entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
pytorch_code
stringlengths
200
4.05k
RegL1
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/5c/c5c76tomh2lks74yoej4jwcze4mhqjftq6po2to4epppt3h7t52a.py # Topologically Sorted Source Nodes: [abs_1, z1], Original ATen: [aten.abs, aten.sum] # Source node to ATen node mapping: # abs_1 => abs_1 # z1 => sum_1 # Graph fragment: # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%primals_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_1,), kwargs = {}) triton_per_fused_abs_sum_0 = async_compile.triton('triton_per_fused_abs_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl_math.abs(tmp0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.sum(tmp2, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 buf1 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [abs_1, z1], Original ATen: [aten.abs, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_abs_sum_0.run(primals_1, buf1, 1, 16, grid=grid(1), stream=stream0) return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf1, primals_1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class RegL1(nn.Module): """ Run Regression with L1 """ def __init__(self, n_input, n_output): super(RegL1, self).__init__() self.linear = nn.Linear(n_input, n_output, bias=True) def forward(self, x, training=True): self.training = training x = self.linear(x) z1 = torch.sum(torch.abs(self.linear.weight)) self.training = True return x, z1 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_input': 4, 'n_output': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_abs_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl_math.abs(tmp0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.sum(tmp2, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp4, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_2 buf1 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_abs_sum_0[grid(1)](primals_1, buf1, 1, 16, XBLOCK= 1, num_warps=2, num_stages=1) return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf1, primals_1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class RegL1New(nn.Module): """ Run Regression with L1 """ def __init__(self, n_input, n_output): super(RegL1New, self).__init__() self.linear = nn.Linear(n_input, n_output, bias=True) def forward(self, input_0): primals_1 = self.linear.weight primals_2 = self.linear.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0], output[1]
rmporsch/ML_genetic_risk
RegL1
false
4,197
[ "MIT" ]
0
4e1a0510c94260e69f93639ff4104c5f85080d9f
https://github.com/rmporsch/ML_genetic_risk/tree/4e1a0510c94260e69f93639ff4104c5f85080d9f
import torch import torch.nn as nn class Model(nn.Module): """ Run Regression with L1 """ def __init__(self, n_input, n_output): super().__init__() self.linear = nn.Linear(n_input, n_output, bias=True) def forward(self, x, training=True): self.training = training x = self.linear(x) z1 = torch.sum(torch.abs(self.linear.weight)) self.training = True return x, z1 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
DecoderRNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ce/cce2l7xu6vkn6rmf2fwkbam27ms7thykgzluzgv2xydzvmji5gt4.py # Topologically Sorted Source Nodes: [add, a_t, h_t], Original ATen: [aten.add, aten.tanh] # Source node to ATen node mapping: # a_t => add_1 # add => add # h_t => tanh # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %view_3), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_1,), kwargs = {}) triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x3 = xindex x4 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (x3), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp4 + tmp7 tmp9 = libdevice.tanh(tmp8) tl.store(in_out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py # Topologically Sorted Source Nodes: [y_t_3], Original ATen: [aten._softmax] # Source node to ATen node mapping: # y_t_3 => amax_3, exp_3, sub_3 # Graph fragment: # %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_23, [1], True), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_23, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py # Topologically Sorted Source Nodes: [y_t_3], Original ATen: [aten._softmax] # Source node to ATen node mapping: # y_t_3 => div_3, sum_4 # Graph fragment: # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_3, [1], True), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_3, %sum_4), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf1) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add, a_t, h_t], Original ATen: [aten.add, aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_add_tanh_0.run(buf2, primals_1, primals_3, buf1, primals_7, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf3) buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 64), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [add_2, a_t_1, h_t_1], Original ATen: [aten.add, aten.tanh] triton_poi_fused_add_tanh_0.run(buf5, primals_1, primals_3, buf4, primals_7, 256, grid=grid(256), stream=stream0) buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf6) buf7 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 128), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf7) buf8 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [add_4, a_t_2, h_t_2], Original ATen: [aten.add, aten.tanh] triton_poi_fused_add_tanh_0.run(buf8, primals_1, primals_3, buf7, primals_7, 256, grid=grid(256), stream=stream0) buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf8, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf9) buf10 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 192), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf10) del primals_6 buf11 = reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [add_6, a_t_3, h_t_3], Original ATen: [aten.add, aten.tanh] triton_poi_fused_add_tanh_0.run(buf11, primals_1, primals_3, buf10, primals_7, 256, grid=grid(256), stream=stream0) del buf10 del primals_1 del primals_3 del primals_7 buf12 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [o_t_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_9 buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y_t_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf12, buf13, 256, grid=grid(256), stream=stream0) buf14 = reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf12 # reuse # Topologically Sorted Source Nodes: [y_t_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf13, buf14, 256, grid=grid(256), stream=stream0) del buf13 return (buf14, buf11, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), buf2, reinterpret_tensor(primals_5, (16, 4), (4, 1), 64), buf5, reinterpret_tensor(primals_5, (16, 4), (4, 1), 128), buf8, reinterpret_tensor(primals_5, (16, 4), (4, 1), 192), buf11, buf14, primals_8, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class DecoderRNN(nn.Module): def __init__(self, T, d): super().__init__() self.T = T self.d = d self.W = nn.Linear(d, d) self.U = nn.Linear(d, d) self.V = nn.Linear(d, d) self.b = nn.Parameter(torch.rand(1, d)) def forward(self, x, h_t): y_t = None for t in range(self.T): a_t = self.b + self.W(h_t) + self.U(x[t]) h_t = torch.tanh(a_t) o_t = self.V(h_t) y_t = F.softmax(o_t, 1) return y_t, h_t def init_hidden(self): return torch.zeros(1, self.d) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'T': 4, 'd': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x3 = xindex x4 = xindex % 64 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + x3, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp4 + tmp7 tmp9 = libdevice.tanh(tmp8) tl.store(in_out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf1) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_tanh_0[grid(256)](buf2, primals_1, primals_3, buf1, primals_7, 256, XBLOCK=128, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf3) buf4 = buf1 del buf1 extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 64 ), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 triton_poi_fused_add_tanh_0[grid(256)](buf5, primals_1, primals_3, buf4, primals_7, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf6) buf7 = buf4 del buf4 extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 128), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf7) buf8 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf6 triton_poi_fused_add_tanh_0[grid(256)](buf8, primals_1, primals_3, buf7, primals_7, 256, XBLOCK=128, num_warps=4, num_stages=1) buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf9) buf10 = buf7 del buf7 extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 192), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf10) del primals_6 buf11 = reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf9 triton_poi_fused_add_tanh_0[grid(256)](buf11, primals_1, primals_3, buf10, primals_7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf10 del primals_1 del primals_3 del primals_7 buf12 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_9 buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf12, buf13, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf14 = reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf12 triton_poi_fused__softmax_2[grid(256)](buf13, buf14, 256, XBLOCK= 256, num_warps=4, num_stages=1) del buf13 return buf14, buf11, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_5, (16, 4), (4, 1), 0 ), buf2, reinterpret_tensor(primals_5, (16, 4), (4, 1), 64 ), buf5, reinterpret_tensor(primals_5, (16, 4), (4, 1), 128 ), buf8, reinterpret_tensor(primals_5, (16, 4), (4, 1), 192 ), buf11, buf14, primals_8, primals_2 class DecoderRNNNew(nn.Module): def __init__(self, T, d): super().__init__() self.T = T self.d = d self.W = nn.Linear(d, d) self.U = nn.Linear(d, d) self.V = nn.Linear(d, d) self.b = nn.Parameter(torch.rand(1, d)) def init_hidden(self): return torch.zeros(1, self.d) def forward(self, input_0, input_1): primals_1 = self.b primals_2 = self.W.weight primals_3 = self.W.bias primals_6 = self.U.weight primals_7 = self.U.bias primals_8 = self.V.weight primals_9 = self.V.bias primals_4 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
rish-16/SHA-RNN
DecoderRNN
false
4,198
[ "MIT" ]
0
08c701396217f0b645de043963ff8ec4bf27e835
https://github.com/rish-16/SHA-RNN/tree/08c701396217f0b645de043963ff8ec4bf27e835
import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, T, d): super().__init__() self.T = T self.d = d self.W = nn.Linear(d, d) self.U = nn.Linear(d, d) self.V = nn.Linear(d, d) self.b = nn.Parameter(torch.rand(1, d)) def forward(self, x, h_t): y_t = None for t in range(self.T): a_t = self.b + self.W(h_t) + self.U(x[t]) h_t = torch.tanh(a_t) o_t = self.V(h_t) y_t = F.softmax(o_t, 1) return y_t, h_t def init_hidden(self): return torch.zeros(1, self.d) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
SpatialAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/46/c46mg7rvdztu6n5oosf5c4if7ziag6obrxhwbn43lcdfibfuom7w.py # Topologically Sorted Source Nodes: [temp_x], Original ATen: [aten.cat] # Source node to ATen node mapping: # temp_x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%mean, %getitem], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 2 x0 = xindex % 16 x2 = (xindex // 32) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tmp17 = tl.full([1], 2, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = triton_helpers.maximum(tmp21, tmp22) tmp24 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp16, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp15, tmp27) tl.store(out_ptr0 + (x3), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/my/cmyzznlnv3aykf56hqxijqkl7hycovubzmkxdtihopwgojtdv2p3.py # Topologically Sorted Source Nodes: [attention, x], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # attention => sigmoid # x => mul # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_1), kwargs = {}) triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (x3), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x3), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 3, 3), (18, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [temp_x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, buf0, 128, grid=grid(128), stream=stream0) # Topologically Sorted Source Nodes: [temp_x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention, x], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_1.run(buf1, primals_1, buf2, 256, grid=grid(256), stream=stream0) return (buf2, primals_1, primals_2, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 2, 3, 3), (18, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch import torch.nn as nn class SpatialAttention(nn.Module): def __init__(self): super(SpatialAttention, self).__init__() self.conv1 = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=3, padding=1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) temp_x = torch.cat([avg_out, max_out], dim=1) temp_x = self.conv1(temp_x) attention = self.sigmoid(temp_x) x = attention * x return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data import torch import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 2 x0 = xindex % 16 x2 = xindex // 32 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tl.full([1], 2, tl.int64) tmp19 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = triton_helpers.maximum(tmp21, tmp22) tmp24 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp16, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp15, tmp27) tl.store(out_ptr0 + x3, tmp28, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr1 + x3, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x3, tmp3, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 3, 3), (18, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_1[grid(256)](buf1, primals_1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf2, primals_1, primals_2, buf0, buf1 class SpatialAttentionNew(nn.Module): def __init__(self): super(SpatialAttentionNew, self).__init__() self.conv1 = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=3, padding=1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv1.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
robvincen/robot_gradet
SpatialAttention
false
4,199
[ "BSD-3-Clause" ]
0
a39e3c772c72806dfc99e4d24d8787e0d1bdeef5
https://github.com/robvincen/robot_gradet/tree/a39e3c772c72806dfc99e4d24d8787e0d1bdeef5
import torch import torch.utils.data import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=3, padding=1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) temp_x = torch.cat([avg_out, max_out], dim=1) temp_x = self.conv1(temp_x) attention = self.sigmoid(temp_x) x = attention * x return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
QNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/cw/ccwssfx6qcvunhe3oavlbicw6nznahssfugkgjkuhgpjkulcytk6.py # Topologically Sorted Source Nodes: [o1], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # o1 => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5n/c5nnm5j7zky5bxmyowjq4lc7gdpqhzs7nzbrb3occhq5mr35r7m6.py # Topologically Sorted Source Nodes: [o2], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # o2 => gt_1, mul_1, where_1 # Graph fragment: # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 0.01), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %view_3, %mul_1), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 16), (16, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [o1], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 1024, grid=grid(1024), stream=stream0) del buf0 del primals_2 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 4), (1, 16), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [o2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf3, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0) del buf3 del primals_5 return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 16), (16, 1), 0), buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class QNet(nn.Module): def __init__(self, in_size: 'int', out_size: 'int'): super(QNet, self).__init__() self.fc1 = nn.Linear(in_size, 16) self.fc_out = nn.Linear(16, out_size) self.act = nn.LeakyReLU() def forward(self, x): o1 = self.act(self.fc1(x)) o2 = self.act(self.fc_out(o1)) return o2 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_size': 4, 'out_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 16), (16, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch. float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(1024)](buf0, primals_2, buf1, buf2, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 4), (1, 16), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_leaky_relu_1[grid(256)](buf3, primals_5, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf3 del primals_5 return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 16), (16, 1), 0 ), buf4, primals_4 class QNetNew(nn.Module): def __init__(self, in_size: 'int', out_size: 'int'): super(QNetNew, self).__init__() self.fc1 = nn.Linear(in_size, 16) self.fc_out = nn.Linear(16, out_size) self.act = nn.LeakyReLU() def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc_out.weight primals_5 = self.fc_out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
rosebin/gymlab
QNet
false
4,200
[ "BSD-3-Clause" ]
0
de97fc24e0ddf5e328a2aa732cc339b2371d92d1
https://github.com/rosebin/gymlab/tree/de97fc24e0ddf5e328a2aa732cc339b2371d92d1
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_size: 'int', out_size: 'int'): super().__init__() self.fc1 = nn.Linear(in_size, 16) self.fc_out = nn.Linear(16, out_size) self.act = nn.LeakyReLU() def forward(self, x): o1 = self.act(self.fc1(x)) o2 = self.act(self.fc_out(o1)) return o2 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
L0Linear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/7g/c7g7othpnsbmovs44m7nfet7tt65cm2vlyavdn5zikazjtnmjrqw.py # Topologically Sorted Source Nodes: [sigmoid, mul, s, zeros_like, max_1, ones_like, mask, mul_1], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.zeros_like, aten.maximum, aten.ones_like, aten.minimum] # Source node to ATen node mapping: # mask => minimum # max_1 => maximum # mul => mul # mul_1 => mul_1 # ones_like => full_default_1 # s => add # sigmoid => sigmoid # zeros_like => full_default # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, 1.2000000000000002), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, -0.1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%add, %full_default), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%maximum, %full_default_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %minimum), kwargs = {}) triton_poi_fused_add_maximum_minimum_mul_ones_like_sigmoid_zeros_like_0 = async_compile.triton('triton_poi_fused_add_maximum_minimum_mul_ones_like_sigmoid_zeros_like_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_maximum_minimum_mul_ones_like_sigmoid_zeros_like_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_maximum_minimum_mul_ones_like_sigmoid_zeros_like_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = 1.2000000000000002 tmp4 = tmp2 * tmp3 tmp5 = -0.1 tmp6 = tmp4 + tmp5 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = 1.0 tmp10 = triton_helpers.minimum(tmp8, tmp9) tmp11 = tmp0 * tmp10 tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, mul, s, zeros_like, max_1, ones_like, mask, mul_1], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.zeros_like, aten.maximum, aten.ones_like, aten.minimum] stream0 = get_raw_stream(0) triton_poi_fused_add_maximum_minimum_mul_ones_like_sigmoid_zeros_like_0.run(primals_2, primals_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del buf0 del primals_3 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, primals_2, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn from torch.nn import functional as F from torch.autograd import Variable import logging as lg def hard_sigmoid(x): """Hard Sigmoid function.""" return torch.min(torch.max(x, torch.zeros_like(x)), torch.ones_like(x)) class _L0Norm(nn.Module): """L0 norm.""" def __init__(self, origin, loc_mean: 'float'=0.0, loc_sdev: 'float'= 0.01, beta: 'float'=2 / 3, gamma: 'float'=-0.1, zeta: 'float'=1.1, fix_temp: 'bool'=True, l02: 'bool'=False, l02_alpha=0.01): """Class of layers using L0 Norm. :param origin: original layer such as nn.Linear(..), nn.Conv2d(..) :param loc_mean: mean of the normal of initial location parameters :param loc_sdev: standard deviation of initial location parameters :param beta: initial temperature parameter :param gamma: lower bound of "stretched" s :param zeta: upper bound of "stretched" s :param fix_temp: True if temperature is fixed """ super(_L0Norm, self).__init__() self._origin = origin self._size = self._origin.weight.size() self.loc = nn.Parameter(torch.zeros(self._size).normal_(loc_mean, loc_sdev)) self.temp = beta if fix_temp else nn.Parameter(torch.zeros(1).fill_ (beta)) self.register_buffer('uniform', torch.zeros(self._size)) self.gamma = gamma self.zeta = zeta self.gamma_zeta_ratio = np.log(-gamma / zeta) self.l02_alpha = l02_alpha self.l02 = l02 if self.l02: assert self.l02_alpha > 0 lg.info('Using L_0,2 norm') def _get_mask(self): if self.training: self.uniform.uniform_() u = Variable(self.uniform) s = F.sigmoid((torch.log(u) - torch.log(1 - u) + self.loc) / self.temp) s = s * (self.zeta - self.gamma) + self.gamma penalty = F.sigmoid(self.loc - self.temp * self.gamma_zeta_ratio ).sum() if self.l02: l02Norm = (F.sigmoid(self.loc - self.temp * self. gamma_zeta_ratio) * self._origin.weight ** 2).sum() penalty = penalty + self.l02_alpha * l02Norm else: s = F.sigmoid(self.loc) * (self.zeta - self.gamma) + self.gamma penalty = 0 return hard_sigmoid(s), penalty class L0Linear(_L0Norm): """Linear model with L0 norm.""" def __init__(self, in_features: 'int', out_features: 'int', bias: 'bool'=True, **kwargs): """Linear model with L0 norm.""" super(L0Linear, self).__init__(nn.Linear(in_features, out_features, bias=bias), **kwargs) def forward(self, input): """Forward function with mask and penalty.""" mask, penalty = self._get_mask() out = F.linear(input, self._origin.weight * mask, self._origin.bias) return out, penalty def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np import torch.nn as nn from torch.nn import functional as F from torch.autograd import Variable import logging as lg assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_maximum_minimum_mul_ones_like_sigmoid_zeros_like_0( in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = 1.2000000000000002 tmp4 = tmp2 * tmp3 tmp5 = -0.1 tmp6 = tmp4 + tmp5 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = 1.0 tmp10 = triton_helpers.minimum(tmp8, tmp9) tmp11 = tmp0 * tmp10 tl.store(out_ptr0 + x0, tmp11, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_maximum_minimum_mul_ones_like_sigmoid_zeros_like_0[ grid(16)](primals_2, primals_1, buf0, 16, XBLOCK=16, num_warps= 1, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del buf0 del primals_3 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, primals_2, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0) def hard_sigmoid(x): """Hard Sigmoid function.""" return torch.min(torch.max(x, torch.zeros_like(x)), torch.ones_like(x)) class _L0Norm(nn.Module): """L0 norm.""" def __init__(self, origin, loc_mean: 'float'=0.0, loc_sdev: 'float'= 0.01, beta: 'float'=2 / 3, gamma: 'float'=-0.1, zeta: 'float'=1.1, fix_temp: 'bool'=True, l02: 'bool'=False, l02_alpha=0.01): """Class of layers using L0 Norm. :param origin: original layer such as nn.Linear(..), nn.Conv2d(..) :param loc_mean: mean of the normal of initial location parameters :param loc_sdev: standard deviation of initial location parameters :param beta: initial temperature parameter :param gamma: lower bound of "stretched" s :param zeta: upper bound of "stretched" s :param fix_temp: True if temperature is fixed """ super(_L0Norm, self).__init__() self._origin = origin self._size = self._origin.weight.size() self.loc = nn.Parameter(torch.zeros(self._size).normal_(loc_mean, loc_sdev)) self.temp = beta if fix_temp else nn.Parameter(torch.zeros(1).fill_ (beta)) self.register_buffer('uniform', torch.zeros(self._size)) self.gamma = gamma self.zeta = zeta self.gamma_zeta_ratio = np.log(-gamma / zeta) self.l02_alpha = l02_alpha self.l02 = l02 if self.l02: assert self.l02_alpha > 0 lg.info('Using L_0,2 norm') def _get_mask(self): if self.training: self.uniform.uniform_() u = Variable(self.uniform) s = F.sigmoid((torch.log(u) - torch.log(1 - u) + self.loc) / self.temp) s = s * (self.zeta - self.gamma) + self.gamma penalty = F.sigmoid(self.loc - self.temp * self.gamma_zeta_ratio ).sum() if self.l02: l02Norm = (F.sigmoid(self.loc - self.temp * self. gamma_zeta_ratio) * self._origin.weight ** 2).sum() penalty = penalty + self.l02_alpha * l02Norm else: s = F.sigmoid(self.loc) * (self.zeta - self.gamma) + self.gamma penalty = 0 return hard_sigmoid(s), penalty class L0LinearNew(_L0Norm): """Linear model with L0 norm.""" def __init__(self, in_features: 'int', out_features: 'int', bias: 'bool'=True, **kwargs): """Linear model with L0 norm.""" super(L0LinearNew, self).__init__(nn.Linear(in_features, out_features, bias=bias), **kwargs) def forward(self, input_0): primals_1 = self.loc primals_2 = self._origin.weight primals_3 = self._origin.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0], output[1]
rmporsch/ML_genetic_risk
L0Linear
false
4,201
[ "MIT" ]
0
4e1a0510c94260e69f93639ff4104c5f85080d9f
https://github.com/rmporsch/ML_genetic_risk/tree/4e1a0510c94260e69f93639ff4104c5f85080d9f
import torch import numpy as np import torch.nn as nn from torch.nn import functional as F from torch.autograd import Variable import logging as lg def hard_sigmoid(x): """Hard Sigmoid function.""" return torch.min(torch.max(x, torch.zeros_like(x)), torch.ones_like(x)) class _L0Norm(nn.Module): """L0 norm.""" def __init__(self, origin, loc_mean: 'float'=0.0, loc_sdev: 'float'= 0.01, beta: 'float'=2 / 3, gamma: 'float'=-0.1, zeta: 'float'=1.1, fix_temp: 'bool'=True, l02: 'bool'=False, l02_alpha=0.01): """Class of layers using L0 Norm. :param origin: original layer such as nn.Linear(..), nn.Conv2d(..) :param loc_mean: mean of the normal of initial location parameters :param loc_sdev: standard deviation of initial location parameters :param beta: initial temperature parameter :param gamma: lower bound of "stretched" s :param zeta: upper bound of "stretched" s :param fix_temp: True if temperature is fixed """ super().__init__() self._origin = origin self._size = self._origin.weight.size() self.loc = nn.Parameter(torch.zeros(self._size).normal_(loc_mean, loc_sdev)) self.temp = beta if fix_temp else nn.Parameter(torch.zeros(1).fill_ (beta)) self.register_buffer('uniform', torch.zeros(self._size)) self.gamma = gamma self.zeta = zeta self.gamma_zeta_ratio = np.log(-gamma / zeta) self.l02_alpha = l02_alpha self.l02 = l02 if self.l02: assert self.l02_alpha > 0 lg.info('Using L_0,2 norm') def _get_mask(self): if self.training: self.uniform.uniform_() u = Variable(self.uniform) s = F.sigmoid((torch.log(u) - torch.log(1 - u) + self.loc) / self.temp) s = s * (self.zeta - self.gamma) + self.gamma penalty = F.sigmoid(self.loc - self.temp * self.gamma_zeta_ratio ).sum() if self.l02: l02Norm = (F.sigmoid(self.loc - self.temp * self. gamma_zeta_ratio) * self._origin.weight ** 2).sum() penalty = penalty + self.l02_alpha * l02Norm else: s = F.sigmoid(self.loc) * (self.zeta - self.gamma) + self.gamma penalty = 0 return hard_sigmoid(s), penalty class Model(_L0Norm): """Linear model with L0 norm.""" def __init__(self, in_features: 'int', out_features: 'int', bias: 'bool'=True, **kwargs): """Linear model with L0 norm.""" super().__init__(nn.Linear(in_features, out_features, bias=bias), **kwargs) def forward(self, input): """Forward function with mask and penalty.""" mask, penalty = self._get_mask() out = F.linear(input, self._origin.weight * mask, self._origin.bias) return out, penalty def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
QNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xc/cxcj5l7s6w5ttrq2fk2nirlbp44yesw6n2m2dnxtpcjjmym2njhr.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 128), (128, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 8192, grid=grid(8192), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 64), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse buf5 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf5, 4096, grid=grid(4096), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4) del primals_7 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(buf3, (64, 64), (64, 1), 0), primals_6, buf5, primals_4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class QNetwork(nn.Module): def __init__(self, state_size, action_size, seed): super(QNetwork, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, action_size) def forward(self, state): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 128), (128, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1, primals_2, buf6, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 64), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf2 buf5 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool ) triton_poi_fused_relu_threshold_backward_1[grid(4096)](buf3, primals_5, buf5, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4) del primals_7 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 128), (128, 1), 0 ), reinterpret_tensor(buf3, (64, 64), (64, 1), 0 ), primals_6, buf5, primals_4, buf6 class QNetworkNew(nn.Module): def __init__(self, state_size, action_size, seed): super(QNetworkNew, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, action_size) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
royveshovda/deep-reinforcement-learning
QNetwork
false
4,202
[ "MIT" ]
0
64ba7ef5ab44f095b7e8b29f6c4ff1585025981a
https://github.com/royveshovda/deep-reinforcement-learning/tree/64ba7ef5ab44f095b7e8b29f6c4ff1585025981a
import torch import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): def __init__(self, state_size, action_size, seed): super().__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, action_size) def forward(self, state): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
Discriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [state_action], Original ATen: [aten.cat] # Source node to ATen node mapping: # state_action => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dk/cdk3l2gdrurg6uj2ckltekowplr53hgrpb57mjds3uwpjtqhrw64.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x => tanh # Graph fragment: # %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_4), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor_3,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ls/clszevd4n3pthav5wqqc3tv5ntzabt6apuyy2ydb45lnc25ohanu.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x_1 => tanh_1 # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_6), kwargs = {}) # %tanh_1 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor_2,), kwargs = {}) triton_poi_fused_tanh_2 = async_compile.triton('triton_poi_fused_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 300 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rh/crhvyy3w3uejbzndu7qftnyc25sndrfzlmb3i2bzpyadobz7z7bm.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_3 => sigmoid # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_10), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (500, 8), (8, 1)) assert_size_stride(primals_4, (500, ), (1, )) assert_size_stride(primals_5, (300, 500), (500, 1)) assert_size_stride(primals_6, (300, ), (1, )) assert_size_stride(primals_7, (300, 300), (300, 1)) assert_size_stride(primals_8, (300, ), (1, )) assert_size_stride(primals_9, (1, 300), (300, 1)) assert_size_stride(primals_10, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [state_action], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 500), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf2, primals_4, 2000, grid=grid(2000), stream=stream0) del primals_4 buf3 = empty_strided_cuda((4, 300), (300, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (500, 300), (1, 500), 0), out=buf3) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_2.run(buf4, primals_6, 1200, grid=grid(1200), stream=stream0) del primals_6 buf5 = empty_strided_cuda((4, 300), (300, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf4, reinterpret_tensor(primals_7, (300, 300), (1, 300), 0), out=buf5) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh] triton_poi_fused_tanh_2.run(buf6, primals_8, 1200, grid=grid(1200), stream=stream0) del primals_8 buf7 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf6, reinterpret_tensor(primals_9, (300, 1), (1, 300), 0), out=buf7) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_3.run(buf8, primals_10, 4, grid=grid(4), stream=stream0) del primals_10 return (buf8, buf0, buf2, buf4, buf6, buf8, primals_9, primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((500, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((300, 500), (500, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((300, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((300, 300), (300, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((300, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, 300), (300, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Discriminator(nn.Module): def __init__(self, state_dim, action_dim): super(Discriminator, self).__init__() self.l1 = nn.Linear(state_dim + action_dim, 500) self.l2 = nn.Linear(500, 300) self.l3 = nn.Linear(300, 300) self.l4 = nn.Linear(300, 1) def forward(self, state, action): state_action = torch.cat([state, action], 1) x = torch.tanh(self.l1(state_action)) x = torch.tanh(self.l2(x)) x = torch.tanh(self.l3(x)) x = torch.sigmoid(self.l4(x)) return x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 2000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 300 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (500, 8), (8, 1)) assert_size_stride(primals_4, (500,), (1,)) assert_size_stride(primals_5, (300, 500), (500, 1)) assert_size_stride(primals_6, (300,), (1,)) assert_size_stride(primals_7, (300, 300), (300, 1)) assert_size_stride(primals_8, (300,), (1,)) assert_size_stride(primals_9, (1, 300), (300, 1)) assert_size_stride(primals_10, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 500), (500, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 500), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1 del buf1 triton_poi_fused_tanh_1[grid(2000)](buf2, primals_4, 2000, XBLOCK= 128, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((4, 300), (300, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (500, 300), ( 1, 500), 0), out=buf3) buf4 = buf3 del buf3 triton_poi_fused_tanh_2[grid(1200)](buf4, primals_6, 1200, XBLOCK= 128, num_warps=4, num_stages=1) del primals_6 buf5 = empty_strided_cuda((4, 300), (300, 1), torch.float32) extern_kernels.mm(buf4, reinterpret_tensor(primals_7, (300, 300), ( 1, 300), 0), out=buf5) buf6 = buf5 del buf5 triton_poi_fused_tanh_2[grid(1200)](buf6, primals_8, 1200, XBLOCK= 128, num_warps=4, num_stages=1) del primals_8 buf7 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf6, reinterpret_tensor(primals_9, (300, 1), (1, 300), 0), out=buf7) buf8 = buf7 del buf7 triton_poi_fused_sigmoid_3[grid(4)](buf8, primals_10, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_10 return buf8, buf0, buf2, buf4, buf6, buf8, primals_9, primals_7, primals_5 class DiscriminatorNew(nn.Module): def __init__(self, state_dim, action_dim): super(DiscriminatorNew, self).__init__() self.l1 = nn.Linear(state_dim + action_dim, 500) self.l2 = nn.Linear(500, 300) self.l3 = nn.Linear(300, 300) self.l4 = nn.Linear(300, 1) def forward(self, input_0, input_1): primals_3 = self.l1.weight primals_4 = self.l1.bias primals_5 = self.l2.weight primals_6 = self.l2.bias primals_7 = self.l3.weight primals_8 = self.l3.bias primals_9 = self.l4.weight primals_10 = self.l4.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
rortiz9/meleeml
Discriminator
false
4,203
[ "MIT" ]
0
9be4bf53a377dfb46dbb3b51f102f1bffc0124d2
https://github.com/rortiz9/meleeml/tree/9be4bf53a377dfb46dbb3b51f102f1bffc0124d2
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, state_dim, action_dim): super().__init__() self.l1 = nn.Linear(state_dim + action_dim, 500) self.l2 = nn.Linear(500, 300) self.l3 = nn.Linear(300, 300) self.l4 = nn.Linear(300, 1) def forward(self, state, action): state_action = torch.cat([state, action], 1) x = torch.tanh(self.l1(state_action)) x = torch.tanh(self.l2(x)) x = torch.tanh(self.l3(x)) x = torch.sigmoid(self.l4(x)) return x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
RelationalTransformerEncoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ih/cihzqunvhmsoa5e3orrwo2iez2setdyhxwrujxi7fwrn2aw7adgt.py # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # q_1 => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (12*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/iz/cizyqzghi7fnldgxtoz2clsnz4jvogk5fdvj7mi3tbe3tnb6g4kt.py # Topologically Sorted Source Nodes: [contiguous_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_2 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%getitem_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (8 + x0 + (12*x1)), xmask) tmp1 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/54/c545jcidaxblcqouel6ztiwyytwzuaasohh4q2qelpa3u5sbntsf.py # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%getitem_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4 + x0 + (12*x1)), xmask) tmp1 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/s4/cs472yivvl3yzse325afzknsz7ua5dqrqzmwls3lwujk3hte6xkl.py # Topologically Sorted Source Nodes: [attn_output_weights_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_output_weights_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zh/czh6tw7ngffcygnivwvcjex5edxy3ms4t27ymyn2hemxlpspxzq7.py # Topologically Sorted Source Nodes: [attn_output_weights_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_output_weights_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/la/claxsme7yqsdzeonqq2iowvclxlentfbkqvzkxqtzqzk4g2snafx.py # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_3 => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_5,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ns/cnspfsjjmvserkfymbru7x5vm2xumtyor5javdiv74jr3avx67rq.py # Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # src => add # src_1 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_5, %view_7), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7u/c7uxwow3tztifyrr5oj6dotpbrh7qtup53xfydkt35y65ajtfwre.py # Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # src => add # src_1 => add_1, add_2, mul_1, mul_2, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_5, %view_7), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_3, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_6), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {}) triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rv/crvf2y3myjmfsbbg2ubhxgcshxxvsclo3cxqhn4x2kt2s5qfl37x.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_10,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_8 = async_compile.triton('triton_poi_fused_relu_threshold_backward_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_8(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/gi/cgiemrmhgokkex4ehtwipuydyw7qa56vlnfsfovgk46i4srp45yk.py # Topologically Sorted Source Nodes: [src_2], Original ATen: [aten.add] # Source node to ATen node mapping: # src_2 => add_3 # Graph fragment: # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %view_12), kwargs = {}) triton_poi_fused_add_9 = async_compile.triton('triton_poi_fused_add_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nn/cnnxhu2nhctulajy3rzg5wf2f3gd62kwlmtnwu5433qpihin4y26.py # Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # src_3 => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_5, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_native_layer_norm_10 = async_compile.triton('triton_poi_fused_native_layer_norm_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/73/c73z2hfes5izl473wn57vaku4rt2ae7swkdamlriywh5x5xt7g3z.py # Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # src_3 => add_4, add_5, mul_3, mul_4, rsqrt_1, sub_2, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_5, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_6), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_12), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_13), kwargs = {}) triton_poi_fused_native_layer_norm_11 = async_compile.triton('triton_poi_fused_native_layer_norm_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_11(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (12, 4), (4, 1)) assert_size_stride(primals_2, (12, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (2048, 4), (4, 1)) assert_size_stride(primals_9, (2048, ), (1, )) assert_size_stride(primals_10, (4, 2048), (2048, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 12), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf0, primals_2, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_2], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf0, primals_2, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf0, primals_2, buf3, 64, grid=grid(64), stream=stream0) del buf0 del primals_2 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_output_weights], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf3, (16, 1, 4), (1, 0, 16), 0), out=buf4) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_output_weights_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [attn_output_weights_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 buf7 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_output], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 1), (1, 16, 0), 0), out=buf7) buf8 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf7, buf8, 4, 16, grid=grid(4, 16), stream=stream0) buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [attn_output_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(buf8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_4 buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(primals_5, buf9, buf10, buf11, 16, grid=grid(16), stream=stream0) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_7.run(primals_5, buf9, buf10, buf11, primals_6, primals_7, buf12, 64, grid=grid(64), stream=stream0) del primals_7 buf13 = empty_strided_cuda((16, 2048), (2048, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 2048), (1, 4), 0), out=buf13) buf14 = reinterpret_tensor(buf13, (4, 4, 2048), (8192, 2048, 1), 0); del buf13 # reuse buf20 = empty_strided_cuda((4, 4, 2048), (8192, 2048, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_8.run(buf14, primals_9, buf20, 32768, grid=grid(32768), stream=stream0) del primals_9 buf15 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf14, (16, 2048), (2048, 1), 0), reinterpret_tensor(primals_10, (2048, 4), (1, 2048), 0), out=buf15) buf16 = reinterpret_tensor(buf15, (4, 4, 4), (16, 4, 1), 0); del buf15 # reuse # Topologically Sorted Source Nodes: [src_2], Original ATen: [aten.add] triton_poi_fused_add_9.run(buf16, buf12, primals_11, 64, grid=grid(64), stream=stream0) del primals_11 buf17 = buf11; del buf11 # reuse buf18 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_10.run(buf16, buf17, buf18, 16, grid=grid(16), stream=stream0) buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_11.run(buf16, buf17, buf18, primals_12, primals_13, buf19, 64, grid=grid(64), stream=stream0) del buf17 del buf18 del primals_13 return (buf19, primals_5, primals_6, primals_12, buf6, reinterpret_tensor(buf8, (16, 4), (4, 1), 0), buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(buf14, (16, 2048), (2048, 1), 0), buf16, primals_10, buf20, primals_8, primals_3, reinterpret_tensor(buf2, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf1, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import warnings from torch import Tensor from torch.nn import TransformerEncoderLayer from torch.nn.functional import * from torch.nn.modules.activation import MultiheadAttention from torch.nn.modules.activation import xavier_uniform_ from torch.nn.modules.activation import xavier_normal_ from torch.nn.modules.activation import constant_ from torch.nn.modules.activation import Parameter from typing import Optional import torch.utils.data.dataset from typing import Tuple def relational_multi_head_attention_forward(query: 'Tensor', key: 'Tensor', value: 'Tensor', relation: 'Tensor', embed_dim_to_check: 'int', num_heads: 'int', in_proj_weight: 'Tensor', in_proj_bias: 'Tensor', bias_k: 'Optional[Tensor]', bias_v: 'Optional[Tensor]', add_zero_attn: 'bool', dropout_p: 'float', out_proj_weight: 'Tensor', out_proj_bias: 'Tensor', training: 'bool'=True, key_padding_mask: 'Optional[Tensor]'= None, need_weights: 'bool'=True, attn_mask: 'Optional[Tensor]'=None, use_separate_proj_weight: 'bool'=False, q_proj_weight: 'Optional[Tensor]'=None, k_proj_weight: 'Optional[Tensor]'=None, v_proj_weight: 'Optional[Tensor]'=None, static_k: 'Optional[Tensor]'= None, static_v: 'Optional[Tensor]'=None, relation_type: 'str'=None ) ->Tuple[Tensor, Optional[Tensor]]: """ Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. relation: relation between queries and keys. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - relation: :math:`(L, S, N, E)` where L is the target sequence length, where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if has_torch_function(tens_ops): return handle_torch_function(multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight= use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, 'embed_dim must be divisible by num_heads' scaling = float(head_dim) ** -0.5 if not use_separate_proj_weight: if (query is key or torch.equal(query, key)) and (key is value or torch.equal(key, value)): q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) elif key is value or torch.equal(key, value): _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) if key is None: assert value is None k = None v = None else: _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = linear(key, _w, _b).chunk(2, dim=-1) else: _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = linear(key, _w, _b) _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim: embed_dim * 2]) v = linear(value, v_proj_weight_non_opt, in_proj_bias[embed_dim * 2:]) else: q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if attn_mask is not None: assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, 'Only float, byte, and bool types are supported for attn_mask, not {}'.format( attn_mask.dtype) if attn_mask.dtype == torch.uint8: warnings.warn( 'Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.' ) attn_mask = attn_mask if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError( 'The size of the 2D attn_mask is not correct.') elif attn_mask.dim() == 3: if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: raise RuntimeError( 'The size of the 3D attn_mask is not correct.') else: raise RuntimeError("attn_mask's dimension {} is not supported". format(attn_mask.dim())) if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( 'Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.' ) key_padding_mask = key_padding_mask if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert static_k is None, 'bias cannot be added to static key.' assert static_v is None, 'bias cannot be added to static value.' else: assert bias_k is None assert bias_v is None r = None q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if relation is not None: if relation_type == 'qk+r': r = relation.contiguous().view(tgt_len, -1, bsz * num_heads, 1 ).squeeze(3).permute(2, 0, 1) elif relation_type == 'q(k+r)': r = relation.contiguous().view(tgt_len, src_len, bsz * num_heads, head_dim).permute(2, 0, 1) r = r.view(bsz * num_heads, tgt_len * src_len, head_dim) r = torch.bmm(r, q.unsqueeze(2).repeat(1, 1, src_len, 1).view( bsz * num_heads, tgt_len * src_len, head_dim).transpose(1, 2) ).view(bsz * num_heads, tgt_len, src_len) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if add_zero_attn: src_len += 1 k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype= k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype= v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) if r is not None: attn_output_weights = attn_output_weights + r assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float('-inf')) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill(key_padding_mask .unsqueeze(1).unsqueeze(2), float('-inf')) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) attn_output_weights = softmax(attn_output_weights, dim=-1) attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None class RelationalMultiheadAttention(MultiheadAttention): """Allows the model to jointly attend to information from different representation subspaces. See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_ .. math:: \\text{MultiHead}(Q, K, V) = \\text{Concat}(head_1,\\dots,head_h)W^O where :math:`head_i = \\text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. bias: add bias as module parameter. Default: True. add_bias_kv: add bias to the key and value sequences at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. kdim: total number of features in key. Default: None. vdim: total number of features in value. Default: None. Note that if :attr:`kdim` and :attr:`vdim` are None, they will be set to :attr:`embed_dim` such that query, key, and value have the same number of features. Examples:: >>> realational_multihead_attn = RelationalMultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = realational_multihead_attn(query, key, value) """ bias_k: 'Optional[torch.Tensor]' bias_v: 'Optional[torch.Tensor]' def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, add_relation=False, rdim=None, relation_type=None): super(RelationalMultiheadAttention, self).__init__(embed_dim= embed_dim, num_heads=num_heads, dropout=dropout, bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, kdim=kdim, vdim=vdim) self.add_relation = add_relation self.rdim = rdim if rdim is not None else embed_dim self.relation_type = relation_type if relation_type else 'qk+r' if self.add_relation: if relation_type == 'qk+r': self.r_proj_weight = Parameter(torch.Tensor(num_heads, self .rdim)) self.r_proj_bias = Parameter(torch.empty(num_heads)) elif relation_type == 'q(k+r)': self.r_proj_weight = Parameter(torch.Tensor(embed_dim, self .rdim)) self.r_proj_bias = Parameter(torch.empty(embed_dim)) self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if hasattr(self, 'add_relation') and self.add_relation: xavier_uniform_(self.r_proj_weight) constant_(self.r_proj_bias, 0.0) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.0) constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state) def forward(self, query: 'Tensor', key: 'Tensor', value: 'Tensor', relation_dict=None, key_padding_mask: 'Optional[Tensor]'=None, need_weights: 'bool'=True, attn_mask: 'Optional[Tensor]'=None) ->Tuple[ Tensor, Optional[Tensor]]: """ Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shapes for inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: if a 2D mask: :math:`(L, S)` where L is the target sequence length, S is the source sequence length. If a 3D mask: :math:`(N\\cdot\\text{num\\_heads}, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. ``attn_mask`` ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. Shapes for outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if relation_dict is not None: relation_labels = relation_dict['relation_labels'] relation_ids = relation_dict['relation_ids'] batch_index = relation_dict['batch_index'] pad_embedding = relation_dict['pad_embedding'] relation_labels = linear(relation_labels, self.r_proj_weight, self.r_proj_bias) pad_embedding = linear(pad_embedding.unsqueeze(0), self. r_proj_weight, self.r_proj_bias).squeeze() tgt_length, bsz, _ = query.size() src_length, _, _ = key.size() relation = pad_embedding.view(1, 1, 1, -1).repeat(bsz, tgt_length, src_length, 1) relation[batch_index, relation_ids[:, :, 0], relation_ids[:, :, 1] ] = relation_labels relation = relation.permute(1, 2, 0, 3) if not self._qkv_same_embed_dim: return relational_multi_head_attention_forward(query, key, value, relation, self.embed_dim, self.num_heads, self. in_proj_weight, self.in_proj_bias, self.bias_k, self. bias_v, self.add_zero_attn, self.dropout, self.out_proj .weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights= need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self. q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight) else: return relational_multi_head_attention_forward(query, key, value, relation, self.embed_dim, self.num_heads, self. in_proj_weight, self.in_proj_bias, self.bias_k, self. bias_v, self.add_zero_attn, self.dropout, self.out_proj .weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights= need_weights, attn_mask=attn_mask) elif not self._qkv_same_embed_dim: return relational_multi_head_attention_forward(query, key, value, None, self.embed_dim, self.num_heads, self. in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights= need_weights, attn_mask=attn_mask, use_separate_proj_weight =True, q_proj_weight=self.q_proj_weight, k_proj_weight=self .k_proj_weight, v_proj_weight=self.v_proj_weight) else: return relational_multi_head_attention_forward(query, key, value, None, self.embed_dim, self.num_heads, self. in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights= need_weights, attn_mask=attn_mask) class RelationalTransformerEncoderLayer(TransformerEncoderLayer): """TransformerEncoderLayer is made up of self-attn and feedforward network. This standard encoder layer is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of intermediate layer, relu or gelu (default=relu). Examples:: >>> encoder_layer = RelationalTransformerEncoderLayer(d_model=512, nhead=8) >>> src = torch.rand(10, 32, 512) >>> rel = torch.rand(10, 10, 32, 512) >>> out = encoder_layer(src, rel) """ def __init__(self, d_model, nhead, add_relation=False, dim_feedforward= 2048, dropout=0.1, activation='relu', relation_type=None): super(RelationalTransformerEncoderLayer, self).__init__(d_model, nhead, dim_feedforward=dim_feedforward, dropout=dropout, activation=activation) self.self_attn = RelationalMultiheadAttention(d_model, nhead, add_relation=add_relation, dropout=dropout, relation_type= relation_type) def forward(self, src: 'Tensor', relation=None, src_mask: 'Optional[Tensor]'=None, src_key_padding_mask: 'Optional[Tensor]'=None ) ->Tensor: """Pass the input through the encoder layer. Args: src: the sequence to the encoder layer (required). src_mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). Shape: see the docs in Transformer class. """ src2 = self.self_attn(src, src, src, relation_dict=relation, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'nhead': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import warnings from torch import Tensor from torch.nn import TransformerEncoderLayer from torch.nn.functional import * from torch.nn.modules.activation import MultiheadAttention from torch.nn.modules.activation import xavier_uniform_ from torch.nn.modules.activation import xavier_normal_ from torch.nn.modules.activation import constant_ from torch.nn.modules.activation import Parameter from typing import Optional import torch.utils.data.dataset from typing import Tuple assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 12 * x1), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (8 + x0 + 12 * x1), xmask) tmp1 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (4 + x0 + 12 * x1), xmask) tmp1 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_8(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_11(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (12, 4), (4, 1)) assert_size_stride(primals_2, (12,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (2048, 4), (4, 1)) assert_size_stride(primals_9, (2048,), (1,)) assert_size_stride(primals_10, (4, 2048), (2048, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 12), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(64)](buf0, primals_2, buf1, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(64)](buf0, primals_2, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(64)](buf0, primals_2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del primals_2 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf3, (16, 1, 4), (1, 0, 16), 0), out=buf4) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(256)](buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_4[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 buf7 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 1), (1, 16, 0), 0), out=buf7) buf8 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) triton_poi_fused_clone_5[grid(4, 16)](buf7, buf8, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0) del buf7 extern_kernels.addmm(primals_4, reinterpret_tensor(buf8, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_4 buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(16)](primals_5, buf9, buf10, buf11, 16, XBLOCK=16, num_warps=1, num_stages=1) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_7[grid(64)](primals_5, buf9, buf10, buf11, primals_6, primals_7, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_7 buf13 = empty_strided_cuda((16, 2048), (2048, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 2048), (1, 4), 0), out=buf13) buf14 = reinterpret_tensor(buf13, (4, 4, 2048), (8192, 2048, 1), 0) del buf13 buf20 = empty_strided_cuda((4, 4, 2048), (8192, 2048, 1), torch.bool) triton_poi_fused_relu_threshold_backward_8[grid(32768)](buf14, primals_9, buf20, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf15 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf14, (16, 2048), (2048, 1), 0), reinterpret_tensor(primals_10, (2048, 4), (1, 2048), 0), out=buf15) buf16 = reinterpret_tensor(buf15, (4, 4, 4), (16, 4, 1), 0) del buf15 triton_poi_fused_add_9[grid(64)](buf16, buf12, primals_11, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_11 buf17 = buf11 del buf11 buf18 = buf10 del buf10 triton_poi_fused_native_layer_norm_10[grid(16)](buf16, buf17, buf18, 16, XBLOCK=16, num_warps=1, num_stages=1) buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_11[grid(64)](buf16, buf17, buf18, primals_12, primals_13, buf19, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf17 del buf18 del primals_13 return buf19, primals_5, primals_6, primals_12, buf6, reinterpret_tensor( buf8, (16, 4), (4, 1), 0), buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(buf14, (16, 2048), (2048, 1), 0 ), buf16, primals_10, buf20, primals_8, primals_3, reinterpret_tensor( buf2, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf1, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 1), 0) def relational_multi_head_attention_forward(query: 'Tensor', key: 'Tensor', value: 'Tensor', relation: 'Tensor', embed_dim_to_check: 'int', num_heads: 'int', in_proj_weight: 'Tensor', in_proj_bias: 'Tensor', bias_k: 'Optional[Tensor]', bias_v: 'Optional[Tensor]', add_zero_attn: 'bool', dropout_p: 'float', out_proj_weight: 'Tensor', out_proj_bias: 'Tensor', training: 'bool'=True, key_padding_mask: 'Optional[Tensor]'= None, need_weights: 'bool'=True, attn_mask: 'Optional[Tensor]'=None, use_separate_proj_weight: 'bool'=False, q_proj_weight: 'Optional[Tensor]'=None, k_proj_weight: 'Optional[Tensor]'=None, v_proj_weight: 'Optional[Tensor]'=None, static_k: 'Optional[Tensor]'= None, static_v: 'Optional[Tensor]'=None, relation_type: 'str'=None ) ->Tuple[Tensor, Optional[Tensor]]: """ Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. relation: relation between queries and keys. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - relation: :math:`(L, S, N, E)` where L is the target sequence length, where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if has_torch_function(tens_ops): return handle_torch_function(multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight= use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, 'embed_dim must be divisible by num_heads' scaling = float(head_dim) ** -0.5 if not use_separate_proj_weight: if (query is key or torch.equal(query, key)) and (key is value or torch.equal(key, value)): q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) elif key is value or torch.equal(key, value): _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) if key is None: assert value is None k = None v = None else: _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = linear(key, _w, _b).chunk(2, dim=-1) else: _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = linear(key, _w, _b) _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim: embed_dim * 2]) v = linear(value, v_proj_weight_non_opt, in_proj_bias[embed_dim * 2:]) else: q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if attn_mask is not None: assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, 'Only float, byte, and bool types are supported for attn_mask, not {}'.format( attn_mask.dtype) if attn_mask.dtype == torch.uint8: warnings.warn( 'Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.' ) attn_mask = attn_mask if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError( 'The size of the 2D attn_mask is not correct.') elif attn_mask.dim() == 3: if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: raise RuntimeError( 'The size of the 3D attn_mask is not correct.') else: raise RuntimeError("attn_mask's dimension {} is not supported". format(attn_mask.dim())) if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn( 'Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.' ) key_padding_mask = key_padding_mask if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert static_k is None, 'bias cannot be added to static key.' assert static_v is None, 'bias cannot be added to static value.' else: assert bias_k is None assert bias_v is None r = None q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if relation is not None: if relation_type == 'qk+r': r = relation.contiguous().view(tgt_len, -1, bsz * num_heads, 1 ).squeeze(3).permute(2, 0, 1) elif relation_type == 'q(k+r)': r = relation.contiguous().view(tgt_len, src_len, bsz * num_heads, head_dim).permute(2, 0, 1) r = r.view(bsz * num_heads, tgt_len * src_len, head_dim) r = torch.bmm(r, q.unsqueeze(2).repeat(1, 1, src_len, 1).view( bsz * num_heads, tgt_len * src_len, head_dim).transpose(1, 2) ).view(bsz * num_heads, tgt_len, src_len) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if add_zero_attn: src_len += 1 k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype= k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype= v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) if r is not None: attn_output_weights = attn_output_weights + r assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float('-inf')) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill(key_padding_mask .unsqueeze(1).unsqueeze(2), float('-inf')) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) attn_output_weights = softmax(attn_output_weights, dim=-1) attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if need_weights: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None class RelationalMultiheadAttention(MultiheadAttention): """Allows the model to jointly attend to information from different representation subspaces. See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_ .. math:: \\text{MultiHead}(Q, K, V) = \\text{Concat}(head_1,\\dots,head_h)W^O where :math:`head_i = \\text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. bias: add bias as module parameter. Default: True. add_bias_kv: add bias to the key and value sequences at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. kdim: total number of features in key. Default: None. vdim: total number of features in value. Default: None. Note that if :attr:`kdim` and :attr:`vdim` are None, they will be set to :attr:`embed_dim` such that query, key, and value have the same number of features. Examples:: >>> realational_multihead_attn = RelationalMultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = realational_multihead_attn(query, key, value) """ bias_k: 'Optional[torch.Tensor]' bias_v: 'Optional[torch.Tensor]' def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, add_relation=False, rdim=None, relation_type=None): super(RelationalMultiheadAttention, self).