1 + (8*x0)), tmp35, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat, x, roll, k, sum_1, add, truediv], Original ATen: [aten.cat, aten.relu, aten.roll, aten.mul, aten.sum, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_cat_div_mul_relu_roll_sum_0.run(arg0_1, buf2, 64, 8, grid=grid(64), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class DPFP(Module): """ ## Deterministic Parameter Free Project (DPFP) This is the new projection function $ extcolor{lightgreen}{\\phi}$ introduced in the paper. DPFP projects $k$ of dimensionality $d_{key}$ to dimensionality $d_{dot} = 2 d_{key} u$, where $ u \\in \\{1, 2, ..., 2 d_{key} - 1 \\}$ is a hyper-parameter. $$ extcolor{lightgreen}{\\phi_{2 d_{key} (i - 1) + j}(k)} = ext{ReLU}\\Big(ig[k, -kig]\\Big)_{j} ext{ReLU}\\Big(ig[k, -kig]\\Big)_{i + j}$$ where $ig[k, -kig]$ is the concatenation of $k$ and $-k$ to give a vector of size $2 d_{key}$, $i \\in \\{1, 2, ..., u \\}$, and $j \\in \\{1, 2, ..., 2 d_{key}\\}$. $x_i$ is the $i$-th element of vector $x$ and is rolled around if $i$ is larger than the number of elements in $x$. Basically, it creates a new vector by multiplying elements of $[k, -k]$ shifted by $i$. This produces projections that are sparse (only a few elements of $phi$ are non-zero) and orthogonal ($ extcolor{lightgreen}{\\phi(k^{(i)})} \\cdot extcolor{lightgreen}{\\phi(k^{(j)})} pprox 0$ for most $i, j$ unless $k^{(i)}$ and $k^{(j)}$ are very similar. ### Normalization Paper introduces a simple normalization for $ extcolor{lightgreen}{\\phi}$, $$ extcolor{lightgreen}{\\phi '(k)} = rac{ extcolor{lightgreen}{\\phi(k)}}{\\sum^{d_{dot}}_{j=1} extcolor{lightgreen}{\\phi(k)_j}}$$ *Check the paper for derivation.* """ def __init__(self, nu: 'int'=1, eps: 'float'=1e-06): """ * `nu` is the hyper-parameter $ u$. * `eps` is the small value used to make sure there is no division-by-zero when normalizing. """ super().__init__() self.nu = nu self.relu = nn.ReLU() self.eps = eps def forward(self, k: 'torch.Tensor'): k = self.dpfp(k) return k / (torch.sum(k, dim=-1, keepdim=True) + self.eps) def dpfp(self, k: 'torch.Tensor'): """ $$ extcolor{lightgreen}{\\phi(k)}$$ """ x = self.relu(torch.cat([k, -k], dim=-1)) x_rolled = [x.roll(shifts=i, dims=-1) for i in range(1, self.nu + 1)] x_rolled = torch.cat(x_rolled, dim=-1) x_repeat = torch.cat([x] * self.nu, dim=-1) return x_repeat * x_rolled def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_cat_div_mul_relu_roll_sum_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = r1 tl.full([1, 1], 0, tl.int64) tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x0 + r1), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1, 1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (4 * x0 + (-4 + r1)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = -tmp9 tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype) tmp12 = tl.where(tmp6, tmp10, tmp11) tmp13 = tl.where(tmp4, tmp5, tmp12) tmp14 = tl.full([1, 1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp16 = (7 + r1) % 8 tmp18 = tmp16 < tmp3 tmp19 = tl.load(in_ptr0 + (4 * x0 + (7 + r1) % 8), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp16 >= tmp3 tmp22 = tl.load(in_ptr0 + (4 * x0 + (-4 + (7 + r1) % 8)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = -tmp22 tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp20, tmp23, tmp24) tmp26 = tl.where(tmp18, tmp19, tmp25) tmp27 = triton_helpers.maximum(tmp14, tmp26) tmp28 = tmp15 * tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.where(xmask, tmp29, 0) tmp32 = tl.sum(tmp31, 1)[:, None] tmp33 = 1e-06 tmp34 = tmp32 + tmp33 tmp35 = tmp28 / tmp34 tl.store(out_ptr2 + (r1 + 8 * x0), tmp35, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_cat_div_mul_relu_roll_sum_0[grid(64)](arg0_1, buf2, 64, 8, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf2, class DPFPNew(Module): """ ## Deterministic Parameter Free Project (DPFP) This is the new projection function $ extcolor{lightgreen}{\\phi}$ introduced in the paper. DPFP projects $k$ of dimensionality $d_{key}$ to dimensionality $d_{dot} = 2 d_{key} u$, where $ u \\in \\{1, 2, ..., 2 d_{key} - 1 \\}$ is a hyper-parameter. $$ extcolor{lightgreen}{\\phi_{2 d_{key} (i - 1) + j}(k)} = ext{ReLU}\\Big(ig[k, -kig]\\Big)_{j} ext{ReLU}\\Big(ig[k, -kig]\\Big)_{i + j}$$ where $ig[k, -kig]$ is the concatenation of $k$ and $-k$ to give a vector of size $2 d_{key}$, $i \\in \\{1, 2, ..., u \\}$, and $j \\in \\{1, 2, ..., 2 d_{key}\\}$. $x_i$ is the $i$-th element of vector $x$ and is rolled around if $i$ is larger than the number of elements in $x$. Basically, it creates a new vector by multiplying elements of $[k, -k]$ shifted by $i$. This produces projections that are sparse (only a few elements of $phi$ are non-zero) and orthogonal ($ extcolor{lightgreen}{\\phi(k^{(i)})} \\cdot extcolor{lightgreen}{\\phi(k^{(j)})} pprox 0$ for most $i, j$ unless $k^{(i)}$ and $k^{(j)}$ are very similar. ### Normalization Paper introduces a simple normalization for $ extcolor{lightgreen}{\\phi}$, $$ extcolor{lightgreen}{\\phi '(k)} = rac{ extcolor{lightgreen}{\\phi(k)}}{\\sum^{d_{dot}}_{j=1} extcolor{lightgreen}{\\phi(k)_j}}$$ *Check the paper for derivation.* """ def __init__(self, nu: 'int'=1, eps: 'float'=1e-06): """ * `nu` is the hyper-parameter $ u$. * `eps` is the small value used to make sure there is no division-by-zero when normalizing. """ super().__init__() self.nu = nu self.relu = nn.ReLU() self.eps = eps def dpfp(self, k: 'torch.Tensor'): """ $$ extcolor{lightgreen}{\\phi(k)}$$ """ x = self.relu(torch.cat([k, -k], dim=-1)) x_rolled = [x.roll(shifts=i, dims=-1) for i in range(1, self.nu + 1)] x_rolled = torch.cat(x_rolled, dim=-1) x_repeat = torch.cat([x] * self.nu, dim=-1) return x_repeat * x_rolled def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mcx/annotated_deep_learning_paper_implementations
DPFP
false
7,198
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ ## Deterministic Parameter Free Project (DPFP) This is the new projection function $ extcolor{lightgreen}{\\phi}$ introduced in the paper. DPFP projects $k$ of dimensionality $d_{key}$ to dimensionality $d_{dot} = 2 d_{key} u$, where $ u \\in \\{1, 2, ..., 2 d_{key} - 1 \\}$ is a hyper-parameter. $$ extcolor{lightgreen}{\\phi_{2 d_{key} (i - 1) + j}(k)} = ext{ReLU}\\Big(ig[k, -kig]\\Big)_{j} ext{ReLU}\\Big(ig[k, -kig]\\Big)_{i + j}$$ where $ig[k, -kig]$ is the concatenation of $k$ and $-k$ to give a vector of size $2 d_{key}$, $i \\in \\{1, 2, ..., u \\}$, and $j \\in \\{1, 2, ..., 2 d_{key}\\}$. $x_i$ is the $i$-th element of vector $x$ and is rolled around if $i$ is larger than the number of elements in $x$. Basically, it creates a new vector by multiplying elements of $[k, -k]$ shifted by $i$. This produces projections that are sparse (only a few elements of $phi$ are non-zero) and orthogonal ($ extcolor{lightgreen}{\\phi(k^{(i)})} \\cdot extcolor{lightgreen}{\\phi(k^{(j)})} pprox 0$ for most $i, j$ unless $k^{(i)}$ and $k^{(j)}$ are very similar. ### Normalization Paper introduces a simple normalization for $ extcolor{lightgreen}{\\phi}$, $$ extcolor{lightgreen}{\\phi '(k)} = rac{ extcolor{lightgreen}{\\phi(k)}}{\\sum^{d_{dot}}_{j=1} extcolor{lightgreen}{\\phi(k)_j}}$$ *Check the paper for derivation.* """ def __init__(self, nu: 'int'=1, eps: 'float'=1e-06): """ * `nu` is the hyper-parameter $ u$. * `eps` is the small value used to make sure there is no division-by-zero when normalizing. """ super().__init__() self.nu = nu self.relu = nn.ReLU() self.eps = eps def forward(self, k: 'torch.Tensor'): k = self.dpfp(k) return k / (torch.sum(k, dim=-1, keepdim=True) + self.eps) def dpfp(self, k: 'torch.Tensor'): """ $$ extcolor{lightgreen}{\\phi(k)}$$ """ x = self.relu(torch.cat([k, -k], dim=-1)) x_rolled = [x.roll(shifts=i, dims=-1) for i in range(1, self.nu + 1)] x_rolled = torch.cat(x_rolled, dim=-1) x_repeat = torch.cat([x] * self.nu, dim=-1) return x_repeat * x_rolled def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
KLDivLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/fh/cfhl4tf45osircr7c3fcnkkmm63hrxmrewn65xg36whopnb4upq6.py # Topologically Sorted Source Nodes: [add, pow_1, sub, exp, sub_1, mean, mul], Original ATen: [aten.add, aten.pow, aten.sub, aten.exp, aten.mean, aten.mul] # Source node to ATen node mapping: # add => add # exp => exp # mean => mean # mul => mul # pow_1 => pow_1 # sub => sub # sub_1 => sub_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %pow_1), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %exp), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, -0.5), kwargs = {}) triton_per_fused_add_exp_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused_add_exp_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_exp_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_exp_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 - tmp4 tmp6 = tl_math.exp(tmp0) tmp7 = tmp5 - tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 256.0 tmp12 = tmp10 / tmp11 tmp13 = -0.5 tmp14 = tmp12 * tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp14, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add, pow_1, sub, exp, sub_1, mean, mul], Original ATen: [aten.add, aten.pow, aten.sub, aten.exp, aten.mean, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_exp_mean_mul_pow_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class KLDivLoss(Module): """ ## KL-Divergence loss This calculates the KL divergence between a given normal distribution and $\\mathcal{N}(0, 1)$ """ def forward(self, sigma_hat: 'torch.Tensor', mu: 'torch.Tensor'): return -0.5 * torch.mean(1 + sigma_hat - mu ** 2 - torch.exp(sigma_hat) ) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_exp_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 - tmp4 tmp6 = tl_math.exp(tmp0) tmp7 = tmp5 - tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 256.0 tmp12 = tmp10 / tmp11 tmp13 = -0.5 tmp14 = tmp12 * tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp14, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_exp_mean_mul_pow_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class KLDivLossNew(Module): """ ## KL-Divergence loss This calculates the KL divergence between a given normal distribution and $\\mathcal{N}(0, 1)$ """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
mcx/annotated_deep_learning_paper_implementations
KLDivLoss
false
7,199
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ ## KL-Divergence loss This calculates the KL divergence between a given normal distribution and $\\mathcal{N}(0, 1)$ """ def forward(self, sigma_hat: 'torch.Tensor', mu: 'torch.Tensor'): return -0.5 * torch.mean(1 + sigma_hat - mu ** 2 - torch.exp(sigma_hat) ) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MaximumLikelihoodLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/f6/cf6outqezdomcxvjwbjchfmsgy45k2q6wtv3oau6yri4t3ezi6d7.py # Topologically Sorted Source Nodes: [alpha, log_1, sub, mul, loss, mean], Original ATen: [aten.add, aten.log, aten.sub, aten.mul, aten.sum, aten.mean] # Source node to ATen node mapping: # alpha => add # log_1 => log_1 # loss => sum_2 # mean => mean # mul => mul # sub => sub # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %log_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %sub), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {}) triton_per_fused_add_log_mean_mul_sub_sum_0 = async_compile.triton('triton_per_fused_add_log_mean_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_log_mean_mul_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 24, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_log_mean_mul_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r2 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (4*r3), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + ((16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (4*r3), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (1 + (4*r3)), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (4 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (5 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (6 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (7 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp32 = tl.load(in_ptr1 + (1 + (4*r3)), None, eviction_policy='evict_last') tmp38 = tl.load(in_ptr0 + (2 + (4*r3)), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr1 + (8 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp41 = tl.load(in_ptr1 + (9 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp44 = tl.load(in_ptr1 + (10 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr1 + (11 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp51 = tl.load(in_ptr1 + (2 + (4*r3)), None, eviction_policy='evict_last') tmp57 = tl.load(in_ptr0 + (3 + (4*r3)), None, eviction_policy='evict_last') tmp58 = tl.load(in_ptr1 + (12 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp60 = tl.load(in_ptr1 + (13 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp63 = tl.load(in_ptr1 + (14 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp66 = tl.load(in_ptr1 + (15 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp70 = tl.load(in_ptr1 + (3 + (4*r3)), None, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp5 = tmp4 + tmp2 tmp6 = tmp3 + tmp5 tmp8 = tmp7 + tmp2 tmp9 = tmp6 + tmp8 tmp11 = tmp10 + tmp2 tmp12 = tmp9 + tmp11 tmp13 = tl_math.log(tmp12) tmp15 = tmp14 + tmp2 tmp16 = tl_math.log(tmp15) tmp17 = tmp13 - tmp16 tmp18 = tmp0 * tmp17 tmp21 = tmp20 + tmp2 tmp23 = tmp22 + tmp2 tmp24 = tmp21 + tmp23 tmp26 = tmp25 + tmp2 tmp27 = tmp24 + tmp26 tmp29 = tmp28 + tmp2 tmp30 = tmp27 + tmp29 tmp31 = tl_math.log(tmp30) tmp33 = tmp32 + tmp2 tmp34 = tl_math.log(tmp33) tmp35 = tmp31 - tmp34 tmp36 = tmp19 * tmp35 tmp37 = tmp18 + tmp36 tmp40 = tmp39 + tmp2 tmp42 = tmp41 + tmp2 tmp43 = tmp40 + tmp42 tmp45 = tmp44 + tmp2 tmp46 = tmp43 + tmp45 tmp48 = tmp47 + tmp2 tmp49 = tmp46 + tmp48 tmp50 = tl_math.log(tmp49) tmp52 = tmp51 + tmp2 tmp53 = tl_math.log(tmp52) tmp54 = tmp50 - tmp53 tmp55 = tmp38 * tmp54 tmp56 = tmp37 + tmp55 tmp59 = tmp58 + tmp2 tmp61 = tmp60 + tmp2 tmp62 = tmp59 + tmp61 tmp64 = tmp63 + tmp2 tmp65 = tmp62 + tmp64 tmp67 = tmp66 + tmp2 tmp68 = tmp65 + tmp67 tmp69 = tl_math.log(tmp68) tmp71 = tmp70 + tmp2 tmp72 = tl_math.log(tmp71) tmp73 = tmp69 - tmp72 tmp74 = tmp57 * tmp73 tmp75 = tmp56 + tmp74 tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK]) tmp78 = tl.sum(tmp76, 1)[:, None] tmp79 = 64.0 tmp80 = tmp78 / tmp79 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp80, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [alpha, log_1, sub, mul, loss, mean], Original ATen: [aten.add, aten.log, aten.sub, aten.mul, aten.sum, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_log_mean_mul_sub_sum_0.run(buf2, arg1_1, arg0_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class MaximumLikelihoodLoss(Module): """ <a id="MaximumLikelihoodLoss"></a> ## Type II Maximum Likelihood Loss The distribution $D(\\mathbf{p} ert extcolor{orange}{\\mathbf{lpha}})$ is a prior on the likelihood $Multi(\\mathbf{y} ert p)$, and the negative log marginal likelihood is calculated by integrating over class probabilities $\\mathbf{p}$. If target probabilities (one-hot targets) are $y_k$ for a given sample the loss is, egin{align} \\mathcal{L}(\\Theta) &= -\\log \\Bigg( \\int \\prod_{k=1}^K p_k^{y_k} rac{1}{B( extcolor{orange}{\\mathbf{lpha}})} \\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1} d\\mathbf{p} \\Bigg ) \\ &= \\sum_{k=1}^K y_k igg( \\log S - \\log extcolor{orange}{lpha_k} igg) \\end{align} """ def forward(self, evidence: 'torch.Tensor', target: 'torch.Tensor'): """ * `evidence` is $\\mathbf{e} \\ge 0$ with shape `[batch_size, n_classes]` * `target` is $\\mathbf{y}$ with shape `[batch_size, n_classes]` """ alpha = evidence + 1.0 strength = alpha.sum(dim=-1) loss = (target * (strength.log()[:, None] - alpha.log())).sum(dim=-1) return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_log_mean_mul_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r2 = rindex // 16 tmp0 = tl.load(in_ptr0 + 4 * r3, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (16 * r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr1 + (1 + 16 * r0 + 64 * r2), None, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr1 + (2 + 16 * r0 + 64 * r2), None, eviction_policy ='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + 4 * r3, None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (1 + 4 * r3), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (4 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (5 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (6 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (7 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp32 = tl.load(in_ptr1 + (1 + 4 * r3), None, eviction_policy='evict_last') tmp38 = tl.load(in_ptr0 + (2 + 4 * r3), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr1 + (8 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp41 = tl.load(in_ptr1 + (9 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp44 = tl.load(in_ptr1 + (10 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr1 + (11 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp51 = tl.load(in_ptr1 + (2 + 4 * r3), None, eviction_policy='evict_last') tmp57 = tl.load(in_ptr0 + (3 + 4 * r3), None, eviction_policy='evict_last') tmp58 = tl.load(in_ptr1 + (12 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp60 = tl.load(in_ptr1 + (13 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp63 = tl.load(in_ptr1 + (14 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp66 = tl.load(in_ptr1 + (15 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp70 = tl.load(in_ptr1 + (3 + 4 * r3), None, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp5 = tmp4 + tmp2 tmp6 = tmp3 + tmp5 tmp8 = tmp7 + tmp2 tmp9 = tmp6 + tmp8 tmp11 = tmp10 + tmp2 tmp12 = tmp9 + tmp11 tmp13 = tl_math.log(tmp12) tmp15 = tmp14 + tmp2 tmp16 = tl_math.log(tmp15) tmp17 = tmp13 - tmp16 tmp18 = tmp0 * tmp17 tmp21 = tmp20 + tmp2 tmp23 = tmp22 + tmp2 tmp24 = tmp21 + tmp23 tmp26 = tmp25 + tmp2 tmp27 = tmp24 + tmp26 tmp29 = tmp28 + tmp2 tmp30 = tmp27 + tmp29 tmp31 = tl_math.log(tmp30) tmp33 = tmp32 + tmp2 tmp34 = tl_math.log(tmp33) tmp35 = tmp31 - tmp34 tmp36 = tmp19 * tmp35 tmp37 = tmp18 + tmp36 tmp40 = tmp39 + tmp2 tmp42 = tmp41 + tmp2 tmp43 = tmp40 + tmp42 tmp45 = tmp44 + tmp2 tmp46 = tmp43 + tmp45 tmp48 = tmp47 + tmp2 tmp49 = tmp46 + tmp48 tmp50 = tl_math.log(tmp49) tmp52 = tmp51 + tmp2 tmp53 = tl_math.log(tmp52) tmp54 = tmp50 - tmp53 tmp55 = tmp38 * tmp54 tmp56 = tmp37 + tmp55 tmp59 = tmp58 + tmp2 tmp61 = tmp60 + tmp2 tmp62 = tmp59 + tmp61 tmp64 = tmp63 + tmp2 tmp65 = tmp62 + tmp64 tmp67 = tmp66 + tmp2 tmp68 = tmp65 + tmp67 tmp69 = tl_math.log(tmp68) tmp71 = tmp70 + tmp2 tmp72 = tl_math.log(tmp71) tmp73 = tmp69 - tmp72 tmp74 = tmp57 * tmp73 tmp75 = tmp56 + tmp74 tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK]) tmp78 = tl.sum(tmp76, 1)[:, None] tmp79 = 64.0 tmp80 = tmp78 / tmp79 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp80, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_add_log_mean_mul_sub_sum_0[grid(1)](buf2, arg1_1, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class MaximumLikelihoodLossNew(Module): """ <a id="MaximumLikelihoodLoss"></a> ## Type II Maximum Likelihood Loss The distribution $D(\\mathbf{p} ert extcolor{orange}{\\mathbf{lpha}})$ is a prior on the likelihood $Multi(\\mathbf{y} ert p)$, and the negative log marginal likelihood is calculated by integrating over class probabilities $\\mathbf{p}$. If target probabilities (one-hot targets) are $y_k$ for a given sample the loss is, egin{align} \\mathcal{L}(\\Theta) &= -\\log \\Bigg( \\int \\prod_{k=1}^K p_k^{y_k} rac{1}{B( extcolor{orange}{\\mathbf{lpha}})} \\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1} d\\mathbf{p} \\Bigg ) \\ &= \\sum_{k=1}^K y_k igg( \\log S - \\log extcolor{orange}{lpha_k} igg) \\end{align} """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
mcx/annotated_deep_learning_paper_implementations
MaximumLikelihoodLoss
false
7,200
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ <a id="MaximumLikelihoodLoss"></a> ## Type II Maximum Likelihood Loss The distribution $D(\\mathbf{p} ert extcolor{orange}{\\mathbf{lpha}})$ is a prior on the likelihood $Multi(\\mathbf{y} ert p)$, and the negative log marginal likelihood is calculated by integrating over class probabilities $\\mathbf{p}$. If target probabilities (one-hot targets) are $y_k$ for a given sample the loss is, egin{align} \\mathcal{L}(\\Theta) &= -\\log \\Bigg( \\int \\prod_{k=1}^K p_k^{y_k} rac{1}{B( extcolor{orange}{\\mathbf{lpha}})} \\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1} d\\mathbf{p} \\Bigg ) \\ &= \\sum_{k=1}^K y_k igg( \\log S - \\log extcolor{orange}{lpha_k} igg) \\end{align} """ def forward(self, evidence: 'torch.Tensor', target: 'torch.Tensor'): """ * `evidence` is $\\mathbf{e} \\ge 0$ with shape `[batch_size, n_classes]` * `target` is $\\mathbf{y}$ with shape `[batch_size, n_classes]` """ alpha = evidence + 1.0 strength = alpha.sum(dim=-1) loss = (target * (strength.log()[:, None] - alpha.log())).sum(dim=-1) return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
FCVAE