__init__(embed_dim= embed_dim, num_heads=num_heads, dropout=dropout, bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, kdim=kdim, vdim=vdim) self.add_relation = add_relation self.rdim = rdim if rdim is not None else embed_dim self.relation_type = relation_type if relation_type else 'qk+r' if self.add_relation: if relation_type == 'qk+r': self.r_proj_weight = Parameter(torch.Tensor(num_heads, self .rdim)) self.r_proj_bias = Parameter(torch.empty(num_heads)) elif relation_type == 'q(k+r)': self.r_proj_weight = Parameter(torch.Tensor(embed_dim, self .rdim)) self.r_proj_bias = Parameter(torch.empty(embed_dim)) self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if hasattr(self, 'add_relation') and self.add_relation: xavier_uniform_(self.r_proj_weight) constant_(self.r_proj_bias, 0.0) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.0) constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state) def forward(self, query: 'Tensor', key: 'Tensor', value: 'Tensor', relation_dict=None, key_padding_mask: 'Optional[Tensor]'=None, need_weights: 'bool'=True, attn_mask: 'Optional[Tensor]'=None) ->Tuple[ Tensor, Optional[Tensor]]: """ Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shapes for inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: if a 2D mask: :math:`(L, S)` where L is the target sequence length, S is the source sequence length. If a 3D mask: :math:`(N\\cdot\\text{num\\_heads}, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. ``attn_mask`` ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. Shapes for outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if relation_dict is not None: relation_labels = relation_dict['relation_labels'] relation_ids = relation_dict['relation_ids'] batch_index = relation_dict['batch_index'] pad_embedding = relation_dict['pad_embedding'] relation_labels = linear(relation_labels, self.r_proj_weight, self.r_proj_bias) pad_embedding = linear(pad_embedding.unsqueeze(0), self. r_proj_weight, self.r_proj_bias).squeeze() tgt_length, bsz, _ = query.size() src_length, _, _ = key.size() relation = pad_embedding.view(1, 1, 1, -1).repeat(bsz, tgt_length, src_length, 1) relation[batch_index, relation_ids[:, :, 0], relation_ids[:, :, 1] ] = relation_labels relation = relation.permute(1, 2, 0, 3) if not self._qkv_same_embed_dim: return relational_multi_head_attention_forward(query, key, value, relation, self.embed_dim, self.num_heads, self. in_proj_weight, self.in_proj_bias, self.bias_k, self. bias_v, self.add_zero_attn, self.dropout, self.out_proj .weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights= need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self. q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight) else: return relational_multi_head_attention_forward(query, key, value, relation, self.embed_dim, self.num_heads, self. in_proj_weight, self.in_proj_bias, self.bias_k, self. bias_v, self.add_zero_attn, self.dropout, self.out_proj .weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights= need_weights, attn_mask=attn_mask) elif not self._qkv_same_embed_dim: return relational_multi_head_attention_forward(query, key, value, None, self.embed_dim, self.num_heads, self. in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights= need_weights, attn_mask=attn_mask, use_separate_proj_weight =True, q_proj_weight=self.q_proj_weight, k_proj_weight=self .k_proj_weight, v_proj_weight=self.v_proj_weight) else: return relational_multi_head_attention_forward(query, key, value, None, self.embed_dim, self.num_heads, self. in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights= need_weights, attn_mask=attn_mask) class RelationalTransformerEncoderLayerNew(TransformerEncoderLayer): """TransformerEncoderLayer is made up of self-attn and feedforward network. This standard encoder layer is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of intermediate layer, relu or gelu (default=relu). Examples:: >>> encoder_layer = RelationalTransformerEncoderLayer(d_model=512, nhead=8) >>> src = torch.rand(10, 32, 512) >>> rel = torch.rand(10, 10, 32, 512) >>> out = encoder_layer(src, rel) """ def __init__(self, d_model, nhead, add_relation=False, dim_feedforward= 2048, dropout=0.1, activation='relu', relation_type=None): super(RelationalTransformerEncoderLayerNew, self).__init__(d_model, nhead, dim_feedforward=dim_feedforward, dropout=dropout, activation=activation) self.self_attn = RelationalMultiheadAttention(d_model, nhead, add_relation=add_relation, dropout=dropout, relation_type= relation_type) def forward(self, input_0): primals_1 = self.self_attn.in_proj_weight primals_2 = self.self_attn.in_proj_bias primals_3 = self.self_attn.out_proj.weight primals_4 = self.self_attn.out_proj.bias primals_8 = self.linear1.weight primals_9 = self.linear1.bias primals_10 = self.linear2.weight primals_6 = self.linear2.bias primals_7 = self.norm1.weight primals_11 = self.norm1.bias primals_12 = self.norm2.weight primals_13 = self.norm2.bias primals_5 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
mfk3138/jiant
RelationalTransformerEncoderLayer
false
4,204
[ "MIT" ]
0
6e67ff1ecb1bb98533c1019a86af4ad2c04c6a64
https://github.com/mfk3138/jiant/tree/6e67ff1ecb1bb98533c1019a86af4ad2c04c6a64
import torch import warnings from torch import Tensor from torch.nn import TransformerEncoderLayer from torch.nn.functional import * from torch.nn.modules.activation import MultiheadAttention from torch.nn.modules.activation import xavier_uniform_ from torch.nn.modules.activation import xavier_normal_ from torch.nn.modules.activation import constant_ from torch.nn.modules.activation import Parameter from typing import Optional import torch.utils.data.dataset from typing import Tuple def relational_multi_head_attention_forward(query: 'Tensor', key: 'Tensor', value: 'Tensor', relation: 'Tensor', embed_dim_to_check: 'int', num_heads: 'int', in_proj_weight: 'Tensor', in_proj_bias: 'Tensor', bias_k: 'Optional[Tensor]', bias_v: 'Optional[Tensor]', add_zero_attn: 'bool', dropout_p: 'float', out_proj_weight: 'Tensor', out_proj_bias: 'Tensor', training: 'bool'=True, key_padding_mask: 'Optional[Tensor]'= None, need_weights: 'bool'=True, attn_mask: 'Optional[Tensor]'=None, use_separate_proj_weight: 'bool'=False, q_proj_weight: 'Optional[Tensor]'=None, k_proj_weight: 'Optional[Tensor]'=None, v_proj_weight: 'Optional[Tensor]'=None, static_k: 'Optional[Tensor]'= None, static_v: 'Optional[Tensor]'=None, relation_type: 'str'=None ) ->Tuple[Tensor, Optional[Tensor]]: """ Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. relation: relation between queries and keys. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - relation: :math:`(L, S, N, E)` where L is the target sequence length, where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while th # ... truncated (>4000 chars) for memory efficiency
LxmertAttentionOutput
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ai/cai32p2ssjvpyulvuzcicdszqe3thbavgxn4jeed6uatjnl7yq2s.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_4), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nk/cnkbkukjfarsysqlaadkg24xmqibk3adq5p7jyfnt6k6loydbn2r.py # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # hidden_states_2 => add_1, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-12 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mn/cmntyljhuirhsdjg2yosgzllpkpxqedxgoyk6gunquq2rf3kl7u5.py # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # hidden_states_2 => add_1, add_2, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_6), kwargs = {}) triton_poi_fused_native_layer_norm_2 = async_compile.triton('triton_poi_fused_native_layer_norm_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_2, primals_4, 256, grid=grid(256), stream=stream0) del primals_2 del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf1, buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_2.run(buf1, buf2, buf3, primals_5, primals_6, buf4, 256, grid=grid(256), stream=stream0) del buf2 del buf3 del primals_6 return (buf4, primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch from torch import nn class LxmertAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, hidden_dropout_prob= 0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-12 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf1, primals_2, primals_4, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](buf1, buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_2[grid(256)](buf1, buf2, buf3, primals_5, primals_6, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 del buf3 del primals_6 return buf4, primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1 class LxmertAttentionOutputNew(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_0, input_1): primals_1 = self.dense.weight primals_2 = self.dense.bias primals_5 = self.LayerNorm.weight primals_6 = self.LayerNorm.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
rsgit95/med_kg_txt_multimodal
LxmertAttentionOutput
false
4,205
[ "Apache-2.0" ]
0
80355b0cf58e0571531ad6f9728c533110ca996d
https://github.com/rsgit95/med_kg_txt_multimodal/tree/80355b0cf58e0571531ad6f9728c533110ca996d
from _paritybench_helpers import _mock_config import torch from torch import nn class Model(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, hidden_dropout_prob= 0.5)}]
Block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/zw/czwemfbc42kjdc6k3rt2lguzq7gywvrwr3b4jc5tlwvxk2bj7thg.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {}) triton_per_fused_native_layer_norm_0 = async_compile.triton('triton_per_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[8192, 512], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_layer_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel): xnumel = 8192 XBLOCK: tl.constexpr = 1 rnumel = 512 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (512*x0)), None) tmp21 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (r1), None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 512, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 512.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tmp19 = tmp0 - tmp8 tmp20 = tmp19 * tmp18 tmp22 = tmp20 * tmp21 tmp24 = tmp22 + tmp23 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp18, None) tl.store(out_ptr1 + (r1 + (512*x0)), tmp24, None) tl.store(out_ptr0 + (x0), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/65/c65pi2qtb6eyfexgoigw5cn2nkouol3ju46n5j4xo2rc4qkpo3ge.py # Topologically Sorted Source Nodes: [x_1, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm_1 => add_3, add_4, mul_2, mul_3, rsqrt_1, sub_1, var_mean_1 # x_1 => add_2 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %view_1), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_2, [3]), kwargs = {correction: 0, keepdim: True}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %getitem_3), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_6), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %primals_7), kwargs = {}) triton_per_fused_add_native_layer_norm_1 = async_compile.triton('triton_per_fused_add_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[8192, 512], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_native_layer_norm_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_native_layer_norm_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, rnumel): xnumel = 8192 XBLOCK: tl.constexpr = 1 rnumel = 512 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (512*x0)), None) tmp1 = tl.load(in_ptr1 + (r1 + (512*x0)), None) tmp23 = tl.load(in_ptr2 + (r1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr3 + (r1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 512, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 512.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tmp21 = tmp2 - tmp10 tmp22 = tmp21 * tmp20 tmp24 = tmp22 * tmp23 tmp26 = tmp24 + tmp25 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp20, None) tl.store(out_ptr1 + (r1 + (512*x0)), tmp26, None) tl.store(out_ptr0 + (x0), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jg/cjghtxku4uxojc6qot4mjj5pxz2z5t6h4tdjsogj7sz5tuogsufs.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.gelu] # Source node to ATen node mapping: # x_3 => add_5, erf, mul_4, mul_5, mul_6 # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 0.5), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_5,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %add_5), kwargs = {}) triton_poi_fused_gelu_2 = async_compile.triton('triton_poi_fused_gelu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16777216], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16777216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + (x0), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pa/cpavnfhh6w5k3ia3bkbpbo6pvpzyknjt46fji7qua27hjunmkmdc.py # Topologically Sorted Source Nodes: [x_1, x_7], Original ATen: [aten.add] # Source node to ATen node mapping: # x_1 => add_2 # x_7 => add_6 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %view_1), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %view_5), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 4194304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x2), None) tmp3 = tl.load(in_out_ptr0 + (x2), None) tmp4 = tl.load(in_ptr2 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (512, ), (1, )) assert_size_stride(primals_2, (512, ), (1, )) assert_size_stride(primals_3, (4, 4, 512, 512), (1048576, 262144, 512, 1)) assert_size_stride(primals_4, (512, 512), (512, 1)) assert_size_stride(primals_5, (512, ), (1, )) assert_size_stride(primals_6, (512, ), (1, )) assert_size_stride(primals_7, (512, ), (1, )) assert_size_stride(primals_8, (2048, 512), (512, 1)) assert_size_stride(primals_9, (2048, ), (1, )) assert_size_stride(primals_10, (512, 2048), (2048, 1)) assert_size_stride(primals_11, (512, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 512, 1), (2048, 512, 1, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 512, 1), (2048, 512, 1, 8192), torch.float32) buf3 = reinterpret_tensor(buf1, (4, 4, 512, 1), (2048, 512, 1, 1), 0); del buf1 # reuse buf4 = empty_strided_cuda((4, 4, 512, 512), (1048576, 262144, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_per_fused_native_layer_norm_0.run(buf3, primals_3, primals_1, primals_2, buf0, buf4, 8192, 512, grid=grid(8192), stream=stream0) del primals_1 del primals_2 buf5 = empty_strided_cuda((8192, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf4, (8192, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 512), (1, 512), 0), alpha=1, beta=1, out=buf5) del primals_5 buf6 = empty_strided_cuda((4, 4, 512, 1), (2048, 512, 1, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 512, 1), (2048, 512, 1, 8192), torch.float32) buf9 = reinterpret_tensor(buf7, (4, 4, 512, 1), (2048, 512, 1, 1), 0); del buf7 # reuse buf10 = empty_strided_cuda((4, 4, 512, 512), (1048576, 262144, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm] triton_per_fused_add_native_layer_norm_1.run(buf9, primals_3, buf5, primals_6, primals_7, buf6, buf10, 8192, 512, grid=grid(8192), stream=stream0) del primals_7 buf11 = empty_strided_cuda((8192, 2048), (2048, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf10, (8192, 512), (512, 1), 0), reinterpret_tensor(primals_8, (512, 2048), (1, 512), 0), alpha=1, beta=1, out=buf11) del primals_9 buf12 = empty_strided_cuda((4, 4, 512, 2048), (4194304, 1048576, 2048, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.gelu] triton_poi_fused_gelu_2.run(buf11, buf12, 16777216, grid=grid(16777216), stream=stream0) buf13 = empty_strided_cuda((8192, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf12, (8192, 2048), (2048, 1), 0), reinterpret_tensor(primals_10, (2048, 512), (1, 2048), 0), out=buf13) buf14 = reinterpret_tensor(buf13, (4, 4, 512, 512), (1048576, 262144, 512, 1), 0); del buf13 # reuse # Topologically Sorted Source Nodes: [x_1, x_7], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf14, primals_3, buf5, primals_11, 4194304, grid=grid(4194304), stream=stream0) del primals_11 return (buf14, primals_3, primals_6, buf0, buf3, reinterpret_tensor(buf4, (8192, 512), (512, 1), 0), buf5, buf6, buf9, reinterpret_tensor(buf10, (8192, 512), (512, 1), 0), buf11, reinterpret_tensor(buf12, (8192, 2048), (2048, 1), 0), primals_10, primals_8, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 512, 512), (1048576, 262144, 512, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((2048, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((512, 2048), (2048, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch as th from torch import nn def drop_path(x, drop_prob: 'float'=0.0, training: 'bool'=False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = keep_prob + th.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() output = x.div(keep_prob) * random_tensor return output class Attention(nn.Module): def __init__(self, dim=2, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super().__init__() self.proj = nn.Linear(dim, dim) def forward(self, x): x = self.proj(x) return x class DropPath(th.nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Mlp(th.nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=th.nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = th.nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = th.nn.Linear(hidden_features, out_features) self.drop = th.nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Block(th.nn.Module): def __init__(self, dim=512, num_heads=8, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=th .nn.GELU, norm_layer=th.nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path ) if drop_path > 0.0 else th.nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def get_inputs(): return [torch.rand([4, 4, 512, 512])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch as th from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 512 * x0), None) tmp21 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + r1, None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 512, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 512.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tmp19 = tmp0 - tmp8 tmp20 = tmp19 * tmp18 tmp22 = tmp20 * tmp21 tmp24 = tmp22 + tmp23 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp18, None) tl.store(out_ptr1 + (r1 + 512 * x0), tmp24, None) tl.store(out_ptr0 + x0, tmp8, None) @triton.jit def triton_per_fused_add_native_layer_norm_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 512 * x0), None) tmp1 = tl.load(in_ptr1 + (r1 + 512 * x0), None) tmp23 = tl.load(in_ptr2 + r1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr3 + r1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 512, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 512.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tmp21 = tmp2 - tmp10 tmp22 = tmp21 * tmp20 tmp24 = tmp22 * tmp23 tmp26 = tmp24 + tmp25 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp20, None) tl.store(out_ptr1 + (r1 + 512 * x0), tmp26, None) tl.store(out_ptr0 + x0, tmp10, None) @triton.jit def triton_poi_fused_gelu_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + x0, tmp8, None) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x2, None) tmp3 = tl.load(in_out_ptr0 + x2, None) tmp4 = tl.load(in_ptr2 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (512,), (1,)) assert_size_stride(primals_2, (512,), (1,)) assert_size_stride(primals_3, (4, 4, 512, 512), (1048576, 262144, 512, 1)) assert_size_stride(primals_4, (512, 512), (512, 1)) assert_size_stride(primals_5, (512,), (1,)) assert_size_stride(primals_6, (512,), (1,)) assert_size_stride(primals_7, (512,), (1,)) assert_size_stride(primals_8, (2048, 512), (512, 1)) assert_size_stride(primals_9, (2048,), (1,)) assert_size_stride(primals_10, (512, 2048), (2048, 1)) assert_size_stride(primals_11, (512,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 512, 1), (2048, 512, 1, 1), torch. float32) buf1 = empty_strided_cuda((4, 4, 512, 1), (2048, 512, 1, 8192), torch.float32) buf3 = reinterpret_tensor(buf1, (4, 4, 512, 1), (2048, 512, 1, 1), 0) del buf1 buf4 = empty_strided_cuda((4, 4, 512, 512), (1048576, 262144, 512, 1), torch.float32) get_raw_stream(0) triton_per_fused_native_layer_norm_0[grid(8192)](buf3, primals_3, primals_1, primals_2, buf0, buf4, 8192, 512, num_warps=4, num_stages=1) del primals_1 del primals_2 buf5 = empty_strided_cuda((8192, 512), (512, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf4, (8192, 512 ), (512, 1), 0), reinterpret_tensor(primals_4, (512, 512), (1, 512), 0), alpha=1, beta=1, out=buf5) del primals_5 buf6 = empty_strided_cuda((4, 4, 512, 1), (2048, 512, 1, 1), torch. float32) buf7 = empty_strided_cuda((4, 4, 512, 1), (2048, 512, 1, 8192), torch.float32) buf9 = reinterpret_tensor(buf7, (4, 4, 512, 1), (2048, 512, 1, 1), 0) del buf7 buf10 = empty_strided_cuda((4, 4, 512, 512), (1048576, 262144, 512, 1), torch.float32) triton_per_fused_add_native_layer_norm_1[grid(8192)](buf9, primals_3, buf5, primals_6, primals_7, buf6, buf10, 8192, 512, num_warps=4, num_stages=1) del primals_7 buf11 = empty_strided_cuda((8192, 2048), (2048, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf10, (8192, 512), (512, 1), 0), reinterpret_tensor(primals_8, (512, 2048), (1, 512), 0), alpha=1, beta=1, out=buf11) del primals_9 buf12 = empty_strided_cuda((4, 4, 512, 2048), (4194304, 1048576, 2048, 1), torch.float32) triton_poi_fused_gelu_2[grid(16777216)](buf11, buf12, 16777216, XBLOCK=1024, num_warps=4, num_stages=1) buf13 = empty_strided_cuda((8192, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf12, (8192, 2048), (2048, 1), 0), reinterpret_tensor(primals_10, (2048, 512), (1, 2048), 0), out=buf13) buf14 = reinterpret_tensor(buf13, (4, 4, 512, 512), (1048576, 262144, 512, 1), 0) del buf13 triton_poi_fused_add_3[grid(4194304)](buf14, primals_3, buf5, primals_11, 4194304, XBLOCK=1024, num_warps=4, num_stages=1) del primals_11 return buf14, primals_3, primals_6, buf0, buf3, reinterpret_tensor(buf4, (8192, 512), (512, 1), 0), buf5, buf6, buf9, reinterpret_tensor(buf10, (8192, 512), (512, 1), 0), buf11, reinterpret_tensor(buf12, (8192, 2048), (2048, 1), 0), primals_10, primals_8, primals_4 def drop_path(x, drop_prob: 'float'=0.0, training: 'bool'=False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = keep_prob + th.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() output = x.div(keep_prob) * random_tensor return output class Attention(nn.Module): def __init__(self, dim=2, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super().__init__() self.proj = nn.Linear(dim, dim) def forward(self, x): x = self.proj(x) return x class DropPath(th.nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Mlp(th.nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=th.nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = th.nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = th.nn.Linear(hidden_features, out_features) self.drop = th.nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class BlockNew(th.nn.Module): def __init__(self, dim=512, num_heads=8, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=th .nn.GELU, norm_layer=th.nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path ) if drop_path > 0.0 else th.nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, input_0): primals_1 = self.norm1.weight primals_2 = self.norm1.bias primals_4 = self.attn.proj.weight primals_5 = self.attn.proj.bias primals_6 = self.norm2.weight primals_7 = self.norm2.bias primals_8 = self.mlp.fc1.weight primals_9 = self.mlp.fc1.bias primals_10 = self.mlp.fc2.weight primals_11 = self.mlp.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
q5628077/Transformer-in-RL
Block
false
4,206
[ "MIT" ]
0
14679656779a372d91d9fbd89bd802b5ff34c200
https://github.com/q5628077/Transformer-in-RL/tree/14679656779a372d91d9fbd89bd802b5ff34c200
import torch import torch as th from torch import nn def drop_path(x, drop_prob: 'float'=0.0, training: 'bool'=False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = keep_prob + th.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() output = x.div(keep_prob) * random_tensor return output class Attention(nn.Module): def __init__(self, dim=2, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super().__init__() self.proj = nn.Linear(dim, dim) def forward(self, x): x = self.proj(x) return x class DropPath(th.nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super().__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Mlp(th.nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=th.nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = th.nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = th.nn.Linear(hidden_features, out_features) self.drop = th.nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Model(th.nn.Module): def __init__(self, dim=512, num_heads=8, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=th .nn.GELU, norm_layer=th.nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path ) if drop_path > 0.0 else th.nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def get_inputs(): return [torch.rand([4, 4, 512, 512])] def get_init_inputs(): return []
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ky/cky64l574tkwxzjewzevqyhty73x4t3q4p6d2tu2humfvstjwiaa.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xc/cxcj5l7s6w5ttrq2fk2nirlbp44yesw6n2m2dnxtpcjjmym2njhr.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_3 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/h7/ch7av6xnulewt5b7odqowg5upc5aaxv4uylilvlgoap3w6rnompj.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_5 => relu_2 # Graph fragment: # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (32, 4), (4, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 32), (32, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64), (64, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (4, 128), (128, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf0 # reuse buf9 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 2048, grid=grid(2048), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse buf8 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf8, 4096, grid=grid(4096), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 128), (1, 64), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf4 # reuse buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf7, 8192, grid=grid(8192), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf6) del primals_9 return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(buf5, (64, 128), (128, 1), 0), primals_8, buf7, primals_6, buf8, primals_4, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self, state_dim, action_dim): super(Net, self).__init__() fc1_dim = 32 fc2_dim = 64 fc3_dim = 128 self.fc1 = nn.Linear(state_dim, fc1_dim) self.fc2 = nn.Linear(fc1_dim, fc2_dim) self.fc3 = nn.Linear(fc2_dim, fc3_dim) self.fc_out = nn.Linear(fc3_dim, action_dim) def forward(self, x): x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) x = F.relu(x) return self.fc_out(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (32, 4), (4, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 32), (32, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64), (64, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (4, 128), (128, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0) del buf0 buf9 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(2048)](buf1, primals_2, buf9, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf2 buf8 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool ) triton_poi_fused_relu_threshold_backward_1[grid(4096)](buf3, primals_5, buf8, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 128), (1, 64), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf4 buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(8192)](buf5, primals_7, buf7, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf6) del primals_9 return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor( buf3, (64, 64), (64, 1), 0), reinterpret_tensor(buf5, (64, 128), ( 128, 1), 0), primals_8, buf7, primals_6, buf8, primals_4, buf9 class NetNew(nn.Module): def __init__(self, state_dim, action_dim): super(NetNew, self).__init__() fc1_dim = 32 fc2_dim = 64 fc3_dim = 128 self.fc1 = nn.Linear(state_dim, fc1_dim) self.fc2 = nn.Linear(fc1_dim, fc2_dim) self.fc3 = nn.Linear(fc2_dim, fc3_dim) self.fc_out = nn.Linear(fc3_dim, action_dim) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc_out.weight primals_9 = self.fc_out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
ronekko/study_reinforcement_learning
Net
false
4,207
[ "MIT" ]
0
ef5201e3eae69c20f29b7f176b5a6de7ecdb856a
https://github.com/ronekko/study_reinforcement_learning/tree/ef5201e3eae69c20f29b7f176b5a6de7ecdb856a
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, state_dim, action_dim): super().__init__() fc1_dim = 32 fc2_dim = 64 fc3_dim = 128 self.fc1 = nn.Linear(state_dim, fc1_dim) self.fc2 = nn.Linear(fc1_dim, fc2_dim) self.fc3 = nn.Linear(fc2_dim, fc3_dim) self.fc_out = nn.Linear(fc3_dim, action_dim) def forward(self, x): x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) x = F.relu(x) return self.fc_out(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
IReLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/t3/ct33p6ilro47ee445n2n3qpwlctivf63qsesypc37wtn4y6gjqwv.py # Topologically Sorted Source Nodes: [clamp, mul, clamp_1, mul_1, add], Original ATen: [aten.clamp, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # clamp => clamp_min # clamp_1 => clamp_max # mul => mul # mul_1 => mul_1 # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_min, 2.414213562373095), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%arg0_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 0.41421356237309503), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_clamp_mul_0 = async_compile.triton('triton_poi_fused_add_clamp_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 2.414213562373095 tmp4 = tmp2 * tmp3 tmp5 = triton_helpers.minimum(tmp0, tmp1) tmp6 = 0.41421356237309503 tmp7 = tmp5 * tmp6 tmp8 = tmp4 + tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp, mul, clamp_1, mul_1, add], Original ATen: [aten.clamp, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_clamp_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch class IReLU(torch.nn.Module): __constants__ = ['negative_slope', 'positive_slope'] negative_slope: 'float' positive_slope: 'float' def __init__(self, negative_slope=math.tan(math.pi / 8), positive_slope =math.tan(3 * math.pi / 8)): super(IReLU, self).__init__() self.negative_slope = negative_slope self.positive_slope = positive_slope def forward(self, x): return torch.clamp(x, min=0) * self.positive_slope + torch.clamp(x, max=0) * self.negative_slope def inv(self, y): return torch.clamp(y, min=0) / self.positive_slope + torch.clamp(y, max=0) / self.negative_slope def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_clamp_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 2.414213562373095 tmp4 = tmp2 * tmp3 tmp5 = triton_helpers.minimum(tmp0, tmp1) tmp6 = 0.41421356237309503 tmp7 = tmp5 * tmp6 tmp8 = tmp4 + tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_clamp_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class IReLUNew(torch.nn.Module): __constants__ = ['negative_slope', 'positive_slope'] negative_slope: 'float' positive_slope: 'float' def __init__(self, negative_slope=math.tan(math.pi / 8), positive_slope =math.tan(3 * math.pi / 8)): super(IReLUNew, self).__init__() self.negative_slope = negative_slope self.positive_slope = positive_slope def inv(self, y): return torch.clamp(y, min=0) / self.positive_slope + torch.clamp(y, max=0) / self.negative_slope def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