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/3q/c3qwr2d2rrpjzvnddomnmdy6cwva4hjlvrn2y5epemk4ak3k2m6c.py # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu] # Source node to ATen node mapping: # h1 => relu # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_3), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 400 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/zy/czy7u5vco7t6hswbiwnvj7w5efucfccq2eg7jymbbwipxow53f6t.py # Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # std => exp # z => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_2, 0.5), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%randn, %exp), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%addmm_1, %mul_1), kwargs = {}) triton_poi_fused_add_exp_mul_1 = async_compile.triton('triton_poi_fused_add_exp_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tl.load(in_ptr2 + (x0), xmask) tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 * tmp5 tmp7 = tmp0 + tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/eq/ceqgaaddmc4caykkz2jef7xzjkszeswmh226pkrsflrqpf5nymaa.py # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid, aten.sigmoid_backward] # Source node to ATen node mapping: # sigmoid => sigmoid # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {}) # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub), kwargs = {}) triton_poi_fused_sigmoid_sigmoid_backward_2 = async_compile.triton('triton_poi_fused_sigmoid_sigmoid_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_sigmoid_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_sigmoid_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 784 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp4 = 1.0 tmp5 = tmp4 - tmp3 tmp6 = tmp3 * tmp5 tl.store(in_out_ptr0 + (x2), tmp3, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 784), (784, 1)) assert_size_stride(primals_2, (400, 784), (784, 1)) assert_size_stride(primals_3, (400, ), (1, )) assert_size_stride(primals_4, (2, 400), (400, 1)) assert_size_stride(primals_5, (2, ), (1, )) assert_size_stride(primals_6, (2, 400), (400, 1)) assert_size_stride(primals_7, (2, ), (1, )) assert_size_stride(primals_8, (400, 2), (2, 1)) assert_size_stride(primals_9, (400, ), (1, )) assert_size_stride(primals_10, (784, 400), (400, 1)) assert_size_stride(primals_11, (784, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 400), (400, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 400), (1, 784), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 1600, grid=grid(1600), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (400, 2), (1, 400), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [logvar], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf1, reinterpret_tensor(primals_6, (400, 2), (1, 400), 0), alpha=1, beta=1, out=buf3) del primals_7 # Topologically Sorted Source Nodes: [eps], Original ATen: [aten.randn_like] buf4 = torch.ops.aten.randn.default([4, 2], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add] triton_poi_fused_add_exp_mul_1.run(buf2, buf5, buf3, buf6, 8, grid=grid(8), stream=stream0) buf7 = empty_strided_cuda((4, 400), (400, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf6, reinterpret_tensor(primals_8, (2, 400), (1, 2), 0), out=buf7) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [h3], Original ATen: [aten.relu] triton_poi_fused_relu_0.run(buf8, primals_9, 1600, grid=grid(1600), stream=stream0) del primals_9 buf9 = empty_strided_cuda((4, 784), (784, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf8, reinterpret_tensor(primals_10, (400, 784), (1, 400), 0), out=buf9) buf10 = buf9; del buf9 # reuse buf11 = empty_strided_cuda((4, 784), (784, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid, aten.sigmoid_backward] triton_poi_fused_sigmoid_sigmoid_backward_2.run(buf10, primals_11, buf11, 3136, grid=grid(3136), stream=stream0) del primals_11 return (reinterpret_tensor(buf10, (4, 1, 28, 28), (784, 784, 28, 1), 0), buf2, buf3, primals_1, buf1, buf3, buf5, buf6, buf8, buf11, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 784), (784, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((400, 784), (784, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((2, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((400, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((784, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((784, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F from torch import nn class BaseVAE(nn.Module): """ Base abstract class for the Variational Autoencoders """ def __init__(self, channels=1, width=28, height=28, z_dim=2): """ Constructor Parameters: channels - The number of channels for the image width - The width of the image in pixels height - The height of the image in pixels z_dim - The dimension of the latent space """ super(BaseVAE, self).__init__() self.channels = channels self.width = width self.height = height self.z_dim = z_dim def getNbChannels(self): """ Returns the number of channels of the handled images """ return self.channels def getWidth(self): """ Returns the width of the handled images in pixels """ return self.width def getHeight(self): """ Returns the height of the handled images in pixels """ return self.height def getZDim(self): """ Returns the dimension of the latent space of the VAE """ return self.z_dim def flatten(self, x): """ Can be used to flatten the output image. This method will only handle images of the original size specified for the network """ return x.view(-1, self.channels * self.height * self.width) def unflatten(self, x): """ Can be used to unflatten an image handled by the network. This method will only handle images of the original size specified for the network """ return x.view(-1, self.channels, self.height, self.width) class FCVAE(BaseVAE): """ Fully connected Variational Autoencoder """ def __init__(self, channels=1, width=28, height=28, z_dim=2): super(FCVAE, self).__init__(channels, width, height, z_dim) self.fc1 = nn.Linear(self.channels * self.width * self.height, 400) self.fc21 = nn.Linear(400, self.z_dim) self.fc22 = nn.Linear(400, self.z_dim) self.fc3 = nn.Linear(self.z_dim, 400) self.fc4 = nn.Linear(400, self.channels * self.width * self.height) def encode(self, x): h1 = F.relu(self.fc1(x)) return self.fc21(h1), self.fc22(h1) def reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return mu + eps * std def decode(self, z): h3 = F.relu(self.fc3(z)) return torch.sigmoid(self.fc4(h3)) def forward(self, x): mu, logvar = self.encode(self.flatten(x)) z = self.reparameterize(mu, logvar) return self.unflatten(self.decode(z)), mu, logvar def get_inputs(): return [torch.rand([4, 784])] def get_init_inputs(): return [[], {}]
import torch from torch import device from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import functional as F from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 400 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tl.load(in_ptr2 + x0, xmask) tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 * tmp5 tmp7 = tmp0 + tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_sigmoid_sigmoid_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 3136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 784 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp4 = 1.0 tmp5 = tmp4 - tmp3 tmp6 = tmp3 * tmp5 tl.store(in_out_ptr0 + x2, tmp3, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 784), (784, 1)) assert_size_stride(primals_2, (400, 784), (784, 1)) assert_size_stride(primals_3, (400,), (1,)) assert_size_stride(primals_4, (2, 400), (400, 1)) assert_size_stride(primals_5, (2,), (1,)) assert_size_stride(primals_6, (2, 400), (400, 1)) assert_size_stride(primals_7, (2,), (1,)) assert_size_stride(primals_8, (400, 2), (2, 1)) assert_size_stride(primals_9, (400,), (1,)) assert_size_stride(primals_10, (784, 400), (400, 1)) assert_size_stride(primals_11, (784,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 400), (400, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 400), (1, 784), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(1600)](buf1, primals_3, 1600, XBLOCK= 128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (400, 2), (1, 400), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_7, buf1, reinterpret_tensor(primals_6, (400, 2), (1, 400), 0), alpha=1, beta=1, out=buf3) del primals_7 buf4 = torch.ops.aten.randn.default([4, 2], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 2), (2, 1), torch.float32) triton_poi_fused_add_exp_mul_1[grid(8)](buf2, buf5, buf3, buf6, 8, XBLOCK=8, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 400), (400, 1), torch.float32) extern_kernels.mm(buf6, reinterpret_tensor(primals_8, (2, 400), (1, 2), 0), out=buf7) buf8 = buf7 del buf7 triton_poi_fused_relu_0[grid(1600)](buf8, primals_9, 1600, XBLOCK= 128, num_warps=4, num_stages=1) del primals_9 buf9 = empty_strided_cuda((4, 784), (784, 1), torch.float32) extern_kernels.mm(buf8, reinterpret_tensor(primals_10, (400, 784), (1, 400), 0), out=buf9) buf10 = buf9 del buf9 buf11 = empty_strided_cuda((4, 784), (784, 1), torch.float32) triton_poi_fused_sigmoid_sigmoid_backward_2[grid(3136)](buf10, primals_11, buf11, 3136, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 return (reinterpret_tensor(buf10, (4, 1, 28, 28), (784, 784, 28, 1), 0), buf2, buf3, primals_1, buf1, buf3, buf5, buf6, buf8, buf11, primals_10, primals_8, primals_6, primals_4) class BaseVAE(nn.Module): """ Base abstract class for the Variational Autoencoders """ def __init__(self, channels=1, width=28, height=28, z_dim=2): """ Constructor Parameters: channels - The number of channels for the image width - The width of the image in pixels height - The height of the image in pixels z_dim - The dimension of the latent space """ super(BaseVAE, self).__init__() self.channels = channels self.width = width self.height = height self.z_dim = z_dim def getNbChannels(self): """ Returns the number of channels of the handled images """ return self.channels def getWidth(self): """ Returns the width of the handled images in pixels """ return self.width def getHeight(self): """ Returns the height of the handled images in pixels """ return self.height def getZDim(self): """ Returns the dimension of the latent space of the VAE """ return self.z_dim def flatten(self, x): """ Can be used to flatten the output image. This method will only handle images of the original size specified for the network """ return x.view(-1, self.channels * self.height * self.width) def unflatten(self, x): """ Can be used to unflatten an image handled by the network. This method will only handle images of the original size specified for the network """ return x.view(-1, self.channels, self.height, self.width) class FCVAENew(BaseVAE): """ Fully connected Variational Autoencoder """ def __init__(self, channels=1, width=28, height=28, z_dim=2): super(FCVAENew, self).__init__(channels, width, height, z_dim) self.fc1 = nn.Linear(self.channels * self.width * self.height, 400) self.fc21 = nn.Linear(400, self.z_dim) self.fc22 = nn.Linear(400, self.z_dim) self.fc3 = nn.Linear(self.z_dim, 400) self.fc4 = nn.Linear(400, self.channels * self.width * self.height) def encode(self, x): h1 = F.relu(self.fc1(x)) return self.fc21(h1), self.fc22(h1) def reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return mu + eps * std def decode(self, z): h3 = F.relu(self.fc3(z)) return torch.sigmoid(self.fc4(h3)) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc21.weight primals_5 = self.fc21.bias primals_6 = self.fc22.weight primals_7 = self.fc22.bias primals_8 = self.fc3.weight primals_9 = self.fc3.bias primals_10 = self.fc4.weight primals_11 = self.fc4.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0], output[1], output[2]
mbusy/vae
FCVAE
false
7,201
[ "MIT" ]
1
455e382a557b72fc944460331e5dd010ff83a76a
https://github.com/mbusy/vae/tree/455e382a557b72fc944460331e5dd010ff83a76a
import torch from torch.nn import functional as F from torch import nn class BaseVAE(nn.Module): """ Base abstract class for the Variational Autoencoders """ def __init__(self, channels=1, width=28, height=28, z_dim=2): """ Constructor Parameters: channels - The number of channels for the image width - The width of the image in pixels height - The height of the image in pixels z_dim - The dimension of the latent space """ super().__init__() self.channels = channels self.width = width self.height = height self.z_dim = z_dim def getNbChannels(self): """ Returns the number of channels of the handled images """ return self.channels def getWidth(self): """ Returns the width of the handled images in pixels """ return self.width def getHeight(self): """ Returns the height of the handled images in pixels """ return self.height def getZDim(self): """ Returns the dimension of the latent space of the VAE """ return self.z_dim def flatten(self, x): """ Can be used to flatten the output image. This method will only handle images of the original size specified for the network """ return x.view(-1, self.channels * self.height * self.width) def unflatten(self, x): """ Can be used to unflatten an image handled by the network. This method will only handle images of the original size specified for the network """ return x.view(-1, self.channels, self.height, self.width) class Model(BaseVAE): """ Fully connected Variational Autoencoder """ def __init__(self, channels=1, width=28, height=28, z_dim=2): super().__init__(channels, width, height, z_dim) self.fc1 = nn.Linear(self.channels * self.width * self.height, 400) self.fc21 = nn.Linear(400, self.z_dim) self.fc22 = nn.Linear(400, self.z_dim) self.fc3 = nn.Linear(self.z_dim, 400) self.fc4 = nn.Linear(400, self.channels * self.width * self.height) def encode(self, x): h1 = F.relu(self.fc1(x)) return self.fc21(h1), self.fc22(h1) def reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return mu + eps * std def decode(self, z): h3 = F.relu(self.fc3(z)) return torch.sigmoid(self.fc4(h3)) def forward(self, x): mu, logvar = self.encode(self.flatten(x)) z = self.reparameterize(mu, logvar) return self.unflatten(self.decode(z)), mu, logvar def get_inputs(): return [torch.rand([4, 784])] def get_init_inputs(): return []
PatchEmbeddings
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 16, 16), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 16, grid=grid(16), stream=stream0) del primals_2 return (reinterpret_tensor(buf1, (1, 4, 4), (1, 4, 1), 0), primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class PatchEmbeddings(Module): """ <a id="PatchEmbeddings"></a> ## Get patch embeddings The paper splits the image into patches of equal size and do a linear transformation on the flattened pixels for each patch. We implement the same thing through a convolution layer, because it's simpler to implement. """ def __init__(self, d_model: 'int', patch_size: 'int', in_channels: 'int'): """ * `d_model` is the transformer embeddings size * `patch_size` is the size of the patch * `in_channels` is the number of channels in the input image (3 for rgb) """ super().__init__() self.conv = nn.Conv2d(in_channels, d_model, patch_size, stride= patch_size) def forward(self, x: 'torch.Tensor'): """ * `x` is the input image of shape `[batch_size, channels, height, width]` """ x = self.conv(x) bs, c, h, w = x.shape x = x.permute(2, 3, 0, 1) x = x.view(h * w, bs, c) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'patch_size': 4, 'in_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 16, 16), 0) del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16)](buf1, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return reinterpret_tensor(buf1, (1, 4, 4), (1, 4, 1), 0 ), primals_1, primals_3 class PatchEmbeddingsNew(Module): """ <a id="PatchEmbeddings"></a> ## Get patch embeddings The paper splits the image into patches of equal size and do a linear transformation on the flattened pixels for each patch. We implement the same thing through a convolution layer, because it's simpler to implement. """ def __init__(self, d_model: 'int', patch_size: 'int', in_channels: 'int'): """ * `d_model` is the transformer embeddings size * `patch_size` is the size of the patch * `in_channels` is the number of channels in the input image (3 for rgb) """ super().__init__() self.conv = nn.Conv2d(in_channels, d_model, patch_size, stride= patch_size) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mcx/annotated_deep_learning_paper_implementations
PatchEmbeddings
false
7,202
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ <a id="PatchEmbeddings"></a> ## Get patch embeddings The paper splits the image into patches of equal size and do a linear transformation on the flattened pixels for each patch. We implement the same thing through a convolution layer, because it's simpler to implement. """ def __init__(self, d_model: 'int', patch_size: 'int', in_channels: 'int'): """ * `d_model` is the transformer embeddings size * `patch_size` is the size of the patch * `in_channels` is the number of channels in the input image (3 for rgb) """ super().__init__() self.conv = nn.Conv2d(in_channels, d_model, patch_size, stride= patch_size) def forward(self, x: 'torch.Tensor'): """ * `x` is the input image of shape `[batch_size, channels, height, width]` """ x = self.conv(x) bs, c, h, w = x.shape x = x.permute(2, 3, 0, 1) x = x.view(h * w, bs, c) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
LearnedPositionalEmbeddings
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/26/c26shuqxjhfilaoens27tm25ij3y3e5ctdjjfr7fuwafpcfebmdi.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %select), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (5000, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((5000, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class LearnedPositionalEmbeddings(Module): """ <a id="LearnedPositionalEmbeddings"></a> ## Add parameterized positional encodings This adds learned positional embeddings to patch embeddings. """ def __init__(self, d_model: 'int', max_len: 'int'=5000): """ * `d_model` is the transformer embeddings size * `max_len` is the maximum number of patches """ super().__init__() self.positional_encodings = nn.Parameter(torch.zeros(max_len, 1, d_model), requires_grad=True) def forward(self, x: 'torch.Tensor'): """ * `x` is the patch embeddings of shape `[patches, batch_size, d_model]` """ pe = self.positional_encodings[x.shape[0]] return x + pe def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (5000, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, class LearnedPositionalEmbeddingsNew(Module): """ <a id="LearnedPositionalEmbeddings"></a> ## Add parameterized positional encodings This adds learned positional embeddings to patch embeddings. """ def __init__(self, d_model: 'int', max_len: 'int'=5000): """ * `d_model` is the transformer embeddings size * `max_len` is the maximum number of patches """ super().__init__() self.positional_encodings = nn.Parameter(torch.zeros(max_len, 1, d_model), requires_grad=True) def forward(self, input_0): primals_1 = self.positional_encodings primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
mcx/annotated_deep_learning_paper_implementations
LearnedPositionalEmbeddings
false
7,203
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ <a id="LearnedPositionalEmbeddings"></a> ## Add parameterized positional encodings This adds learned positional embeddings to patch embeddings. """ def __init__(self, d_model: 'int', max_len: 'int'=5000): """ * `d_model` is the transformer embeddings size * `max_len` is the maximum number of patches """ super().__init__() self.positional_encodings = nn.Parameter(torch.zeros(max_len, 1, d_model), requires_grad=True) def forward(self, x: 'torch.Tensor'): """ * `x` is the patch embeddings of shape `[patches, batch_size, d_model]` """ pe = self.positional_encodings[x.shape[0]] return x + pe def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LSTMCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/lg/clgtnw2bgvc3mnanbov77yxt2a6ztfqy7qpuhudozzijvzjgbgly.py # Topologically Sorted Source Nodes: [sigmoid, mul, sigmoid_1, tanh, mul_1, c_next, sigmoid_2, tanh_1, h_next], Original ATen: [aten.sigmoid, aten.mul, aten.tanh, aten.add, aten.sigmoid_backward] # Source node to ATen node mapping: # c_next => add_1 # h_next => mul_2 # mul => mul # mul_1 => mul_1 # sigmoid => sigmoid # sigmoid_1 => sigmoid_1 # sigmoid_2 => sigmoid_2 # tanh => tanh # tanh_1 => tanh_1 # Graph fragment: # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_6), kwargs = {}) # %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem,), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%getitem_2,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %tanh), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %sigmoid_2 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_3,), kwargs = {}) # %tanh_1 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_2, %tanh_1), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub_4), kwargs = {}) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 13, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + (16*x1)), xmask) tmp6 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp7 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (8 + x0 + (16*x1)), xmask) tmp12 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp13 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (4 + x0 + (16*x1)), xmask) tmp18 = tl.load(in_ptr3 + (x2), xmask) tmp25 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp26 = tl.load(in_ptr1 + (12 + x0), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (12 + x0 + (16*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = libdevice.tanh(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp14 + tmp15 tmp17 = tl.sigmoid(tmp16) tmp19 = tmp17 * tmp18 tmp20 = tmp5 * tmp11 tmp21 = tmp19 + tmp20 tmp22 = 1.0 tmp23 = tmp22 - tmp17 tmp24 = tmp17 * tmp23 tmp27 = tmp25 + tmp26 tmp29 = tmp27 + tmp28 tmp30 = tl.sigmoid(tmp29) tmp31 = libdevice.tanh(tmp21) tmp32 = tmp30 * tmp31 tl.store(out_ptr0 + (x2), tmp5, xmask) tl.store(out_ptr1 + (x2), tmp11, xmask) tl.store(out_ptr2 + (x2), tmp21, xmask) tl.store(out_ptr3 + (x2), tmp24, xmask) tl.store(out_ptr4 + (x2), tmp30, xmask) tl.store(out_ptr5 + (x2), tmp32, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, mul, sigmoid_1, tanh, mul_1, c_next, sigmoid_2, tanh_1, h_next], Original ATen: [aten.sigmoid, aten.mul, aten.tanh, aten.add, aten.sigmoid_backward] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0.run(buf0, primals_2, buf1, primals_6, buf2, buf3, buf4, buf7, buf5, buf6, 256, grid=grid(256), stream=stream0) del buf0 del buf1 del primals_2 return (buf6, buf4, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), buf2, buf3, buf4, buf5, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class LSTMCell(Module): """ ## Long Short-Term Memory Cell LSTM Cell computes $c$, and $h$. $c$ is like the long-term memory, and $h$ is like the short term memory. We use the input $x$ and $h$ to update the long term memory. In the update, some features of $c$ are cleared with a forget gate $f$, and some features $i$ are added through a gate $g$. The new short term memory is the $ anh$ of the long-term memory multiplied by the output gate $o$. Note that the cell doesn't look at long term memory $c$ when doing the update. It only modifies it. Also $c$ never goes through a linear transformation. This is what solves vanishing and exploding gradients. Here's the update rule. egin{align} c_t &= \\sigma(f_t) \\odot c_{t-1} + \\sigma(i_t) \\odot anh(g_t) \\ h_t &= \\sigma(o_t) \\odot anh(c_t) \\end{align} $\\odot$ stands for element-wise multiplication. Intermediate values and gates are computed as linear transformations of the hidden state and input. egin{align} i_t &= lin_x^i(x_t) + lin_h^i(h_{t-1}) \\ f_t &= lin_x^f(x_t) + lin_h^f(h_{t-1}) \\ g_t &= lin_x^g(x_t) + lin_h^g(h_{t-1}) \\ o_t &= lin_x^o(x_t) + lin_h^o(h_{t-1}) \\end{align} """ def __init__(self, input_size: 'int', hidden_size: 'int', layer_norm: 'bool'=False): super().__init__() self.hidden_lin = nn.Linear(hidden_size, 4 * hidden_size) self.input_lin = nn.Linear(input_size, 4 * hidden_size, bias=False) if layer_norm: self.layer_norm = nn.ModuleList([nn.LayerNorm(hidden_size) for _ in range(4)]) self.layer_norm_c = nn.LayerNorm(hidden_size) else: self.layer_norm = nn.ModuleList([nn.Identity() for _ in range(4)]) self.layer_norm_c = nn.Identity() def forward(self, x: 'torch.Tensor', h: 'torch.Tensor', c: 'torch.Tensor'): ifgo = self.hidden_lin(h) + self.input_lin(x) ifgo = ifgo.chunk(4, dim=-1) ifgo = [self.layer_norm[i](ifgo[i]) for i in range(4)] i, f, g, o = ifgo c_next = torch.sigmoid(f) * c + torch.sigmoid(i) * torch.tanh(g) h_next = torch.sigmoid(o) * torch.tanh(self.layer_norm_c(c_next)) return h_next, c_next def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + 16 * x1), xmask) tmp6 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp7 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (8 + x0 + 16 * x1), xmask) tmp12 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp13 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (4 + x0 + 16 * x1), xmask) tmp18 = tl.load(in_ptr3 + x2, xmask) tmp25 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp26 = tl.load(in_ptr1 + (12 + x0), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (12 + x0 + 16 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = libdevice.tanh(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp14 + tmp15 tmp17 = tl.sigmoid(tmp16) tmp19 = tmp17 * tmp18 tmp20 = tmp5 * tmp11 tmp21 = tmp19 + tmp20 tmp22 = 1.0 tmp23 = tmp22 - tmp17 tmp24 = tmp17 * tmp23 tmp27 = tmp25 + tmp26 tmp29 = tmp27 + tmp28 tmp30 = tl.sigmoid(tmp29) tmp31 = libdevice.tanh(tmp21) tmp32 = tmp30 * tmp31 tl.store(out_ptr0 + x2, tmp5, xmask) tl.store(out_ptr1 + x2, tmp11, xmask) tl.store(out_ptr2 + x2, tmp21, xmask) tl.store(out_ptr3 + x2, tmp24, xmask) tl.store(out_ptr4 + x2, tmp30, xmask) tl.store(out_ptr5 + x2, tmp32, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_0[grid(256)]( buf0, primals_2, buf1, primals_6, buf2, buf3, buf4, buf7, buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del buf1 del primals_2 return buf6, buf4, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (64, 4), (4, 1), 0 ), buf2, buf3, buf4, buf5, buf7 class LSTMCellNew(Module): """ ## Long Short-Term Memory Cell LSTM Cell computes $c$, and $h$. $c$ is like the long-term memory, and $h$ is like the short term memory. We use the input $x$ and $h$ to update the long term memory. In the update, some features of $c$ are cleared with a forget gate $f$, and some features $i$ are added through a gate $g$. The new short term memory is the $ anh$ of the long-term memory multiplied by the output gate $o$. Note that the cell doesn't look at long term memory $c$ when doing the update. It only modifies it. Also $c$ never goes through a linear transformation. This is what solves vanishing and exploding gradients. Here's the update rule. egin{align} c_t &= \\sigma(f_t) \\odot c_{t-1} + \\sigma(i_t) \\odot anh(g_t) \\ h_t &= \\sigma(o_t) \\odot anh(c_t) \\end{align} $\\odot$ stands for element-wise multiplication. Intermediate values and gates are computed as linear transformations of the hidden state and input. egin{align} i_t &= lin_x^i(x_t) + lin_h^i(h_{t-1}) \\ f_t &= lin_x^f(x_t) + lin_h^f(h_{t-1}) \\ g_t &= lin_x^g(x_t) + lin_h^g(h_{t-1}) \\ o_t &= lin_x^o(x_t) + lin_h^o(h_{t-1}) \\end{align} """ def __init__(self, input_size: 'int', hidden_size: 'int', layer_norm: 'bool'=False): super().__init__() self.hidden_lin = nn.Linear(hidden_size, 4 * hidden_size) self.input_lin = nn.Linear(input_size, 4 * hidden_size, bias=False) if layer_norm: self.layer_norm = nn.ModuleList([nn.LayerNorm(hidden_size) for _ in range(4)]) self.layer_norm_c = nn.LayerNorm(hidden_size) else: self.layer_norm = nn.ModuleList([nn.Identity() for _ in range(4)]) self.layer_norm_c = nn.Identity() def forward(self, input_0, input_1, input_2): primals_1 = self.hidden_lin.weight primals_2 = self.hidden_lin.bias primals_4 = self.input_lin.weight primals_3 = input_0 primals_5 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