rupumped/DFL
IReLU
false
4,208
[ "BSD-3-Clause" ]
0
a4e4d96b7ce7522cf7fee3c2cfdbb54eb7a473f2
https://github.com/rupumped/DFL/tree/a4e4d96b7ce7522cf7fee3c2cfdbb54eb7a473f2
import math import torch class Model(torch.nn.Module): __constants__ = ['negative_slope', 'positive_slope'] negative_slope: 'float' positive_slope: 'float' def __init__(self, negative_slope=math.tan(math.pi / 8), positive_slope =math.tan(3 * math.pi / 8)): super().__init__() self.negative_slope = negative_slope self.positive_slope = positive_slope def forward(self, x): return torch.clamp(x, min=0) * self.positive_slope + torch.clamp(x, max=0) * self.negative_slope def inv(self, y): return torch.clamp(y, min=0) / self.positive_slope + torch.clamp(y, max=0) / self.negative_slope def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Affine
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/qr/cqr7rmxj75bvywume64cxzcwmqxcjc4bemo2iikheyw7jvomskyi.py # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_3 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Affine(nn.Module): def __init__(self, channel): super().__init__() self.g = nn.Parameter(torch.ones(1, 1, channel)) self.b = nn.Parameter(torch.zeros(1, 1, channel)) def forward(self, x): return x * self.g + self.b def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](primals_2, primals_1, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_3 return buf0, primals_2 class AffineNew(nn.Module): def __init__(self, channel): super().__init__() self.g = nn.Parameter(torch.ones(1, 1, channel)) self.b = nn.Parameter(torch.zeros(1, 1, channel)) def forward(self, input_0): primals_1 = self.g primals_3 = self.b primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
rushirajsherlocked/External-Attention-pytorch
Affine
false
4,209
[ "MIT" ]
0
7d6814b2d90909adf81c62f3f8a89e30a59d6481
https://github.com/rushirajsherlocked/External-Attention-pytorch/tree/7d6814b2d90909adf81c62f3f8a89e30a59d6481
import torch from torch import nn class Model(nn.Module): def __init__(self, channel): super().__init__() self.g = nn.Parameter(torch.ones(1, 1, channel)) self.b = nn.Parameter(torch.zeros(1, 1, channel)) def forward(self, x): return x * self.g + self.b def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
ECAAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.mean] # Source node to ATen node mapping: # y => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/it/citxitwi5k5revcoaspxziwrq6kifyromw64awswainul3shsed3.py # Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # y_2 => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xv/cxvgsfj3x2o5ls6evsy4rhywutbtjkwezlavric3plphgvn75mea.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %expand), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3), (3, 3, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [y], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (4, 1, 4), (4, 0, 1), 0), primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 4), (4, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(primals_1, buf3, buf4, 256, grid=grid(256), stream=stream0) return (buf4, primals_1, primals_2, reinterpret_tensor(buf1, (4, 1, 4), (4, 1, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 3), (3, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import init class ECAAttention(nn.Module): def __init__(self, kernel_size=3): super().__init__() self.gap = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=( kernel_size - 1) // 2) self.sigmoid = nn.Sigmoid() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, x): y = self.gap(x) y = y.squeeze(-1).permute(0, 2, 1) y = self.conv(y) y = self.sigmoid(y) y = y.permute(0, 2, 1).unsqueeze(-1) return x * y.expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3), (3, 3, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (4, 1, 4 ), (4, 0, 1), 0), primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 4), (4, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(16)](buf3, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_2[grid(256)](primals_1, buf3, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf4, primals_1, primals_2, reinterpret_tensor(buf1, (4, 1, 4), (4, 1, 1), 0), buf3 class ECAAttentionNew(nn.Module): def __init__(self, kernel_size=3): super().__init__() self.gap = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=( kernel_size - 1) // 2) self.sigmoid = nn.Sigmoid() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
rushirajsherlocked/External-Attention-pytorch
ECAAttention
false
4,210
[ "MIT" ]
0
7d6814b2d90909adf81c62f3f8a89e30a59d6481
https://github.com/rushirajsherlocked/External-Attention-pytorch/tree/7d6814b2d90909adf81c62f3f8a89e30a59d6481
import torch from torch import nn from torch.nn import init class Model(nn.Module): def __init__(self, kernel_size=3): super().__init__() self.gap = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=( kernel_size - 1) // 2) self.sigmoid = nn.Sigmoid() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, x): y = self.gap(x) y = y.squeeze(-1).permute(0, 2, 1) y = self.conv(y) y = self.sigmoid(y) y = y.permute(0, 2, 1).unsqueeze(-1) return x * y.expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
GTXAttentionOutput
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/cl/cclwzssgcha5xquex5qki6klim6hfpecfb3mn3wjv6nq7ppewan7.py # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.add] # Source node to ATen node mapping: # hidden_states_2 => add # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %view_1), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nk/cnkbkukjfarsysqlaadkg24xmqibk3adq5p7jyfnt6k6loydbn2r.py # Topologically Sorted Source Nodes: [hidden_states_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # hidden_states_3 => add_1, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-12 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mn/cmntyljhuirhsdjg2yosgzllpkpxqedxgoyk6gunquq2rf3kl7u5.py # Topologically Sorted Source Nodes: [hidden_states_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # hidden_states_3 => add_1, add_2, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_6), kwargs = {}) triton_poi_fused_native_layer_norm_2 = async_compile.triton('triton_poi_fused_native_layer_norm_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_4, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf1, buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_2.run(buf1, buf2, buf3, primals_5, primals_6, buf4, 256, grid=grid(256), stream=stream0) del buf2 del buf3 del primals_6 return (buf4, primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch from torch import nn class GTXAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, KnowMix_indices=None): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) if KnowMix_indices is None: hidden_states = input_tensor + hidden_states else: if isinstance(KnowMix_indices, int): input_tensor[:, KnowMix_indices] = input_tensor[:, KnowMix_indices] + hidden_states.squeeze(1) else: input_tensor[KnowMix_indices, :] = input_tensor[ KnowMix_indices, :] + hidden_states.squeeze(1) hidden_states = input_tensor hidden_states = self.LayerNorm(hidden_states) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, hidden_dropout_prob= 0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-12 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf1, primals_4, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](buf1, buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_2[grid(256)](buf1, buf2, buf3, primals_5, primals_6, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 del buf3 del primals_6 return buf4, primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1 class GTXAttentionOutputNew(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_0, input_1): primals_1 = self.dense.weight primals_2 = self.dense.bias primals_5 = self.LayerNorm.weight primals_6 = self.LayerNorm.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
rsgit95/med_kg_txt_multimodal
GTXAttentionOutput
false
4,211
[ "Apache-2.0" ]
0
80355b0cf58e0571531ad6f9728c533110ca996d
https://github.com/rsgit95/med_kg_txt_multimodal/tree/80355b0cf58e0571531ad6f9728c533110ca996d
from _paritybench_helpers import _mock_config import torch from torch import nn class Model(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, KnowMix_indices=None): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) if KnowMix_indices is None: hidden_states = input_tensor + hidden_states else: if isinstance(KnowMix_indices, int): input_tensor[:, KnowMix_indices] = input_tensor[:, KnowMix_indices] + hidden_states.squeeze(1) else: input_tensor[KnowMix_indices, :] = input_tensor[ KnowMix_indices, :] + hidden_states.squeeze(1) hidden_states = input_tensor hidden_states = self.LayerNorm(hidden_states) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, hidden_dropout_prob= 0.5)}]
Actor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ix/cixxyusyg44s2hkoufcgbrv3ix5ookwqjl4ia3xkv7bdqi4yrzus.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 400 x2 = xindex % 1600 x3 = (xindex // 1600) tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ld/cld3palaxnfc7osbafgwkvp6zk52xgffwvw26mvcpxisjgbhf4qn.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 200 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ld/cldtk5skh6gtzdd62vyilgjgd55ch7o62ebbhqgbpau5cmhd5sca.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_2 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7v/c7vy54xspuettz5pgulxporznj2yqlyufnh2o2cvg7er4bnu4zox.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_2 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (200, 400), (400, 1)) assert_size_stride(primals_5, (200, ), (1, )) assert_size_stride(primals_6, (4, 200), (200, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0); del buf0 # reuse buf8 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 25600, grid=grid(25600), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 200), (200, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(primals_4, (400, 200), (1, 400), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 200), (3200, 800, 200, 1), 0); del buf2 # reuse buf7 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf7, 12800, grid=grid(12800), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 200), (200, 1), 0), reinterpret_tensor(primals_6, (200, 4), (1, 200), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(buf3, (64, 200), (200, 1), 0), buf6, primals_6, buf7, primals_4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((400, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((200, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 200), (200, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Actor(nn.Module): def __init__(self, state_dim, action_dim): super(Actor, self).__init__() self.l1 = nn.Linear(state_dim, 400) self.l2 = nn.Linear(400, 200) self.l3 = nn.Linear(200, action_dim) def forward(self, x): x = F.relu(self.l1(x)) x = F.relu(self.l2(x)) x = nn.Softmax()(self.l3(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 400 x2 = xindex % 1600 x3 = xindex // 1600 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 200 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (200, 400), (400, 1)) assert_size_stride(primals_5, (200,), (1,)) assert_size_stride(primals_6, (4, 200), (200, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0 ) del buf0 buf8 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(25600)](buf1, primals_2, buf8, 25600, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 200), (200, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(primals_4, (400, 200), (1, 400), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 200), (3200, 800, 200, 1), 0) del buf2 buf7 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(12800)](buf3, primals_5, buf7, 12800, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 200), (200, 1), 0), reinterpret_tensor(primals_6, (200, 4), (1, 200), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 triton_poi_fused__softmax_3[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 400), (400, 1), 0 ), reinterpret_tensor(buf3, (64, 200), (200, 1), 0 ), buf6, primals_6, buf7, primals_4, buf8 class ActorNew(nn.Module): def __init__(self, state_dim, action_dim): super(ActorNew, self).__init__() self.l1 = nn.Linear(state_dim, 400) self.l2 = nn.Linear(400, 200) self.l3 = nn.Linear(200, action_dim) def forward(self, input_0): primals_1 = self.l1.weight primals_2 = self.l1.bias primals_4 = self.l2.weight primals_5 = self.l2.bias primals_6 = self.l3.weight primals_7 = self.l3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
rortiz9/meleeml
Actor
false
4,212
[ "MIT" ]
0
9be4bf53a377dfb46dbb3b51f102f1bffc0124d2
https://github.com/rortiz9/meleeml/tree/9be4bf53a377dfb46dbb3b51f102f1bffc0124d2
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, state_dim, action_dim): super().__init__() self.l1 = nn.Linear(state_dim, 400) self.l2 = nn.Linear(400, 200) self.l3 = nn.Linear(200, action_dim) def forward(self, x): x = F.relu(self.l1(x)) x = F.relu(self.l2(x)) x = nn.Softmax()(self.l3(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
PolicyNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rm/crmfikkxblrhxfynyknfm2x3wwcwtibkjkkbyhzwmxqi4kmwkosl.py # Topologically Sorted Source Nodes: [log_std_1], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] # Source node to ATen node mapping: # log_std_1 => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%view_7, -20), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 2), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%view_7, -20), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_7, 2), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %le), kwargs = {}) triton_poi_fused_clamp_ge_le_logical_and_1 = async_compile.triton('triton_poi_fused_clamp_ge_le_logical_and_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_le_logical_and_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = -20.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 2.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 >= tmp3 tmp8 = tmp2 <= tmp5 tmp9 = tmp7 & tmp8 tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf8, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [log_std_1], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] triton_poi_fused_clamp_ge_le_logical_and_1.run(buf5, primals_9, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf5 del primals_9 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf7, primals_8, primals_6, buf8, primals_4, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F from torch.distributions import Normal class PolicyNetwork(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim, init_w=0.003, log_std_min=-20, log_std_max=2): super(PolicyNetwork, self).__init__() self.log_std_min = log_std_min self.log_std_max = log_std_max self.linear1 = nn.Linear(state_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, hidden_dim) self.mean_linear = nn.Linear(hidden_dim, action_dim) self.mean_linear.weight.data.uniform_(-init_w, init_w) self.mean_linear.bias.data.uniform_(-init_w, init_w) self.log_std_linear = nn.Linear(hidden_dim, action_dim) self.log_std_linear.weight.data.uniform_(-init_w, init_w) self.log_std_linear.bias.data.uniform_(-init_w, init_w) def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) mean = self.mean_linear(x) log_std = self.log_std_linear(x) log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max) return mean, log_std def evaluate(self, state, epsilon=1e-06): mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(0, 1) z = normal.sample() action = torch.tanh(mean + std * z) log_prob = Normal(mean, std).log_prob(mean + std * z) - torch.log(1 - action.pow(2) + epsilon) return action, log_prob, z, mean, log_std def get_action(self, state): state = torch.FloatTensor(state).unsqueeze(0) mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) return action[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4, 'hidden_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from torch.distributions import Normal assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = -20.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 2.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 >= tmp3 tmp8 = tmp2 <= tmp5 tmp9 = tmp7 & tmp8 tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp9, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3, primals_5, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_clamp_ge_le_logical_and_1[grid(256)](buf5, primals_9, buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf5 del primals_9 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0 ), buf7, primals_8, primals_6, buf8, primals_4, buf9 class PolicyNetworkNew(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim, init_w=0.003, log_std_min=-20, log_std_max=2): super(PolicyNetworkNew, self).__init__() self.log_std_min = log_std_min self.log_std_max = log_std_max self.linear1 = nn.Linear(state_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, hidden_dim) self.mean_linear = nn.Linear(hidden_dim, action_dim) self.mean_linear.weight.data.uniform_(-init_w, init_w) self.mean_linear.bias.data.uniform_(-init_w, init_w) self.log_std_linear = nn.Linear(hidden_dim, action_dim) self.log_std_linear.weight.data.uniform_(-init_w, init_w) self.log_std_linear.bias.data.uniform_(-init_w, init_w) def evaluate(self, state, epsilon=1e-06): mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(0, 1) z = normal.sample() action = torch.tanh(mean + std * z) log_prob = Normal(mean, std).log_prob(mean + std * z) - torch.log(1 - action.pow(2) + epsilon) return action, log_prob, z, mean, log_std def get_action(self, state): state = torch.FloatTensor(state).unsqueeze(0) mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) return action[0] def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_6 = self.mean_linear.weight primals_7 = self.mean_linear.bias primals_8 = self.log_std_linear.weight primals_9 = self.log_std_linear.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
rtharungowda/Soft-Actor-Critic-Pytorch
PolicyNetwork
false
4,213
[ "MIT" ]
0
0d2c20c6cfd4e578e0b7cff4525ddf0bc956812f
https://github.com/rtharungowda/Soft-Actor-Critic-Pytorch/tree/0d2c20c6cfd4e578e0b7cff4525ddf0bc956812f
import torch import torch.nn as nn from torch.nn import functional as F from torch.distributions import Normal class Model(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim, init_w=0.003, log_std_min=-20, log_std_max=2): super().__init__() self.log_std_min = log_std_min self.log_std_max = log_std_max self.linear1 = nn.Linear(state_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, hidden_dim) self.mean_linear = nn.Linear(hidden_dim, action_dim) self.mean_linear.weight.data.uniform_(-init_w, init_w) self.mean_linear.bias.data.uniform_(-init_w, init_w) self.log_std_linear = nn.Linear(hidden_dim, action_dim) self.log_std_linear.weight.data.uniform_(-init_w, init_w) self.log_std_linear.bias.data.uniform_(-init_w, init_w) def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) mean = self.mean_linear(x) log_std = self.log_std_linear(x) log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max) return mean, log_std def evaluate(self, state, epsilon=1e-06): mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(0, 1) z = normal.sample() action = torch.tanh(mean + std * z) log_prob = Normal(mean, std).log_prob(mean + std * z) - torch.log(1 - action.pow(2) + epsilon) return action, log_prob, z, mean, log_std def get_action(self, state): state = torch.FloatTensor(state).unsqueeze(0) mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) return action[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
Depth_Pointwise_Conv1d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/o6/co6pflndmsdhmqwe2jfrf4itwvl27ku5p27kydz44oxklfdvmyvc.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_1, %primals_2, [1], [2], [1], False, [0], 4), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 5) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=4, bias=None) assert_size_stride(buf0, (1, 4, 5), (20, 5, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 20, grid=grid(20), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 5), (0, 5, 1), 0), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (1, 4, 5), (20, 5, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf3, primals_5, 20, grid=grid(20), stream=stream0) del primals_5 return (reinterpret_tensor(buf3, (4, 5), (5, 1), 0), primals_1, primals_4, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Depth_Pointwise_Conv1d(nn.Module): def __init__(self, in_ch, out_ch, k): super().__init__() if k == 1: self.depth_conv = nn.Identity() else: self.depth_conv = nn.Conv1d(in_channels=in_ch, out_channels= in_ch, kernel_size=k, groups=in_ch, padding=k // 2) self.pointwise_conv = nn.Conv1d(in_channels=in_ch, out_channels= out_ch, kernel_size=1, groups=1) def forward(self, x): out = self.pointwise_conv(self.depth_conv(x)) return out def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_ch': 4, 'out_ch': 4, 'k': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 20 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 5 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=4, bias=None) assert_size_stride(buf0, (1, 4, 5), (20, 5, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(20)](buf1, primals_2, 20, XBLOCK=32, num_warps=1, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 5 ), (0, 5, 1), 0), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (1, 4, 5), (20, 5, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_0[grid(20)](buf3, primals_5, 20, XBLOCK=32, num_warps=1, num_stages=1) del primals_5 return reinterpret_tensor(buf3, (4, 5), (5, 1), 0 ), primals_1, primals_4, reinterpret_tensor(primals_3, (1, 4, 4), ( 16, 4, 1), 0), buf1 class Depth_Pointwise_Conv1dNew(nn.Module): def __init__(self, in_ch, out_ch, k): super().__init__() if k == 1: self.depth_conv = nn.Identity() else: self.depth_conv = nn.Conv1d(in_channels=in_ch, out_channels= in_ch, kernel_size=k, groups=in_ch, padding=k // 2) self.pointwise_conv = nn.Conv1d(in_channels=in_ch, out_channels= out_ch, kernel_size=1, groups=1) def forward(self, input_0): primals_1 = self.depth_conv.weight primals_2 = self.depth_conv.bias primals_4 = self.pointwise_conv.weight primals_5 = self.pointwise_conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
rushirajsherlocked/External-Attention-pytorch
Depth_Pointwise_Conv1d
false
4,214
[ "MIT" ]
0
7d6814b2d90909adf81c62f3f8a89e30a59d6481
https://github.com/rushirajsherlocked/External-Attention-pytorch/tree/7d6814b2d90909adf81c62f3f8a89e30a59d6481
import torch from torch import nn class Model(nn.Module): def __init__(self, in_ch, out_ch, k): super().__init__() if k == 1: self.depth_conv = nn.Identity() else: self.depth_conv = nn.Conv1d(in_channels=in_ch, out_channels= in_ch, kernel_size=k, groups=in_ch, padding=k // 2) self.pointwise_conv = nn.Conv1d(in_channels=in_ch, out_channels= out_ch, kernel_size=1, groups=1) def forward(self, x): out = self.pointwise_conv(self.depth_conv(x)) return out def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4]
ExternalAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/5q/c5qeh3pdyggwxnuvejg2thm5cuxzihqbmcufbsbx7b7rowvqqtu3.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 256 x2 = (xindex // 1024) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x0 + (1024*x2)), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (256 + x0 + (1024*x2)), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (512 + x0 + (1024*x2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (768 + x0 + (1024*x2)), None, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/g3/cg3hw563jssel4qcvpxgu54b5u5vs56ekmydhabf4bw4vpcp55xv.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 256 x2 = (xindex // 1024) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x0 + (1024*x2)), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (256 + x0 + (1024*x2)), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (512 + x0 + (1024*x2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (768 + x0 + (1024*x2)), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6r/c6ref7by2nkxvxeoorqx3pmp6kdvasadwz73xoow3yx5up6n7fv4.py # Topologically Sorted Source Nodes: [sum_1, attn_2], Original ATen: [aten.sum, aten.div] # Source node to ATen node mapping: # attn_2 => div_1 # sum_1 => sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%div, [2], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%div, %sum_2), kwargs = {}) triton_poi_fused_div_sum_2 = async_compile.triton('triton_poi_fused_div_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sum_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 64 x2 = (xindex // 256) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x0 + (256*x2)), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (64 + x0 + (256*x2)), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (128 + x0 + (256*x2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (192 + x0 + (256*x2)), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 64), (64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 4096, grid=grid(4096), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 4096, grid=grid(4096), stream=stream0) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [sum_1, attn_2], Original ATen: [aten.sum, aten.div] triton_poi_fused_div_sum_2.run(buf2, buf3, 4096, grid=grid(4096), stream=stream0) del buf2 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_3, (64, 4), (1, 64), 0), out=buf4) return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf0, buf3, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import init class ExternalAttention(nn.Module): def __init__(self, d_model, S=64): super().__init__() self.mk = nn.Linear(d_model, S, bias=False) self.mv = nn.Linear(S, d_model, bias=False) self.softmax = nn.Softmax(dim=1) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries): attn = self.mk(queries) attn = self.softmax(attn) attn = attn / torch.sum(attn, dim=2, keepdim=True) out = self.mv(attn) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 256 x2 = xindex // 1024 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + (x0 + 1024 * x2), None, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (256 + x0 + 1024 * x2), None, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (512 + x0 + 1024 * x2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (768 + x0 + 1024 * x2), None, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, None) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 256 x2 = xindex // 1024 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + (x0 + 1024 * x2), None, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (256 + x0 + 1024 * x2), None, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (512 + x0 + 1024 * x2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (768 + x0 + 1024 * x2), None, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, None) @triton.jit def triton_poi_fused_div_sum_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 64 x2 = xindex // 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + (x0 + 256 * x2), None, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (64 + x0 + 256 * x2), None, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (128 + x0 + 256 * x2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (192 + x0 + 256 * x2), None, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 64), (64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch. float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(4096)](buf0, buf1, 4096, XBLOCK= 256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch. float32) triton_poi_fused__softmax_1[grid(4096)](buf1, buf2, 4096, XBLOCK= 128, num_warps=4, num_stages=1) buf3 = buf1 del buf1 triton_poi_fused_div_sum_2[grid(4096)](buf2, buf3, 4096, XBLOCK=256, num_warps=4, num_stages=1) del buf2 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_3, (64, 4), (1, 64), 0), out=buf4) return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0 ), buf0, buf3, primals_3 class ExternalAttentionNew(nn.Module): def __init__(self, d_model, S=64): super().__init__() self.mk = nn.Linear(d_model, S, bias=False) self.mv = nn.Linear(S, d_model, bias=False) self.softmax = nn.Softmax(dim=1) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, input_0): primals_1 = self.mk.weight primals_3 = self.mv.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
rushirajsherlocked/External-Attention-pytorch
ExternalAttention
false
4,215
[ "MIT" ]
0
7d6814b2d90909adf81c62f3f8a89e30a59d6481
https://github.com/rushirajsherlocked/External-Attention-pytorch/tree/7d6814b2d90909adf81c62f3f8a89e30a59d6481
import torch from torch import nn from torch.nn import init class Model(nn.Module): def __init__(self, d_model, S=64): super().__init__() self.mk = nn.Linear(d_model, S, bias=False) self.mv = nn.Linear(S, d_model, bias=False) self.softmax = nn.Softmax(dim=1) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries): attn = self.mk(queries) attn = self.softmax(attn) attn = attn / torch.sum(attn, dim=2, keepdim=True) out = self.mv(attn) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
SpatialAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/uc/cucdaa5tqnxykdmw5yqh7ir5ac35phopjcobljrg4rrtlnfjtuwd.py # Topologically Sorted Source Nodes: [result], Original ATen: [aten.cat] # Source node to ATen node mapping: # result => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %mean], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 2 x0 = xindex % 16 x2 = (xindex // 32) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 2, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp19 = tmp17 + tmp18 tmp20 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tmp19 + tmp20 tmp22 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = tmp21 + tmp22 tmp24 = 4.0 tmp25 = tmp23 / tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp14, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp13, tmp27) tl.store(out_ptr0 + (x3), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/go/cgofqcgduqrtcjakfd7uk3wkcrpwsqxispluihwsstry6ekodk2u.py # Topologically Sorted Source Nodes: [output, output_1], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # output => convolution # output_1 => sigmoid # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_2, %primals_3, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_sigmoid_1 = async_compile.triton('triton_poi_fused_convolution_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 7, 7), (98, 49, 7, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [result], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, buf0, 128, grid=grid(128), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [output], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [output, output_1], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf2, primals_2, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 2, 7, 7), (98, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super().__init__() self.conv = nn.Conv2d(2, 1, kernel_size=kernel_size, padding= kernel_size // 2) self.sigmoid = nn.Sigmoid() def forward(self, x): max_result, _ = torch.max(x, dim=1, keepdim=True) avg_result = torch.mean(x, dim=1, keepdim=True) result = torch.cat([max_result, avg_result], 1) output = self.conv(result) output = self.sigmoid(output) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 2 x0 = xindex % 16 x2 = xindex // 32 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 2, tl.int64) tmp17 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp19 = tmp17 + tmp18 tmp20 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tmp19 + tmp20 tmp22 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = tmp21 + tmp22 tmp24 = 4.0 tmp25 = tmp23 / tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp14, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp13, tmp27) tl.store(out_ptr0 + x3, tmp28, xmask) @triton.jit def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 7, 7), (98, 49, 7, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_sigmoid_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf2, primals_2, buf0, buf2 class SpatialAttentionNew(nn.Module): def __init__(self, kernel_size=7): super().__init__() self.conv = nn.Conv2d(2, 1, kernel_size=kernel_size, padding= kernel_size // 2) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
rushirajsherlocked/External-Attention-pytorch
SpatialAttention
false
4,216
[ "MIT" ]
0
7d6814b2d90909adf81c62f3f8a89e30a59d6481
https://github.com/rushirajsherlocked/External-Attention-pytorch/tree/7d6814b2d90909adf81c62f3f8a89e30a59d6481
import torch from torch import nn class Model(nn.Module): def __init__(self, kernel_size=7): super().__init__() self.conv = nn.Conv2d(2, 1, kernel_size=kernel_size, padding= kernel_size // 2) self.sigmoid = nn.Sigmoid() def forward(self, x): max_result, _ = torch.max(x, dim=1, keepdim=True) avg_result = torch.mean(x, dim=1, keepdim=True) result = torch.cat([max_result, avg_result], 1) output = self.conv(result) output = self.sigmoid(output) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
GTXSelfAttentionLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/iz/ciztqj6kop3hxov46yrmzprkzfir3eljcic4mkqznz2j5cfeaudr.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %primals_8), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%add_tensor, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = float("-inf") tmp27 = tmp2 == tmp26 tmp28 = tmp27 == 0 tmp29 = tmp28.to(tl.int64) tmp30 = (tmp29 != 0) tmp31 = tmp5 == tmp26 tmp32 = tmp31 == 0 tmp33 = tmp32.to(tl.int64) tmp34 = (tmp33 != 0) tmp35 = tmp30 | tmp34 tmp36 = tmp9 == tmp26 tmp37 = tmp36 == 0 tmp38 = tmp37.to(tl.int64) tmp39 = (tmp38 != 0) tmp40 = tmp35 | tmp39 tmp41 = tmp13 == tmp26 tmp42 = tmp41 == 0 tmp43 = tmp42.to(tl.int64) tmp44 = (tmp43 != 0) tmp45 = tmp40 | tmp44 tl.store(out_ptr0 + (x2), tmp14, xmask) tl.store(out_ptr1 + (x2), tmp25, xmask) tl.store(out_ptr2 + (x2), tmp45, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/x5/cx5uvbfethxuwwkwxf3xaualzhlcwqsz4jxqpbhintggaypzjwqf.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %primals_8), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 4) x4 = xindex x5 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_out_ptr0 + (x4), xmask) tmp3 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x3), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x3), xmask, eviction_policy='evict_last') tmp1 = tmp0 == 0 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tmp10 = 0.0 tmp11 = tl.where(tmp1, tmp10, tmp9) tl.store(in_out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6m/c6mhj5zwirfhy5e4o45uaeov72uwfby4udubpm2fcz42iqvs2g57.py # Topologically Sorted Source Nodes: [hidden_states_2, hidden_states_3], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # hidden_states_2 => add_1 # hidden_states_3 => var_mean # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %view_17), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_1, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/i6/ci6ua4lfqzz3v6lbsh75noa7k5ird3udb6b5bjh7gxx4qxuz7gz3.py # Topologically Sorted Source Nodes: [hidden_states_2, hidden_states_3], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # hidden_states_2 => add_1 # hidden_states_3 => add_2, add_3, mul, mul_1, rsqrt, sub_1 # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %view_17), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_11), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf5, primals_8, buf6, buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf9, buf8, primals_8, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf8 del primals_8 buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf2, primals_7, buf10, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_10 buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_2, hidden_states_3], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(primals_3, buf13, buf14, buf15, 16, grid=grid(16), stream=stream0) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_2, hidden_states_3], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(primals_3, buf13, buf14, buf15, primals_11, primals_12, buf16, 64, grid=grid(64), stream=stream0) del buf14 del buf15 del primals_12 return (buf16, primals_3, primals_11, buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, primals_9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch from torch import nn class GTXAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class GTXAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, KnowMix_indices=None): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) if KnowMix_indices is None: hidden_states = input_tensor + hidden_states else: if isinstance(KnowMix_indices, int): input_tensor[:, KnowMix_indices] = input_tensor[:, KnowMix_indices] + hidden_states.squeeze(1) else: input_tensor[KnowMix_indices, :] = input_tensor[ KnowMix_indices, :] + hidden_states.squeeze(1) hidden_states = input_tensor hidden_states = self.LayerNorm(hidden_states) return hidden_states class GTXSelfAttentionLayer(nn.Module): def __init__(self, config): super().__init__() self.self = GTXAttention(config) self.output = GTXAttentionOutput(config) def forward(self, input_tensor, attention_mask, output_attentions=False): output = self.self(input_tensor, input_tensor, attention_mask, output_attentions=output_attentions) if output_attentions: attention_probs = output[1] attention_output = self.output(output[0], input_tensor) outputs = (attention_output, attention_probs ) if output_attentions else (attention_output,) return outputs def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = float('-inf') tmp27 = tmp2 == tmp26 tmp28 = tmp27 == 0 tmp29 = tmp28.to(tl.int64) tmp30 = tmp29 != 0 tmp31 = tmp5 == tmp26 tmp32 = tmp31 == 0 tmp33 = tmp32.to(tl.int64) tmp34 = tmp33 != 0 tmp35 = tmp30 | tmp34 tmp36 = tmp9 == tmp26 tmp37 = tmp36 == 0 tmp38 = tmp37.to(tl.int64) tmp39 = tmp38 != 0 tmp40 = tmp35 | tmp39 tmp41 = tmp13 == tmp26 tmp42 = tmp41 == 0 tmp43 = tmp42.to(tl.int64) tmp44 = tmp43 != 0 tmp45 = tmp40 | tmp44 tl.store(out_ptr0 + x2, tmp14, xmask) tl.store(out_ptr1 + x2, tmp25, xmask) tl.store(out_ptr2 + x2, tmp45, xmask) @triton.jit def triton_poi_fused_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 4 x4 = xindex x5 = xindex % 64 tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_out_ptr0 + x4, xmask) tmp3 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + x3, xmask, eviction_policy='evict_last') tmp1 = tmp0 == 0 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tmp10 = 0.0 tmp11 = tl.where(tmp1, tmp10, tmp9) tl.store(in_out_ptr0 + x4, tmp11, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0) del buf1 buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool) triton_poi_fused_1[grid(64)](buf5, primals_8, buf6, buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_2[grid(256)](buf9, buf8, primals_8, buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf8 del primals_8 buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf7 triton_poi_fused_3[grid(16, 4)](buf2, primals_7, buf10, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_7 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf6 triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0) del buf11 extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_10 buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(16)](primals_3, buf13, buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(64)](primals_3, buf13, buf14, buf15, primals_11, primals_12, buf16, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf14 del buf15 del primals_12 return buf16, primals_3, primals_11, buf9, reinterpret_tensor(buf10, ( 16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, primals_9 class GTXAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class GTXAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, KnowMix_indices=None): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) if KnowMix_indices is None: hidden_states = input_tensor + hidden_states else: if isinstance(KnowMix_indices, int): input_tensor[:, KnowMix_indices] = input_tensor[:, KnowMix_indices] + hidden_states.squeeze(1) else: input_tensor[KnowMix_indices, :] = input_tensor[ KnowMix_indices, :] + hidden_states.squeeze(1) hidden_states = input_tensor hidden_states = self.LayerNorm(hidden_states) return hidden_states class GTXSelfAttentionLayerNew(nn.Module): def __init__(self, config): super().__init__() self.self = GTXAttention(config) self.output = GTXAttentionOutput(config) def forward(self, input_0, input_1): primals_1 = self.self.query.weight primals_2 = self.self.query.bias primals_4 = self.self.key.weight primals_5 = self.self.key.bias primals_6 = self.self.value.weight primals_7 = self.self.value.bias primals_9 = self.output.dense.weight primals_10 = self.output.dense.bias primals_11 = self.output.LayerNorm.weight primals_12 = self.output.LayerNorm.bias primals_3 = input_0 primals_8 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
rsgit95/med_kg_txt_multimodal
GTXSelfAttentionLayer
false
4,217
[ "Apache-2.0" ]
0
80355b0cf58e0571531ad6f9728c533110ca996d
https://github.com/rsgit95/med_kg_txt_multimodal/tree/80355b0cf58e0571531ad6f9728c533110ca996d
from _paritybench_helpers import _mock_config import math import torch from torch import nn class GTXAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class GTXAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, KnowMix_indices=None): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) if KnowMix_indices is None: hidden_states = input_tensor + hidden_states else: if isinstance(KnowMix_indices, int): input_tensor[:, KnowMix_indices] = input_tensor[:, KnowMix_indices] + hidden_states.squeeze(1) else: input_tensor[KnowMix_indices, :] = input_tensor[ KnowMix_indices, :] + hidden_states.squeeze(1) hidden_states = input_tensor hidden_states = self.LayerNorm(hidden_states) return hidden_states class Model(nn.Module): def __init__(self, config): super().__init__() self.self = GTXAttention(config) self.output = GTXAttentionOutput(config) def forward(self, input_tensor, attention_mask, output_attentions=False): output = self.self(input_tensor, input_tensor, attention_mask, output_attentions=output_attentions) if output_attentions: attention_probs = output[1] atten # ... truncated (>4000 chars) for memory efficiency
MlpBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/go/cgoenidctx3utbz75whfhze57bssfe7fzqjjztzbmsp3z7uj7v55.py # Topologically Sorted Source Nodes: [gelu], Original ATen: [aten.gelu] # Source node to ATen node mapping: # gelu => add, erf, mul, mul_1, mul_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) triton_poi_fused_gelu_0 = async_compile.triton('triton_poi_fused_gelu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + (x0), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (512, 4), (4, 1)) assert_size_stride(primals_2, (512, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 512), (512, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 512), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [gelu], Original ATen: [aten.gelu] stream0 = get_raw_stream(0) triton_poi_fused_gelu_0.run(buf0, buf1, 32768, grid=grid(32768), stream=stream0) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 4), (1, 512), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (64, 512), (512, 1), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((512, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class MlpBlock(nn.Module): def __init__(self, input_dim, mlp_dim=512): super().__init__() self.fc1 = nn.Linear(input_dim, mlp_dim) self.gelu = nn.GELU() self.fc2 = nn.Linear(mlp_dim, input_dim) def forward(self, x): return self.fc2(self.gelu(self.fc1(x))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + x0, tmp8, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (512, 4), (4, 1)) assert_size_stride(primals_2, (512,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 512), (512, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 512), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32) get_raw_stream(0) triton_poi_fused_gelu_0[grid(32768)](buf0, buf1, 32768, XBLOCK=256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 4), (1, 512), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(buf1, (64, 512), (512, 1), 0), primals_4 class MlpBlockNew(nn.Module): def __init__(self, input_dim, mlp_dim=512): super().__init__() self.fc1 = nn.Linear(input_dim, mlp_dim) self.gelu = nn.GELU() self.fc2 = nn.Linear(mlp_dim, input_dim) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
rushirajsherlocked/External-Attention-pytorch
MlpBlock
false
4,218
[ "MIT" ]
0
7d6814b2d90909adf81c62f3f8a89e30a59d6481
https://github.com/rushirajsherlocked/External-Attention-pytorch/tree/7d6814b2d90909adf81c62f3f8a89e30a59d6481
import torch from torch import nn class Model(nn.Module): def __init__(self, input_dim, mlp_dim=512): super().__init__() self.fc1 = nn.Linear(input_dim, mlp_dim) self.gelu = nn.GELU() self.fc2 = nn.Linear(mlp_dim, input_dim) def forward(self, x): return self.fc2(self.gelu(self.fc1(x))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LxmertCrossAttentionLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6m/c6mhj5zwirfhy5e4o45uaeov72uwfby4udubpm2fcz42iqvs2g57.py # Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # hidden_states_2 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_3), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/i6/ci6ua4lfqzz3v6lbsh75noa7k5ird3udb6b5bjh7gxx4qxuz7gz3.py # Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # hidden_states_2 => add_1, add_2, mul, mul_1, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_11), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf2, primals_8, buf8, 16, 4, grid=grid(16, 4), stream=stream0) del primals_8 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_10 buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(buf11, primals_3, buf12, buf13, 16, grid=grid(16), stream=stream0) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(buf11, primals_3, buf12, buf13, primals_11, primals_12, buf14, 64, grid=grid(64), stream=stream0) del buf12 del buf13 del primals_12 return (buf14, primals_3, primals_11, reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, primals_9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch from torch import nn class LxmertAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class LxmertAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LxmertCrossAttentionLayer(nn.Module): def __init__(self, config): super().__init__() self.att = LxmertAttention(config) self.output = LxmertAttentionOutput(config) def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, output_attentions=False): output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions=output_attentions) if output_attentions: attention_probs = output[1] attention_output = self.output(output[0], input_tensor) outputs = (attention_output, attention_probs ) if output_attentions else (attention_output,) return outputs def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 triton_poi_fused_3[grid(16, 4)](buf2, primals_8, buf8, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_8 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.addmm(primals_10, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_10 buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(16)](buf11, primals_3, buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(64)](buf11, primals_3, buf12, buf13, primals_11, primals_12, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf12 del buf13 del primals_12 return buf14, primals_3, primals_11, reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, primals_9 class LxmertAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class LxmertAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LxmertCrossAttentionLayerNew(nn.Module): def __init__(self, config): super().__init__() self.att = LxmertAttention(config) self.output = LxmertAttentionOutput(config) def forward(self, input_0, input_1): primals_1 = self.att.query.weight primals_2 = self.att.query.bias primals_4 = self.att.key.weight primals_5 = self.att.key.bias primals_7 = self.att.value.weight primals_8 = self.att.value.bias primals_9 = self.output.dense.weight primals_10 = self.output.dense.bias primals_11 = self.output.LayerNorm.weight primals_12 = self.output.LayerNorm.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
rsgit95/med_kg_txt_multimodal
LxmertCrossAttentionLayer
false
4,219
[ "Apache-2.0" ]
0
80355b0cf58e0571531ad6f9728c533110ca996d
https://github.com/rsgit95/med_kg_txt_multimodal/tree/80355b0cf58e0571531ad6f9728c533110ca996d
from _paritybench_helpers import _mock_config import math import torch from torch import nn class LxmertAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class LxmertAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class Model(nn.Module): def __init__(self, config): super().__init__() self.att = LxmertAttention(config) self.output = LxmertAttentionOutput(config) def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, output_attentions=False): output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions=output_attentions) if output_attentions: attention_probs = output[1] attention_output = self.output(output[0], input_tensor) outputs = (attention_output, attention_probs ) if output_attentions else (attention_output,) return outputs def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5)}]
GTXCrossAttentionLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6m/c6mhj5zwirfhy5e4o45uaeov72uwfby4udubpm2fcz42iqvs2g57.py # Topologically Sorted Source Nodes: [hidden_states_2, hidden_states_3], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # hidden_states_2 => add # hidden_states_3 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %view_17), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/i6/ci6ua4lfqzz3v6lbsh75noa7k5ird3udb6b5bjh7gxx4qxuz7gz3.py # Topologically Sorted Source Nodes: [hidden_states_2, hidden_states_3], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # hidden_states_2 => add # hidden_states_3 => add_1, add_2, mul, mul_1, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %view_17), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_11), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf2, primals_8, buf8, 16, 4, grid=grid(16, 4), stream=stream0) del primals_8 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_10 buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_2, hidden_states_3], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(primals_3, buf11, buf12, buf13, 16, grid=grid(16), stream=stream0) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_2, hidden_states_3], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(primals_3, buf11, buf12, buf13, primals_11, primals_12, buf14, 64, grid=grid(64), stream=stream0) del buf12 del buf13 del primals_12 return (buf14, primals_3, primals_11, reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, primals_9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch from torch import nn class GTXAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class GTXAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, KnowMix_indices=None): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) if KnowMix_indices is None: hidden_states = input_tensor + hidden_states else: if isinstance(KnowMix_indices, int): input_tensor[:, KnowMix_indices] = input_tensor[:, KnowMix_indices] + hidden_states.squeeze(1) else: input_tensor[KnowMix_indices, :] = input_tensor[ KnowMix_indices, :] + hidden_states.squeeze(1) hidden_states = input_tensor hidden_states = self.LayerNorm(hidden_states) return hidden_states class GTXCrossAttentionLayer(nn.Module): def __init__(self, config): super().__init__() self.att = GTXAttention(config) self.output = GTXAttentionOutput(config) def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, KnowMix_indices=None, output_attentions=False): if KnowMix_indices is None: output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions=output_attentions) elif isinstance(KnowMix_indices, int): output = self.att(input_tensor[:, KnowMix_indices].unsqueeze(1), ctx_tensor, ctx_att_mask, output_attentions=output_attentions) else: output = self.att(input_tensor[KnowMix_indices, :].unsqueeze(1), ctx_tensor[KnowMix_indices, :], ctx_att_mask[ KnowMix_indices.unsqueeze(1), :].unsqueeze(1).unsqueeze(2), output_attentions=output_attentions) if output_attentions: attention_probs = output[1] attention_output = self.output(output[0], input_tensor, KnowMix_indices ) outputs = (attention_output, attention_probs ) if output_attentions else (attention_output,) return outputs def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 triton_poi_fused_3[grid(16, 4)](buf2, primals_8, buf8, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_8 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.addmm(primals_10, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_10 buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(16)](primals_3, buf11, buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(64)](primals_3, buf11, buf12, buf13, primals_11, primals_12, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf12 del buf13 del primals_12 return buf14, primals_3, primals_11, reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, primals_9 class GTXAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class GTXAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, KnowMix_indices=None): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) if KnowMix_indices is None: hidden_states = input_tensor + hidden_states else: if isinstance(KnowMix_indices, int): input_tensor[:, KnowMix_indices] = input_tensor[:, KnowMix_indices] + hidden_states.squeeze(1) else: input_tensor[KnowMix_indices, :] = input_tensor[ KnowMix_indices, :] + hidden_states.squeeze(1) hidden_states = input_tensor hidden_states = self.LayerNorm(hidden_states) return hidden_states class GTXCrossAttentionLayerNew(nn.Module): def __init__(self, config): super().__init__() self.att = GTXAttention(config) self.output = GTXAttentionOutput(config) def forward(self, input_0, input_1): primals_1 = self.att.query.weight primals_2 = self.att.query.bias primals_4 = self.att.key.weight primals_5 = self.att.key.bias primals_7 = self.att.value.weight primals_8 = self.att.value.bias primals_9 = self.output.dense.weight primals_10 = self.output.dense.bias primals_11 = self.output.LayerNorm.weight primals_12 = self.output.LayerNorm.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
rsgit95/med_kg_txt_multimodal
GTXCrossAttentionLayer
false
4,220
[ "Apache-2.0" ]
0
80355b0cf58e0571531ad6f9728c533110ca996d
https://github.com/rsgit95/med_kg_txt_multimodal/tree/80355b0cf58e0571531ad6f9728c533110ca996d
from _paritybench_helpers import _mock_config import math import torch from torch import nn class GTXAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class GTXAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, KnowMix_indices=None): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) if KnowMix_indices is None: hidden_states = input_tensor + hidden_states else: if isinstance(KnowMix_indices, int): input_tensor[:, KnowMix_indices] = input_tensor[:, KnowMix_indices] + hidden_states.squeeze(1) else: input_tensor[KnowMix_indices, :] = input_tensor[ KnowMix_indices, :] + hidden_states.squeeze(1) hidden_states = input_tensor hidden_states = self.LayerNorm(hidden_states) return hidden_states class Model(nn.Module): def __init__(self, config): super().__init__() self.att = GTXAttention(config) self.output = GTXAttentionOutput(config) def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, KnowMix_indices=None, output_attentions=False): if KnowMix_indices is None: output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions=output_attentions) # ... truncated (>4000 chars) for memory efficiency
ConvEncoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/kn/cknyjwkwufnzzf4ya3scui55ownkmt5cdh3hggzwsfe3ch5fshzm.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/p6/cp6s4svoxgnzqeja6pzmabu3asmqyfoaympag6dtphmqncue7fik.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 96 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (27*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wv/cwvtp6qflpb42kxrujmda5zselv7wvkz3fgp2tryo2ftsisaildr.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nw/cnwm6ljuusoqjcwr2jdx6p2ue7ldghxjdr3oe62stiuqhsboiczy.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ih/cihu7ohoiwwrblocurozhw6ihpzbq4oc43mseo4n6wd7ronp74tw.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5c/c5cs3c3svcrznivu3zzny5tguj65spdtj2aitirh7fijbdkiv4cm.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 131072 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wm/cwmaacsffuosyjtapv3aqt4pkyqgob4jjpsl2qfwqddn7tfjjwjo.py # Topologically Sorted Source Nodes: [net, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # net => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kt/cktxa4ungjp46xeccvlgy4nvcb4x4hunx3vtik5eswj7ak2rlada.py # Topologically Sorted Source Nodes: [net_1, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # net_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 57600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ky/ckylxdqvllfbkwuaq4pecelkx2s5gcvwuxkx6iawkomgwk6xhngy.py # Topologically Sorted Source Nodes: [net_2, relu_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # net_2 => convolution_2 # relu_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25088 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/r7/cr7uq5ur2j4jwzfgtl7exszppe4m5worsfpyxi3aykaqmannjwdx.py # Topologically Sorted Source Nodes: [net_3, relu_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # net_3 => convolution_3 # relu_3 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ow/cowazwlu4tabjis56afgwzpg3aatyheci4ezqs3pmtxm2jiuqqhs.py # Topologically Sorted Source Nodes: [net_5, relu_4], Original ATen: [aten.mean, aten.relu] # Source node to ATen node mapping: # net_5 => mean # relu_4 => relu_4 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%mean,), kwargs = {}) triton_poi_fused_mean_relu_10 = async_compile.triton('triton_poi_fused_mean_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 / tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(in_out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (32, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_3, (32, ), (1, )) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (512, ), (1, )) assert_size_stride(primals_12, (128, 512), (512, 1)) assert_size_stride(primals_13, (128, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_1 buf1 = empty_strided_cuda((32, 3, 3, 3), (27, 1, 9, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_2, buf1, 96, 9, grid=grid(96, 9), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 2048, 9, grid=grid(2048, 9), stream=stream0) del primals_4 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_6, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_6 buf4 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_8, buf4, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_8 buf5 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_10, buf5, 131072, 9, grid=grid(131072, 9), stream=stream0) del primals_10 # Topologically Sorted Source Nodes: [net], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf0, buf1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 31, 31), (30752, 1, 992, 32)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [net, relu], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf7, primals_3, 123008, grid=grid(123008), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [net_1], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, buf2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 15, 15), (14400, 1, 960, 64)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [net_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf9, primals_5, 57600, grid=grid(57600), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [net_2], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 7, 7), (6272, 1, 896, 128)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [net_2, relu_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf11, primals_7, 25088, grid=grid(25088), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [net_3], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 3, 3), (2304, 1, 768, 256)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [net_3, relu_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf13, primals_9, 9216, grid=grid(9216), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [net_4], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, buf5, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 512, 1, 1), (512, 1, 512, 512)) buf15 = reinterpret_tensor(buf14, (4, 512), (512, 1), 0); del buf14 # reuse # Topologically Sorted Source Nodes: [net_5, relu_4], Original ATen: [aten.mean, aten.relu] triton_poi_fused_mean_relu_10.run(buf15, primals_11, 2048, grid=grid(2048), stream=stream0) del primals_11 buf16 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, buf15, reinterpret_tensor(primals_12, (512, 128), (1, 512), 0), alpha=1, beta=1, out=buf16) del primals_13 return (buf16, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf9, buf11, buf13, buf15, primals_12, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class ConvEncoder(nn.Module): """ Simple convolutional encoder network. It consists of 5 convolutional layers, each downsampling the input by a factor of 2, and a final fully-connected layer projecting the output to c_dim dimensions. Args: c_dim (int): output dimension of latent embedding """ def __init__(self, c_dim=128): super().__init__() self.conv0 = nn.Conv2d(3, 32, 3, stride=2) self.conv1 = nn.Conv2d(32, 64, 3, stride=2) self.conv2 = nn.Conv2d(64, 128, 3, stride=2) self.conv3 = nn.Conv2d(128, 256, 3, stride=2) self.conv4 = nn.Conv2d(256, 512, 3, stride=2) self.fc_out = nn.Linear(512, c_dim) self.actvn = nn.ReLU() def forward(self, x): batch_size = x.size(0) net = self.conv0(x) net = self.conv1(self.actvn(net)) net = self.conv2(self.actvn(net)) net = self.conv3(self.actvn(net)) net = self.conv4(self.actvn(net)) net = net.view(batch_size, 512, -1).mean(2) out = self.fc_out(self.actvn(net)) return out def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 96 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 57600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25088 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_mean_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 / tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(in_out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (32, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_3, (32,), (1,)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (512,), (1,)) assert_size_stride(primals_12, (128, 512), (512, 1)) assert_size_stride(primals_13, (128,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) get_raw_stream(0) triton_poi_fused_0[grid(12, 4096)](primals_1, buf0, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((32, 3, 3, 3), (27, 1, 9, 3), torch.float32) triton_poi_fused_1[grid(96, 9)](primals_2, buf1, 96, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch. float32) triton_poi_fused_2[grid(2048, 9)](primals_4, buf2, 2048, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_3[grid(8192, 9)](primals_6, buf3, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_4[grid(32768, 9)](primals_8, buf4, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf5 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_5[grid(131072, 9)](primals_10, buf5, 131072, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf6 = extern_kernels.convolution(buf0, buf1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 31, 31), (30752, 1, 992, 32)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_6[grid(123008)](buf7, primals_3, 123008, XBLOCK=1024, num_warps=4, num_stages=1) del primals_3 buf8 = extern_kernels.convolution(buf7, buf2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 15, 15), (14400, 1, 960, 64)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_7[grid(57600)](buf9, primals_5, 57600, XBLOCK=512, num_warps=4, num_stages=1) del primals_5 buf10 = extern_kernels.convolution(buf9, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 7, 7), (6272, 1, 896, 128)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_8[grid(25088)](buf11, primals_7, 25088, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf12 = extern_kernels.convolution(buf11, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 3, 3), (2304, 1, 768, 256)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_9[grid(9216)](buf13, primals_9, 9216, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf14 = extern_kernels.convolution(buf13, buf5, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 512, 1, 1), (512, 1, 512, 512)) buf15 = reinterpret_tensor(buf14, (4, 512), (512, 1), 0) del buf14 triton_poi_fused_mean_relu_10[grid(2048)](buf15, primals_11, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf16 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.addmm(primals_13, buf15, reinterpret_tensor( primals_12, (512, 128), (1, 512), 0), alpha=1, beta=1, out=buf16) del primals_13 return (buf16, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf9, buf11, buf13, buf15, primals_12) class ConvEncoderNew(nn.Module): """ Simple convolutional encoder network. It consists of 5 convolutional layers, each downsampling the input by a factor of 2, and a final fully-connected layer projecting the output to c_dim dimensions. Args: c_dim (int): output dimension of latent embedding """ def __init__(self, c_dim=128): super().__init__() self.conv0 = nn.Conv2d(3, 32, 3, stride=2) self.conv1 = nn.Conv2d(32, 64, 3, stride=2) self.conv2 = nn.Conv2d(64, 128, 3, stride=2) self.conv3 = nn.Conv2d(128, 256, 3, stride=2) self.conv4 = nn.Conv2d(256, 512, 3, stride=2) self.fc_out = nn.Linear(512, c_dim) self.actvn = nn.ReLU() def forward(self, input_0): primals_2 = self.conv0.weight primals_3 = self.conv0.bias primals_4 = self.conv1.weight primals_5 = self.conv1.bias primals_6 = self.conv2.weight primals_7 = self.conv2.bias primals_8 = self.conv3.weight primals_9 = self.conv3.bias primals_10 = self.conv4.weight primals_11 = self.conv4.bias primals_12 = self.fc_out.weight primals_13 = self.fc_out.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