mcx/annotated_deep_learning_paper_implementations
LSTMCell
false
7,204
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ ## Long Short-Term Memory Cell LSTM Cell computes $c$, and $h$. $c$ is like the long-term memory, and $h$ is like the short term memory. We use the input $x$ and $h$ to update the long term memory. In the update, some features of $c$ are cleared with a forget gate $f$, and some features $i$ are added through a gate $g$. The new short term memory is the $ anh$ of the long-term memory multiplied by the output gate $o$. Note that the cell doesn't look at long term memory $c$ when doing the update. It only modifies it. Also $c$ never goes through a linear transformation. This is what solves vanishing and exploding gradients. Here's the update rule. egin{align} c_t &= \\sigma(f_t) \\odot c_{t-1} + \\sigma(i_t) \\odot anh(g_t) \\ h_t &= \\sigma(o_t) \\odot anh(c_t) \\end{align} $\\odot$ stands for element-wise multiplication. Intermediate values and gates are computed as linear transformations of the hidden state and input. egin{align} i_t &= lin_x^i(x_t) + lin_h^i(h_{t-1}) \\ f_t &= lin_x^f(x_t) + lin_h^f(h_{t-1}) \\ g_t &= lin_x^g(x_t) + lin_h^g(h_{t-1}) \\ o_t &= lin_x^o(x_t) + lin_h^o(h_{t-1}) \\end{align} """ def __init__(self, input_size: 'int', hidden_size: 'int', layer_norm: 'bool'=False): super().__init__() self.hidden_lin = nn.Linear(hidden_size, 4 * hidden_size) self.input_lin = nn.Linear(input_size, 4 * hidden_size, bias=False) if layer_norm: self.layer_norm = nn.ModuleList([nn.LayerNorm(hidden_size) for _ in range(4)]) self.layer_norm_c = nn.LayerNorm(hidden_size) else: self.layer_norm = nn.ModuleList([nn.Identity() for _ in range(4)]) self.layer_norm_c = nn.Identity() def forward(self, x: 'torch.Tensor', h: 'torch.Tensor', c: 'torch.Tensor'): ifgo = self.hidden_lin(h) + self.input_lin(x) ifgo = ifgo.chunk(4, dim=-1) ifgo = [self.layer_norm[i](ifgo[i]) for i in range(4)] i, f, g, o = ifgo c_next = torch.sigmoid(f) * c + torch.sigmoid(i) * torch.tanh(g) h_next = torch.sigmoid(o) * torch.tanh(self.layer_norm_c(c_next)) return h_next, c_next def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
SquaredReLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ic/cicdjjsf5hzl3lpbazppxvx5umzuokzpuu5z3lapupqhtd2tusv6.py # Topologically Sorted Source Nodes: [x, mul], Original ATen: [aten.relu, aten.mul] # Source node to ATen node mapping: # mul => mul # x => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %relu), kwargs = {}) triton_poi_fused_mul_relu_0 = async_compile.triton('triton_poi_fused_mul_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tmp2 * tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, mul], Original ATen: [aten.relu, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_relu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class SquaredReLU(Module): """ ## Squared ReLU activation $$y = {\\max(x, 0)}^2$$ Squared ReLU is used as the activation function in the [position wise feedforward module](../feed_forward.html). """ def __init__(self): super().__init__() self.relu = nn.ReLU() def forward(self, x: 'torch.Tensor'): x = self.relu(x) return x * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tmp2 * tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_relu_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 return buf0, class SquaredReLUNew(Module): """ ## Squared ReLU activation $$y = {\\max(x, 0)}^2$$ Squared ReLU is used as the activation function in the [position wise feedforward module](../feed_forward.html). """ def __init__(self): super().__init__() self.relu = nn.ReLU() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mcx/annotated_deep_learning_paper_implementations
SquaredReLU
false
7,205
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ ## Squared ReLU activation $$y = {\\max(x, 0)}^2$$ Squared ReLU is used as the activation function in the [position wise feedforward module](../feed_forward.html). """ def __init__(self): super().__init__() self.relu = nn.ReLU() def forward(self, x: 'torch.Tensor'): x = self.relu(x) return x * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MarginLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/2l/c2lqz5eg4uounnzhu2xhx6kieol5nd5d676uuijy3vfi2vfxmwhd.py # Topologically Sorted Source Nodes: [eye, labels, pow_1, sum_1, v_norm, sub, relu, mul, sub_1, mul_1, sub_2, relu_1, mul_2, loss], Original ATen: [aten.eye, aten.index, aten.pow, aten.sum, aten.sqrt, aten.rsub, aten.relu, aten.mul, aten.sub, aten.add] # Source node to ATen node mapping: # eye => eq, full_default, full_default_1, iota_1, where # labels => index # loss => add # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # pow_1 => pow_1 # relu => relu # relu_1 => relu_1 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sum_1 => sum_1 # v_norm => sqrt # Graph fragment: # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%unsqueeze, %iota_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %full_default_1), kwargs = {}) # %index : [num_users=2] = call_function[target=torch.ops.aten.index.Tensor](args = (%where, [%arg1_1]), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1]), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (0.9, %sqrt), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %relu), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %index), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 0.5), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sqrt, 0.1), kwargs = {}) # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_2,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %relu_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_2), kwargs = {}) triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0 = async_compile.triton('triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (4*x3), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (1 + (4*x3)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (2 + (4*x3)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (3 + (4*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tmp4 tmp7 = x0 tmp8 = tmp6 == tmp7 tmp9 = 1.0 tmp10 = 0.0 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp13 = tmp12 * tmp12 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = libdevice.sqrt(tmp22) tmp24 = 0.9 tmp25 = tmp24 - tmp23 tmp26 = tl.full([1], 0, tl.int32) tmp27 = triton_helpers.maximum(tmp26, tmp25) tmp28 = tmp11 * tmp27 tmp29 = tmp9 - tmp11 tmp30 = 0.5 tmp31 = tmp29 * tmp30 tmp32 = 0.1 tmp33 = tmp23 - tmp32 tmp34 = triton_helpers.maximum(tmp26, tmp33) tmp35 = tmp31 * tmp34 tmp36 = tmp28 + tmp35 tl.store(out_ptr0 + (x3), tmp36, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/nl/cnlounivewsan7neintygju4ung6fdl7sne7vd5zvvrfxzgid2yx.py # Topologically Sorted Source Nodes: [sum_2, mean], Original ATen: [aten.sum, aten.mean] # Source node to ATen node mapping: # mean => mean # sum_2 => sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add, [-1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {}) triton_per_fused_mean_sum_1 = async_compile.triton('triton_per_fused_mean_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 16.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [eye, labels, pow_1, sum_1, v_norm, sub, relu, mul, sub_1, mul_1, sub_2, relu_1, mul_2, loss], Original ATen: [aten.eye, aten.index, aten.pow, aten.sum, aten.sqrt, aten.rsub, aten.relu, aten.mul, aten.sub, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [sum_2, mean], Original ATen: [aten.sum, aten.mean] triton_per_fused_mean_sum_1.run(buf2, buf0, 1, 16, grid=grid(1), stream=stream0) del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.nn.functional as F import torch.utils.data import torch.nn.functional import torch.autograd class MarginLoss(Module): '\n ## Margin loss for class existence\n\n A separate margin loss is used for each output capsule and the total loss is the sum of them.\n The length of each output capsule is the probability that class is present in the input.\n\n Loss for each output capsule or class $k$ is,\n $$\\mathcal{L}_k = T_k \\max(0, m^{+} - \\lVert\\mathbf{v}_k\rVert)^2 +\n \\lambda (1 - T_k) \\max(0, \\lVert\\mathbf{v}_k\rVert - m^{-})^2$$\n\n $T_k$ is $1$ if the class $k$ is present and $0$ otherwise.\n The first component of the loss is $0$ when the class is not present,\n and the second component is $0$ if the class is present.\n The $\\max(0, x)$ is used to avoid predictions going to extremes.\n $m^{+}$ is set to be $0.9$ and $m^{-}$ to be $0.1$ in the paper.\n\n The $\\lambda$ down-weighting is used to stop the length of all capsules from\n falling during the initial phase of training.\n ' def __init__(self, *, n_labels: int, lambda_: float=0.5, m_positive: float=0.9, m_negative: float=0.1): super().__init__() self.m_negative = m_negative self.m_positive = m_positive self.lambda_ = lambda_ self.n_labels = n_labels def forward(self, v: 'torch.Tensor', labels: 'torch.Tensor'): """ `v`, $\\mathbf{v}_j$ are the squashed output capsules. This has shape `[batch_size, n_labels, n_features]`; that is, there is a capsule for each label. `labels` are the labels, and has shape `[batch_size]`. """ v_norm = torch.sqrt((v ** 2).sum(dim=-1)) labels = torch.eye(self.n_labels, device=labels.device)[labels] loss = labels * F.relu(self.m_positive - v_norm) + self.lambda_ * ( 1.0 - labels) * F.relu(v_norm - self.m_negative) return loss.sum(dim=-1).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [[], {'n_labels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + 4 * x3, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (1 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp17 = tl.load(in_ptr1 + (2 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr1 + (3 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tmp4 tmp7 = x0 tmp8 = tmp6 == tmp7 tmp9 = 1.0 tmp10 = 0.0 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp13 = tmp12 * tmp12 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = libdevice.sqrt(tmp22) tmp24 = 0.9 tmp25 = tmp24 - tmp23 tmp26 = tl.full([1], 0, tl.int32) tmp27 = triton_helpers.maximum(tmp26, tmp25) tmp28 = tmp11 * tmp27 tmp29 = tmp9 - tmp11 tmp30 = 0.5 tmp31 = tmp29 * tmp30 tmp32 = 0.1 tmp33 = tmp23 - tmp32 tmp34 = triton_helpers.maximum(tmp26, tmp33) tmp35 = tmp31 * tmp34 tmp36 = tmp28 + tmp35 tl.store(out_ptr0 + x3, tmp36, xmask) @triton.jit def triton_per_fused_mean_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 16.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_eye_index_mul_pow_relu_rsub_sqrt_sub_sum_0[grid (64)](arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_mean_sum_1[grid(1)](buf2, buf0, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf0 return buf2, class MarginLossNew(Module): '\n ## Margin loss for class existence\n\n A separate margin loss is used for each output capsule and the total loss is the sum of them.\n The length of each output capsule is the probability that class is present in the input.\n\n Loss for each output capsule or class $k$ is,\n $$\\mathcal{L}_k = T_k \\max(0, m^{+} - \\lVert\\mathbf{v}_k\rVert)^2 +\n \\lambda (1 - T_k) \\max(0, \\lVert\\mathbf{v}_k\rVert - m^{-})^2$$\n\n $T_k$ is $1$ if the class $k$ is present and $0$ otherwise.\n The first component of the loss is $0$ when the class is not present,\n and the second component is $0$ if the class is present.\n The $\\max(0, x)$ is used to avoid predictions going to extremes.\n $m^{+}$ is set to be $0.9$ and $m^{-}$ to be $0.1$ in the paper.\n\n The $\\lambda$ down-weighting is used to stop the length of all capsules from\n falling during the initial phase of training.\n ' def __init__(self, *, n_labels: int, lambda_: float=0.5, m_positive: float=0.9, m_negative: float=0.1): super().__init__() self.m_negative = m_negative self.m_positive = m_positive self.lambda_ = lambda_ self.n_labels = n_labels def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
mcx/annotated_deep_learning_paper_implementations
MarginLoss
false
7,206
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch import torch.nn.functional as F import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): '\n ## Margin loss for class existence\n\n A separate margin loss is used for each output capsule and the total loss is the sum of them.\n The length of each output capsule is the probability that class is present in the input.\n\n Loss for each output capsule or class $k$ is,\n $$\\mathcal{L}_k = T_k \\max(0, m^{+} - \\lVert\\mathbf{v}_k\rVert)^2 +\n \\lambda (1 - T_k) \\max(0, \\lVert\\mathbf{v}_k\rVert - m^{-})^2$$\n\n $T_k$ is $1$ if the class $k$ is present and $0$ otherwise.\n The first component of the loss is $0$ when the class is not present,\n and the second component is $0$ if the class is present.\n The $\\max(0, x)$ is used to avoid predictions going to extremes.\n $m^{+}$ is set to be $0.9$ and $m^{-}$ to be $0.1$ in the paper.\n\n The $\\lambda$ down-weighting is used to stop the length of all capsules from\n falling during the initial phase of training.\n ' def __init__(self, *, n_labels: int, lambda_: float=0.5, m_positive: float=0.9, m_negative: float=0.1): super().__init__() self.m_negative = m_negative self.m_positive = m_positive self.lambda_ = lambda_ self.n_labels = n_labels def forward(self, v: 'torch.Tensor', labels: 'torch.Tensor'): """ `v`, $\\mathbf{v}_j$ are the squashed output capsules. This has shape `[batch_size, n_labels, n_features]`; that is, there is a capsule for each label. `labels` are the labels, and has shape `[batch_size]`. """ v_norm = torch.sqrt((v ** 2).sum(dim=-1)) labels = torch.eye(self.n_labels, device=labels.device)[labels] loss = labels * F.relu(self.m_positive - v_norm) + self.lambda_ * ( 1.0 - labels) * F.relu(v_norm - self.m_negative) return loss.sum(dim=-1).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [4]
Squash
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ym/cym3ccudngmvatoe6w7myo62gop3lu5z7s5oobh4dsa5ywnpodvj.py # Topologically Sorted Source Nodes: [pow_1, s2, add, truediv, add_1, sqrt, truediv_1, mul], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # pow_1 => pow_1 # s2 => sum_1 # sqrt => sqrt # truediv => div # truediv_1 => div_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %sum_1 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %div_1), kwargs = {}) triton_poi_fused_add_div_mul_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sqrt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp10 / tmp12 tmp15 = 1e-08 tmp16 = tmp10 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp14 / tmp17 tmp19 = tmp13 * tmp18 tl.store(out_ptr0 + (x2), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, s2, add, truediv, add_1, sqrt, truediv_1, mul], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sqrt_sum_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class Squash(Module): '\n ## Squash\n\n This is **squashing** function from paper, given by equation $(1)$.\n\n $$\\mathbf{v}_j = \x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}\n \x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$$\n\n $\x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$\n normalizes the length of all the capsules, whilst\n $\x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}$\n shrinks the capsules that have a length smaller than one .\n ' def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, s: 'torch.Tensor'): """ The shape of `s` is `[batch_size, n_capsules, n_features]` """ s2 = (s ** 2).sum(dim=-1, keepdims=True) return s2 / (1 + s2) * (s / torch.sqrt(s2 + self.epsilon)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + x2, xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp10 / tmp12 tmp15 = 1e-08 tmp16 = tmp10 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp14 / tmp17 tmp19 = tmp13 * tmp18 tl.store(out_ptr0 + x2, tmp19, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sqrt_sum_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class SquashNew(Module): '\n ## Squash\n\n This is **squashing** function from paper, given by equation $(1)$.\n\n $$\\mathbf{v}_j = \x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}\n \x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$$\n\n $\x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$\n normalizes the length of all the capsules, whilst\n $\x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}$\n shrinks the capsules that have a length smaller than one .\n ' def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mcx/annotated_deep_learning_paper_implementations
Squash
false
7,207
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): '\n ## Squash\n\n This is **squashing** function from paper, given by equation $(1)$.\n\n $$\\mathbf{v}_j = \x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}\n \x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$$\n\n $\x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$\n normalizes the length of all the capsules, whilst\n $\x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}$\n shrinks the capsules that have a length smaller than one .\n ' def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, s: 'torch.Tensor'): """ The shape of `s` is `[batch_size, n_capsules, n_features]` """ s2 = (s ** 2).sum(dim=-1, keepdims=True) return s2 / (1 + s2) * (s / torch.sqrt(s2 + self.epsilon)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
FeedForward
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/hp/chpdwpegv6lvistek2wqgimtufecqvfp6grp5rpblk5yjicjzqd2.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # h => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lh/clhh73owbiuj4adasmetdqsot2nlmw2ljupnw2q4yt3du76mikww.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # h => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gm/cgmflgdlpeeb52xctoa47uvw47ycyf7ahlj5wdscxdatpbwcboco.py # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # h_2 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5q/c5qmnkuxezgezseizmolw3mx24fyy6xp3cfoz3egpqwcprxgwjre.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add_2 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_1), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 256, grid=grid(256), stream=stream0) del buf0 del buf1 del primals_2 del primals_3 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf4, primals_5, buf7, 256, grid=grid(256), stream=stream0) del primals_5 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf6, primals_7, primals_1, 256, grid=grid(256), stream=stream0) del primals_7 return (buf6, primals_1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(buf4, (64, 4), (4, 1), 0), primals_6, buf7, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class FeedForward(nn.Module): """ ### Position-wise Feed Forward Layer $ ext{F\\small{FW}}$ This consists of two linear layers and an activation in the middle. """ def __init__(self, d_model: 'int', d_ff: 'int'): """ * `d_model` is the number of features in transformer embeddings * `d_ff` is the number features in the hidden layer """ super().__init__() self.lin1 = nn.Linear(d_model, d_ff) self.lin2 = nn.Linear(d_ff, d_model) self.act = nn.ReLU() self.norm = nn.LayerNorm(d_model) def forward(self, h: 'torch.Tensor'): """ `h` are the embeddings of shape `[batch_size, seq_len, d_model]` """ h_res = h h = self.norm(h) h = self.lin1(h) h = self.act(h) h = self.lin2(h) return h + h_res def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'd_ff': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(64)](primals_1, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(256)](primals_1, buf0, buf1, primals_2, primals_3, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del buf1 del primals_2 del primals_3 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(256)](buf4, primals_5, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_add_3[grid(256)](buf6, primals_7, primals_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 return buf6, primals_1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf4, (64, 4), (4, 1), 0 ), primals_6, buf7, primals_4 class FeedForwardNew(nn.Module): """ ### Position-wise Feed Forward Layer $ ext{F\\small{FW}}$ This consists of two linear layers and an activation in the middle. """ def __init__(self, d_model: 'int', d_ff: 'int'): """ * `d_model` is the number of features in transformer embeddings * `d_ff` is the number features in the hidden layer """ super().__init__() self.lin1 = nn.Linear(d_model, d_ff) self.lin2 = nn.Linear(d_ff, d_model) self.act = nn.ReLU() self.norm = nn.LayerNorm(d_model) def forward(self, input_0): primals_4 = self.lin1.weight primals_2 = self.lin1.bias primals_6 = self.lin2.weight primals_3 = self.lin2.bias primals_5 = self.norm.weight primals_7 = self.norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
mcx/annotated_deep_learning_paper_implementations
FeedForward
false
7,208
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Model(nn.Module): """ ### Position-wise Feed Forward Layer $ ext{F\\small{FW}}$ This consists of two linear layers and an activation in the middle. """ def __init__(self, d_model: 'int', d_ff: 'int'): """ * `d_model` is the number of features in transformer embeddings * `d_ff` is the number features in the hidden layer """ super().__init__() self.lin1 = nn.Linear(d_model, d_ff) self.lin2 = nn.Linear(d_ff, d_model) self.act = nn.ReLU() self.norm = nn.LayerNorm(d_model) def forward(self, h: 'torch.Tensor'): """ `h` are the embeddings of shape `[batch_size, seq_len, d_model]` """ h_res = h h = self.norm(h) h = self.lin1(h) h = self.act(h) h = self.lin2(h) return h + h_res def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
BehaviorClone