planetceres/differentiable_volumetric_rendering
ConvEncoder
false
4,221
[ "MIT" ]
0
f2fe46d139244c7642439ced23656db1e7f5c128
https://github.com/planetceres/differentiable_volumetric_rendering/tree/f2fe46d139244c7642439ced23656db1e7f5c128
import torch from torch import nn class Model(nn.Module): """ Simple convolutional encoder network. It consists of 5 convolutional layers, each downsampling the input by a factor of 2, and a final fully-connected layer projecting the output to c_dim dimensions. Args: c_dim (int): output dimension of latent embedding """ def __init__(self, c_dim=128): super().__init__() self.conv0 = nn.Conv2d(3, 32, 3, stride=2) self.conv1 = nn.Conv2d(32, 64, 3, stride=2) self.conv2 = nn.Conv2d(64, 128, 3, stride=2) self.conv3 = nn.Conv2d(128, 256, 3, stride=2) self.conv4 = nn.Conv2d(256, 512, 3, stride=2) self.fc_out = nn.Linear(512, c_dim) self.actvn = nn.ReLU() def forward(self, x): batch_size = x.size(0) net = self.conv0(x) net = self.conv1(self.actvn(net)) net = self.conv2(self.actvn(net)) net = self.conv3(self.actvn(net)) net = self.conv4(self.actvn(net)) net = net.view(batch_size, 512, -1).mean(2) out = self.fc_out(self.actvn(net)) return out def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
DoubleAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py # Topologically Sorted Source Nodes: [A], Original ATen: [aten.convolution] # Source node to ATen node mapping: # A => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5r/c5rhp4pv4cg6ddxhvgfx33emv6p7gwbi47umgsoy4tfzazsi4rak.py # Topologically Sorted Source Nodes: [attention_maps], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_maps => amax, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [0], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x2), xmask) tmp6 = tl.load(in_ptr0 + (128 + x2), xmask) tmp9 = tl.load(in_ptr0 + (192 + x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = triton_helpers.maximum(tmp2, tmp4) tmp7 = tmp6 + tmp1 tmp8 = triton_helpers.maximum(tmp5, tmp7) tmp10 = tmp9 + tmp1 tmp11 = triton_helpers.maximum(tmp8, tmp10) tmp12 = tmp2 - tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tmp4 - tmp11 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp7 - tmp11 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp10 - tmp11 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tl.store(out_ptr0 + (x2), tmp11, xmask) tl.store(out_ptr1 + (x2), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ps/cpsgkfkg5qfu5qkcgb4gvy54hsdn7yerusqeekt5z32d3ofd5f5x.py # Topologically Sorted Source Nodes: [attention_maps], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_maps => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [0], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 x4 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tl.store(in_out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [A], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [B], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [V], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [A], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf3, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 buf4 = empty_strided_cuda((1, 4, 16), (64, 16, 1), torch.float32) buf5 = empty_strided_cuda((1, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_maps], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, primals_5, buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = reinterpret_tensor(buf1, (4, 4, 16), (64, 16, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attention_maps], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf6, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0) del primals_5 buf7 = buf5; del buf5 # reuse buf8 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [attention_vectors], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, primals_7, buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf2, (4, 4, 16), (64, 16, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [attention_vectors], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf9, primals_7, buf7, buf8, 256, grid=grid(256), stream=stream0) del buf7 del primals_7 buf10 = reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [global_descriptors], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf6, (4, 16, 4), (64, 1, 16), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [tmpZ], Original ATen: [aten.bmm] extern_kernels.bmm(buf10, buf9, out=buf11) # Topologically Sorted Source Nodes: [tmpZ_2], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 4, 4, 4), (64, 16, 4, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [tmpZ_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf13, primals_9, 256, grid=grid(256), stream=stream0) del primals_9 return (buf13, primals_1, primals_2, primals_4, primals_6, primals_8, buf6, buf9, reinterpret_tensor(buf11, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf10, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (4, 16, 4), (64, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F from torch.nn import init class DoubleAttention(nn.Module): def __init__(self, in_channels, c_m, c_n, reconstruct=True): super().__init__() self.in_channels = in_channels self.reconstruct = reconstruct self.c_m = c_m self.c_n = c_n self.convA = nn.Conv2d(in_channels, c_m, 1) self.convB = nn.Conv2d(in_channels, c_n, 1) self.convV = nn.Conv2d(in_channels, c_n, 1) if self.reconstruct: self.conv_reconstruct = nn.Conv2d(c_m, in_channels, kernel_size=1) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, x): b, c, h, w = x.shape assert c == self.in_channels A = self.convA(x) B = self.convB(x) V = self.convV(x) tmpA = A.view(b, self.c_m, -1) attention_maps = F.softmax(B.view(b, self.c_n, -1)) attention_vectors = F.softmax(V.view(b, self.c_n, -1)) global_descriptors = torch.bmm(tmpA, attention_maps.permute(0, 2, 1)) tmpZ = global_descriptors.matmul(attention_vectors) tmpZ = tmpZ.view(b, self.c_m, h, w) if self.reconstruct: tmpZ = self.conv_reconstruct(tmpZ) return tmpZ def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'c_m': 4, 'c_n': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x2), xmask) tmp6 = tl.load(in_ptr0 + (128 + x2), xmask) tmp9 = tl.load(in_ptr0 + (192 + x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = triton_helpers.maximum(tmp2, tmp4) tmp7 = tmp6 + tmp1 tmp8 = triton_helpers.maximum(tmp5, tmp7) tmp10 = tmp9 + tmp1 tmp11 = triton_helpers.maximum(tmp8, tmp10) tmp12 = tmp2 - tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tmp4 - tmp11 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp7 - tmp11 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp10 - tmp11 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tl.store(out_ptr0 + x2, tmp11, xmask) tl.store(out_ptr1 + x2, tmp22, xmask) @triton.jit def triton_poi_fused__softmax_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 x4 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tl.store(in_out_ptr0 + x3, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(256)](buf3, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf4 = empty_strided_cuda((1, 4, 16), (64, 16, 1), torch.float32) buf5 = empty_strided_cuda((1, 4, 16), (64, 16, 1), torch.float32) triton_poi_fused__softmax_1[grid(64)](buf1, primals_5, buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = reinterpret_tensor(buf1, (4, 4, 16), (64, 16, 1), 0) del buf1 triton_poi_fused__softmax_2[grid(256)](buf6, primals_5, buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf7 = buf5 del buf5 buf8 = buf4 del buf4 triton_poi_fused__softmax_1[grid(64)](buf2, primals_7, buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf2, (4, 4, 16), (64, 16, 1), 0) del buf2 triton_poi_fused__softmax_2[grid(256)](buf9, primals_7, buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf7 del primals_7 buf10 = reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0) del buf8 extern_kernels.bmm(reinterpret_tensor(buf3, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf6, (4, 16, 4), (64, 1, 16), 0), out=buf10 ) buf11 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) extern_kernels.bmm(buf10, buf9, out=buf11) buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 4, 4, 4), (64, 16, 4, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_0[grid(256)](buf13, primals_9, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 return (buf13, primals_1, primals_2, primals_4, primals_6, primals_8, buf6, buf9, reinterpret_tensor(buf11, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf10, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (4, 16, 4), (64, 1, 16), 0)) class DoubleAttentionNew(nn.Module): def __init__(self, in_channels, c_m, c_n, reconstruct=True): super().__init__() self.in_channels = in_channels self.reconstruct = reconstruct self.c_m = c_m self.c_n = c_n self.convA = nn.Conv2d(in_channels, c_m, 1) self.convB = nn.Conv2d(in_channels, c_n, 1) self.convV = nn.Conv2d(in_channels, c_n, 1) if self.reconstruct: self.conv_reconstruct = nn.Conv2d(c_m, in_channels, kernel_size=1) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, input_0): primals_2 = self.convA.weight primals_3 = self.convA.bias primals_4 = self.convB.weight primals_5 = self.convB.bias primals_6 = self.convV.weight primals_7 = self.convV.bias primals_8 = self.conv_reconstruct.weight primals_9 = self.conv_reconstruct.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
rushirajsherlocked/External-Attention-pytorch
DoubleAttention
false
4,222
[ "MIT" ]
0
7d6814b2d90909adf81c62f3f8a89e30a59d6481
https://github.com/rushirajsherlocked/External-Attention-pytorch/tree/7d6814b2d90909adf81c62f3f8a89e30a59d6481
import torch from torch import nn from torch.nn import functional as F from torch.nn import init class Model(nn.Module): def __init__(self, in_channels, c_m, c_n, reconstruct=True): super().__init__() self.in_channels = in_channels self.reconstruct = reconstruct self.c_m = c_m self.c_n = c_n self.convA = nn.Conv2d(in_channels, c_m, 1) self.convB = nn.Conv2d(in_channels, c_n, 1) self.convV = nn.Conv2d(in_channels, c_n, 1) if self.reconstruct: self.conv_reconstruct = nn.Conv2d(c_m, in_channels, kernel_size=1) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, x): b, c, h, w = x.shape assert c == self.in_channels A = self.convA(x) B = self.convB(x) V = self.convV(x) tmpA = A.view(b, self.c_m, -1) attention_maps = F.softmax(B.view(b, self.c_n, -1)) attention_vectors = F.softmax(V.view(b, self.c_n, -1)) global_descriptors = torch.bmm(tmpA, attention_maps.permute(0, 2, 1)) tmpZ = global_descriptors.matmul(attention_vectors) tmpZ = tmpZ.view(b, self.c_m, h, w) if self.reconstruct: tmpZ = self.conv_reconstruct(tmpZ) return tmpZ def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
LxmertSelfAttentionLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/iz/ciztqj6kop3hxov46yrmzprkzfir3eljcic4mkqznz2j5cfeaudr.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %primals_8), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%add_tensor, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = float("-inf") tmp27 = tmp2 == tmp26 tmp28 = tmp27 == 0 tmp29 = tmp28.to(tl.int64) tmp30 = (tmp29 != 0) tmp31 = tmp5 == tmp26 tmp32 = tmp31 == 0 tmp33 = tmp32.to(tl.int64) tmp34 = (tmp33 != 0) tmp35 = tmp30 | tmp34 tmp36 = tmp9 == tmp26 tmp37 = tmp36 == 0 tmp38 = tmp37.to(tl.int64) tmp39 = (tmp38 != 0) tmp40 = tmp35 | tmp39 tmp41 = tmp13 == tmp26 tmp42 = tmp41 == 0 tmp43 = tmp42.to(tl.int64) tmp44 = (tmp43 != 0) tmp45 = tmp40 | tmp44 tl.store(out_ptr0 + (x2), tmp14, xmask) tl.store(out_ptr1 + (x2), tmp25, xmask) tl.store(out_ptr2 + (x2), tmp45, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/x5/cx5uvbfethxuwwkwxf3xaualzhlcwqsz4jxqpbhintggaypzjwqf.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %primals_8), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 4) x4 = xindex x5 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_out_ptr0 + (x4), xmask) tmp3 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x3), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x3), xmask, eviction_policy='evict_last') tmp1 = tmp0 == 0 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tmp10 = 0.0 tmp11 = tl.where(tmp1, tmp10, tmp9) tl.store(in_out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6m/c6mhj5zwirfhy5e4o45uaeov72uwfby4udubpm2fcz42iqvs2g57.py # Topologically Sorted Source Nodes: [add_1, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add_1 => add_1 # hidden_states_2 => var_mean # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_3), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_1, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/i6/ci6ua4lfqzz3v6lbsh75noa7k5ird3udb6b5bjh7gxx4qxuz7gz3.py # Topologically Sorted Source Nodes: [add_1, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add_1 => add_1 # hidden_states_2 => add_2, add_3, mul, mul_1, rsqrt, sub_1 # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_11), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf5, primals_8, buf6, buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf9, buf8, primals_8, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf8 del primals_8 buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf2, primals_7, buf10, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_10 buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [add_1, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(buf13, primals_3, buf14, buf15, 16, grid=grid(16), stream=stream0) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add_1, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(buf13, primals_3, buf14, buf15, primals_11, primals_12, buf16, 64, grid=grid(64), stream=stream0) del buf14 del buf15 del primals_12 return (buf16, primals_3, primals_11, buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, primals_9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch from torch import nn class LxmertAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class LxmertAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LxmertSelfAttentionLayer(nn.Module): def __init__(self, config): super().__init__() self.self = LxmertAttention(config) self.output = LxmertAttentionOutput(config) def forward(self, input_tensor, attention_mask, output_attentions=False): output = self.self(input_tensor, input_tensor, attention_mask, output_attentions=output_attentions) if output_attentions: attention_probs = output[1] attention_output = self.output(output[0], input_tensor) outputs = (attention_output, attention_probs ) if output_attentions else (attention_output,) return outputs def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = float('-inf') tmp27 = tmp2 == tmp26 tmp28 = tmp27 == 0 tmp29 = tmp28.to(tl.int64) tmp30 = tmp29 != 0 tmp31 = tmp5 == tmp26 tmp32 = tmp31 == 0 tmp33 = tmp32.to(tl.int64) tmp34 = tmp33 != 0 tmp35 = tmp30 | tmp34 tmp36 = tmp9 == tmp26 tmp37 = tmp36 == 0 tmp38 = tmp37.to(tl.int64) tmp39 = tmp38 != 0 tmp40 = tmp35 | tmp39 tmp41 = tmp13 == tmp26 tmp42 = tmp41 == 0 tmp43 = tmp42.to(tl.int64) tmp44 = tmp43 != 0 tmp45 = tmp40 | tmp44 tl.store(out_ptr0 + x2, tmp14, xmask) tl.store(out_ptr1 + x2, tmp25, xmask) tl.store(out_ptr2 + x2, tmp45, xmask) @triton.jit def triton_poi_fused_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 4 x4 = xindex x5 = xindex % 64 tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_out_ptr0 + x4, xmask) tmp3 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + x3, xmask, eviction_policy='evict_last') tmp1 = tmp0 == 0 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tmp10 = 0.0 tmp11 = tl.where(tmp1, tmp10, tmp9) tl.store(in_out_ptr0 + x4, tmp11, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0) del buf1 buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool) triton_poi_fused_1[grid(64)](buf5, primals_8, buf6, buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_2[grid(256)](buf9, buf8, primals_8, buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf8 del primals_8 buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf7 triton_poi_fused_3[grid(16, 4)](buf2, primals_7, buf10, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_7 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf6 triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0) del buf11 extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_10 buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(16)](buf13, primals_3, buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(64)](buf13, primals_3, buf14, buf15, primals_11, primals_12, buf16, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf14 del buf15 del primals_12 return buf16, primals_3, primals_11, buf9, reinterpret_tensor(buf10, ( 16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, primals_9 class LxmertAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class LxmertAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LxmertSelfAttentionLayerNew(nn.Module): def __init__(self, config): super().__init__() self.self = LxmertAttention(config) self.output = LxmertAttentionOutput(config) def forward(self, input_0, input_1): primals_1 = self.self.query.weight primals_2 = self.self.query.bias primals_4 = self.self.key.weight primals_5 = self.self.key.bias primals_6 = self.self.value.weight primals_7 = self.self.value.bias primals_9 = self.output.dense.weight primals_10 = self.output.dense.bias primals_11 = self.output.LayerNorm.weight primals_12 = self.output.LayerNorm.bias primals_3 = input_0 primals_8 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
rsgit95/med_kg_txt_multimodal
LxmertSelfAttentionLayer
false
4,223
[ "Apache-2.0" ]
0
80355b0cf58e0571531ad6f9728c533110ca996d
https://github.com/rsgit95/med_kg_txt_multimodal/tree/80355b0cf58e0571531ad6f9728c533110ca996d
from _paritybench_helpers import _mock_config import math import torch from torch import nn class LxmertAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class LxmertAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class Model(nn.Module): def __init__(self, config): super().__init__() self.self = LxmertAttention(config) self.output = LxmertAttentionOutput(config) def forward(self, input_tensor, attention_mask, output_attentions=False): output = self.self(input_tensor, input_tensor, attention_mask, output_attentions=output_attentions) if output_attentions: attention_probs = output[1] attention_output = self.output(output[0], input_tensor) outputs = (attention_output, attention_probs ) if output_attentions else (attention_output,) return outputs def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5)}]
SimplifiedScaledDotProductAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yd/cydbtjoq352gcolmflbvu2nqkda7xg7q5hnvltb47jsg5dbmubym.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py # Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # att_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # att_1 => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 1), (16, 4, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 1), (16, 4, 1, 1)) assert_size_stride(primals_3, (4, 4, 4, 1), (16, 4, 1, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(primals_2, buf1, 16, 4, grid=grid(16, 4), stream=stream0) del primals_2 buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf1, (16, 1, 4), (4, 0, 1), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0) del buf3 buf5 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(primals_3, buf5, 16, 4, grid=grid(16, 4), stream=stream0) del primals_3 buf6 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 0), 0), out=buf6) del buf4 buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf6, buf7, 16, 4, grid=grid(16, 4), stream=stream0) buf8 = reinterpret_tensor(buf6, (16, 4), (4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf7, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf8) del primals_4 del primals_5 return (reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn from torch.nn import init class SimplifiedScaledDotProductAttention(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super(SimplifiedScaledDotProductAttention, self).__init__() self.d_model = d_model self.d_k = d_model // h self.d_v = d_model // h self.h = h self.fc_o = nn.Linear(h * self.d_v, d_model) self.dropout = nn.Dropout(dropout) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = queries.view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) k = keys.view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) v = values.view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) att = torch.matmul(q, k) / np.sqrt(self.d_k) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) out = self.fc_o(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 1]), torch.rand([4, 4, 4, 1]), torch.rand( [4, 4, 4, 1])] def get_init_inputs(): return [[], {'d_model': 4, 'h': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 1), (16, 4, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 1), (16, 4, 1, 1)) assert_size_stride(primals_3, (4, 4, 4, 1), (16, 4, 1, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](primals_2, buf1, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf1, (16, 1, 4), (4, 0, 1), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf3 buf5 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 triton_poi_fused_clone_0[grid(16, 4)](primals_3, buf5, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf6 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0) del buf0 extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 0), 0), out=buf6) del buf4 buf7 = buf5 del buf5 triton_poi_fused_clone_0[grid(16, 4)](buf6, buf7, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf8 = reinterpret_tensor(buf6, (16, 4), (4, 1), 0) del buf6 extern_kernels.addmm(primals_5, reinterpret_tensor(buf7, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf8) del primals_4 del primals_5 return reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(buf7, (16, 4), (4, 1), 0) class SimplifiedScaledDotProductAttentionNew(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super(SimplifiedScaledDotProductAttentionNew, self).__init__() self.d_model = d_model self.d_k = d_model // h self.d_v = d_model // h self.h = h self.fc_o = nn.Linear(h * self.d_v, d_model) self.dropout = nn.Dropout(dropout) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, input_0, input_1, input_2): primals_4 = self.fc_o.weight primals_5 = self.fc_o.bias primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
rushirajsherlocked/External-Attention-pytorch
SimplifiedScaledDotProductAttention
false
4,224
[ "MIT" ]
0
7d6814b2d90909adf81c62f3f8a89e30a59d6481
https://github.com/rushirajsherlocked/External-Attention-pytorch/tree/7d6814b2d90909adf81c62f3f8a89e30a59d6481
import torch import numpy as np from torch import nn from torch.nn import init class Model(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super().__init__() self.d_model = d_model self.d_k = d_model // h self.d_v = d_model // h self.h = h self.fc_o = nn.Linear(h * self.d_v, d_model) self.dropout = nn.Dropout(dropout) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = queries.view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) k = keys.view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) v = values.view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) att = torch.matmul(q, k) / np.sqrt(self.d_k) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) out = self.fc_o(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 1]), torch.rand([4, 4, 4, 1]), torch.rand( [4, 4, 4, 1])] def get_init_inputs(): return [4, 4]
SpatialGroupEnhance