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/z5/cz5bgdo2gmhnnmtf6w7lrjkvliacxo7nomq7mbmjquxqyxqgt5bj.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (2, 4), (4, 1)) assert_size_stride(primals_2, (2, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 2), (2, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf3, 128, grid=grid(128), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2), (2, 1), 0), reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 2), (2, 1), 0), primals_4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class BehaviorClone(nn.Module): def __init__(self, input_shape, output_shape): super(BehaviorClone, self).__init__() self.input_shape = input_shape self.output_shape = output_shape self.fc1 = nn.Linear(input_shape, input_shape // 2) self.fc2 = nn.Linear(input_shape // 2, output_shape) self.do = nn.Dropout(p=0.3) def forward(self, x): x = F.relu(self.fc1(x)) x = self.do(x) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_shape': 4, 'output_shape': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (2, 4), (4, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 2), (2, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(128)](buf1, primals_2, buf3, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2), ( 2, 1), 0), reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 2), (2, 1), 0), primals_4, buf3 class BehaviorCloneNew(nn.Module): def __init__(self, input_shape, output_shape): super(BehaviorCloneNew, self).__init__() self.input_shape = input_shape self.output_shape = output_shape self.fc1 = nn.Linear(input_shape, input_shape // 2) self.fc2 = nn.Linear(input_shape // 2, output_shape) self.do = nn.Dropout(p=0.3) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
mdiephuis/Berkeley-cs294-112
BehaviorClone
false
7,209
[ "MIT" ]
1
99559e046b635ca8d229f19ca4ad45c2c02a1c01
https://github.com/mdiephuis/Berkeley-cs294-112/tree/99559e046b635ca8d229f19ca4ad45c2c02a1c01
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, input_shape, output_shape): super().__init__() self.input_shape = input_shape self.output_shape = output_shape self.fc1 = nn.Linear(input_shape, input_shape // 2) self.fc2 = nn.Linear(input_shape // 2, output_shape) self.do = nn.Dropout(p=0.3) def forward(self, x): x = F.relu(self.fc1(x)) x = self.do(x) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
SpatialDepthWiseConvolution
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/6j/c6jwd535crsaxcf2vn6fo7tivf6rewo3kc7wmj2smnibmmu6vbwp.py # Topologically Sorted Source Nodes: [res, mul_1, iadd, mul_2, iadd_1], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # iadd => add # iadd_1 => add_1 # mul_1 => mul_1 # mul_2 => mul_2 # res => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %view), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_2, %view_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_1, %mul_1), kwargs = {}) # %slice_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%mul, %add, 0, 1, 9223372036854775807), kwargs = {}) # %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default, %slice_3, 0, 1, 9223372036854775807), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_10, %view_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_11, %mul_2), kwargs = {}) # %slice_scatter_default_2 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_1, %add_1, 0, 2, 9223372036854775807), kwargs = {}) # %slice_scatter_default_3 : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_2, %slice_12, 0, 2, 9223372036854775807), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 22, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 64) x4 = xindex x0 = xindex % 4 tmp61 = tl.load(in_ptr0 + (x4), xmask) tmp62 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 2, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 >= tmp3 tmp5 = tmp4 & tmp2 tmp6 = tmp4 & tmp5 tmp7 = tl.load(in_ptr0 + (x4), tmp6 & xmask, other=0.0) tmp8 = tl.load(in_ptr1 + (x0), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 * tmp8 tmp10 = tl.load(in_ptr0 + ((-64) + x4), tmp6 & xmask, other=0.0) tmp11 = tl.load(in_ptr1 + (4 + x0), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp10 * tmp11 tmp13 = tmp9 + tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp6, tmp13, tmp14) tmp16 = tl.load(in_ptr0 + (x4), tmp5 & xmask, other=0.0) tmp17 = tl.load(in_ptr1 + (x0), tmp5 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 * tmp17 tmp19 = tl.where(tmp4, tmp15, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp5, tmp19, tmp20) tmp22 = tl.load(in_ptr0 + ((-64) + x4), tmp5 & xmask, other=0.0) tmp23 = tl.load(in_ptr1 + (4 + x0), tmp5 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tmp22 * tmp23 tmp25 = tmp18 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp5, tmp25, tmp26) tmp28 = tl.load(in_ptr0 + (x4), tmp2 & xmask, other=0.0) tmp29 = tl.load(in_ptr1 + (x0), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tmp28 * tmp29 tmp31 = tl.where(tmp4, tmp27, tmp30) tmp32 = tl.where(tmp4, tmp21, tmp31) tmp33 = tl.load(in_ptr0 + ((-128) + x4), tmp2 & xmask, other=0.0) tmp34 = tl.load(in_ptr1 + (8 + x0), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp35 = tmp33 * tmp34 tmp36 = tmp32 + tmp35 tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp2, tmp36, tmp37) tmp39 = tmp4 & tmp4 tmp40 = tl.load(in_ptr0 + (x4), tmp39 & xmask, other=0.0) tmp41 = tl.load(in_ptr1 + (x0), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp42 = tmp40 * tmp41 tmp43 = tl.load(in_ptr0 + ((-64) + x4), tmp39 & xmask, other=0.0) tmp44 = tl.load(in_ptr1 + (4 + x0), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp45 = tmp43 * tmp44 tmp46 = tmp42 + tmp45 tmp47 = tl.full(tmp46.shape, 0.0, tmp46.dtype) tmp48 = tl.where(tmp39, tmp46, tmp47) tmp49 = tl.load(in_ptr0 + (x4), tmp4 & xmask, other=0.0) tmp50 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp51 = tmp49 * tmp50 tmp52 = tl.where(tmp4, tmp48, tmp51) tmp53 = tl.full(tmp52.shape, 0.0, tmp52.dtype) tmp54 = tl.where(tmp4, tmp52, tmp53) tmp55 = tl.load(in_ptr0 + ((-64) + x4), tmp4 & xmask, other=0.0) tmp56 = tl.load(in_ptr1 + (4 + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp57 = tmp55 * tmp56 tmp58 = tmp51 + tmp57 tmp59 = tl.full(tmp58.shape, 0.0, tmp58.dtype) tmp60 = tl.where(tmp4, tmp58, tmp59) tmp63 = tmp61 * tmp62 tmp64 = tl.where(tmp4, tmp60, tmp63) tmp65 = tl.where(tmp4, tmp54, tmp64) tmp66 = tl.where(tmp2, tmp38, tmp65) tmp67 = tl.where(tmp2, tmp66, tmp66) tl.store(in_out_ptr0 + (x4), tmp67, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (3, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [res, mul_1, iadd, mul_2, iadd_1], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(buf1, primals_2, primals_1, 256, grid=grid(256), stream=stream0) del primals_1 return (buf1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((3, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import math import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class SpatialDepthWiseConvolution(Module): """ ## Spatial Depth Wise Convolution This is actually slower """ def __init__(self, d_k: 'int', kernel_size: 'int'=3): """ * `d_k` is the number of channels in each head """ super().__init__() self.kernel_size = kernel_size rng = 1 / math.sqrt(kernel_size) self.kernels = nn.Parameter(torch.zeros((kernel_size, d_k)). uniform_(-rng, rng)) def forward(self, x: 'torch.Tensor'): """ `x` has shape `[seq_len, batch_size, heads, d_k]` """ res = x * self.kernels[0].view(1, 1, 1, -1) for i in range(1, len(self.kernels)): res[i:] += x[:-i] * self.kernels[i].view(1, 1, 1, -1) return res def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_k': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module import math from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 64 x4 = xindex x0 = xindex % 4 tmp61 = tl.load(in_ptr0 + x4, xmask) tmp62 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 2, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 >= tmp3 tmp5 = tmp4 & tmp2 tmp6 = tmp4 & tmp5 tmp7 = tl.load(in_ptr0 + x4, tmp6 & xmask, other=0.0) tmp8 = tl.load(in_ptr1 + x0, tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 * tmp8 tmp10 = tl.load(in_ptr0 + (-64 + x4), tmp6 & xmask, other=0.0) tmp11 = tl.load(in_ptr1 + (4 + x0), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp12 = tmp10 * tmp11 tmp13 = tmp9 + tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp6, tmp13, tmp14) tmp16 = tl.load(in_ptr0 + x4, tmp5 & xmask, other=0.0) tmp17 = tl.load(in_ptr1 + x0, tmp5 & xmask, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 * tmp17 tmp19 = tl.where(tmp4, tmp15, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp5, tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (-64 + x4), tmp5 & xmask, other=0.0) tmp23 = tl.load(in_ptr1 + (4 + x0), tmp5 & xmask, eviction_policy= 'evict_last', other=0.0) tmp24 = tmp22 * tmp23 tmp25 = tmp18 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp5, tmp25, tmp26) tmp28 = tl.load(in_ptr0 + x4, tmp2 & xmask, other=0.0) tmp29 = tl.load(in_ptr1 + x0, tmp2 & xmask, eviction_policy= 'evict_last', other=0.0) tmp30 = tmp28 * tmp29 tmp31 = tl.where(tmp4, tmp27, tmp30) tmp32 = tl.where(tmp4, tmp21, tmp31) tmp33 = tl.load(in_ptr0 + (-128 + x4), tmp2 & xmask, other=0.0) tmp34 = tl.load(in_ptr1 + (8 + x0), tmp2 & xmask, eviction_policy= 'evict_last', other=0.0) tmp35 = tmp33 * tmp34 tmp36 = tmp32 + tmp35 tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp2, tmp36, tmp37) tmp39 = tmp4 & tmp4 tmp40 = tl.load(in_ptr0 + x4, tmp39 & xmask, other=0.0) tmp41 = tl.load(in_ptr1 + x0, tmp39 & xmask, eviction_policy= 'evict_last', other=0.0) tmp42 = tmp40 * tmp41 tmp43 = tl.load(in_ptr0 + (-64 + x4), tmp39 & xmask, other=0.0) tmp44 = tl.load(in_ptr1 + (4 + x0), tmp39 & xmask, eviction_policy= 'evict_last', other=0.0) tmp45 = tmp43 * tmp44 tmp46 = tmp42 + tmp45 tmp47 = tl.full(tmp46.shape, 0.0, tmp46.dtype) tmp48 = tl.where(tmp39, tmp46, tmp47) tmp49 = tl.load(in_ptr0 + x4, tmp4 & xmask, other=0.0) tmp50 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp51 = tmp49 * tmp50 tmp52 = tl.where(tmp4, tmp48, tmp51) tmp53 = tl.full(tmp52.shape, 0.0, tmp52.dtype) tmp54 = tl.where(tmp4, tmp52, tmp53) tmp55 = tl.load(in_ptr0 + (-64 + x4), tmp4 & xmask, other=0.0) tmp56 = tl.load(in_ptr1 + (4 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp57 = tmp55 * tmp56 tmp58 = tmp51 + tmp57 tmp59 = tl.full(tmp58.shape, 0.0, tmp58.dtype) tmp60 = tl.where(tmp4, tmp58, tmp59) tmp63 = tmp61 * tmp62 tmp64 = tl.where(tmp4, tmp60, tmp63) tmp65 = tl.where(tmp4, tmp54, tmp64) tmp66 = tl.where(tmp2, tmp38, tmp65) tmp67 = tl.where(tmp2, tmp66, tmp66) tl.store(in_out_ptr0 + x4, tmp67, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (3, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](buf1, primals_2, primals_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 return buf1, primals_2 class SpatialDepthWiseConvolutionNew(Module): """ ## Spatial Depth Wise Convolution This is actually slower """ def __init__(self, d_k: 'int', kernel_size: 'int'=3): """ * `d_k` is the number of channels in each head """ super().__init__() self.kernel_size = kernel_size rng = 1 / math.sqrt(kernel_size) self.kernels = nn.Parameter(torch.zeros((kernel_size, d_k)). uniform_(-rng, rng)) def forward(self, input_0): primals_1 = self.kernels primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
mcx/annotated_deep_learning_paper_implementations
SpatialDepthWiseConvolution
false
7,210
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import math import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ ## Spatial Depth Wise Convolution This is actually slower """ def __init__(self, d_k: 'int', kernel_size: 'int'=3): """ * `d_k` is the number of channels in each head """ super().__init__() self.kernel_size = kernel_size rng = 1 / math.sqrt(kernel_size) self.kernels = nn.Parameter(torch.zeros((kernel_size, d_k)). uniform_(-rng, rng)) def forward(self, x: 'torch.Tensor'): """ `x` has shape `[seq_len, batch_size, heads, d_k]` """ res = x * self.kernels[0].view(1, 1, 1, -1) for i in range(1, len(self.kernels)): res[i:] += x[:-i] * self.kernels[i].view(1, 1, 1, -1) return res def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
KLDivergenceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ak/cakm5e6lwgvo4ch6lbxjmcmcar3oco47d3xyxuief4vqkwlft225.py # Topologically Sorted Source Nodes: [sub, alpha, mul, alpha_tilde], Original ATen: [aten.rsub, aten.add, aten.mul] # Source node to ATen node mapping: # alpha => add # alpha_tilde => add_1 # mul => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %add), kwargs = {}) # %add_1 : [num_users=5] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %mul), kwargs = {}) triton_poi_fused_add_mul_rsub_0 = async_compile.triton('triton_poi_fused_add_mul_rsub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 + tmp1 tmp5 = tmp2 * tmp4 tmp6 = tmp0 + tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fs/cfslznycxlykpj42fqvbg2sgr2rr5ofx6xol4bhm6igaw3efhsg5.py # Topologically Sorted Source Nodes: [strength_tilde], Original ATen: [aten.sum] # Source node to ATen node mapping: # strength_tilde => sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_1, [-1]), kwargs = {}) triton_poi_fused_sum_1 = async_compile.triton('triton_poi_fused_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2i/c2izsdx2sqgkyo4pbm7trfgkofg2h276vcut2cdf4alkpa2abztc.py # Topologically Sorted Source Nodes: [sub, alpha, mul, alpha_tilde, sum_2, lgamma, lgamma_1, sub_1, lgamma_2, sum_3, first, sub_3, sub_4, mul_1, second, loss, mean], Original ATen: [aten.rsub, aten.add, aten.mul, aten.sum, aten.lgamma, aten.sub, aten.mean] # Source node to ATen node mapping: # alpha => add # alpha_tilde => add_1 # first => sub_2 # lgamma => lgamma # lgamma_1 => full_default # lgamma_2 => lgamma_2 # loss => add_2 # mean => mean # mul => mul # mul_1 => mul_1 # second => sum_4 # sub => sub # sub_1 => sub_1 # sub_3 => sub_3 # sub_4 => sub_4 # sum_2 => sum_2 # sum_3 => sum_3 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %add), kwargs = {}) # %add_1 : [num_users=5] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %mul), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_1, [-1]), kwargs = {}) # %lgamma : [num_users=1] = call_function[target=torch.ops.aten.lgamma.default](args = (%sum_2,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.7917594909667969), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%lgamma, %full_default), kwargs = {}) # %lgamma_2 : [num_users=1] = call_function[target=torch.ops.aten.lgamma.default](args = (%add_1,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%lgamma_2, [-1]), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, %sum_3), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, 1), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%digamma, %unsqueeze), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %sub_4), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1]), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_2, %sum_4), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_2,), kwargs = {}) triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2 = async_compile.triton('triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 4 r3 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last') tmp40 = tl.load(in_ptr3 + ((4*r1) + (16*r3)), None, eviction_policy='evict_last') tmp44 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (1 + (4*r1) + (16*r3)), None, eviction_policy='evict_last') tmp50 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp51 = tl.load(in_ptr3 + (2 + (4*r1) + (16*r3)), None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp57 = tl.load(in_ptr3 + (3 + (4*r1) + (16*r3)), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 + tmp1 tmp5 = tmp2 * tmp4 tmp6 = tmp0 + tmp5 tmp8 = tmp1 - tmp7 tmp10 = tmp9 + tmp1 tmp11 = tmp8 * tmp10 tmp12 = tmp7 + tmp11 tmp13 = tmp6 + tmp12 tmp15 = tmp1 - tmp14 tmp17 = tmp16 + tmp1 tmp18 = tmp15 * tmp17 tmp19 = tmp14 + tmp18 tmp20 = tmp13 + tmp19 tmp22 = tmp1 - tmp21 tmp24 = tmp23 + tmp1 tmp25 = tmp22 * tmp24 tmp26 = tmp21 + tmp25 tmp27 = tmp20 + tmp26 tmp28 = libdevice.lgamma(tmp27) tmp29 = 1.7917594909667969 tmp30 = tmp28 - tmp29 tmp31 = libdevice.lgamma(tmp6) tmp32 = libdevice.lgamma(tmp12) tmp33 = tmp31 + tmp32 tmp34 = libdevice.lgamma(tmp19) tmp35 = tmp33 + tmp34 tmp36 = libdevice.lgamma(tmp26) tmp37 = tmp35 + tmp36 tmp38 = tmp6 - tmp1 tmp41 = tmp39 - tmp40 tmp42 = tmp38 * tmp41 tmp43 = tmp12 - tmp1 tmp46 = tmp44 - tmp45 tmp47 = tmp43 * tmp46 tmp48 = tmp42 + tmp47 tmp49 = tmp19 - tmp1 tmp52 = tmp50 - tmp51 tmp53 = tmp49 * tmp52 tmp54 = tmp48 + tmp53 tmp55 = tmp26 - tmp1 tmp58 = tmp56 - tmp57 tmp59 = tmp55 * tmp58 tmp60 = tmp54 + tmp59 tmp61 = tmp30 - tmp37 tmp62 = tmp61 + tmp60 tmp63 = tl.broadcast_to(tmp62, [XBLOCK, RBLOCK]) tmp65 = tl.sum(tmp63, 1)[:, None] tmp66 = 64.0 tmp67 = tmp65 / tmp66 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp67, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, alpha, mul, alpha_tilde], Original ATen: [aten.rsub, aten.add, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_rsub_0.run(arg1_1, arg0_1, buf2, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [sub, alpha, mul, alpha_tilde, digamma], Original ATen: [aten.rsub, aten.add, aten.mul, aten.digamma] buf3 = torch.ops.aten.digamma.default(buf2) buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [strength_tilde], Original ATen: [aten.sum] triton_poi_fused_sum_1.run(buf2, buf5, 64, grid=grid(64), stream=stream0) del buf2 # Topologically Sorted Source Nodes: [strength_tilde, digamma_1], Original ATen: [aten.sum, aten.digamma] buf6 = torch.ops.aten.digamma.default(buf5) del buf5 buf7 = buf6 del buf6 buf9 = empty_strided_cuda((), (), torch.float32) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [sub, alpha, mul, alpha_tilde, sum_2, lgamma, lgamma_1, sub_1, lgamma_2, sum_3, first, sub_3, sub_4, mul_1, second, loss, mean], Original ATen: [aten.rsub, aten.add, aten.mul, aten.sum, aten.lgamma, aten.sub, aten.mean] triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2.run(buf10, arg1_1, arg0_1, buf4, buf7, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del buf4 del buf7 return (buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class KLDivergenceLoss(Module): """ <a id="KLDivergenceLoss"></a> ## KL Divergence Regularization Loss This tries to shrink the total evidence to zero if the sample cannot be correctly classified. First we calculate $ ilde{lpha}_k = y_k + (1 - y_k) extcolor{orange}{lpha_k}$ the Dirichlet parameters after remove the correct evidence. egin{align} &KL \\Big[ D(\\mathbf{p} ert \\mathbf{ ilde{lpha}}) \\Big \\Vert D(\\mathbf{p} ert <1, \\dots, 1>\\Big] \\ &= \\log \\Bigg( rac{\\Gamma \\Big( \\sum_{k=1}^K ilde{lpha}_k \\Big)} {\\Gamma(K) \\prod_{k=1}^K \\Gamma( ilde{lpha}_k)} \\Bigg) + \\sum_{k=1}^K ( ilde{lpha}_k - 1) \\Big[ \\psi( ilde{lpha}_k) - \\psi( ilde{S}) \\Big] \\end{align} where $\\Gamma(\\cdot)$ is the gamma function, $\\psi(\\cdot)$ is the $digamma$ function and $ ilde{S} = \\sum_{k=1}^K ilde{lpha}_k$ """ def forward(self, evidence: 'torch.Tensor', target: 'torch.Tensor'): """ * `evidence` is $\\mathbf{e} \\ge 0$ with shape `[batch_size, n_classes]` * `target` is $\\mathbf{y}$ with shape `[batch_size, n_classes]` """ alpha = evidence + 1.0 n_classes = evidence.shape[-1] alpha_tilde = target + (1 - target) * alpha strength_tilde = alpha_tilde.sum(dim=-1) first = torch.lgamma(alpha_tilde.sum(dim=-1)) - torch.lgamma( alpha_tilde.new_tensor(float(n_classes))) - torch.lgamma( alpha_tilde).sum(dim=-1) second = ((alpha_tilde - 1) * (torch.digamma(alpha_tilde) - torch. digamma(strength_tilde)[:, None])).sum(dim=-1) loss = first + second return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 + tmp1 tmp5 = tmp2 * tmp4 tmp6 = tmp0 + tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 4 r3 = rindex // 16 tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last') tmp40 = tl.load(in_ptr3 + (4 * r1 + 16 * r3), None, eviction_policy= 'evict_last') tmp44 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (1 + 4 * r1 + 16 * r3), None, eviction_policy ='evict_last') tmp50 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp51 = tl.load(in_ptr3 + (2 + 4 * r1 + 16 * r3), None, eviction_policy ='evict_last') tmp56 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp57 = tl.load(in_ptr3 + (3 + 4 * r1 + 16 * r3), None, eviction_policy ='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 + tmp1 tmp5 = tmp2 * tmp4 tmp6 = tmp0 + tmp5 tmp8 = tmp1 - tmp7 tmp10 = tmp9 + tmp1 tmp11 = tmp8 * tmp10 tmp12 = tmp7 + tmp11 tmp13 = tmp6 + tmp12 tmp15 = tmp1 - tmp14 tmp17 = tmp16 + tmp1 tmp18 = tmp15 * tmp17 tmp19 = tmp14 + tmp18 tmp20 = tmp13 + tmp19 tmp22 = tmp1 - tmp21 tmp24 = tmp23 + tmp1 tmp25 = tmp22 * tmp24 tmp26 = tmp21 + tmp25 tmp27 = tmp20 + tmp26 tmp28 = libdevice.lgamma(tmp27) tmp29 = 1.7917594909667969 tmp30 = tmp28 - tmp29 tmp31 = libdevice.lgamma(tmp6) tmp32 = libdevice.lgamma(tmp12) tmp33 = tmp31 + tmp32 tmp34 = libdevice.lgamma(tmp19) tmp35 = tmp33 + tmp34 tmp36 = libdevice.lgamma(tmp26) tmp37 = tmp35 + tmp36 tmp38 = tmp6 - tmp1 tmp41 = tmp39 - tmp40 tmp42 = tmp38 * tmp41 tmp43 = tmp12 - tmp1 tmp46 = tmp44 - tmp45 tmp47 = tmp43 * tmp46 tmp48 = tmp42 + tmp47 tmp49 = tmp19 - tmp1 tmp52 = tmp50 - tmp51 tmp53 = tmp49 * tmp52 tmp54 = tmp48 + tmp53 tmp55 = tmp26 - tmp1 tmp58 = tmp56 - tmp57 tmp59 = tmp55 * tmp58 tmp60 = tmp54 + tmp59 tmp61 = tmp30 - tmp37 tmp62 = tmp61 + tmp60 tmp63 = tl.broadcast_to(tmp62, [XBLOCK, RBLOCK]) tmp65 = tl.sum(tmp63, 1)[:, None] tmp66 = 64.0 tmp67 = tmp65 / tmp66 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp67, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_rsub_0[grid(256)](arg1_1, arg0_1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) buf3 = torch.ops.aten.digamma.default(buf2) buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_sum_1[grid(64)](buf2, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf2 buf6 = torch.ops.aten.digamma.default(buf5) del buf5 buf7 = buf6 del buf6 buf9 = empty_strided_cuda((), (), torch.float32) buf10 = buf9 del buf9 triton_per_fused_add_lgamma_mean_mul_rsub_sub_sum_2[grid(1)](buf10, arg1_1, arg0_1, buf4, buf7, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del buf4 del buf7 return buf10, class KLDivergenceLossNew(Module): """ <a id="KLDivergenceLoss"></a> ## KL Divergence Regularization Loss This tries to shrink the total evidence to zero if the sample cannot be correctly classified. First we calculate $ ilde{lpha}_k = y_k + (1 - y_k) extcolor{orange}{lpha_k}$ the Dirichlet parameters after remove the correct evidence. egin{align} &KL \\Big[ D(\\mathbf{p} ert \\mathbf{ ilde{lpha}}) \\Big \\Vert D(\\mathbf{p} ert <1, \\dots, 1>\\Big] \\ &= \\log \\Bigg( rac{\\Gamma \\Big( \\sum_{k=1}^K ilde{lpha}_k \\Big)} {\\Gamma(K) \\prod_{k=1}^K \\Gamma( ilde{lpha}_k)} \\Bigg) + \\sum_{k=1}^K ( ilde{lpha}_k - 1) \\Big[ \\psi( ilde{lpha}_k) - \\psi( ilde{S}) \\Big] \\end{align} where $\\Gamma(\\cdot)$ is the gamma function, $\\psi(\\cdot)$ is the $digamma$ function and $ ilde{S} = \\sum_{k=1}^K ilde{lpha}_k$ """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
mcx/annotated_deep_learning_paper_implementations
KLDivergenceLoss
false
7,211
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ <a id="KLDivergenceLoss"></a> ## KL Divergence Regularization Loss This tries to shrink the total evidence to zero if the sample cannot be correctly classified. First we calculate $ ilde{lpha}_k = y_k + (1 - y_k) extcolor{orange}{lpha_k}$ the Dirichlet parameters after remove the correct evidence. egin{align} &KL \\Big[ D(\\mathbf{p} ert \\mathbf{ ilde{lpha}}) \\Big \\Vert D(\\mathbf{p} ert <1, \\dots, 1>\\Big] \\ &= \\log \\Bigg( rac{\\Gamma \\Big( \\sum_{k=1}^K ilde{lpha}_k \\Big)} {\\Gamma(K) \\prod_{k=1}^K \\Gamma( ilde{lpha}_k)} \\Bigg) + \\sum_{k=1}^K ( ilde{lpha}_k - 1) \\Big[ \\psi( ilde{lpha}_k) - \\psi( ilde{S}) \\Big] \\end{align} where $\\Gamma(\\cdot)$ is the gamma function, $\\psi(\\cdot)$ is the $digamma$ function and $ ilde{S} = \\sum_{k=1}^K ilde{lpha}_k$ """ def forward(self, evidence: 'torch.Tensor', target: 'torch.Tensor'): """ * `evidence` is $\\mathbf{e} \\ge 0$ with shape `[batch_size, n_classes]` * `target` is $\\mathbf{y}$ with shape `[batch_size, n_classes]` """ alpha = evidence + 1.0 n_classes = evidence.shape[-1] alpha_tilde = target + (1 - target) * alpha strength_tilde = alpha_tilde.sum(dim=-1) first = torch.lgamma(alpha_tilde.sum(dim=-1)) - torch.lgamma( alpha_tilde.new_tensor(float(n_classes))) - torch.lgamma( alpha_tilde).sum(dim=-1) second = ((alpha_tilde - 1) * (torch.digamma(alpha_tilde) - torch. digamma(strength_tilde)[:, None])).sum(dim=-1) loss = first + second return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SpatialDepthWisePerHeadConvolution
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/jb/cjbf3ssum7resbwampiwoknxcnzh4uzdy4fhoaakjojloew6qlw5.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_2 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1], [2], [1], False, [0], 16), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (64*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6z/c6zyvii2c5e5dc43sgzfkfbsfrhltqlojfzhuoqqgpavg7xdvriv.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_2 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1], [2], [1], False, [0], 16), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 6) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 1, 3), (3, 3, 1)) assert_size_stride(primals_3, (16, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=16, bias=None) assert_size_stride(buf1, (4, 16, 6), (96, 6, 1)) del buf0 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 384, grid=grid(384), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (1, 96, 24, 6), 0), primals_2, reinterpret_tensor(primals_1, (4, 16, 4), (16, 1, 64), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 1, 3), (3, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class SpatialDepthWisePerHeadConvolution(Module): """ ## Spatial Depth Wise Per Head Convolution """ def __init__(self, heads: 'int', d_k: 'int', kernel_size: 'int'=3): """ * `heads` is the number of heads * `d_k` is the number of channels in each head """ super().__init__() self.kernel_size = kernel_size self.conv = nn.Conv1d(in_channels=d_k * heads, out_channels=d_k * heads, kernel_size=(kernel_size,), padding=(kernel_size - 1,), groups=d_k * heads) def forward(self, x: 'torch.Tensor'): """ `x` has shape `[seq_len, batch_size, heads, d_k]` """ seq_len, batch_size, heads, d_k = x.shape x = x.permute(1, 2, 3, 0) x = x.view(batch_size, heads * d_k, seq_len) x = self.conv(x) x = x[:, :, :-(self.kernel_size - 1)] x = x.view(batch_size, heads, d_k, seq_len) x = x.permute(3, 0, 1, 2) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'heads': 4, 'd_k': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 64 * x1), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 6 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 1, 3), (3, 3, 1)) assert_size_stride(primals_3, (16,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(64, 4)](primals_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=( 0,), groups=16, bias=None) assert_size_stride(buf1, (4, 16, 6), (96, 6, 1)) del buf0 buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(384)](buf2, primals_3, 384, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 4, 4, 4), (1, 96, 24, 6), 0 ), primals_2, reinterpret_tensor(primals_1, (4, 16, 4), (16, 1, 64), 0) class SpatialDepthWisePerHeadConvolutionNew(Module): """ ## Spatial Depth Wise Per Head Convolution """ def __init__(self, heads: 'int', d_k: 'int', kernel_size: 'int'=3): """ * `heads` is the number of heads * `d_k` is the number of channels in each head """ super().__init__() self.kernel_size = kernel_size self.conv = nn.Conv1d(in_channels=d_k * heads, out_channels=d_k * heads, kernel_size=(kernel_size,), padding=(kernel_size - 1,), groups=d_k * heads) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mcx/annotated_deep_learning_paper_implementations
SpatialDepthWisePerHeadConvolution
false
7,212
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ ## Spatial Depth Wise Per Head Convolution """ def __init__(self, heads: 'int', d_k: 'int', kernel_size: 'int'=3): """ * `heads` is the number of heads * `d_k` is the number of channels in each head """ super().__init__() self.kernel_size = kernel_size self.conv = nn.Conv1d(in_channels=d_k * heads, out_channels=d_k * heads, kernel_size=(kernel_size,), padding=(kernel_size - 1,), groups=d_k * heads) def forward(self, x: 'torch.Tensor'): """ `x` has shape `[seq_len, batch_size, heads, d_k]` """ seq_len, batch_size, heads, d_k = x.shape x = x.permute(1, 2, 3, 0) x = x.view(batch_size, heads * d_k, seq_len) x = self.conv(x) x = x[:, :, :-(self.kernel_size - 1)] x = x.view(batch_size, heads, d_k, seq_len) x = x.permute(3, 0, 1, 2) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
SpatialDepthWiseSharedConvolution
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/jb/cjbf3ssum7resbwampiwoknxcnzh4uzdy4fhoaakjojloew6qlw5.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_2 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1], [2], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (64*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/e2/ce2f4ussgg6jfpqca2kweqtdut6siq46cus4r4zd4oeneykjlqi5.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_2 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1], [2], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3), (3, 3, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (64, 1, 6), (6, 6, 1)) del buf0 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 384, grid=grid(384), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (1, 96, 24, 6), 0), primals_2, reinterpret_tensor(primals_1, (64, 1, 4), (1, 256, 64), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 3), (3, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class SpatialDepthWiseSharedConvolution(Module): """ ## Spatial Depth Wise Shared Convolution We share the same kernel across all channels. """ def __init__(self, kernel_size: 'int'=3): """ """ super().__init__() self.kernel_size = kernel_size self.conv = nn.Conv1d(in_channels=1, out_channels=1, kernel_size=( kernel_size,), padding=(kernel_size - 1,)) def forward(self, x: 'torch.Tensor'): """ `x` has shape `[seq_len, batch_size, heads, d_k]` """ seq_len, batch_size, heads, d_k = x.shape x = x.permute(1, 2, 3, 0) x = x.view(batch_size * heads * d_k, 1, seq_len) x = self.conv(x) x = x[:, :, :-(self.kernel_size - 1)] x = x.view(batch_size, heads, d_k, seq_len) x = x.permute(3, 0, 1, 2) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 64 * x1), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3), (3, 3, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1, 4), (4, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(64, 4)](primals_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (64, 1, 6), (6, 6, 1)) del buf0 buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(384)](buf2, primals_3, 384, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 4, 4, 4), (1, 96, 24, 6), 0 ), primals_2, reinterpret_tensor(primals_1, (64, 1, 4), (1, 256, 64), 0 ) class SpatialDepthWiseSharedConvolutionNew(Module): """ ## Spatial Depth Wise Shared Convolution We share the same kernel across all channels. """ def __init__(self, kernel_size: 'int'=3): """ """ super().__init__() self.kernel_size = kernel_size self.conv = nn.Conv1d(in_channels=1, out_channels=1, kernel_size=( kernel_size,), padding=(kernel_size - 1,)) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mcx/annotated_deep_learning_paper_implementations
SpatialDepthWiseSharedConvolution
false
7,213
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ ## Spatial Depth Wise Shared Convolution We share the same kernel across all channels. """ def __init__(self, kernel_size: 'int'=3): """ """ super().__init__() self.kernel_size = kernel_size self.conv = nn.Conv1d(in_channels=1, out_channels=1, kernel_size=( kernel_size,), padding=(kernel_size - 1,)) def forward(self, x: 'torch.Tensor'): """ `x` has shape `[seq_len, batch_size, heads, d_k]` """ seq_len, batch_size, heads, d_k = x.shape x = x.permute(1, 2, 3, 0) x = x.view(batch_size * heads * d_k, 1, seq_len) x = self.conv(x) x = x[:, :, :-(self.kernel_size - 1)] x = x.view(batch_size, heads, d_k, seq_len) x = x.permute(3, 0, 1, 2) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SquaredErrorBayesRisk
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/4m/c4mbktqccghizbaoiq4sp5jwan6vfxof7affhyhr32khwihn5hy7.py # Topologically Sorted Source Nodes: [alpha, p], Original ATen: [aten.add, aten.div] # Source node to ATen node mapping: # alpha => add # p => div # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %unsqueeze), kwargs = {}) triton_poi_fused_add_div_0 = async_compile.triton('triton_poi_fused_add_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + ((4*x0) + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x0) + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x0) + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0) + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp6 = tmp5 + tmp1 tmp7 = tmp4 + tmp6 tmp9 = tmp8 + tmp1 tmp10 = tmp7 + tmp9 tmp12 = tmp11 + tmp1 tmp13 = tmp10 + tmp12 tmp14 = tmp2 / tmp13 tl.store(out_ptr0 + (x3), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kb/ckb3ux77dgnn2btgpdwtpvd62ighfwj3upxaxlwlv65qub5yeef2.py # Topologically Sorted Source Nodes: [sub, err, sub_1, mul, add_1, var, add_2, loss, mean], Original ATen: [aten.sub, aten.pow, aten.rsub, aten.mul, aten.add, aten.div, aten.sum, aten.mean] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # err => pow_1 # loss => sum_2 # mean => mean # mul => mul # sub => sub # sub_1 => sub_1 # var => div_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %div), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze_1, 1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %div_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_2, [-1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {}) triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1 = async_compile.triton('triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 24, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r2 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (4*r3), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*r3), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + ((16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (1 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr2 + (2 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (3 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (1 + (4*r3)), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (1 + (4*r3)), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr2 + (4 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp29 = tl.load(in_ptr2 + (5 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp32 = tl.load(in_ptr2 + (6 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr2 + (7 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp42 = tl.load(in_ptr0 + (2 + (4*r3)), None, eviction_policy='evict_last') tmp43 = tl.load(in_ptr1 + (2 + (4*r3)), None, eviction_policy='evict_last') tmp48 = tl.load(in_ptr2 + (8 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp50 = tl.load(in_ptr2 + (9 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp53 = tl.load(in_ptr2 + (10 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr2 + (11 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp63 = tl.load(in_ptr0 + (3 + (4*r3)), None, eviction_policy='evict_last') tmp64 = tl.load(in_ptr1 + (3 + (4*r3)), None, eviction_policy='evict_last') tmp69 = tl.load(in_ptr2 + (12 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp71 = tl.load(in_ptr2 + (13 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp74 = tl.load(in_ptr2 + (14 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp77 = tl.load(in_ptr2 + (15 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp6 = tmp1 * tmp5 tmp8 = tmp7 + tmp4 tmp10 = tmp9 + tmp4 tmp11 = tmp8 + tmp10 tmp13 = tmp12 + tmp4 tmp14 = tmp11 + tmp13 tmp16 = tmp15 + tmp4 tmp17 = tmp14 + tmp16 tmp18 = tmp17 + tmp4 tmp19 = tmp6 / tmp18 tmp20 = tmp3 + tmp19 tmp23 = tmp21 - tmp22 tmp24 = tmp23 * tmp23 tmp25 = tmp4 - tmp22 tmp26 = tmp22 * tmp25 tmp28 = tmp27 + tmp4 tmp30 = tmp29 + tmp4 tmp31 = tmp28 + tmp30 tmp33 = tmp32 + tmp4 tmp34 = tmp31 + tmp33 tmp36 = tmp35 + tmp4 tmp37 = tmp34 + tmp36 tmp38 = tmp37 + tmp4 tmp39 = tmp26 / tmp38 tmp40 = tmp24 + tmp39 tmp41 = tmp20 + tmp40 tmp44 = tmp42 - tmp43 tmp45 = tmp44 * tmp44 tmp46 = tmp4 - tmp43 tmp47 = tmp43 * tmp46 tmp49 = tmp48 + tmp4 tmp51 = tmp50 + tmp4 tmp52 = tmp49 + tmp51 tmp54 = tmp53 + tmp4 tmp55 = tmp52 + tmp54 tmp57 = tmp56 + tmp4 tmp58 = tmp55 + tmp57 tmp59 = tmp58 + tmp4 tmp60 = tmp47 / tmp59 tmp61 = tmp45 + tmp60 tmp62 = tmp41 + tmp61 tmp65 = tmp63 - tmp64 tmp66 = tmp65 * tmp65 tmp67 = tmp4 - tmp64 tmp68 = tmp64 * tmp67 tmp70 = tmp69 + tmp4 tmp72 = tmp71 + tmp4 tmp73 = tmp70 + tmp72 tmp75 = tmp74 + tmp4 tmp76 = tmp73 + tmp75 tmp78 = tmp77 + tmp4 tmp79 = tmp76 + tmp78 tmp80 = tmp79 + tmp4 tmp81 = tmp68 / tmp80 tmp82 = tmp66 + tmp81 tmp83 = tmp62 + tmp82 tmp84 = tl.broadcast_to(tmp83, [XBLOCK, RBLOCK]) tmp86 = tl.sum(tmp84, 1)[:, None] tmp87 = 64.0 tmp88 = tmp86 / tmp87 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp88, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [alpha, p], Original ATen: [aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [sub, err, sub_1, mul, add_1, var, add_2, loss, mean], Original ATen: [aten.sub, aten.pow, aten.rsub, aten.mul, aten.add, aten.div, aten.sum, aten.mean] triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1.run(buf3, arg1_1, buf0, arg0_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del buf0 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class SquaredErrorBayesRisk(Module): """ <a id="SquaredErrorBayesRisk"></a> ## Bayes Risk with Squared Error Loss Here the cost function is squared error, $$\\sum_{k=1}^K (y_k - p_k)^2 = \\Vert \\mathbf{y} - \\mathbf{p} \\Vert_2^2$$ We integrate this cost over all $\\mathbf{p}$ egin{align} \\mathcal{L}(\\Theta) &= -\\log \\Bigg( \\int \\Big[ \\sum_{k=1}^K (y_k - p_k)^2 \\Big] rac{1}{B( extcolor{orange}{\\mathbf{lpha}})} \\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1} d\\mathbf{p} \\Bigg ) \\ &= \\sum_{k=1}^K \\mathbb{E} \\Big[ y_k^2 -2 y_k p_k + p_k^2 \\Big] \\ &= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k^2] \\Big) \\end{align} Where $$\\mathbb{E}[p_k] = \\hat{p}_k = rac{ extcolor{orange}{lpha_k}}{S}$$ is the expected probability when sampled from the Dirichlet distribution and $$\\mathbb{E}[p_k^2] = \\mathbb{E}[p_k]^2 + ext{Var}(p_k)$$ where $$ ext{Var}(p_k) = rac{ extcolor{orange}{lpha_k}(S - extcolor{orange}{lpha_k})}{S^2 (S + 1)} = rac{\\hat{p}_k(1 - \\hat{p}_k)}{S + 1}$$ is the variance. This gives, egin{align} \\mathcal{L}(\\Theta) &= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k^2] \\Big) \\ &= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k]^2 + ext{Var}(p_k) \\Big) \\ &= \\sum_{k=1}^K \\Big( ig( y_k -\\mathbb{E}[p_k] ig)^2 + ext{Var}(p_k) \\Big) \\ &= \\sum_{k=1}^K \\Big( ( y_k -\\hat{p}_k)^2 + rac{\\hat{p}_k(1 - \\hat{p}_k)}{S + 1} \\Big) \\end{align} This first part of the equation $ig(y_k -\\mathbb{E}[p_k]ig)^2$ is the error term and the second part is the variance. """ def forward(self, evidence: 'torch.Tensor', target: 'torch.Tensor'): """ * `evidence` is $\\mathbf{e} \\ge 0$ with shape `[batch_size, n_classes]` * `target` is $\\mathbf{y}$ with shape `[batch_size, n_classes]` """ alpha = evidence + 1.0 strength = alpha.sum(dim=-1) p = alpha / strength[:, None] err = (target - p) ** 2 var = p * (1 - p) / (strength[:, None] + 1) loss = (err + var).sum(dim=-1) return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (4 * x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x0 + 64 * x2), xmask, eviction_policy ='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x0 + 64 * x2), xmask, eviction_policy ='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0 + 64 * x2), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp6 = tmp5 + tmp1 tmp7 = tmp4 + tmp6 tmp9 = tmp8 + tmp1 tmp10 = tmp7 + tmp9 tmp12 = tmp11 + tmp1 tmp13 = tmp10 + tmp12 tmp14 = tmp2 / tmp13 tl.store(out_ptr0 + x3, tmp14, xmask) @triton.jit def triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r2 = rindex // 16 tmp0 = tl.load(in_ptr0 + 4 * r3, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * r3, None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + (16 * r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr2 + (1 + 16 * r0 + 64 * r2), None, eviction_policy ='evict_last') tmp12 = tl.load(in_ptr2 + (2 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (3 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (1 + 4 * r3), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (1 + 4 * r3), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr2 + (4 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp29 = tl.load(in_ptr2 + (5 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp32 = tl.load(in_ptr2 + (6 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr2 + (7 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp42 = tl.load(in_ptr0 + (2 + 4 * r3), None, eviction_policy='evict_last') tmp43 = tl.load(in_ptr1 + (2 + 4 * r3), None, eviction_policy='evict_last') tmp48 = tl.load(in_ptr2 + (8 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp50 = tl.load(in_ptr2 + (9 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp53 = tl.load(in_ptr2 + (10 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr2 + (11 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp63 = tl.load(in_ptr0 + (3 + 4 * r3), None, eviction_policy='evict_last') tmp64 = tl.load(in_ptr1 + (3 + 4 * r3), None, eviction_policy='evict_last') tmp69 = tl.load(in_ptr2 + (12 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp71 = tl.load(in_ptr2 + (13 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp74 = tl.load(in_ptr2 + (14 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp77 = tl.load(in_ptr2 + (15 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp6 = tmp1 * tmp5 tmp8 = tmp7 + tmp4 tmp10 = tmp9 + tmp4 tmp11 = tmp8 + tmp10 tmp13 = tmp12 + tmp4 tmp14 = tmp11 + tmp13 tmp16 = tmp15 + tmp4 tmp17 = tmp14 + tmp16 tmp18 = tmp17 + tmp4 tmp19 = tmp6 / tmp18 tmp20 = tmp3 + tmp19 tmp23 = tmp21 - tmp22 tmp24 = tmp23 * tmp23 tmp25 = tmp4 - tmp22 tmp26 = tmp22 * tmp25 tmp28 = tmp27 + tmp4 tmp30 = tmp29 + tmp4 tmp31 = tmp28 + tmp30 tmp33 = tmp32 + tmp4 tmp34 = tmp31 + tmp33 tmp36 = tmp35 + tmp4 tmp37 = tmp34 + tmp36 tmp38 = tmp37 + tmp4 tmp39 = tmp26 / tmp38 tmp40 = tmp24 + tmp39 tmp41 = tmp20 + tmp40 tmp44 = tmp42 - tmp43 tmp45 = tmp44 * tmp44 tmp46 = tmp4 - tmp43 tmp47 = tmp43 * tmp46 tmp49 = tmp48 + tmp4 tmp51 = tmp50 + tmp4 tmp52 = tmp49 + tmp51 tmp54 = tmp53 + tmp4 tmp55 = tmp52 + tmp54 tmp57 = tmp56 + tmp4 tmp58 = tmp55 + tmp57 tmp59 = tmp58 + tmp4 tmp60 = tmp47 / tmp59 tmp61 = tmp45 + tmp60 tmp62 = tmp41 + tmp61 tmp65 = tmp63 - tmp64 tmp66 = tmp65 * tmp65 tmp67 = tmp4 - tmp64 tmp68 = tmp64 * tmp67 tmp70 = tmp69 + tmp4 tmp72 = tmp71 + tmp4 tmp73 = tmp70 + tmp72 tmp75 = tmp74 + tmp4 tmp76 = tmp73 + tmp75 tmp78 = tmp77 + tmp4 tmp79 = tmp76 + tmp78 tmp80 = tmp79 + tmp4 tmp81 = tmp68 / tmp80 tmp82 = tmp66 + tmp81 tmp83 = tmp62 + tmp82 tmp84 = tl.broadcast_to(tmp83, [XBLOCK, RBLOCK]) tmp86 = tl.sum(tmp84, 1)[:, None] tmp87 = 64.0 tmp88 = tmp86 / tmp87 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp88, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 triton_per_fused_add_div_mean_mul_pow_rsub_sub_sum_1[grid(1)](buf3, arg1_1, buf0, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del buf0 return buf3, class SquaredErrorBayesRiskNew(Module): """ <a id="SquaredErrorBayesRisk"></a> ## Bayes Risk with Squared Error Loss Here the cost function is squared error, $$\\sum_{k=1}^K (y_k - p_k)^2 = \\Vert \\mathbf{y} - \\mathbf{p} \\Vert_2^2$$ We integrate this cost over all $\\mathbf{p}$ egin{align} \\mathcal{L}(\\Theta) &= -\\log \\Bigg( \\int \\Big[ \\sum_{k=1}^K (y_k - p_k)^2 \\Big] rac{1}{B( extcolor{orange}{\\mathbf{lpha}})} \\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1} d\\mathbf{p} \\Bigg ) \\ &= \\sum_{k=1}^K \\mathbb{E} \\Big[ y_k^2 -2 y_k p_k + p_k^2 \\Big] \\ &= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k^2] \\Big) \\end{align} Where $$\\mathbb{E}[p_k] = \\hat{p}_k = rac{ extcolor{orange}{lpha_k}}{S}$$ is the expected probability when sampled from the Dirichlet distribution and $$\\mathbb{E}[p_k^2] = \\mathbb{E}[p_k]^2 + ext{Var}(p_k)$$ where $$ ext{Var}(p_k) = rac{ extcolor{orange}{lpha_k}(S - extcolor{orange}{lpha_k})}{S^2 (S + 1)} = rac{\\hat{p}_k(1 - \\hat{p}_k)}{S + 1}$$ is the variance. This gives, egin{align} \\mathcal{L}(\\Theta) &= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k^2] \\Big) \\ &= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k]^2 + ext{Var}(p_k) \\Big) \\ &= \\sum_{k=1}^K \\Big( ig( y_k -\\mathbb{E}[p_k] ig)^2 + ext{Var}(p_k) \\Big) \\ &= \\sum_{k=1}^K \\Big( ( y_k -\\hat{p}_k)^2 + rac{\\hat{p}_k(1 - \\hat{p}_k)}{S + 1} \\Big) \\end{align} This first part of the equation $ig(y_k -\\mathbb{E}[p_k]ig)^2$ is the error term and the second part is the variance. """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
mcx/annotated_deep_learning_paper_implementations
SquaredErrorBayesRisk
false
7,214
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ <a id="SquaredErrorBayesRisk"></a> ## Bayes Risk with Squared Error Loss Here the cost function is squared error, $$\\sum_{k=1}^K (y_k - p_k)^2 = \\Vert \\mathbf{y} - \\mathbf{p} \\Vert_2^2$$ We integrate this cost over all $\\mathbf{p}$ egin{align} \\mathcal{L}(\\Theta) &= -\\log \\Bigg( \\int \\Big[ \\sum_{k=1}^K (y_k - p_k)^2 \\Big] rac{1}{B( extcolor{orange}{\\mathbf{lpha}})} \\prod_{k=1}^K p_k^{ extcolor{orange}{lpha_k} - 1} d\\mathbf{p} \\Bigg ) \\ &= \\sum_{k=1}^K \\mathbb{E} \\Big[ y_k^2 -2 y_k p_k + p_k^2 \\Big] \\ &= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k^2] \\Big) \\end{align} Where $$\\mathbb{E}[p_k] = \\hat{p}_k = rac{ extcolor{orange}{lpha_k}}{S}$$ is the expected probability when sampled from the Dirichlet distribution and $$\\mathbb{E}[p_k^2] = \\mathbb{E}[p_k]^2 + ext{Var}(p_k)$$ where $$ ext{Var}(p_k) = rac{ extcolor{orange}{lpha_k}(S - extcolor{orange}{lpha_k})}{S^2 (S + 1)} = rac{\\hat{p}_k(1 - \\hat{p}_k)}{S + 1}$$ is the variance. This gives, egin{align} \\mathcal{L}(\\Theta) &= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k^2] \\Big) \\ &= \\sum_{k=1}^K \\Big( y_k^2 -2 y_k \\mathbb{E}[p_k] + \\mathbb{E}[p_k]^2 + ext{Var}(p_k) \\Big) \\ &= \\sum_{k=1}^K \\Big( ig( y_k -\\mathbb{E}[p_k] ig)^2 + ext{Var}(p_k) \\Big) \\ &= \\sum_{k=1}^K \\Big( ( y_k -\\hat{p}_k)^2 + rac{\\hat{p}_k(1 - \\hat{p}_k)}{S + 1} \\Big) \\end{align} This first part of the equation $ig(y_k -\\mathbb{E}[p_k]ig)^2$ is the error term and the second part is the variance. """ def forward(self, evidence: 'torch.Tensor', target: 'torch.Tensor'): """ * `evidence` is $\\mathbf{e} \\ge 0$ with shape `[batch_size, n_classes]` * `target` is $\\mathbf{y}$ with shape `[batch_size, n_classes]` """ alpha = evidence + 1.0 strength = alpha.sum(dim=-1) p = alpha / strength[:, None] err = (target - p) ** 2 var = p * (1 - p) / (strength[:, None] + 1) loss = (err + var).sum(dim=-1) return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MNIST_Discriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/r3/cr355avoqx5hv3qr3i6kjj3otoyequr2sr33d7jxrywusfgam6sb.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.2), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7z/c7zsuucunqdovb2xa6tywxjxwmolzjzdk72ratro7fi3qvgyqb7c.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_1 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (2, 4), (4, 1)) assert_size_stride(primals_2, (2, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 2), (2, 1)) assert_size_stride(primals_5, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 128, grid=grid(128), stream=stream0) del buf0 del primals_2 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 2), (2, 1), 0), reinterpret_tensor(primals_4, (2, 1), (1, 2), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf4, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 2), (2, 1), 0), buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F class MNIST_Discriminator(nn.Module): def __init__(self, latent_size): super(MNIST_Discriminator, self).__init__() self.latent_size = latent_size self.linear1 = nn.Linear(self.latent_size, self.latent_size // 2) self.linear2 = nn.Linear(self.latent_size // 2, 1) def forward(self, x): x = F.leaky_relu(self.linear1(x), 0.2) x = torch.sigmoid(self.linear2(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'latent_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (2, 4), (4, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 2), (2, 1)) assert_size_stride(primals_5, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(128)](buf0, primals_2, buf1, buf2, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_2 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 2), (2, 1), 0), reinterpret_tensor(primals_4, (2, 1), (1, 2), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf3 triton_poi_fused_sigmoid_1[grid(64)](buf4, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 2), (2, 1), 0), buf4, primals_4 class MNIST_DiscriminatorNew(nn.Module): def __init__(self, latent_size): super(MNIST_DiscriminatorNew, self).__init__() self.latent_size = latent_size self.linear1 = nn.Linear(self.latent_size, self.latent_size // 2) self.linear2 = nn.Linear(self.latent_size // 2, 1) def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
mdiephuis/adversarial-autoencoders
MNIST_Discriminator
false
7,215
[ "MIT" ]
1
a722239564362796774de21a64fd92e81dce4089
https://github.com/mdiephuis/adversarial-autoencoders/tree/a722239564362796774de21a64fd92e81dce4089
import torch import torch.nn as nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, latent_size): super().__init__() self.latent_size = latent_size self.linear1 = nn.Linear(self.latent_size, self.latent_size // 2) self.linear2 = nn.Linear(self.latent_size // 2, 1) def forward(self, x): x = F.leaky_relu(self.linear1(x), 0.2) x = torch.sigmoid(self.linear2(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
MNIST_Encoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/o4/co4zyxcl2qkqwco2hpqjmusaq55kf7f6hyk5tkf5vs6buom4p47w.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.2), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hj/chjzotk5iydxvuetxetlv36s7car7cdb24whkuqihxwcy5kkr4o2.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x_1 => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del primals_2 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf4, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F class MNIST_Encoder(nn.Module): def __init__(self, in_channels, latent_size): super(MNIST_Encoder, self).__init__() self.in_channels = in_channels self.latent_size = latent_size self.linear1 = nn.Linear(self.in_channels, self.latent_size) self.linear2 = nn.Linear(self.latent_size, self.latent_size) def forward(self, x): x = F.leaky_relu(self.linear1(x), 0.2) x = torch.tanh(self.linear2(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'latent_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(256)](buf0, primals_2, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf3 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 triton_poi_fused_tanh_1[grid(256)](buf4, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf4, primals_4 class MNIST_EncoderNew(nn.Module): def __init__(self, in_channels, latent_size): super(MNIST_EncoderNew, self).__init__() self.in_channels = in_channels self.latent_size = latent_size self.linear1 = nn.Linear(self.in_channels, self.latent_size) self.linear2 = nn.Linear(self.latent_size, self.latent_size) def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
mdiephuis/adversarial-autoencoders
MNIST_Encoder
false
7,216
[ "MIT" ]
1
a722239564362796774de21a64fd92e81dce4089
https://github.com/mdiephuis/adversarial-autoencoders/tree/a722239564362796774de21a64fd92e81dce4089
import torch import torch.nn as nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, in_channels, latent_size): super().__init__() self.in_channels = in_channels self.latent_size = latent_size self.linear1 = nn.Linear(self.in_channels, self.latent_size) self.linear2 = nn.Linear(self.latent_size, self.latent_size) def forward(self, x): x = F.leaky_relu(self.linear1(x), 0.2) x = torch.tanh(self.linear2(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
MNIST_Generator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/o4/co4zyxcl2qkqwco2hpqjmusaq55kf7f6hyk5tkf5vs6buom4p47w.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.2), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del primals_2 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0) del buf3 del primals_5 return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F class MNIST_Generator(nn.Module): def __init__(self, out_channels, latent_size): super(MNIST_Generator, self).__init__() self.out_channels = out_channels self.latent_size = latent_size self.linear1 = nn.Linear(self.latent_size, self.out_channels) self.linear2 = nn.Linear(self.out_channels, self.out_channels) def forward(self, x): x = F.leaky_relu(self.linear1(x), 0.2) x = F.leaky_relu(self.linear2(x), 0.2) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'out_channels': 4, 'latent_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(256)](buf0, primals_2, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf3 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_leaky_relu_0[grid(256)](buf3, primals_5, buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 del primals_5 return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf4, primals_4 class MNIST_GeneratorNew(nn.Module): def __init__(self, out_channels, latent_size): super(MNIST_GeneratorNew, self).__init__() self.out_channels = out_channels self.latent_size = latent_size self.linear1 = nn.Linear(self.latent_size, self.out_channels) self.linear2 = nn.Linear(self.out_channels, self.out_channels) def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
mdiephuis/adversarial-autoencoders
MNIST_Generator
false
7,217
[ "MIT" ]
1
a722239564362796774de21a64fd92e81dce4089
https://github.com/mdiephuis/adversarial-autoencoders/tree/a722239564362796774de21a64fd92e81dce4089
import torch import torch.nn as nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, out_channels, latent_size): super().__init__() self.out_channels = out_channels self.latent_size = latent_size self.linear1 = nn.Linear(self.latent_size, self.out_channels) self.linear2 = nn.Linear(self.out_channels, self.out_channels) def forward(self, x): x = F.leaky_relu(self.linear1(x), 0.2) x = F.leaky_relu(self.linear2(x), 0.2) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Discriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/54/c54qznm5wnmv6tjkruzet2cvzzwnoisovduku6yewqmcgprk5hli.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.2), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7z/c7zsuucunqdovb2xa6tywxjxwmolzjzdk72ratro7fi3qvgyqb7c.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_2 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_5,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 128), (128, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (1, 128), (128, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 8192, grid=grid(8192), stream=stream0) del primals_2 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 8192, grid=grid(8192), stream=stream0) del buf3 del primals_5 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 1), (1, 128), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf7, primals_7, 64, grid=grid(64), stream=stream0) del primals_7 return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 128), (128, 1), 0), buf4, reinterpret_tensor(buf5, (64, 128), (128, 1), 0), buf7, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F class Discriminator(nn.Module): def __init__(self, latent_size, d=128): super(Discriminator, self).__init__() self.latent_size = latent_size self.d = d self.linear1 = nn.Linear(self.latent_size, self.d) self.linear2 = nn.Linear(self.d, self.d) self.linear3 = nn.Linear(self.d, 1) def forward(self, x): x = F.leaky_relu(self.linear1(x), 0.2) x = F.leaky_relu(self.linear2(x), 0.2) x = torch.sigmoid(self.linear3(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'latent_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 128), (128, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (1, 128), (128, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(8192)](buf0, primals_2, buf1, buf2, 8192, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(buf2, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) triton_poi_fused_leaky_relu_0[grid(8192)](buf3, primals_5, buf4, buf5, 8192, XBLOCK=128, num_warps=4, num_stages=1) del buf3 del primals_5 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 1), (1, 128), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf6 triton_poi_fused_sigmoid_1[grid(64)](buf7, primals_7, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_7 return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 128), (128, 1), 0 ), buf4, reinterpret_tensor(buf5, (64, 128), (128, 1), 0 ), buf7, primals_6, primals_4 class DiscriminatorNew(nn.Module): def __init__(self, latent_size, d=128): super(DiscriminatorNew, self).__init__() self.latent_size = latent_size self.d = d self.linear1 = nn.Linear(self.latent_size, self.d) self.linear2 = nn.Linear(self.d, self.d) self.linear3 = nn.Linear(self.d, 1) def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_6 = self.linear3.weight primals_7 = self.linear3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
mdiephuis/adversarial-autoencoders
Discriminator
false
7,218
[ "MIT" ]
1
a722239564362796774de21a64fd92e81dce4089
https://github.com/mdiephuis/adversarial-autoencoders/tree/a722239564362796774de21a64fd92e81dce4089
import torch import torch.nn as nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, latent_size, d=128): super().__init__() self.latent_size = latent_size self.d = d self.linear1 = nn.Linear(self.latent_size, self.d) self.linear2 = nn.Linear(self.d, self.d) self.linear3 = nn.Linear(self.d, 1) def forward(self, x): x = F.leaky_relu(self.linear1(x), 0.2) x = F.leaky_relu(self.linear2(x), 0.2) x = torch.sigmoid(self.linear3(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
MemoryEfficientPFLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ls/clsrn64j7q7762c2hcdfpkojqxyovclgjgcdjmwor2g5tyqdiafb.py # Topologically Sorted Source Nodes: [mul, add, sqrt, truediv, add_1, mul_1, truediv_1], Original ATen: [aten.mul, aten.add, aten.sqrt, aten.div] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # mul_1 => mul_1 # sqrt => sqrt # truediv => div # truediv_1 => div_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %sqrt), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %add_1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, 2), kwargs = {}) triton_poi_fused_add_div_mul_sqrt_0 = async_compile.triton('triton_poi_fused_add_div_mul_sqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp4 = libdevice.sqrt(tmp3) tmp5 = tmp0 / tmp4 tmp6 = tmp5 + tmp2 tmp7 = tmp0 * tmp6 tmp8 = 0.5 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add, sqrt, truediv, add_1, mul_1, truediv_1], Original ATen: [aten.mul, aten.add, aten.sqrt, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_sqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.autograd import Function import torch from torch import nn class PFLUFunction(Function): @staticmethod def forward(ctx, x): ctx.save_for_backward(x) return x * (1 + x / torch.sqrt(1 + x * x)) / 2 @staticmethod def backward(ctx, grad_output): x, = ctx.saved_tensors grad_x = None if ctx.needs_input_grad[0]: t = 1 / (1 + x * x) grad_x = grad_output * (1 + x * torch.sqrt(t) * (1 + t)) / 2 return grad_x class MemoryEfficientPFLU(nn.Module): def forward(self, x): return PFLUFunction.apply(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.autograd import Function from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp4 = libdevice.sqrt(tmp3) tmp5 = tmp0 / tmp4 tmp6 = tmp5 + tmp2 tmp7 = tmp0 * tmp6 tmp8 = 0.5 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_sqrt_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class PFLUFunction(Function): @staticmethod def forward(ctx, x): ctx.save_for_backward(x) return x * (1 + x / torch.sqrt(1 + x * x)) / 2 @staticmethod def backward(ctx, grad_output): x, = ctx.saved_tensors grad_x = None if ctx.needs_input_grad[0]: t = 1 / (1 + x * x) grad_x = grad_output * (1 + x * torch.sqrt(t) * (1 + t)) / 2 return grad_x class MemoryEfficientPFLUNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mengzhu0308/PFLU-FPFLU
MemoryEfficientPFLU
false
7,219
[ "Apache-2.0" ]
1
628cd472db2913e555e902bdf35af834f84a284b
https://github.com/mengzhu0308/PFLU-FPFLU/tree/628cd472db2913e555e902bdf35af834f84a284b
from torch.autograd import Function import torch from torch import nn class PFLUFunction(Function): @staticmethod def forward(ctx, x): ctx.save_for_backward(x) return x * (1 + x / torch.sqrt(1 + x * x)) / 2 @staticmethod def backward(ctx, grad_output): x, = ctx.saved_tensors grad_x = None if ctx.needs_input_grad[0]: t = 1 / (1 + x * x) grad_x = grad_output * (1 + x * torch.sqrt(t) * (1 + t)) / 2 return grad_x class Model(nn.Module): def forward(self, x): return PFLUFunction.apply(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
FPFLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/pc/cpcqogmmdcds5f6z3gnt2ohs2k62oalb5pqrhpxdtc3bir44f2jz.py # Topologically Sorted Source Nodes: [mul, add, truediv, maximum], Original ATen: [aten.mul, aten.add, aten.div, aten.maximum] # Source node to ATen node mapping: # add => add # maximum => maximum # mul => mul # truediv => div # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %add), kwargs = {}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%arg0_1, %div), kwargs = {}) triton_poi_fused_add_div_maximum_mul_0 = async_compile.triton('triton_poi_fused_add_div_maximum_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_maximum_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_maximum_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp4 = tmp0 / tmp3 tmp5 = triton_helpers.maximum(tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add, truediv, maximum], Original ATen: [aten.mul, aten.add, aten.div, aten.maximum] stream0 = get_raw_stream(0) triton_poi_fused_add_div_maximum_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class FPFLU(nn.Module): def forward(self, x): return torch.maximum(x, x / (1 + x * x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_maximum_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp4 = tmp0 / tmp3 tmp5 = triton_helpers.maximum(tmp0, tmp4) tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_maximum_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class FPFLUNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mengzhu0308/PFLU-FPFLU
FPFLU
false
7,220
[ "Apache-2.0" ]
1
628cd472db2913e555e902bdf35af834f84a284b
https://github.com/mengzhu0308/PFLU-FPFLU/tree/628cd472db2913e555e902bdf35af834f84a284b
import torch from torch import nn class Model(nn.Module): def forward(self, x): return torch.maximum(x, x / (1 + x * x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
WQ
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/q2/cq2qrtyf6mtvmdrqgmyex3qru5qkrvvs4wppvbxy3li4uxc3exl4.py # Topologically Sorted Source Nodes: [std, mul, abs_1, m, mul_1, alpha_w], Original ATen: [aten.std, aten.mul, aten.abs, aten.mean, aten.sub] # Source node to ATen node mapping: # abs_1 => abs_1 # alpha_w => sub # m => mean # mul => mul # mul_1 => mul_1 # std => sqrt, var # Graph fragment: # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%arg0_1,), kwargs = {correction: 1.0}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt, 12.987012987012987), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 13.155844155844155), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_per_fused_abs_mean_mul_std_sub_0 = async_compile.triton('triton_per_fused_abs_mean_mul_std_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_mul_std_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_mul_std_sub_0(in_out_ptr0, in_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 256, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = tl_math.abs(tmp0) tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0)) tmp18 = 255.0 tmp19 = tmp13 / tmp18 tmp20 = libdevice.sqrt(tmp19) tmp21 = 12.987012987012987 tmp22 = tmp20 * tmp21 tmp23 = 256.0 tmp24 = tmp17 / tmp23 tmp25 = 13.155844155844155 tmp26 = tmp24 * tmp25 tmp27 = tmp22 - tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp27, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [std, mul, abs_1, m, mul_1, alpha_w], Original ATen: [aten.std, aten.mul, aten.abs, aten.mean, aten.sub] stream0 = get_raw_stream(0) triton_per_fused_abs_mean_mul_std_sub_0.run(buf4, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def stats_quant(x, nbit, qmode='symm', dequantize=True): z_typical = {'4bit': [0.077, 1.013], '8bit': [0.027, 1.114]} z = z_typical[f'{int(nbit)}bit'] m = x.abs().mean() std = x.std() if qmode == 'symm': n_lv = 2 ** (nbit - 1) - 1 alpha_w = 1 / z[0] * std - z[1] / z[0] * m elif qmode == 'asymm': n_lv = (2 ** nbit - 1) / 2 alpha_w = 2 * m else: raise NotImplementedError x = x.clamp(-alpha_w.item(), alpha_w.item()) scale = n_lv / alpha_w xq = x.mul(scale).round() if len(xq.unique()) > 2 ** nbit: xq = xq.clamp(-2 ** nbit // 2, 2 ** nbit // 2 - 1) if dequantize: xq = xq.div(scale) return xq, scale class RoundQ(torch.autograd.Function): @staticmethod def forward(ctx, input, wbit, qmode): input_q, _scale = stats_quant(input, wbit, qmode) ctx.save_for_backward(input) return input_q @staticmethod def backward(ctx, grad_output): grad_input = grad_output.clone() return grad_input, None, None class WQ(nn.Module): """ Weight quantizer """ def __init__(self, wbit, qmode='symm'): super(WQ, self).__init__() self.wbit = wbit self.qmode = qmode def forward(self, x): weight_q = RoundQ.apply(x, self.wbit, self.qmode) return weight_q def extra_repr(self): return super(WQ, self).extra_repr() + 'qmode={}'.format(self.qmode) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'wbit': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_mean_mul_std_sub_0(in_out_ptr0, in_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 256, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = tl_math.abs(tmp0) tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0)) tmp18 = 255.0 tmp19 = tmp13 / tmp18 tmp20 = libdevice.sqrt(tmp19) tmp21 = 12.987012987012987 tmp22 = tmp20 * tmp21 tmp23 = 256.0 tmp24 = tmp17 / tmp23 tmp25 = 13.155844155844155 tmp26 = tmp24 * tmp25 tmp27 = tmp22 - tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp27, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf4 = buf1 del buf1 get_raw_stream(0) triton_per_fused_abs_mean_mul_std_sub_0[grid(1)](buf4, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 return buf4, def stats_quant(x, nbit, qmode='symm', dequantize=True): z_typical = {'4bit': [0.077, 1.013], '8bit': [0.027, 1.114]} z = z_typical[f'{int(nbit)}bit'] m = x.abs().mean() std = x.std() if qmode == 'symm': n_lv = 2 ** (nbit - 1) - 1 alpha_w = 1 / z[0] * std - z[1] / z[0] * m elif qmode == 'asymm': n_lv = (2 ** nbit - 1) / 2 alpha_w = 2 * m else: raise NotImplementedError x = x.clamp(-alpha_w.item(), alpha_w.item()) scale = n_lv / alpha_w xq = x.mul(scale).round() if len(xq.unique()) > 2 ** nbit: xq = xq.clamp(-2 ** nbit // 2, 2 ** nbit // 2 - 1) if dequantize: xq = xq.div(scale) return xq, scale class RoundQ(torch.autograd.Function): @staticmethod def forward(ctx, input, wbit, qmode): input_q, _scale = stats_quant(input, wbit, qmode) ctx.save_for_backward(input) return input_q @staticmethod def backward(ctx, grad_output): grad_input = grad_output.clone() return grad_input, None, None class WQNew(nn.Module): """ Weight quantizer """ def __init__(self, wbit, qmode='symm'): super(WQNew, self).__init__() self.wbit = wbit self.qmode = qmode def extra_repr(self): return super(WQNew, self).extra_repr() + 'qmode={}'.format(self.qmode) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mengjian0502/TorchInference_SRAM
WQ
false
7,221
[ "MIT" ]
1
fcc465c73b79f2ab670b6af03aa53f9bb47c64ca
https://github.com/mengjian0502/TorchInference_SRAM/tree/fcc465c73b79f2ab670b6af03aa53f9bb47c64ca
import torch import torch.nn as nn def stats_quant(x, nbit, qmode='symm', dequantize=True): z_typical = {'4bit': [0.077, 1.013], '8bit': [0.027, 1.114]} z = z_typical[f'{int(nbit)}bit'] m = x.abs().mean() std = x.std() if qmode == 'symm': n_lv = 2 ** (nbit - 1) - 1 alpha_w = 1 / z[0] * std - z[1] / z[0] * m elif qmode == 'asymm': n_lv = (2 ** nbit - 1) / 2 alpha_w = 2 * m else: raise NotImplementedError x = x.clamp(-alpha_w.item(), alpha_w.item()) scale = n_lv / alpha_w xq = x.mul(scale).round() if len(xq.unique()) > 2 ** nbit: xq = xq.clamp(-2 ** nbit // 2, 2 ** nbit // 2 - 1) if dequantize: xq = xq.div(scale) return xq, scale class RoundQ(torch.autograd.Function): @staticmethod def forward(ctx, input, wbit, qmode): input_q, _scale = stats_quant(input, wbit, qmode) ctx.save_for_backward(input) return input_q @staticmethod def backward(ctx, grad_output): grad_input = grad_output.clone() return grad_input, None, None class Model(nn.Module): """ Weight quantizer """ def __init__(self, wbit, qmode='symm'): super().__init__() self.wbit = wbit self.qmode = qmode def forward(self, x): weight_q = RoundQ.apply(x, self.wbit, self.qmode) return weight_q def extra_repr(self): return super(WQ, self).extra_repr() + 'qmode={}'.format(self.qmode) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Coxnnet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ak/caktgvad6egrpdwim6fuv7sc4ceemq43bhsh6px5fk7rhadyseq3.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (2, 4), (4, 1)) assert_size_stride(primals_2, (2, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 2), (2, 1)) assert_size_stride(primals_5, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 128, grid=grid(128), stream=stream0) del primals_2 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2), (2, 1), 0), reinterpret_tensor(primals_4, (2, 1), (1, 2), 0), alpha=1, beta=1, out=buf3) del primals_5 return (reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn class Coxnnet(nn.Module): def __init__(self, nfeat): super(Coxnnet, self).__init__() self.fc1 = nn.Linear(nfeat, int(np.ceil(nfeat ** 0.5))) self.dropout = nn.Dropout(0.5) self.fc2 = nn.Linear(int(np.ceil(nfeat ** 0.5)), 1) self.init_hidden() def forward(self, x, coo=None): x = torch.tanh(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x def init_hidden(self): nn.init.xavier_normal_(self.fc1.weight) nn.init.xavier_normal_(self.fc2.weight) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nfeat': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (2, 4), (4, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 2), (2, 1)) assert_size_stride(primals_5, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(128)](buf1, primals_2, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2), ( 2, 1), 0), reinterpret_tensor(primals_4, (2, 1), (1, 2), 0), alpha=1, beta=1, out=buf3) del primals_5 return reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_4 class CoxnnetNew(nn.Module): def __init__(self, nfeat): super(CoxnnetNew, self).__init__() self.fc1 = nn.Linear(nfeat, int(np.ceil(nfeat ** 0.5))) self.dropout = nn.Dropout(0.5) self.fc2 = nn.Linear(int(np.ceil(nfeat ** 0.5)), 1) self.init_hidden() def init_hidden(self): nn.init.xavier_normal_(self.fc1.weight) nn.init.xavier_normal_(self.fc2.weight) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
menggerSherry/SAVAE-Cox
Coxnnet
false
7,222
[ "Apache-2.0" ]
1
c087ab4f267da28db7eb497c844bea59e65ed125
https://github.com/menggerSherry/SAVAE-Cox/tree/c087ab4f267da28db7eb497c844bea59e65ed125
import torch import numpy as np import torch.nn as nn class Model(nn.Module): def __init__(self, nfeat): super().__init__() self.fc1 = nn.Linear(nfeat, int(np.ceil(nfeat ** 0.5))) self.dropout = nn.Dropout(0.5) self.fc2 = nn.Linear(int(np.ceil(nfeat ** 0.5)), 1) self.init_hidden() def forward(self, x, coo=None): x = torch.tanh(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x def init_hidden(self): nn.init.xavier_normal_(self.fc1.weight) nn.init.xavier_normal_(self.fc2.weight) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
MVNormalNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/v4/cv4f7wcky6nab2f7hkdgxju2cexi5th7qqdlhkbjt2rokrlz7ncr.py # Topologically Sorted Source Nodes: [diag_embed], Original ATen: [aten.diag_embed] # Source node to ATen node mapping: # diag_embed => full_default, where # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_4, %permute_2, %full_default), kwargs = {}) triton_poi_fused_diag_embed_0 = async_compile.triton('triton_poi_fused_diag_embed_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_diag_embed_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_diag_embed_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp3 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp0 = x0 tmp1 = x1 tmp2 = tmp0 == tmp1 tmp4 = tl_math.exp(tmp3) tmp5 = 0.0 tmp6 = tl.where(tmp2, tmp4, tmp5) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [sc], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [diag_embed], Original ATen: [aten.diag_embed] stream0 = get_raw_stream(0) triton_poi_fused_diag_embed_0.run(buf1, buf2, 1024, grid=grid(1024), stream=stream0) return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MVNormalNetwork(nn.Module): def __init__(self, latent_dim): super().__init__() self.mean = nn.Linear(latent_dim, latent_dim) self.sc = nn.Linear(latent_dim, latent_dim) def forward(self, x): mean = self.mean(x) sc = self.sc(x) return mean, torch.diag_embed(torch.exp(sc)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'latent_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_diag_embed_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp3 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp0 = x0 tmp1 = x1 tmp2 = tmp0 == tmp1 tmp4 = tl_math.exp(tmp3) tmp5 = 0.0 tmp6 = tl.where(tmp2, tmp4, tmp5) tl.store(out_ptr0 + x3, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_diag_embed_0[grid(1024)](buf1, buf2, 1024, XBLOCK= 128, num_warps=4, num_stages=1) return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1 class MVNormalNetworkNew(nn.Module): def __init__(self, latent_dim): super().__init__() self.mean = nn.Linear(latent_dim, latent_dim) self.sc = nn.Linear(latent_dim, latent_dim) def forward(self, input_0): primals_1 = self.mean.weight primals_2 = self.mean.bias primals_4 = self.sc.weight primals_5 = self.sc.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
mgb45/OC-notebooks
MVNormalNetwork
false
7,223
[ "MIT" ]
1
67b1899d1fb3455ab3caab58f94429b9f432164b
https://github.com/mgb45/OC-notebooks/tree/67b1899d1fb3455ab3caab58f94429b9f432164b
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, latent_dim): super().__init__() self.mean = nn.Linear(latent_dim, latent_dim) self.sc = nn.Linear(latent_dim, latent_dim) def forward(self, x): mean = self.mean(x) sc = self.sc(x) return mean, torch.diag_embed(torch.exp(sc)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Conv1d_samePadding
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/5d/c5dikgnvjj47gew67o3wnlvktf4rgbccmu4bxfbwcb7bldgpilyt.py # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # input_1 => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 2], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 112 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 7 x1 = (xindex // 7) x2 = xindex tmp0 = (-1) + x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + ((-1) + x0 + (4*x1)), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/au/cau4pihcaptiev5y2ewn2o2nvrwhk7hogc72cofmmtbyv4rxc2oy.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 112, grid=grid(112), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class Conv1d_samePadding(nn.Conv1d): def __init__(self, *args, padding: int=0, **kwargs): assert padding == 0, "no additional padding on top of 'same' padding" kwargs['padding'] = 0 super().__init__(*args, **kwargs) def same_padding_1d(self, input): input_duration = input.size(2) filter_duration = self.weight.size(2) out_duration = (input_duration + self.stride[0] - 1) // self.stride[0] padding_duration = max(0, (out_duration - 1) * self.stride[0] + ( filter_duration - 1) * self.dilation[0] + 1 - input_duration) duration_odd = padding_duration % 2 input = F.pad(input, (padding_duration // 2, padding_duration // 2 + int(duration_odd))) return input def forward(self, input): input = self.same_padding_1d(input) return super().forward(input) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 112 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 7 x1 = xindex // 7 x2 = xindex tmp0 = -1 + x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(112)](primals_1, buf0, 112, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf2, primals_2, buf0 class Conv1d_samePaddingNew(nn.Conv1d): def __init__(self, *args, padding: int=0, **kwargs): assert padding == 0, "no additional padding on top of 'same' padding" kwargs['padding'] = 0 super().__init__(*args, **kwargs) def same_padding_1d(self, input): input_duration = input.size(2) filter_duration = self.weight.size(2) out_duration = (input_duration + self.stride[0] - 1) // self.stride[0] padding_duration = max(0, (out_duration - 1) * self.stride[0] + ( filter_duration - 1) * self.dilation[0] + 1 - input_duration) duration_odd = padding_duration % 2 input = F.pad(input, (padding_duration // 2, padding_duration // 2 + int(duration_odd))) return input def forward(self, input_0): primals_1 = self.weight primals_3 = self.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mgrachten/crepe-pytorch
Conv1d_samePadding
false
7,224
[ "MIT" ]
1
94305a78d2d82e414c251d50b63dc021af277c75
https://github.com/mgrachten/crepe-pytorch/tree/94305a78d2d82e414c251d50b63dc021af277c75
import torch from torch import nn import torch.nn.functional as F class Model(nn.Conv1d): def __init__(self, *args, padding: int=0, **kwargs): assert padding == 0, "no additional padding on top of 'same' padding" kwargs['padding'] = 0 super().__init__(*args, **kwargs) def same_padding_1d(self, input): input_duration = input.size(2) filter_duration = self.weight.size(2) out_duration = (input_duration + self.stride[0] - 1) // self.stride[0] padding_duration = max(0, (out_duration - 1) * self.stride[0] + ( filter_duration - 1) * self.dilation[0] + 1 - input_duration) duration_odd = padding_duration % 2 input = F.pad(input, (padding_duration // 2, padding_duration // 2 + int(duration_odd))) return input def forward(self, input): input = self.same_padding_1d(input) return super().forward(input) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
NALUCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/lz/clz2gei2r4v6zp73e5uwuxfqwprorq7wyulpi7djhsfrhn32mgcm.py # Topologically Sorted Source Nodes: [tanh, sigmoid, W], Original ATen: [aten.tanh, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # W => mul # sigmoid => sigmoid # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%primals_1,), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %sigmoid), kwargs = {}) triton_poi_fused_mul_sigmoid_tanh_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_tanh_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tmp3 = tl.sigmoid(tmp2) tmp4 = tmp1 * tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fp/cfpz76nln2digsmp6v4tkbkx5al74go27d54wsrtmt6k33dheeoi.py # Topologically Sorted Source Nodes: [abs_1, add, log_input], Original ATen: [aten.abs, aten.add, aten.log] # Source node to ATen node mapping: # abs_1 => abs_1 # add => add # log_input => log # Graph fragment: # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%primals_3,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, 1e-10), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) triton_poi_fused_abs_add_log_1 = async_compile.triton('triton_poi_fused_abs_add_log_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_log_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_add_log_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl_math.abs(tmp0) tmp2 = 1e-10 tmp3 = tmp1 + tmp2 tmp4 = tl_math.log(tmp3) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/66/c66ysiitxesxde3gyvusomexzaxhpi4yob7lg235t2wcmjvocoop.py # Topologically Sorted Source Nodes: [g, add_sub, m, sub, mul_div, y], Original ATen: [aten.sigmoid, aten.mul, aten.exp, aten.rsub, aten.add] # Source node to ATen node mapping: # add_sub => mul_1 # g => sigmoid_1 # m => exp # mul_div => mul_3 # sub => sub # y => add_1 # Graph fragment: # %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %view_1), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%view_5,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %exp), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_3), kwargs = {}) triton_poi_fused_add_exp_mul_rsub_sigmoid_2 = async_compile.triton('triton_poi_fused_add_exp_mul_rsub_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_rsub_sigmoid_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_exp_mul_rsub_sigmoid_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp6 = tl.load(in_ptr2 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 * tmp7 tmp9 = tmp3 + tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh, sigmoid, W], Original ATen: [aten.tanh, aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_sigmoid_tanh_0.run(primals_1, primals_2, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [a], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [abs_1, add, log_input], Original ATen: [aten.abs, aten.add, aten.log] triton_poi_fused_abs_add_log_1.run(primals_3, buf3, 256, grid=grid(256), stream=stream0) buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf4) del buf0 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [g, add_sub, m, sub, mul_div, y], Original ATen: [aten.sigmoid, aten.mul, aten.exp, aten.rsub, aten.add] triton_poi_fused_add_exp_mul_rsub_sigmoid_2.run(buf2, buf1, buf4, buf5, 256, grid=grid(256), stream=stream0) return (buf5, primals_1, primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf2, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init from torch.nn.parameter import Parameter class NeuralAccumulatorCell(nn.Module): """A Neural Accumulator (NAC) cell [1]. Attributes: in_dim: size of the input sample. out_dim: size of the output sample. Sources: [1]: https://arxiv.org/abs/1808.00508 """ def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.W_hat = Parameter(torch.Tensor(out_dim, in_dim)) self.M_hat = Parameter(torch.Tensor(out_dim, in_dim)) self.register_parameter('W_hat', self.W_hat) self.register_parameter('M_hat', self.M_hat) self.register_parameter('bias', None) self._reset_params() def _reset_params(self): init.kaiming_uniform_(self.W_hat) init.kaiming_uniform_(self.M_hat) def forward(self, input): W = torch.tanh(self.W_hat) * torch.sigmoid(self.M_hat) return F.linear(input, W, self.bias) def extra_repr(self): return 'in_dim={}, out_dim={}'.format(self.in_dim, self.out_dim) class NALUCell(nn.Module): """A Neural Arithmetic Logic Unit (NALU) cell [1]. Attributes: in_dim: size of the input sample. out_dim: size of the output sample. Sources: [1]: https://arxiv.org/abs/1808.00508 """ def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.eps = 1e-10 self.G = Parameter(torch.Tensor(out_dim, in_dim)) self.nac = NeuralAccumulatorCell(in_dim, out_dim) self.register_parameter('bias', None) init.kaiming_uniform_(self.G, a=math.sqrt(5)) def forward(self, input: 'torch.Tensor'): a = self.nac(input) g = F.linear(input, self.G, self.bias).sigmoid() add_sub = g * a log_input = (input.abs() + self.eps).log() m = self.nac(log_input).exp() mul_div = (1 - g) * m y = add_sub + mul_div return y def extra_repr(self): return 'in_dim={}, out_dim={}'.format(self.in_dim, self.out_dim) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'out_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn import torch.nn.functional as F from torch.nn import init from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_sigmoid_tanh_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tmp3 = tl.sigmoid(tmp2) tmp4 = tmp1 * tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused_abs_add_log_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl_math.abs(tmp0) tmp2 = 1e-10 tmp3 = tmp1 + tmp2 tmp4 = tl_math.log(tmp3) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused_add_exp_mul_rsub_sigmoid_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp6 = tl.load(in_ptr2 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 * tmp7 tmp9 = tmp3 + tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_tanh_0[grid(16)](primals_1, primals_2, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_abs_add_log_1[grid(256)](primals_3, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf4) del buf0 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_exp_mul_rsub_sigmoid_2[grid(256)](buf2, buf1, buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf5, primals_1, primals_2, reinterpret_tensor(primals_3, (64, 4 ), (4, 1), 0), buf1, buf2, reinterpret_tensor(buf3, (64, 4), (4, 1), 0 ), buf4 class NeuralAccumulatorCell(nn.Module): """A Neural Accumulator (NAC) cell [1]. Attributes: in_dim: size of the input sample. out_dim: size of the output sample. Sources: [1]: https://arxiv.org/abs/1808.00508 """ def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.W_hat = Parameter(torch.Tensor(out_dim, in_dim)) self.M_hat = Parameter(torch.Tensor(out_dim, in_dim)) self.register_parameter('W_hat', self.W_hat) self.register_parameter('M_hat', self.M_hat) self.register_parameter('bias', None) self._reset_params() def _reset_params(self): init.kaiming_uniform_(self.W_hat) init.kaiming_uniform_(self.M_hat) def forward(self, input): W = torch.tanh(self.W_hat) * torch.sigmoid(self.M_hat) return F.linear(input, W, self.bias) def extra_repr(self): return 'in_dim={}, out_dim={}'.format(self.in_dim, self.out_dim) class NALUCellNew(nn.Module): """A Neural Arithmetic Logic Unit (NALU) cell [1]. Attributes: in_dim: size of the input sample. out_dim: size of the output sample. Sources: [1]: https://arxiv.org/abs/1808.00508 """ def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.eps = 1e-10 self.G = Parameter(torch.Tensor(out_dim, in_dim)) self.nac = NeuralAccumulatorCell(in_dim, out_dim) self.register_parameter('bias', None) init.kaiming_uniform_(self.G, a=math.sqrt(5)) def extra_repr(self): return 'in_dim={}, out_dim={}'.format(self.in_dim, self.out_dim) def forward(self, input_0): primals_1 = self.G primals_2 = self.nac.W_hat primals_4 = self.nac.M_hat primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
mikomel/machine-number-sense
NALUCell
false
7,225
[ "MIT" ]
1
173b67e4f25bd8249ba4a41904d4cd4af26bae05
https://github.com/mikomel/machine-number-sense/tree/173b67e4f25bd8249ba4a41904d4cd4af26bae05
import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init from torch.nn.parameter import Parameter class NeuralAccumulatorCell(nn.Module): """A Neural Accumulator (NAC) cell [1]. Attributes: in_dim: size of the input sample. out_dim: size of the output sample. Sources: [1]: https://arxiv.org/abs/1808.00508 """ def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.W_hat = Parameter(torch.Tensor(out_dim, in_dim)) self.M_hat = Parameter(torch.Tensor(out_dim, in_dim)) self.register_parameter('W_hat', self.W_hat) self.register_parameter('M_hat', self.M_hat) self.register_parameter('bias', None) self._reset_params() def _reset_params(self): init.kaiming_uniform_(self.W_hat) init.kaiming_uniform_(self.M_hat) def forward(self, input): W = torch.tanh(self.W_hat) * torch.sigmoid(self.M_hat) return F.linear(input, W, self.bias) def extra_repr(self): return 'in_dim={}, out_dim={}'.format(self.in_dim, self.out_dim) class Model(nn.Module): """A Neural Arithmetic Logic Unit (NALU) cell [1]. Attributes: in_dim: size of the input sample. out_dim: size of the output sample. Sources: [1]: https://arxiv.org/abs/1808.00508 """ def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.eps = 1e-10 self.G = Parameter(torch.Tensor(out_dim, in_dim)) self.nac = NeuralAccumulatorCell(in_dim, out_dim) self.register_parameter('bias', None) init.kaiming_uniform_(self.G, a=math.sqrt(5)) def forward(self, input: 'torch.Tensor'): a = self.nac(input) g = F.linear(input, self.G, self.bias).sigmoid() add_sub = g * a log_input = (input.abs() + self.eps).log() m = self.nac(log_input).exp() mul_div = (1 - g) * m y = add_sub + mul_div return y def extra_repr(self): return 'in_dim={}, out_dim={}'.format(self.in_dim, self.out_dim) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
MHAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/es/cessyszuy24k7hdnytcsgt5xuwettl2skzip7jijkrie3ydgjozj.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x4), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ro/crok5xh52iy35hijarlrh7rm5fjekyqx2yqdv3e43wmmetnqrhyk.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/oy/coy2yxxou5ycpqu7c6bk2tzcpttyp3yhrpr6fcr56o2svgksjlpv.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dn/cdnhfw6jof6hdivjstzo4v5fqsocihi7yin5e7dcduosczadyxxx.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_3, buf3, 256, grid=grid(256), stream=stream0) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 4, 1, 4), (64, 16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf1, primals_5, buf4, 256, grid=grid(256), stream=stream0) del primals_5 buf5 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (64, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (64, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf5, buf6, 1024, grid=grid(1024), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf5, buf6, buf7, 1024, grid=grid(1024), stream=stream0) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf2, primals_7, buf8, 256, grid=grid(256), stream=stream0) del primals_7 buf9 = reinterpret_tensor(buf2, (64, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf7, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (64, 4, 1), (4, 1, 0), 0), out=buf9) return (reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 1, 4), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (64, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (64, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (64, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn import torch.nn.functional as F class MHAttention(nn.Module): def __init__(self, ninp, nhead, dropout): super(MHAttention, self).__init__() if ninp % nhead != 0: raise ValueError( 'The hidden size is not a multiple of the number of attention heads' ) self.nhead = nhead self.ninp = ninp self.fc_query = nn.Linear(ninp, ninp) self.fc_key = nn.Linear(ninp, ninp) self.fc_value = nn.Linear(ninp, ninp) self.dropout = nn.Dropout(dropout) def transpose_for_scores(self, x): """ x has shape (*, L, C) return shape (*, nhead, L, C/nhead) """ new_shape = x.shape[:-1] + (self.nhead, -1) x = x.view(*new_shape) return x.transpose(-3, -2) def forward_fn(self, x): """ x has shape (*, L, C) return shape (*, L, C) """ query = self.transpose_for_scores(self.fc_query(x)) key = self.transpose_for_scores(self.fc_key(x)) value = self.transpose_for_scores(self.fc_value(x)) attention_scores = torch.matmul(query, key.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.ninp / self.nhead) attention_weights = F.softmax(attention_scores, dim=-1) attention_weights = self.dropout(attention_weights) x = torch.matmul(attention_weights, value) x = x.transpose(-3, -2) x = x.reshape(*x.shape[:-2], -1) return x def forward(self, x): chunk_size = 100000 // x.shape[2] outputs = [] for i in range(0, x.shape[1], chunk_size): ed = min(i + chunk_size, x.shape[1]) partial = self.forward_fn(x[:, i:ed]) outputs.append(partial) return torch.cat(outputs, dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'ninp': 4, 'nhead': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x4, tmp4, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch .float32) get_raw_stream(0) triton_poi_fused_0[grid(256)](buf0, primals_3, buf3, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 4, 1, 4), (64, 16, 4, 4, 1), 0) del buf0 triton_poi_fused_0[grid(256)](buf1, primals_5, buf4, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (64, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (64, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_1[grid(1024)](buf5, buf6, 1024, XBLOCK=256, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_2[grid(1024)](buf5, buf6, buf7, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0) del buf1 triton_poi_fused_3[grid(256)](buf2, primals_7, buf8, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_7 buf9 = reinterpret_tensor(buf2, (64, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (64, 4, 1), (4, 1, 0), 0), out=buf9) return reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 1, 4), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf8, (64, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (64, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (64, 4, 1), (4, 1, 4), 0) class MHAttentionNew(nn.Module): def __init__(self, ninp, nhead, dropout): super(MHAttentionNew, self).__init__() if ninp % nhead != 0: raise ValueError( 'The hidden size is not a multiple of the number of attention heads' ) self.nhead = nhead self.ninp = ninp self.fc_query = nn.Linear(ninp, ninp) self.fc_key = nn.Linear(ninp, ninp) self.fc_value = nn.Linear(ninp, ninp) self.dropout = nn.Dropout(dropout) def transpose_for_scores(self, x): """ x has shape (*, L, C) return shape (*, nhead, L, C/nhead) """ new_shape = x.shape[:-1] + (self.nhead, -1) x = x.view(*new_shape) return x.transpose(-3, -2) def forward_fn(self, x): """ x has shape (*, L, C) return shape (*, L, C) """ query = self.transpose_for_scores(self.fc_query(x)) key = self.transpose_for_scores(self.fc_key(x)) value = self.transpose_for_scores(self.fc_value(x)) attention_scores = torch.matmul(query, key.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.ninp / self.nhead) attention_weights = F.softmax(attention_scores, dim=-1) attention_weights = self.dropout(attention_weights) x = torch.matmul(attention_weights, value) x = x.transpose(-3, -2) x = x.reshape(*x.shape[:-2], -1) return x def forward(self, input_0): primals_2 = self.fc_query.weight primals_3 = self.fc_query.bias primals_4 = self.fc_key.weight primals_5 = self.fc_key.bias primals_6 = self.fc_value.weight primals_7 = self.fc_value.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
microsoft/Protein-Folding
MHAttention
false
7,226
[ "MIT" ]
1
f534b2dd1e3f192fbcdadf234f25828c7f458a58
https://github.com/microsoft/Protein-Folding/tree/f534b2dd1e3f192fbcdadf234f25828c7f458a58
import math import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, ninp, nhead, dropout): super().__init__() if ninp % nhead != 0: raise ValueError( 'The hidden size is not a multiple of the number of attention heads' ) self.nhead = nhead self.ninp = ninp self.fc_query = nn.Linear(ninp, ninp) self.fc_key = nn.Linear(ninp, ninp) self.fc_value = nn.Linear(ninp, ninp) self.dropout = nn.Dropout(dropout) def transpose_for_scores(self, x): """ x has shape (*, L, C) return shape (*, nhead, L, C/nhead) """ new_shape = x.shape[:-1] + (self.nhead, -1) x = x.view(*new_shape) return x.transpose(-3, -2) def forward_fn(self, x): """ x has shape (*, L, C) return shape (*, L, C) """ query = self.transpose_for_scores(self.fc_query(x)) key = self.transpose_for_scores(self.fc_key(x)) value = self.transpose_for_scores(self.fc_value(x)) attention_scores = torch.matmul(query, key.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.ninp / self.nhead) attention_weights = F.softmax(attention_scores, dim=-1) attention_weights = self.dropout(attention_weights) x = torch.matmul(attention_weights, value) x = x.transpose(-3, -2) x = x.reshape(*x.shape[:-2], -1) return x def forward(self, x): chunk_size = 100000 // x.shape[2] outputs = [] for i in range(0, x.shape[1], chunk_size): ed = min(i + chunk_size, x.shape[1]) partial = self.forward_fn(x[:, i:ed]) outputs.append(partial) return torch.cat(outputs, dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 0.5]
FeedForward
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/gi/cgi45knaonkz7f2ymhhwdszxotrkx3bl6ehavmfo5zp3bzzio3zk.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # x => add # x_1 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_0 = async_compile.triton('triton_poi_fused_add_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/nh/cnhbjzi35eshrjhk7tjj644pcpxhgyi7ajxmdjzgjtdqbnbek7qt.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # x => add # x_1 => add_1, add_2, mul, mul_1, rsqrt, sub # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_3), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_4), kwargs = {}) triton_poi_fused_add_native_layer_norm_1 = async_compile.triton('triton_poi_fused_add_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp9, xmask) tl.store(out_ptr1 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gm/cgmflgdlpeeb52xctoa47uvw47ycyf7ahlj5wdscxdatpbwcboco.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/b5/cb5kfengtwtso2cktophcv2j56lrz4uz52si4koheb5liewfkvtt.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] # Source node to ATen node mapping: # x_2 => add_3 # Graph fragment: # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %view_3), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jt/cjtlevawtbqokt4uvrkcbjuuzlruz6jq7ejlurchfnrudj2srbgt.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_3 => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_native_layer_norm_4 = async_compile.triton('triton_poi_fused_native_layer_norm_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_4(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xx/cxxrwl3itdrd647cc4gbcbwnrcxegxemlfvpyuyno2wav523n6ad.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_3 => add_4, add_5, mul_2, mul_3, rsqrt_1, sub_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_3), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_9), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %primals_10), kwargs = {}) triton_poi_fused_native_layer_norm_5 = async_compile.triton('triton_poi_fused_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add, aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_add_native_layer_norm_0.run(primals_1, primals_2, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_1.run(primals_1, primals_2, buf0, buf1, primals_3, primals_4, buf2, buf3, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 del primals_3 del primals_4 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_6, buf11, 256, grid=grid(256), stream=stream0) del primals_6 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf7, buf3, primals_8, 256, grid=grid(256), stream=stream0) del primals_8 buf8 = buf1; del buf1 # reuse buf9 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_4.run(buf7, buf8, buf9, 64, grid=grid(64), stream=stream0) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_5.run(buf7, buf8, buf9, primals_9, primals_10, buf10, 256, grid=grid(256), stream=stream0) del buf8 del buf9 del primals_10 return (buf10, primals_9, buf2, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (64, 4), (4, 1), 0), buf7, primals_7, buf11, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class FeedForward(nn.Module): def __init__(self, ninp, dim_feedforward, dropout): super(FeedForward, self).__init__() self.linear1 = nn.Linear(ninp, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, ninp) self.norm1 = nn.LayerNorm(ninp) self.norm2 = nn.LayerNorm(ninp) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = nn.ReLU() def forward_fn(self, x, branch): x = x + self.dropout1(branch) x = self.norm1(x) branch = self.linear2(self.dropout(self.activation(self.linear1(x)))) x = x + self.dropout2(branch) x = self.norm2(x) return x def forward(self, x, branch): chunk_size = 100000 // x.shape[2] outputs = [] for i in range(0, x.shape[1], chunk_size): ed = min(i + chunk_size, x.shape[1]) partial = self.forward_fn(x[:, i:ed], branch[:, i:ed]) outputs.append(partial) return torch.cat(outputs, dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'ninp': 4, 'dim_feedforward': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_native_layer_norm_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp9, xmask) tl.store(out_ptr1 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_4(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_add_native_layer_norm_0[grid(64)](primals_1, primals_2, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_1[grid(256)](primals_1, primals_2, buf0, buf1, primals_3, primals_4, buf2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 del primals_3 del primals_4 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(256)](buf5, primals_6, buf11, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_6 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf6 triton_poi_fused_add_3[grid(256)](buf7, buf3, primals_8, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_8 buf8 = buf1 del buf1 buf9 = buf0 del buf0 triton_poi_fused_native_layer_norm_4[grid(64)](buf7, buf8, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_5[grid(256)](buf7, buf8, buf9, primals_9, primals_10, buf10, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf8 del buf9 del primals_10 return buf10, primals_9, buf2, reinterpret_tensor(buf3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf5, (64, 4), (4, 1), 0 ), buf7, primals_7, buf11, primals_5 class FeedForwardNew(nn.Module): def __init__(self, ninp, dim_feedforward, dropout): super(FeedForwardNew, self).__init__() self.linear1 = nn.Linear(ninp, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, ninp) self.norm1 = nn.LayerNorm(ninp) self.norm2 = nn.LayerNorm(ninp) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = nn.ReLU() def forward_fn(self, x, branch): x = x + self.dropout1(branch) x = self.norm1(x) branch = self.linear2(self.dropout(self.activation(self.linear1(x)))) x = x + self.dropout2(branch) x = self.norm2(x) return x def forward(self, input_0, input_1): primals_5 = self.linear1.weight primals_3 = self.linear1.bias primals_7 = self.linear2.weight primals_4 = self.linear2.bias primals_6 = self.norm1.weight primals_8 = self.norm1.bias primals_9 = self.norm2.weight primals_10 = self.norm2.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
microsoft/Protein-Folding
FeedForward
false
7,227
[ "MIT" ]
1
f534b2dd1e3f192fbcdadf234f25828c7f458a58
https://github.com/microsoft/Protein-Folding/tree/f534b2dd1e3f192fbcdadf234f25828c7f458a58
import torch from torch import nn class Model(nn.Module): def __init__(self, ninp, dim_feedforward, dropout): super().__init__() self.linear1 = nn.Linear(ninp, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, ninp) self.norm1 = nn.LayerNorm(ninp) self.norm2 = nn.LayerNorm(ninp) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = nn.ReLU() def forward_fn(self, x, branch): x = x + self.dropout1(branch) x = self.norm1(x) branch = self.linear2(self.dropout(self.activation(self.linear1(x)))) x = x + self.dropout2(branch) x = self.norm2(x) return x def forward(self, x, branch): chunk_size = 100000 // x.shape[2] outputs = [] for i in range(0, x.shape[1], chunk_size): ed = min(i + chunk_size, x.shape[1]) partial = self.forward_fn(x[:, i:ed], branch[:, i:ed]) outputs.append(partial) return torch.cat(outputs, dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 0.5]
NeuralAccumulatorCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/lz/clz2gei2r4v6zp73e5uwuxfqwprorq7wyulpi7djhsfrhn32mgcm.py # Topologically Sorted Source Nodes: [tanh, sigmoid, W], Original ATen: [aten.tanh, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # W => mul # sigmoid => sigmoid # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%primals_1,), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %sigmoid), kwargs = {}) triton_poi_fused_mul_sigmoid_tanh_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_tanh_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tmp3 = tl.sigmoid(tmp2) tmp4 = tmp1 * tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh, sigmoid, W], Original ATen: [aten.tanh, aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_sigmoid_tanh_0.run(primals_1, primals_2, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init from torch.nn.parameter import Parameter class NeuralAccumulatorCell(nn.Module): """A Neural Accumulator (NAC) cell [1]. Attributes: in_dim: size of the input sample. out_dim: size of the output sample. Sources: [1]: https://arxiv.org/abs/1808.00508 """ def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.W_hat = Parameter(torch.Tensor(out_dim, in_dim)) self.M_hat = Parameter(torch.Tensor(out_dim, in_dim)) self.register_parameter('W_hat', self.W_hat) self.register_parameter('M_hat', self.M_hat) self.register_parameter('bias', None) self._reset_params() def _reset_params(self): init.kaiming_uniform_(self.W_hat) init.kaiming_uniform_(self.M_hat) def forward(self, input): W = torch.tanh(self.W_hat) * torch.sigmoid(self.M_hat) return F.linear(input, W, self.bias) def extra_repr(self): return 'in_dim={}, out_dim={}'.format(self.in_dim, self.out_dim) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'out_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn import init from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_sigmoid_tanh_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tmp3 = tl.sigmoid(tmp2) tmp4 = tmp1 * tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_tanh_0[grid(16)](primals_1, primals_2, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class NeuralAccumulatorCellNew(nn.Module): """A Neural Accumulator (NAC) cell [1]. Attributes: in_dim: size of the input sample. out_dim: size of the output sample. Sources: [1]: https://arxiv.org/abs/1808.00508 """ def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.W_hat = Parameter(torch.Tensor(out_dim, in_dim)) self.M_hat = Parameter(torch.Tensor(out_dim, in_dim)) self.register_parameter('W_hat', self.W_hat) self.register_parameter('M_hat', self.M_hat) self.register_parameter('bias', None) self._reset_params() def _reset_params(self): init.kaiming_uniform_(self.W_hat) init.kaiming_uniform_(self.M_hat) def extra_repr(self): return 'in_dim={}, out_dim={}'.format(self.in_dim, self.out_dim) def forward(self, input_0): primals_1 = self.W_hat primals_2 = self.M_hat primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mikomel/machine-number-sense
NeuralAccumulatorCell
false
7,228
[ "MIT" ]
1
173b67e4f25bd8249ba4a41904d4cd4af26bae05
https://github.com/mikomel/machine-number-sense/tree/173b67e4f25bd8249ba4a41904d4cd4af26bae05
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init from torch.nn.parameter import Parameter class Model(nn.Module): """A Neural Accumulator (NAC) cell [1]. Attributes: in_dim: size of the input sample. out_dim: size of the output sample. Sources: [1]: https://arxiv.org/abs/1808.00508 """ def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.W_hat = Parameter(torch.Tensor(out_dim, in_dim)) self.M_hat = Parameter(torch.Tensor(out_dim, in_dim)) self.register_parameter('W_hat', self.W_hat) self.register_parameter('M_hat', self.M_hat) self.register_parameter('bias', None) self._reset_params() def _reset_params(self): init.kaiming_uniform_(self.W_hat) init.kaiming_uniform_(self.M_hat) def forward(self, input): W = torch.tanh(self.W_hat) * torch.sigmoid(self.M_hat) return F.linear(input, W, self.bias) def extra_repr(self): return 'in_dim={}, out_dim={}'.format(self.in_dim, self.out_dim) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Conv3x3
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/v6/cv6oewqqnsshd7he7ylh2kikzu4smtrhj2dmv6nb5csosp7g6vw5.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # out => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Conv3x3(nn.Module): """Layer to pad and convolve input """ def __init__(self, in_channels, out_channels, use_refl=True): super(Conv3x3, self).__init__() if use_refl: self.pad = nn.ReflectionPad2d(1) else: self.pad = nn.ZeroPad2d(1) self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3) def forward(self, x): out = self.pad(x) out = self.conv(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(576)](primals_1, buf0, 576, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(256)](buf2, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf2, primals_2, buf0 class Conv3x3New(nn.Module): """Layer to pad and convolve input """ def __init__(self, in_channels, out_channels, use_refl=True): super(Conv3x3New, self).__init__() if use_refl: self.pad = nn.ReflectionPad2d(1) else: self.pad = nn.ZeroPad2d(1) self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
minjabenho/image2pcl
Conv3x3
false
7,229
[ "Apache-2.0" ]
1
7e696ee48edae30814d32f32e605ad6cf8bf702c
https://github.com/minjabenho/image2pcl/tree/7e696ee48edae30814d32f32e605ad6cf8bf702c
import torch import torch.nn as nn class Model(nn.Module): """Layer to pad and convolve input """ def __init__(self, in_channels, out_channels, use_refl=True): super().__init__() if use_refl: self.pad = nn.ReflectionPad2d(1) else: self.pad = nn.ZeroPad2d(1) self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3) def forward(self, x): out = self.pad(x) out = self.conv(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
fadein_layer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ai/cai2poorsup7nq2otw37m3ij7xgd7zz7yh67qrptmbrb5helnvpb.py # Topologically Sorted Source Nodes: [mul, mul_1, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # mul_1 => mul_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, 0.0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr0 + (64 + x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = 0.0 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn import torch.utils.data class fadein_layer(nn.Module): def __init__(self, config): super(fadein_layer, self).__init__() self.alpha = 0.0 def update_alpha(self, delta): self.alpha = self.alpha + delta self.alpha = max(0, min(self.alpha, 1.0)) def set_alpha(self, value): self.alpha = max(0, min(value, 1.0)) def forward(self, x): return torch.add(x[0].mul(1.0 - self.alpha), x[1].mul(self.alpha)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config()}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr0 + (64 + x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = 0.0 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class fadein_layerNew(nn.Module): def __init__(self, config): super(fadein_layerNew, self).__init__() self.alpha = 0.0 def update_alpha(self, delta): self.alpha = self.alpha + delta self.alpha = max(0, min(self.alpha, 1.0)) def set_alpha(self, value): self.alpha = max(0, min(value, 1.0)) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mingo-x/pggan-pytorch
fadein_layer
false
7,230
[ "MIT" ]
1
a1dde73cd4df52476fe7c948d81fa9caea8070a5
https://github.com/mingo-x/pggan-pytorch/tree/a1dde73cd4df52476fe7c948d81fa9caea8070a5
from _paritybench_helpers import _mock_config import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, config): super().__init__() self.alpha = 0.0 def update_alpha(self, delta): self.alpha = self.alpha + delta self.alpha = max(0, min(self.alpha, 1.0)) def set_alpha(self, value): self.alpha = max(0, min(value, 1.0)) def forward(self, x): return torch.add(x[0].mul(1.0 - self.alpha), x[1].mul(self.alpha)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
pixelwise_norm_layer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/lg/clgum5lgqb2igszc5bgmtzzepcvym6hp73vttrcwjtey34a6skhy.py # Topologically Sorted Source Nodes: [pow_1, mean, add, pow_2, truediv], Original ATen: [aten.pow, aten.mean, aten.add, aten.div] # Source node to ATen node mapping: # add => add # mean => mean # pow_1 => pow_1 # pow_2 => pow_2 # truediv => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 1e-08), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %pow_2), kwargs = {}) triton_poi_fused_add_div_mean_pow_0 = async_compile.triton('triton_poi_fused_add_div_mean_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp0 / tmp16 tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, mean, add, pow_2, truediv], Original ATen: [aten.pow, aten.mean, aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mean_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class pixelwise_norm_layer(nn.Module): def __init__(self): super(pixelwise_norm_layer, self).__init__() self.eps = 1e-08 def forward(self, x): return x / (torch.mean(x ** 2, dim=1, keepdim=True) + self.eps) ** 0.5 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp0 / tmp16 tl.store(out_ptr0 + x3, tmp17, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_pow_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class pixelwise_norm_layerNew(nn.Module): def __init__(self): super(pixelwise_norm_layerNew, self).__init__() self.eps = 1e-08 def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mingo-x/pggan-pytorch
pixelwise_norm_layer
false
7,231
[ "MIT" ]
1
a1dde73cd4df52476fe7c948d81fa9caea8070a5
https://github.com/mingo-x/pggan-pytorch/tree/a1dde73cd4df52476fe7c948d81fa9caea8070a5
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self): super().__init__() self.eps = 1e-08 def forward(self, x): return x / (torch.mean(x ** 2, dim=1, keepdim=True) + self.eps) ** 0.5 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
equalized_conv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/mr/cmrzofxtfa5fe3ax4o3n5qvgpvhbgcrspjauzarmp4t443npav4h.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.1767766952966369), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.1767766952966369 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ng/cng33o2pb2zyuwp4i2wm3nk4pftenhhzjucbrpjfmm3hxihqatqj.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %expand), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 81) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 9, 9), (324, 81, 9, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf2, primals_3, 1296, grid=grid(1296), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn.init import normal import torch.utils.data def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.ndimension() if dimensions < 2: raise ValueError( 'Fan in and fan out can not be computed for tensor with less than 2 dimensions' ) if dimensions == 2: fan_in = tensor.size(1) fan_out = tensor.size(0) else: num_input_fmaps = tensor.size(1) num_output_fmaps = tensor.size(0) receptive_field_size = 1 if tensor.dim() > 2: receptive_field_size = tensor[0][0].numel() fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out class equalized_conv2d(nn.Module): def __init__(self, c_in, c_out, k_size, stride, pad, initializer= 'kaiming', bias=False, a=0.0): super(equalized_conv2d, self).__init__() self.conv = nn.Conv2d(c_in, c_out, k_size, stride, pad, bias=False) if initializer == 'kaiming': normal(self.conv.weight) fan_in, _ = _calculate_fan_in_and_fan_out(self.conv.weight) gain = (2.0 / (1.0 + a ** 2)) ** 0.5 self.scale = gain / fan_in ** 0.5 self.bias = torch.nn.Parameter(torch.FloatTensor(c_out).fill_(0)) def forward(self, x): x = self.conv(x.mul(self.scale)) return x + self.bias.view(1, -1, 1, 1).expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'c_in': 4, 'c_out': 4, 'k_size': 4, 'stride': 1, 'pad': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.nn.init import normal import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.1767766952966369 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 81 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 9, 9), (324, 81, 9, 1)) buf2 = buf1 del buf1 triton_poi_fused_add_1[grid(1296)](buf2, primals_3, 1296, XBLOCK= 256, num_warps=4, num_stages=1) del primals_3 return buf2, primals_2, buf0 def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.ndimension() if dimensions < 2: raise ValueError( 'Fan in and fan out can not be computed for tensor with less than 2 dimensions' ) if dimensions == 2: fan_in = tensor.size(1) fan_out = tensor.size(0) else: num_input_fmaps = tensor.size(1) num_output_fmaps = tensor.size(0) receptive_field_size = 1 if tensor.dim() > 2: receptive_field_size = tensor[0][0].numel() fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out class equalized_conv2dNew(nn.Module): def __init__(self, c_in, c_out, k_size, stride, pad, initializer= 'kaiming', bias=False, a=0.0): super(equalized_conv2dNew, self).__init__() self.conv = nn.Conv2d(c_in, c_out, k_size, stride, pad, bias=False) if initializer == 'kaiming': normal(self.conv.weight) fan_in, _ = _calculate_fan_in_and_fan_out(self.conv.weight) gain = (2.0 / (1.0 + a ** 2)) ** 0.5 self.scale = gain / fan_in ** 0.5 self.bias = torch.nn.Parameter(torch.FloatTensor(c_out).fill_(0)) def forward(self, input_0): primals_3 = self.bias primals_1 = self.conv.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mingo-x/pggan-pytorch
equalized_conv2d
false
7,232
[ "MIT" ]
1
a1dde73cd4df52476fe7c948d81fa9caea8070a5
https://github.com/mingo-x/pggan-pytorch/tree/a1dde73cd4df52476fe7c948d81fa9caea8070a5
import torch import torch.nn as nn from torch.nn.init import normal import torch.utils.data def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.ndimension() if dimensions < 2: raise ValueError( 'Fan in and fan out can not be computed for tensor with less than 2 dimensions' ) if dimensions == 2: fan_in = tensor.size(1) fan_out = tensor.size(0) else: num_input_fmaps = tensor.size(1) num_output_fmaps = tensor.size(0) receptive_field_size = 1 if tensor.dim() > 2: receptive_field_size = tensor[0][0].numel() fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out class Model(nn.Module): def __init__(self, c_in, c_out, k_size, stride, pad, initializer= 'kaiming', bias=False, a=0.0): super().__init__() self.conv = nn.Conv2d(c_in, c_out, k_size, stride, pad, bias=False) if initializer == 'kaiming': normal(self.conv.weight) fan_in, _ = _calculate_fan_in_and_fan_out(self.conv.weight) gain = (2.0 / (1.0 + a ** 2)) ** 0.5 self.scale = gain / fan_in ** 0.5 self.bias = torch.nn.Parameter(torch.FloatTensor(c_out).fill_(0)) def forward(self, x): x = self.conv(x.mul(self.scale)) return x + self.bias.view(1, -1, 1, 1).expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4, 1, 4]