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean] # Source node to ATen node mapping: # adaptive_avg_pool2d => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/a5/ca56thseizupperaiqs5wiuvhcun4wc2jggffpd37a2xbjph27wh.py # Topologically Sorted Source Nodes: [xn, xn_1, mean, t_1, std, std_1, mul_1, t_4, sigmoid], Original ATen: [aten.mul, aten.sum, aten.mean, aten.sub, aten.std, aten.add, aten.sigmoid] # Source node to ATen node mapping: # mean => mean_1 # mul_1 => mul_1 # sigmoid => sigmoid # std => sqrt, var # std_1 => add # t_1 => sub # t_4 => add_1 # xn => mul # xn_1 => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %mean), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1], True), kwargs = {}) # %mean_1 : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %mean_1), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%sub, [1]), kwargs = {correction: 1.0, keepdim: True}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-05), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_1,), kwargs = {}) triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1 = async_compile.triton('triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + r1 + (64*x0)), xmask, other=0.0) tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (32 + r1 + (64*x0)), xmask, other=0.0) tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + r1 + (64*x0)), xmask, other=0.0) tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp44 = tl.load(in_ptr2 + (0)) tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK]) tmp47 = tl.load(in_ptr3 + (0)) tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = tmp14 - tmp20 tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK]) tmp24 = tl.where(xmask, tmp22, 0) tmp25 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tmp27 = tl.where(xmask, tmp25, 0) tmp28 = tl.sum(tmp27, 1)[:, None] tmp29 = tl.full([XBLOCK, 1], 16, tl.int32) tmp30 = tmp29.to(tl.float32) tmp31 = tmp28 / tmp30 tmp32 = tmp22 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK]) tmp36 = tl.where(xmask, tmp34, 0) tmp37 = tl.sum(tmp36, 1)[:, None] tmp38 = 15.0 tmp39 = tmp37 / tmp38 tmp40 = libdevice.sqrt(tmp39) tmp41 = 1e-05 tmp42 = tmp40 + tmp41 tmp43 = tmp21 / tmp42 tmp46 = tmp43 * tmp45 tmp49 = tmp46 + tmp48 tmp50 = tl.sigmoid(tmp49) tl.store(out_ptr0 + (r1 + (16*x0)), tmp14, xmask) tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp42, xmask) tl.store(out_ptr1 + (r1 + (16*x0)), tmp50, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oc/cocahikgrum5ddfascfd75hjn6cow7rd2ztrvh7tsckzl7n6vq6q.py # Topologically Sorted Source Nodes: [mul_1, t_4, sigmoid, x_1], Original ATen: [aten.mul, aten.add, aten.sigmoid] # Source node to ATen node mapping: # mul_1 => mul_1 # sigmoid => sigmoid # t_4 => add_1 # x_1 => mul_2 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %sigmoid), kwargs = {}) triton_poi_fused_add_mul_sigmoid_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_3, (1, 1, 1, 1), (1, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf4 = reinterpret_tensor(buf3, (4, 1), (1, 1), 0); del buf3 # reuse buf6 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf8 = reinterpret_tensor(buf6, (4, 1), (1, 1), 0); del buf6 # reuse buf9 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [xn, xn_1, mean, t_1, std, std_1, mul_1, t_4, sigmoid], Original ATen: [aten.mul, aten.sum, aten.mean, aten.sub, aten.std, aten.add, aten.sigmoid] triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1.run(buf4, buf8, primals_1, buf1, primals_2, primals_3, buf2, buf9, 4, 16, grid=grid(4), stream=stream0) del buf2 buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1, t_4, sigmoid, x_1], Original ATen: [aten.mul, aten.add, aten.sigmoid] triton_poi_fused_add_mul_sigmoid_2.run(primals_1, buf9, buf10, 256, grid=grid(256), stream=stream0) del buf9 return (buf10, primals_1, primals_2, primals_3, buf1, buf4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import init class SpatialGroupEnhance(nn.Module): def __init__(self, groups): super().__init__() self.groups = groups self.avg_pool = nn.AdaptiveAvgPool2d(1) self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1)) self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1)) self.sig = nn.Sigmoid() self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, x): b, c, h, w = x.shape x = x.view(b * self.groups, -1, h, w) xn = x * self.avg_pool(x) xn = xn.sum(dim=1, keepdim=True) t = xn.view(b * self.groups, -1) t = t - t.mean(dim=1, keepdim=True) std = t.std(dim=1, keepdim=True) + 1e-05 t = t / std t = t.view(b, self.groups, h, w) t = t * self.weight + self.bias t = t.view(b * self.groups, 1, h, w) x = x * self.sig(t) x = x.view(b, c, h, w) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'groups': 1}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + r1 + 64 * x0), xmask, other=0.0) tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (32 + r1 + 64 * x0), xmask, other=0.0) tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + r1 + 64 * x0), xmask, other=0.0) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp44 = tl.load(in_ptr2 + 0) tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK]) tmp47 = tl.load(in_ptr3 + 0) tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = tmp14 - tmp20 tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK]) tl.where(xmask, tmp22, 0) tmp25 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tmp27 = tl.where(xmask, tmp25, 0) tmp28 = tl.sum(tmp27, 1)[:, None] tmp29 = tl.full([XBLOCK, 1], 16, tl.int32) tmp30 = tmp29.to(tl.float32) tmp31 = tmp28 / tmp30 tmp32 = tmp22 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK]) tmp36 = tl.where(xmask, tmp34, 0) tmp37 = tl.sum(tmp36, 1)[:, None] tmp38 = 15.0 tmp39 = tmp37 / tmp38 tmp40 = libdevice.sqrt(tmp39) tmp41 = 1e-05 tmp42 = tmp40 + tmp41 tmp43 = tmp21 / tmp42 tmp46 = tmp43 * tmp45 tmp49 = tmp46 + tmp48 tmp50 = tl.sigmoid(tmp49) tl.store(out_ptr0 + (r1 + 16 * x0), tmp14, xmask) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp42, xmask) tl.store(out_ptr1 + (r1 + 16 * x0), tmp50, xmask) @triton.jit def triton_poi_fused_add_mul_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_3, (1, 1, 1, 1), (1, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf4 = reinterpret_tensor(buf3, (4, 1), (1, 1), 0) del buf3 buf6 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf8 = reinterpret_tensor(buf6, (4, 1), (1, 1), 0) del buf6 buf9 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1[grid(4)](buf4, buf8, primals_1, buf1, primals_2, primals_3, buf2, buf9, 4, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf2 buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_sigmoid_2[grid(256)](primals_1, buf9, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf9 return buf10, primals_1, primals_2, primals_3, buf1, buf4, buf8 class SpatialGroupEnhanceNew(nn.Module): def __init__(self, groups): super().__init__() self.groups = groups self.avg_pool = nn.AdaptiveAvgPool2d(1) self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1)) self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1)) self.sig = nn.Sigmoid() self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, input_0): primals_2 = self.weight primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
rushirajsherlocked/External-Attention-pytorch
SpatialGroupEnhance
false
4,225
[ "MIT" ]
0
7d6814b2d90909adf81c62f3f8a89e30a59d6481
https://github.com/rushirajsherlocked/External-Attention-pytorch/tree/7d6814b2d90909adf81c62f3f8a89e30a59d6481
import torch from torch import nn from torch.nn import init class Model(nn.Module): def __init__(self, groups): super().__init__() self.groups = groups self.avg_pool = nn.AdaptiveAvgPool2d(1) self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1)) self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1)) self.sig = nn.Sigmoid() self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, x): b, c, h, w = x.shape x = x.view(b * self.groups, -1, h, w) xn = x * self.avg_pool(x) xn = xn.sum(dim=1, keepdim=True) t = xn.view(b * self.groups, -1) t = t - t.mean(dim=1, keepdim=True) std = t.std(dim=1, keepdim=True) + 1e-05 t = t / std t = t.view(b, self.groups, h, w) t = t * self.weight + self.bias t = t.view(b * self.groups, 1, h, w) x = x * self.sig(t) x = x.view(b, c, h, w) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [1]
ScaledDotProductAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xe/cxeuttfzx4xq2jmzwzvkech4crjirky5wjckb34lnep5o6sog3uw.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/fn/cfnr6wn6wbusamhilcgctjberp7g5kksyakcze32k6ntswznc2de.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ka/ckaneo6wn23ipwgbubou64jdtwieswlrn7w7r7kqky4aagh3v6l3.py # Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax] # Source node to ATen node mapping: # att_1 => exp # wrapped_sqrt => full_default # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 2.0), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False}) # %scalar_tensor_default : [num_users=2] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False}) # %ge_scalar : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%full_default, 0), kwargs = {}) # %neg_default : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default,), kwargs = {}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar, %scalar_tensor_default, %neg_default), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, %where_self), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self, %full_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, %mul_tensor_1), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_sqrt_2 = async_compile.triton('triton_poi_fused__softmax_sqrt_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_sqrt_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_sqrt_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp8 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 2.0, tl.float64) tmp2 = tl.full([1], 0.0, tl.float64) tmp3 = tmp1 >= tmp2 tmp4 = 1.0 tmp5 = -1.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp9 = tmp8 * tmp6 tmp11 = tmp10 * tmp6 tmp12 = triton_helpers.maximum(tmp9, tmp11) tmp14 = tmp13 * tmp6 tmp15 = triton_helpers.maximum(tmp12, tmp14) tmp17 = tmp16 * tmp6 tmp18 = triton_helpers.maximum(tmp15, tmp17) tmp19 = tmp7 - tmp18 tmp20 = tmp6.to(tl.float64) tmp21 = tmp20 * tmp1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp19 / tmp22 tmp24 = tl_math.exp(tmp23) tl.store(out_ptr0 + (x2), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py # Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # att_1 => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6b/c6busvilz5nn36jjet3bmw7cqddirh4sgalamjr3fsrp3sbsacfi.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_6,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (16, 4), (4, 1)) assert_size_stride(primals_4, (16, ), (1, )) assert_size_stride(primals_5, (16, 4), (4, 1)) assert_size_stride(primals_6, (16, ), (1, )) assert_size_stride(primals_7, (16, 4), (4, 1)) assert_size_stride(primals_8, (16, ), (1, )) assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_10, (4, 16), (16, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf1) del primals_5 buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_4, buf3, 256, grid=grid(256), stream=stream0) del primals_4 buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf1, primals_6, buf4, 64, 4, grid=grid(64, 4), stream=stream0) del primals_6 buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax] triton_poi_fused__softmax_sqrt_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf6, buf7, 256, grid=grid(256), stream=stream0) buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, primals_8, buf8, 256, grid=grid(256), stream=stream0) del primals_8 buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf9, buf10, 256, grid=grid(256), stream=stream0) del buf9 buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (16, 16), (16, 1), 0), reinterpret_tensor(primals_10, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf11) del primals_11 return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 16), (16, 1), 0), primals_10, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn from torch.nn import init class ScaledDotProductAttention(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, d_k, d_v, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super(ScaledDotProductAttention, self).__init__() self.fc_q = nn.Linear(d_model, h * d_k) self.fc_k = nn.Linear(d_model, h * d_k) self.fc_v = nn.Linear(d_model, h * d_v) self.fc_o = nn.Linear(h * d_v, d_model) self.dropout = nn.Dropout(dropout) self.d_model = d_model self.d_k = d_k self.d_v = d_v self.h = h self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) att = torch.matmul(q, k) / np.sqrt(self.d_k) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) out = self.fc_o(out) return out def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'d_model': 4, 'd_k': 4, 'd_v': 4, 'h': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused__softmax_sqrt_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp8 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = tl.full([1], 2.0, tl.float64) tmp2 = tl.full([1], 0.0, tl.float64) tmp3 = tmp1 >= tmp2 tmp4 = 1.0 tmp5 = -1.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp9 = tmp8 * tmp6 tmp11 = tmp10 * tmp6 tmp12 = triton_helpers.maximum(tmp9, tmp11) tmp14 = tmp13 * tmp6 tmp15 = triton_helpers.maximum(tmp12, tmp14) tmp17 = tmp16 * tmp6 tmp18 = triton_helpers.maximum(tmp15, tmp17) tmp19 = tmp7 - tmp18 tmp20 = tmp6.to(tl.float64) tmp21 = tmp20 * tmp1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp19 / tmp22 tmp24 = tl_math.exp(tmp23) tl.store(out_ptr0 + x2, tmp24, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (16, 4), (4, 1)) assert_size_stride(primals_4, (16,), (1,)) assert_size_stride(primals_5, (16, 4), (4, 1)) assert_size_stride(primals_6, (16,), (1,)) assert_size_stride(primals_7, (16, 4), (4, 1)) assert_size_stride(primals_8, (16,), (1,)) assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_10, (4, 16), (16, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf1) del primals_5 buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](buf0, primals_4, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused_clone_1[grid(64, 4)](buf1, primals_6, buf4, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_6 buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_sqrt_2[grid(256)](buf5, buf6, 256, XBLOCK =128, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) buf8 = buf6 del buf6 triton_poi_fused_clone_0[grid(256)](buf2, primals_8, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_8 buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_4[grid(256)](buf9, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf9 buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (16, 16), (16, 1), 0), reinterpret_tensor(primals_10, (16, 4), (1, 16), 0 ), alpha=1, beta=1, out=buf11) del primals_11 return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf10, (16, 16), (16, 1), 0 ), primals_10, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0) class ScaledDotProductAttentionNew(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, d_k, d_v, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super(ScaledDotProductAttentionNew, self).__init__() self.fc_q = nn.Linear(d_model, h * d_k) self.fc_k = nn.Linear(d_model, h * d_k) self.fc_v = nn.Linear(d_model, h * d_v) self.fc_o = nn.Linear(h * d_v, d_model) self.dropout = nn.Dropout(dropout) self.d_model = d_model self.d_k = d_k self.d_v = d_v self.h = h self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, input_0, input_1, input_2): primals_3 = self.fc_q.weight primals_4 = self.fc_q.bias primals_5 = self.fc_k.weight primals_6 = self.fc_k.bias primals_7 = self.fc_v.weight primals_8 = self.fc_v.bias primals_10 = self.fc_o.weight primals_11 = self.fc_o.bias primals_1 = input_0 primals_2 = input_1 primals_9 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
rushirajsherlocked/External-Attention-pytorch
ScaledDotProductAttention
false
4,226
[ "MIT" ]
0
7d6814b2d90909adf81c62f3f8a89e30a59d6481
https://github.com/rushirajsherlocked/External-Attention-pytorch/tree/7d6814b2d90909adf81c62f3f8a89e30a59d6481
import torch import numpy as np from torch import nn from torch.nn import init class Model(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, d_k, d_v, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super().__init__() self.fc_q = nn.Linear(d_model, h * d_k) self.fc_k = nn.Linear(d_model, h * d_k) self.fc_v = nn.Linear(d_model, h * d_v) self.fc_o = nn.Linear(h * d_v, d_model) self.dropout = nn.Dropout(dropout) self.d_model = d_model self.d_k = d_k self.d_v = d_v self.h = h self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) att = torch.matmul(q, k) / np.sqrt(self.d_k) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) out = self.fc_o(out) return out def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [4, 4, 4, 4]
AttentionHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/fz/cfzmg4qtw6jgry4nhlwopodzjz62ll3n3ykfox77hwd2crdnlh2w.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_7 del primals_8 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [temp], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm] extern_kernels.bmm(buf5, reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), out=buf6) return (buf6, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), buf5, reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor import torch.nn as nn import torch.nn.functional as F from torch.functional import Tensor def scaled_dot_product_attention(query: 'torch.Tensor', key: 'torch.Tensor', value: 'torch.Tensor') ->Tensor: temp = query.bmm(key.transpose(1, 2)) scale = query.size(-1) ** 0.5 softmax = F.softmax(temp / scale, dim=-1) return softmax.bmm(value) class AttentionHead(nn.Module): def __init__(self, dim_in: 'int', dim_k: 'int', dim_v: 'int'): super().__init__() self.q = nn.Linear(dim_in, dim_k) self.k = nn.Linear(dim_in, dim_k) self.v = nn.Linear(dim_in, dim_v) def forward(self, query: 'torch.Tensor', key: 'torch.Tensor', value: 'Tensor') ->Tensor: return scaled_dot_product_attention(self.q(query), self.k(key), self.v(value)) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'dim_in': 4, 'dim_k': 4, 'dim_v': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import Tensor import torch.nn as nn import torch.nn.functional as F from torch.functional import Tensor assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf2) del primals_7 del primals_8 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = buf3 del buf3 triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = buf4 del buf4 extern_kernels.bmm(buf5, reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), out=buf6) return buf6, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0 ), buf5, reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) def scaled_dot_product_attention(query: 'torch.Tensor', key: 'torch.Tensor', value: 'torch.Tensor') ->Tensor: temp = query.bmm(key.transpose(1, 2)) scale = query.size(-1) ** 0.5 softmax = F.softmax(temp / scale, dim=-1) return softmax.bmm(value) class AttentionHeadNew(nn.Module): def __init__(self, dim_in: 'int', dim_k: 'int', dim_v: 'int'): super().__init__() self.q = nn.Linear(dim_in, dim_k) self.k = nn.Linear(dim_in, dim_k) self.v = nn.Linear(dim_in, dim_v) def forward(self, input_0, input_1, input_2): primals_1 = self.q.weight primals_2 = self.q.bias primals_4 = self.k.weight primals_5 = self.k.bias primals_7 = self.v.weight primals_8 = self.v.bias primals_3 = input_0 primals_6 = input_1 primals_9 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
sabernn/vit-pytorch
AttentionHead
false
4,227
[ "MIT" ]
0
21a2671aa92adb941a56ae629f6089f550949fb2
https://github.com/sabernn/vit-pytorch/tree/21a2671aa92adb941a56ae629f6089f550949fb2
import torch from torch import Tensor import torch.nn as nn import torch.nn.functional as F from torch.functional import Tensor def scaled_dot_product_attention(query: 'torch.Tensor', key: 'torch.Tensor', value: 'torch.Tensor') ->Tensor: temp = query.bmm(key.transpose(1, 2)) scale = query.size(-1) ** 0.5 softmax = F.softmax(temp / scale, dim=-1) return softmax.bmm(value) class Model(nn.Module): def __init__(self, dim_in: 'int', dim_k: 'int', dim_v: 'int'): super().__init__() self.q = nn.Linear(dim_in, dim_k) self.k = nn.Linear(dim_in, dim_k) self.v = nn.Linear(dim_in, dim_v) def forward(self, query: 'torch.Tensor', key: 'torch.Tensor', value: 'Tensor') ->Tensor: return scaled_dot_product_attention(self.q(query), self.k(key), self.v(value)) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [4, 4, 4]
SE_Connect
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/jn/cjnv5uptstyk4xaisuiw5kf5lbz3m33meejxhbfbsta5ozps7ijn.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.mean] # Source node to ATen node mapping: # out => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [2]), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ip/cip355a7nnydvbbk53yzzlgfxtclbx4sdaz6diiadsc7bk4g3ikp.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/cm/ccmo3ssy4it32zgmnziqn6cih5z7bew4voyzb4nxpajh2zquk7fp.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.mul] # Source node to ATen node mapping: # out_3 => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %unsqueeze), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x3), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) assert_size_stride(primals_3, (1, ), (1, )) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 1), (4, 1, 1), 0); del buf1 # reuse buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_3, buf5, 16, grid=grid(16), stream=stream0) del primals_3 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 1), (1, 0), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(primals_1, buf3, buf4, 256, grid=grid(256), stream=stream0) return (buf4, primals_1, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(buf2, (16, 1), (1, 1), 0), buf3, primals_4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn import torch.nn as nn class SE_Connect(nn.Module): def __init__(self, channels, s=4): super().__init__() assert channels % s == 0, '{} % {} != 0'.format(channesl, s) self.linear1 = nn.Linear(channels, channels // s) self.linear2 = nn.Linear(channels // s, channels) def forward(self, x): out = x.mean(dim=2) out = F.relu(self.linear1(out)) out = torch.sigmoid(self.linear2(out)) out = x * out.unsqueeze(2) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x3, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) assert_size_stride(primals_3, (1,), (1,)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 1), (4, 1, 1), 0) del buf1 buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(16)](buf2, primals_3, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 1), ( 1, 0), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_2[grid(256)](primals_1, buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf4, primals_1, reinterpret_tensor(buf0, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf2, (16, 1), (1, 1), 0), buf3, primals_4, buf5 class SE_ConnectNew(nn.Module): def __init__(self, channels, s=4): super().__init__() assert channels % s == 0, '{} % {} != 0'.format(channesl, s) self.linear1 = nn.Linear(channels, channels // s) self.linear2 = nn.Linear(channels // s, channels) def forward(self, input_0): primals_2 = self.linear1.weight primals_3 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
qlindazm/asv-subtools
SE_Connect
false
4,228
[ "Apache-2.0" ]
0
fe1d31db9f3268622016babe944201f6ff81ed56
https://github.com/qlindazm/asv-subtools/tree/fe1d31db9f3268622016babe944201f6ff81ed56
import torch import torch.nn.functional as F import torch.nn import torch.nn as nn class Model(nn.Module): def __init__(self, channels, s=4): super().__init__() assert channels % s == 0, '{} % {} != 0'.format(channesl, s) self.linear1 = nn.Linear(channels, channels // s) self.linear2 = nn.Linear(channels // s, channels) def forward(self, x): out = x.mean(dim=2) out = F.relu(self.linear1(out)) out = torch.sigmoid(self.linear2(out)) out = x * out.unsqueeze(2) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
AttentiveStatsPool
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/lv/clvzonxnhy6fl5yrkxrr6ovbvqty6idyvwskbymkmtmh6lwq4ump.py # Topologically Sorted Source Nodes: [conv1d, alpha], Original ATen: [aten.convolution, aten.tanh] # Source node to ATen node mapping: # alpha => tanh # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1], [0], [1], False, [0], 1), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_tanh_0 = async_compile.triton('triton_poi_fused_convolution_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x3), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/au/cau4pihcaptiev5y2ewn2o2nvrwhk7hogc72cofmmtbyv4rxc2oy.py # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%tanh, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hg/chg3iq6bscxmmxv5f7tuzgwycb4mgrimwfhv2nauw5rj4tt5cmv2.py # Topologically Sorted Source Nodes: [alpha_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # alpha_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%convolution_1, [2], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zu/czuvep3dmpmqmhiiliwubh4ghdt2qr27va67sszkua7trziinwov.py # Topologically Sorted Source Nodes: [alpha_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # alpha_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/js/cjsld3wpkuqa2jsc3754couxrmwao7s4uswgaey3epfkafdnydkc.py # Topologically Sorted Source Nodes: [mul, mean, pow_1, mul_1, sum_2, pow_2, residuals, clamp, std], Original ATen: [aten.mul, aten.sum, aten.pow, aten.sub, aten.clamp, aten.sqrt] # Source node to ATen node mapping: # clamp => clamp_min # mean => sum_2 # mul => mul # mul_1 => mul_1 # pow_1 => pow_1 # pow_2 => pow_2 # residuals => sub_1 # std => sqrt # sum_2 => sum_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_3), kwargs = {}) # %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %pow_1), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [2]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_3, %pow_2), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 1e-09), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%clamp_min,), kwargs = {}) triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4 = async_compile.triton('triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4(in_ptr0, in_ptr1, out_ptr0, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp15 = tmp1 * tmp1 tmp16 = tmp0 * tmp15 tmp17 = tmp4 * tmp4 tmp18 = tmp3 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp8 * tmp8 tmp21 = tmp7 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = tmp12 * tmp12 tmp24 = tmp11 * tmp23 tmp25 = tmp22 + tmp24 tmp26 = tmp14 * tmp14 tmp27 = tmp25 - tmp26 tmp28 = 1e-09 tmp29 = triton_helpers.maximum(tmp27, tmp28) tmp30 = libdevice.sqrt(tmp29) tl.store(out_ptr0 + (x0 + (8*x1)), tmp14, xmask) tl.store(out_ptr2 + (x0 + (8*x1)), tmp30, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv1d, alpha], Original ATen: [aten.convolution, aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_convolution_tanh_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4), (16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [alpha_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [alpha_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf4, buf5, 64, grid=grid(64), stream=stream0) del buf4 buf9 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf6 = reinterpret_tensor(buf9, (4, 4), (8, 1), 0) # alias buf8 = reinterpret_tensor(buf9, (4, 4), (8, 1), 4) # alias # Topologically Sorted Source Nodes: [mul, mean, pow_1, mul_1, sum_2, pow_2, residuals, clamp, std], Original ATen: [aten.mul, aten.sum, aten.pow, aten.sub, aten.clamp, aten.sqrt] triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4.run(buf5, primals_3, buf6, buf8, 16, grid=grid(16), stream=stream0) del buf5 return (buf9, primals_1, primals_3, primals_4, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.nn as nn class AttentiveStatsPool(nn.Module): def __init__(self, in_dim, bottleneck_dim): super().__init__() self.linear1 = nn.Conv1d(in_dim, bottleneck_dim, kernel_size=1) self.linear2 = nn.Conv1d(bottleneck_dim, in_dim, kernel_size=1) def forward(self, x): alpha = torch.tanh(self.linear1(x)) alpha = torch.softmax(self.linear2(alpha), dim=2) mean = torch.sum(alpha * x, dim=2) residuals = torch.sum(alpha * x ** 2, dim=2) - mean ** 2 std = torch.sqrt(residuals.clamp(min=1e-09)) return torch.cat([mean, std], dim=1) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'bottleneck_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x3, tmp3, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4(in_ptr0, in_ptr1, out_ptr0, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp15 = tmp1 * tmp1 tmp16 = tmp0 * tmp15 tmp17 = tmp4 * tmp4 tmp18 = tmp3 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp8 * tmp8 tmp21 = tmp7 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = tmp12 * tmp12 tmp24 = tmp11 * tmp23 tmp25 = tmp22 + tmp24 tmp26 = tmp14 * tmp14 tmp27 = tmp25 - tmp26 tmp28 = 1e-09 tmp29 = triton_helpers.maximum(tmp27, tmp28) tmp30 = libdevice.sqrt(tmp29) tl.store(out_ptr0 + (x0 + 8 * x1), tmp14, xmask) tl.store(out_ptr2 + (x0 + 8 * x1), tmp30, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_tanh_0[grid(64)](buf1, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4), (16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(64)](buf3, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf4 buf9 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf6 = reinterpret_tensor(buf9, (4, 4), (8, 1), 0) buf8 = reinterpret_tensor(buf9, (4, 4), (8, 1), 4) triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4[grid(16)](buf5, primals_3, buf6, buf8, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf5 return buf9, primals_1, primals_3, primals_4, buf1, buf3 class AttentiveStatsPoolNew(nn.Module): def __init__(self, in_dim, bottleneck_dim): super().__init__() self.linear1 = nn.Conv1d(in_dim, bottleneck_dim, kernel_size=1) self.linear2 = nn.Conv1d(bottleneck_dim, in_dim, kernel_size=1) def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
qlindazm/asv-subtools
AttentiveStatsPool
false
4,229
[ "Apache-2.0" ]
0
fe1d31db9f3268622016babe944201f6ff81ed56
https://github.com/qlindazm/asv-subtools/tree/fe1d31db9f3268622016babe944201f6ff81ed56
import torch import torch.nn import torch.nn as nn class Model(nn.Module): def __init__(self, in_dim, bottleneck_dim): super().__init__() self.linear1 = nn.Conv1d(in_dim, bottleneck_dim, kernel_size=1) self.linear2 = nn.Conv1d(bottleneck_dim, in_dim, kernel_size=1) def forward(self, x): alpha = torch.tanh(self.linear1(x)) alpha = torch.softmax(self.linear2(alpha), dim=2) mean = torch.sum(alpha * x, dim=2) residuals = torch.sum(alpha * x ** 2, dim=2) - mean ** 2 std = torch.sqrt(residuals.clamp(min=1e-09)) return torch.cat([mean, std], dim=1) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4]
OutlookAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6x/c6xdtz2w5en5fsdbgutlchlfsh4q7a2byarfiaglzh45nn222wce.py # Topologically Sorted Source Nodes: [unfold], Original ATen: [aten.im2col] # Source node to ATen node mapping: # unfold => add # Graph fragment: # %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) triton_poi_fused_im2col_0 = async_compile.triton('triton_poi_fused_im2col_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_im2col_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_im2col_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = x0 + x1 tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7h/c7howbh27c6wmleecf2uzap4cbx7ucljylpyhqy6ghbnqufvr5po.py # Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%permute_4, [1, 1], [1, 1], [0, 0], True), kwargs = {}) triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qu/cquhnm52pqnjqmg225t6c6byordni5rqv6e4jn22ez5xcptmtplx.py # Topologically Sorted Source Nodes: [attn_3], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_3 => div, exp, sum_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_7, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 0.5), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_2 = async_compile.triton('triton_per_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1024, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_2(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 576 rnumel = 9 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r2 = rindex x5 = xindex x0 = xindex % 9 x4 = (xindex // 144) x6 = xindex % 144 tmp0 = tl.load(in_ptr0 + (r2 + (9*x5)), rmask & xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r2 + (9*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.where(rmask & xmask, tmp5, float("-inf")) tmp8 = triton_helpers.max2(tmp7, 1)[:, None] tmp9 = tmp4 - tmp8 tmp10 = 0.5 tmp11 = tmp9 * tmp10 tmp12 = tl_math.exp(tmp11) tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(rmask & xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp12 / tmp16 tl.store(out_ptr2 + (r2 + (9*x6) + (1312*x4)), tmp17, rmask & xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ey/ceyb3am47ifxesuvzrr26eydaluvdgp3oxv24nkd3mmm7x7jwygu.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 9 x2 = (xindex // 36) % 16 x0 = xindex % 4 x3 = (xindex // 576) x4 = xindex tmp0 = tl.load(in_ptr0 + ((4*(x1 // 3)) + (x2 // 4)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + ((4*(x1 % 3)) + (x2 % 4)), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 6, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 6)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 6") tmp7 = tmp6 + tmp1 tmp8 = tmp6 < 0 tmp9 = tl.where(tmp8, tmp7, tmp6) tl.device_assert(((0 <= tmp9) & (tmp9 < 6)) | ~(xmask), "index out of bounds: 0 <= tmp9 < 6") tmp11 = (-1) + tmp4 tmp12 = tl.full([1], 0, tl.int64) tmp13 = tmp11 >= tmp12 tmp14 = tl.full([1], 4, tl.int64) tmp15 = tmp11 < tmp14 tmp16 = (-1) + tmp9 tmp17 = tmp16 >= tmp12 tmp18 = tmp16 < tmp14 tmp19 = tmp13 & tmp15 tmp20 = tmp19 & tmp17 tmp21 = tmp20 & tmp18 tmp22 = tl.load(in_ptr1 + ((-20) + x0 + (4*tmp9) + (16*tmp4) + (64*x3)), tmp21 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/s2/cs2stujdhu7ikjsefsqrf3pzshjig4nfsxvbaum4e7txzyio474y.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] # Source node to ATen node mapping: # matmul => bmm # Graph fragment: # %bmm : [num_users=1] = call_function[target=torch.ops.aten.bmm.default](args = (%view_7, %view_8), kwargs = {}) triton_poi_fused_bmm_4 = async_compile.triton('triton_poi_fused_bmm_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_bmm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_bmm_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 5184 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 81 x1 = (xindex // 81) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (81*(x1 % 16)) + (1312*(x1 // 16))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tv/ctvlqogy5r6ohjndwmx3qbdwvnnrjj2qm7iknoh6f6ckrtehwqir.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.col2im] # Source node to ATen node mapping: # out_1 => full_default # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 6, 6], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_col2im_5 = async_compile.triton('triton_poi_fused_col2im_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_col2im_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_col2im_5(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wn/cwny5emcwuqtopqfvgdcafgoxd3b3o6ewj73od3v5htm4uthw2ne.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.col2im] # Source node to ATen node mapping: # out_1 => index_put # Graph fragment: # %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put.default](args = (%full_default, [None, None, %unsqueeze_5, %add], %permute_9, True), kwargs = {}) triton_poi_fused_col2im_6 = async_compile.triton('triton_poi_fused_col2im_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_col2im_6', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_col2im_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x7 = (xindex // 48) % 12 x9 = (xindex // 4) % 12 x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 3 x3 = (xindex // 48) % 4 x4 = (xindex // 192) % 3 x5 = (xindex // 576) tmp0 = tl.load(in_ptr0 + (x7), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (x9), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (x0 + (4*x2) + (12*x4) + (36*x1) + (144*x3) + (576*x5) + ((x2 + (3*x4)) // 9)), xmask) tmp1 = tl.full([XBLOCK], 6, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 6)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 6") tmp7 = tmp6 + tmp1 tmp8 = tmp6 < 0 tmp9 = tl.where(tmp8, tmp7, tmp6) tl.device_assert(((0 <= tmp9) & (tmp9 < 6)) | ~(xmask), "index out of bounds: 0 <= tmp9 < 6") tl.atomic_add(out_ptr0 + (tmp9 + (6*tmp4) + (36*x0) + (144*x5)), tmp11, xmask, sem='relaxed') ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6j/c6j6zr7wslvz3frvfzwveytngq4nfxv75gmqi2vju57tya4iykk7.py # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # out_2 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_10,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_7 = async_compile.triton('triton_poi_fused_clone_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel y1 = (yindex // 4) % 4 y0 = yindex % 4 x3 = xindex y2 = (yindex // 16) y5 = yindex tmp0 = 1 + y1 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 6, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = 1 + y0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (7 + y0 + (6*y1) + (36*x3) + (144*y2)), tmp10 & xmask & ymask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x3 + (4*y5)), tmp11, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wv/cwvxucyxlsbx6r4eu4pwwxtgq2adykv2e5ulhy576dumppymjdrc.py # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.add] # Source node to ATen node mapping: # out_2 => add_4 # Graph fragment: # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_13, %primals_6), kwargs = {}) triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (81, 4), (4, 1)) assert_size_stride(primals_4, (81, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((3, 4), (4, 1), torch.int64) # Topologically Sorted Source Nodes: [unfold], Original ATen: [aten.im2col] stream0 = get_raw_stream(0) triton_poi_fused_im2col_0.run(buf1, 12, grid=grid(12), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_1.run(primals_1, buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((64, 81), (81, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 81), (1, 4), 0), out=buf3) del primals_3 buf6 = empty_strided_cuda((4, 1, 16, 9, 9), (1312, 1312, 81, 9, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_3], Original ATen: [aten._softmax] triton_per_fused__softmax_2.run(buf3, primals_4, buf6, 576, 9, grid=grid(576), stream=stream0) del primals_4 buf7 = empty_strided_cuda((4, 1, 16, 9, 4), (576, 1, 36, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf1, buf0, buf7, 2304, grid=grid(2304), stream=stream0) buf8 = reinterpret_tensor(buf3, (64, 9, 9), (81, 9, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] triton_poi_fused_bmm_4.run(buf6, buf8, 5184, grid=grid(5184), stream=stream0) buf9 = empty_strided_cuda((64, 9, 4), (36, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(buf8, reinterpret_tensor(buf7, (64, 9, 4), (36, 4, 1), 0), out=buf9) del buf8 buf10 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.col2im] triton_poi_fused_col2im_5.run(buf10, 576, grid=grid(576), stream=stream0) buf11 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.col2im] triton_poi_fused_col2im_5.run(buf11, 576, grid=grid(576), stream=stream0) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.col2im] triton_poi_fused_col2im_6.run(buf1, buf9, buf11, 2304, grid=grid(2304), stream=stream0) del buf9 buf13 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.clone] triton_poi_fused_clone_7.run(buf11, buf13, 64, 4, grid=grid(64, 4), stream=stream0) del buf11 buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf13, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf14) buf15 = reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf14 # reuse # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.add] triton_poi_fused_add_8.run(buf15, primals_6, 256, grid=grid(256), stream=stream0) del primals_6 return (buf15, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf6, buf10, reinterpret_tensor(buf13, (64, 4), (4, 1), 0), primals_5, reinterpret_tensor(buf7, (64, 4, 9), (36, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((81, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((81, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn from torch.nn import functional as F class OutlookAttention(nn.Module): def __init__(self, dim, num_heads=1, kernel_size=3, padding=1, stride=1, qkv_bias=False, attn_drop=0.1): super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.kernel_size = kernel_size self.padding = padding self.stride = stride self.scale = self.head_dim ** -0.5 self.v_pj = nn.Linear(dim, dim, bias=qkv_bias) self.attn = nn.Linear(dim, kernel_size ** 4 * num_heads) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(attn_drop) self.unflod = nn.Unfold(kernel_size, padding, stride) self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True) def forward(self, x): B, H, W, C = x.shape v = self.v_pj(x).permute(0, 3, 1, 2) h, w = math.ceil(H / self.stride), math.ceil(W / self.stride) v = self.unflod(v).reshape(B, self.num_heads, self.head_dim, self. kernel_size * self.kernel_size, h * w).permute(0, 1, 4, 3, 2) attn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) attn = self.attn(attn).reshape(B, h * w, self.num_heads, self. kernel_size * self.kernel_size, self.kernel_size * self.kernel_size ).permute(0, 2, 1, 3, 4) attn = self.scale * attn attn = attn.softmax(-1) attn = self.attn_drop(attn) out = (attn @ v).permute(0, 1, 4, 3, 2).reshape(B, C * self. kernel_size * self.kernel_size, h * w) out = F.fold(out, output_size=(H, W), kernel_size=self.kernel_size, padding=self.padding, stride=self.stride) out = self.proj(out.permute(0, 2, 3, 1)) out = self.proj_drop(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_im2col_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = x0 + x1 tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused__softmax_2(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 576 rnumel = 9 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r2 = rindex x5 = xindex x0 = xindex % 9 x4 = xindex // 144 x6 = xindex % 144 tmp0 = tl.load(in_ptr0 + (r2 + 9 * x5), rmask & xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r2 + 9 * x0), rmask & xmask, eviction_policy= 'evict_last', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.where(rmask & xmask, tmp5, float('-inf')) tmp8 = triton_helpers.max2(tmp7, 1)[:, None] tmp9 = tmp4 - tmp8 tmp10 = 0.5 tmp11 = tmp9 * tmp10 tmp12 = tl_math.exp(tmp11) tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(rmask & xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp12 / tmp16 tl.store(out_ptr2 + (r2 + 9 * x6 + 1312 * x4), tmp17, rmask & xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 9 x2 = xindex // 36 % 16 x0 = xindex % 4 x3 = xindex // 576 x4 = xindex tmp0 = tl.load(in_ptr0 + (4 * (x1 // 3) + x2 // 4), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (4 * (x1 % 3) + x2 % 4), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 6, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 6) | ~xmask, 'index out of bounds: 0 <= tmp4 < 6') tmp7 = tmp6 + tmp1 tmp8 = tmp6 < 0 tmp9 = tl.where(tmp8, tmp7, tmp6) tl.device_assert((0 <= tmp9) & (tmp9 < 6) | ~xmask, 'index out of bounds: 0 <= tmp9 < 6') tmp11 = -1 + tmp4 tmp12 = tl.full([1], 0, tl.int64) tmp13 = tmp11 >= tmp12 tmp14 = tl.full([1], 4, tl.int64) tmp15 = tmp11 < tmp14 tmp16 = -1 + tmp9 tmp17 = tmp16 >= tmp12 tmp18 = tmp16 < tmp14 tmp19 = tmp13 & tmp15 tmp20 = tmp19 & tmp17 tmp21 = tmp20 & tmp18 tmp22 = tl.load(in_ptr1 + (-20 + x0 + 4 * tmp9 + 16 * tmp4 + 64 * x3), tmp21 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp22, xmask) @triton.jit def triton_poi_fused_bmm_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 5184 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 81 x1 = xindex // 81 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 81 * (x1 % 16) + 1312 * (x1 // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_col2im_5(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_col2im_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x7 = xindex // 48 % 12 x9 = xindex // 4 % 12 x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 3 x3 = xindex // 48 % 4 x4 = xindex // 192 % 3 x5 = xindex // 576 tmp0 = tl.load(in_ptr0 + x7, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + x9, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (x0 + 4 * x2 + 12 * x4 + 36 * x1 + 144 * x3 + 576 * x5 + (x2 + 3 * x4) // 9), xmask) tmp1 = tl.full([XBLOCK], 6, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 6) | ~xmask, 'index out of bounds: 0 <= tmp4 < 6') tmp7 = tmp6 + tmp1 tmp8 = tmp6 < 0 tmp9 = tl.where(tmp8, tmp7, tmp6) tl.device_assert((0 <= tmp9) & (tmp9 < 6) | ~xmask, 'index out of bounds: 0 <= tmp9 < 6') tl.atomic_add(out_ptr0 + (tmp9 + 6 * tmp4 + 36 * x0 + 144 * x5), tmp11, xmask, sem='relaxed') @triton.jit def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel y1 = yindex // 4 % 4 y0 = yindex % 4 x3 = xindex y2 = yindex // 16 y5 = yindex tmp0 = 1 + y1 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 6, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = 1 + y0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (7 + y0 + 6 * y1 + 36 * x3 + 144 * y2), tmp10 & xmask & ymask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x3 + 4 * y5), tmp11, xmask & ymask) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (81, 4), (4, 1)) assert_size_stride(primals_4, (81,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((3, 4), (4, 1), torch.int64) get_raw_stream(0) triton_poi_fused_im2col_0[grid(12)](buf1, 12, XBLOCK=16, num_warps= 1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_avg_pool2d_1[grid(256)](primals_1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64, 81), (81, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 81), (1, 4), 0), out=buf3) del primals_3 buf6 = empty_strided_cuda((4, 1, 16, 9, 9), (1312, 1312, 81, 9, 1), torch.float32) triton_per_fused__softmax_2[grid(576)](buf3, primals_4, buf6, 576, 9, XBLOCK=8, num_warps=2, num_stages=1) del primals_4 buf7 = empty_strided_cuda((4, 1, 16, 9, 4), (576, 1, 36, 4, 1), torch.float32) triton_poi_fused_clone_3[grid(2304)](buf1, buf0, buf7, 2304, XBLOCK =256, num_warps=4, num_stages=1) buf8 = reinterpret_tensor(buf3, (64, 9, 9), (81, 9, 1), 0) del buf3 triton_poi_fused_bmm_4[grid(5184)](buf6, buf8, 5184, XBLOCK=128, num_warps=4, num_stages=1) buf9 = empty_strided_cuda((64, 9, 4), (36, 4, 1), torch.float32) extern_kernels.bmm(buf8, reinterpret_tensor(buf7, (64, 9, 4), (36, 4, 1), 0), out=buf9) del buf8 buf10 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32 ) triton_poi_fused_col2im_5[grid(576)](buf10, 576, XBLOCK=256, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32 ) triton_poi_fused_col2im_5[grid(576)](buf11, 576, XBLOCK=256, num_warps=4, num_stages=1) triton_poi_fused_col2im_6[grid(2304)](buf1, buf9, buf11, 2304, XBLOCK=128, num_warps=4, num_stages=1) del buf9 buf13 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused_clone_7[grid(64, 4)](buf11, buf13, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del buf11 buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf13, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf14) buf15 = reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf14 triton_poi_fused_add_8[grid(256)](buf15, primals_6, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_6 return buf15, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0 ), buf6, buf10, reinterpret_tensor(buf13, (64, 4), (4, 1), 0 ), primals_5, reinterpret_tensor(buf7, (64, 4, 9), (36, 1, 4), 0) class OutlookAttentionNew(nn.Module): def __init__(self, dim, num_heads=1, kernel_size=3, padding=1, stride=1, qkv_bias=False, attn_drop=0.1): super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.kernel_size = kernel_size self.padding = padding self.stride = stride self.scale = self.head_dim ** -0.5 self.v_pj = nn.Linear(dim, dim, bias=qkv_bias) self.attn = nn.Linear(dim, kernel_size ** 4 * num_heads) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(attn_drop) self.unflod = nn.Unfold(kernel_size, padding, stride) self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True) def forward(self, input_0): primals_2 = self.v_pj.weight primals_3 = self.attn.weight primals_4 = self.attn.bias primals_5 = self.proj.weight primals_6 = self.proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
rushirajsherlocked/External-Attention-pytorch
OutlookAttention
false
4,230
[ "MIT" ]
0
7d6814b2d90909adf81c62f3f8a89e30a59d6481
https://github.com/rushirajsherlocked/External-Attention-pytorch/tree/7d6814b2d90909adf81c62f3f8a89e30a59d6481
import math import torch from torch import nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, dim, num_heads=1, kernel_size=3, padding=1, stride=1, qkv_bias=False, attn_drop=0.1): super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.kernel_size = kernel_size self.padding = padding self.stride = stride self.scale = self.head_dim ** -0.5 self.v_pj = nn.Linear(dim, dim, bias=qkv_bias) self.attn = nn.Linear(dim, kernel_size ** 4 * num_heads) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(attn_drop) self.unflod = nn.Unfold(kernel_size, padding, stride) self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True) def forward(self, x): B, H, W, C = x.shape v = self.v_pj(x).permute(0, 3, 1, 2) h, w = math.ceil(H / self.stride), math.ceil(W / self.stride) v = self.unflod(v).reshape(B, self.num_heads, self.head_dim, self. kernel_size * self.kernel_size, h * w).permute(0, 1, 4, 3, 2) attn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) attn = self.attn(attn).reshape(B, h * w, self.num_heads, self. kernel_size * self.kernel_size, self.kernel_size * self.kernel_size ).permute(0, 2, 1, 3, 4) attn = self.scale * attn attn = attn.softmax(-1) attn = self.attn_drop(attn) out = (attn @ v).permute(0, 1, 4, 3, 2).reshape(B, C * self. kernel_size * self.kernel_size, h * w) out = F.fold(out, output_size=(H, W), kernel_size=self.kernel_size, padding=self.padding, stride=self.stride) out = self.proj(out.permute(0, 2, 3, 1)) out = self.proj_drop(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/a2/ca2wr2cvkya5clovpxidv7ia56pdcyp7uq4omtpg5m2nr7ya3ryn.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 64), (64, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (1, 64), (64, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 4096, grid=grid(4096), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf3, primals_5, 4096, grid=grid(4096), stream=stream0) del primals_5 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 1), (1, 64), 0), alpha=1, beta=1, out=buf5) del primals_7 return (reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Critic(nn.Module): def __init__(self, obs_dim: 'int'): super().__init__() self.fc1 = nn.Linear(obs_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, 1) def forward(self, x): x = torch.tanh(self.fc1(x)) x = torch.tanh(self.fc2(x)) x = self.fc3(x) return x.squeeze() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'obs_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 64), (64, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (1, 64), (64, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(4096)](buf1, primals_2, 4096, XBLOCK= 256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf2 triton_poi_fused_tanh_0[grid(4096)](buf3, primals_5, 4096, XBLOCK= 256, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 1), (1, 64), 0), alpha=1, beta=1, out=buf5) del primals_7 return reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, primals_6, primals_4 class CriticNew(nn.Module): def __init__(self, obs_dim: 'int'): super().__init__() self.fc1 = nn.Linear(obs_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, 1) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
raznem/rlex
Critic
false
4,231
[ "MIT" ]
0
d24b964d80067becc81d86f6ce87e5be413b7049
https://github.com/raznem/rlex/tree/d24b964d80067becc81d86f6ce87e5be413b7049
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, obs_dim: 'int'): super().__init__() self.fc1 = nn.Linear(obs_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, 1) def forward(self, x): x = torch.tanh(self.fc1(x)) x = torch.tanh(self.fc2(x)) x = self.fc3(x) return x.squeeze() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
TdnnAffine
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/cu/ccutvo2v4333pq6xhrg2zryqqwthm7dmmuqprvva2xdwiodpz5jn.py # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.convolution] # Source node to ATen node mapping: # outputs => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf1, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn def to_device(device_object, tensor): """ Select device for non-parameters tensor w.r.t model or tensor which has been specified a device. """ if isinstance(device_object, torch.nn.Module): next(device_object.parameters()).device elif isinstance(device_object, torch.Tensor): pass return tensor class TdnnAffine(torch.nn.Module): """ An implemented tdnn affine component by conv1d y = splice(w * x, context) + b @input_dim: number of dims of frame <=> inputs channels of conv @output_dim: number of layer nodes <=> outputs channels of conv @context: a list of context e.g. [-2,0,2] If context is [0], then the TdnnAffine is equal to linear layer. """ def __init__(self, input_dim, output_dim, context=[0], bias=True, pad= True, stride=1, groups=1, norm_w=False, norm_f=False): super(TdnnAffine, self).__init__() assert input_dim % groups == 0 for index in range(0, len(context) - 1): if context[index] >= context[index + 1]: raise ValueError( 'Context tuple {} is invalid, such as the order.'. format(context)) self.input_dim = input_dim self.output_dim = output_dim self.context = context self.bool_bias = bias self.pad = pad self.groups = groups self.norm_w = norm_w self.norm_f = norm_f self.stride = stride self.left_context = context[0] if context[0] < 0 else 0 self.right_context = context[-1] if context[-1] > 0 else 0 self.tot_context = self.right_context - self.left_context + 1 if self.tot_context > 1 and self.norm_f: self.norm_f = False None kernel_size = self.tot_context, self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim // groups, *kernel_size)) if self.bool_bias: self.bias = torch.nn.Parameter(torch.randn(output_dim)) else: self.register_parameter('bias', None) self.init_weight() if len(context) != self.tot_context: self.mask = torch.tensor([[[(1 if index in context else 0) for index in range(self.left_context, self.right_context + 1)]]]) else: self.mask = None self.selected_device = False def init_weight(self): torch.nn.init.normal_(self.weight, 0.0, 0.01) if self.bias is not None: torch.nn.init.constant_(self.bias, 0.0) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim if self.pad: inputs = F.pad(inputs, (-self.left_context, self.right_context), mode='constant', value=0) assert inputs.shape[2] >= self.tot_context if not self.selected_device and self.mask is not None: self.mask = to_device(self, self.mask) self.selected_device = True filters = (self.weight * self.mask if self.mask is not None else self.weight) if self.norm_w: filters = F.normalize(filters, dim=1) if self.norm_f: inputs = F.normalize(inputs, dim=1) outputs = F.conv1d(inputs, filters, self.bias, stride=self.stride, padding=0, dilation=1, groups=self.groups) return outputs def extra_repr(self): return ( '{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}' .format(**self.__dict__)) @classmethod def thop_count(self, m, x, y): x = x[0] kernel_ops = torch.zeros(m.weight.size()[2:]).numel() bias_ops = 1 if m.bias is not None else 0 total_ops = y.nelement() * (m.input_dim * kernel_ops + bias_ops) m.total_ops += torch.DoubleTensor([int(total_ops)]) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(64)](buf1, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf1, primals_1, primals_2 def to_device(device_object, tensor): """ Select device for non-parameters tensor w.r.t model or tensor which has been specified a device. """ if isinstance(device_object, torch.nn.Module): next(device_object.parameters()).device elif isinstance(device_object, torch.Tensor): pass return tensor class TdnnAffineNew(torch.nn.Module): """ An implemented tdnn affine component by conv1d y = splice(w * x, context) + b @input_dim: number of dims of frame <=> inputs channels of conv @output_dim: number of layer nodes <=> outputs channels of conv @context: a list of context e.g. [-2,0,2] If context is [0], then the TdnnAffine is equal to linear layer. """ def __init__(self, input_dim, output_dim, context=[0], bias=True, pad= True, stride=1, groups=1, norm_w=False, norm_f=False): super(TdnnAffineNew, self).__init__() assert input_dim % groups == 0 for index in range(0, len(context) - 1): if context[index] >= context[index + 1]: raise ValueError( 'Context tuple {} is invalid, such as the order.'. format(context)) self.input_dim = input_dim self.output_dim = output_dim self.context = context self.bool_bias = bias self.pad = pad self.groups = groups self.norm_w = norm_w self.norm_f = norm_f self.stride = stride self.left_context = context[0] if context[0] < 0 else 0 self.right_context = context[-1] if context[-1] > 0 else 0 self.tot_context = self.right_context - self.left_context + 1 if self.tot_context > 1 and self.norm_f: self.norm_f = False None kernel_size = self.tot_context, self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim // groups, *kernel_size)) if self.bool_bias: self.bias = torch.nn.Parameter(torch.randn(output_dim)) else: self.register_parameter('bias', None) self.init_weight() if len(context) != self.tot_context: self.mask = torch.tensor([[[(1 if index in context else 0) for index in range(self.left_context, self.right_context + 1)]]]) else: self.mask = None self.selected_device = False def init_weight(self): torch.nn.init.normal_(self.weight, 0.0, 0.01) if self.bias is not None: torch.nn.init.constant_(self.bias, 0.0) def extra_repr(self): return ( '{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}' .format(**self.__dict__)) @classmethod def thop_count(self, m, x, y): x = x[0] kernel_ops = torch.zeros(m.weight.size()[2:]).numel() bias_ops = 1 if m.bias is not None else 0 total_ops = y.nelement() * (m.input_dim * kernel_ops + bias_ops) m.total_ops += torch.DoubleTensor([int(total_ops)]) def forward(self, input_0): primals_2 = self.weight primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
qlindazm/asv-subtools
TdnnAffine
false
4,232
[ "Apache-2.0" ]
0
fe1d31db9f3268622016babe944201f6ff81ed56
https://github.com/qlindazm/asv-subtools/tree/fe1d31db9f3268622016babe944201f6ff81ed56
import torch import torch.nn.functional as F import torch.nn def to_device(device_object, tensor): """ Select device for non-parameters tensor w.r.t model or tensor which has been specified a device. """ if isinstance(device_object, torch.nn.Module): next(device_object.parameters()).device elif isinstance(device_object, torch.Tensor): pass return tensor class Model(torch.nn.Module): """ An implemented tdnn affine component by conv1d y = splice(w * x, context) + b @input_dim: number of dims of frame <=> inputs channels of conv @output_dim: number of layer nodes <=> outputs channels of conv @context: a list of context e.g. [-2,0,2] If context is [0], then the TdnnAffine is equal to linear layer. """ def __init__(self, input_dim, output_dim, context=[0], bias=True, pad= True, stride=1, groups=1, norm_w=False, norm_f=False): super().__init__() assert input_dim % groups == 0 for index in range(0, len(context) - 1): if context[index] >= context[index + 1]: raise ValueError( 'Context tuple {} is invalid, such as the order.'. format(context)) self.input_dim = input_dim self.output_dim = output_dim self.context = context self.bool_bias = bias self.pad = pad self.groups = groups self.norm_w = norm_w self.norm_f = norm_f self.stride = stride self.left_context = context[0] if context[0] < 0 else 0 self.right_context = context[-1] if context[-1] > 0 else 0 self.tot_context = self.right_context - self.left_context + 1 if self.tot_context > 1 and self.norm_f: self.norm_f = False None kernel_size = self.tot_context, self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim // groups, *kernel_size)) if self.bool_bias: self.bias = torch.nn.Parameter(torch.randn(output_dim)) else: self.register_parameter('bias', None) self.init_weight() if len(context) != self.tot_context: self.mask = torch.tensor([[[(1 if index in context else 0) for index in range(self.left_context, self.right_context + 1)]]]) else: self.mask = None self.selected_device = False def init_weight(self): torch.nn.init.normal_(self.weight, 0.0, 0.01) if self.bias is not None: torch.nn.init.constant_(self.bias, 0.0) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim if self.pad: inputs = F.pad(inputs, (-self.left_context, self.right_context), mode='constant', value=0) assert inputs.shape[2] >= self.tot_context if not self.selected_device and self.mask is not None: self.mask = to_device(self, self.mask) self.selected_device = True filters = (self.weight * self.mask if self.mask is not None else self.weight) if self.norm_w: filters = F.normalize(filters, dim=1) if self.norm_f: inputs = F.normalize(inputs, dim=1) outputs = F.conv1d(inputs, filters, self.bias, stride=self.stride, padding=0, dilation=1, groups=self.groups) return outputs def extra_repr(self): return ( '{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}' .format(**self.__dict__)) @classmethod def thop_count(self, m, x, y): x = x[0] kernel_ops = torch.zeros(m.weight.size()[2:]).numel() bias_ops = 1 if m.bias is not # ... truncated (>4000 chars) for memory efficiency
ChannelAttentionModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/p6/cp6vuooninjiuju55qtiu7u3yjx4izmj5jtvx2lkeddu4rheo45u.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 49 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (49*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (25088*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oc/cochsno6wpkwamgsqz5legelnxxchuje5twfzhozvusus3e5bzmo.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 262144 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qx/cqxjinzzdi527r7k6w42436njez2bx4cbmwgxdreh5ebe3jdfhoa.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] # Source node to ATen node mapping: # y => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 100352 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/d5/cd5fpdjs2anlog45byuw5kz6tjzeazlgaskaocoyyn6w5kpybr4e.py # Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax] # Source node to ATen node mapping: # att_1 => div_1, exp, sum_1 # wrapped_sqrt => full_default # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 7.0), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False}) # %scalar_tensor_default : [num_users=2] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False}) # %ge_scalar : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%full_default, 0), kwargs = {}) # %neg_default : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default,), kwargs = {}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar, %scalar_tensor_default, %neg_default), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_6, %where_self), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self, %full_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, %mul_tensor_1), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_sqrt_3 = async_compile.triton('triton_per_fused__softmax_sqrt_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[2048, 512], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_sqrt_3', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_sqrt_3(in_ptr0, out_ptr2, xnumel, rnumel): xnumel = 2048 XBLOCK: tl.constexpr = 1 rnumel = 512 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (512*x0)), None) tmp1 = tl.full([1], 7.0, tl.float64) tmp2 = tl.full([1], 0.0, tl.float64) tmp3 = tmp1 >= tmp2 tmp4 = 1.0 tmp5 = -1.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp8, 0)) tmp11 = tmp7 - tmp10 tmp12 = tmp6.to(tl.float64) tmp13 = tmp12 * tmp1 tmp14 = tmp13.to(tl.float32) tmp15 = tmp11 / tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tl.broadcast_to(tmp16, [RBLOCK]) tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0)) tmp20 = tmp16 / tmp19 tl.store(out_ptr2 + (r1 + (512*x0)), tmp20, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 512, 1, 49), (25088, 49, 49, 1)) assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_3, (512, ), (1, )) assert_size_stride(primals_4, (49, 49), (49, 1)) assert_size_stride(primals_5, (49, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 1, 49), (25088, 1, 25088, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 2048, 49, grid=grid(2048, 49), stream=stream0) del primals_1 buf1 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_2, buf1, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 512, 1, 49), (25088, 1, 25088, 512)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf3, primals_3, 100352, grid=grid(100352), stream=stream0) del primals_3 buf4 = empty_strided_cuda((4, 512, 512), (262144, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (4, 512, 49), (25088, 1, 512), 0), reinterpret_tensor(buf3, (4, 49, 512), (25088, 512, 1), 0), out=buf4) buf7 = empty_strided_cuda((4, 1, 512, 512), (262144, 1, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax] triton_per_fused__softmax_sqrt_3.run(buf4, buf7, 2048, 512, grid=grid(2048), stream=stream0) del buf4 buf8 = empty_strided_cuda((4, 512, 49), (25088, 49, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (4, 512, 512), (262144, 512, 1), 0), reinterpret_tensor(buf3, (4, 512, 49), (25088, 1, 512), 0), out=buf8) buf9 = empty_strided_cuda((2048, 49), (49, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (2048, 49), (49, 1), 0), reinterpret_tensor(primals_4, (49, 49), (1, 49), 0), alpha=1, beta=1, out=buf9) del primals_5 return (reinterpret_tensor(buf9, (4, 512, 49), (25088, 49, 1), 0), buf0, buf1, buf3, buf7, reinterpret_tensor(buf8, (2048, 49), (49, 1), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 512, 1, 49), (25088, 49, 49, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((49, 49), (49, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((49, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn from torch.nn import init class SimplifiedScaledDotProductAttention(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super(SimplifiedScaledDotProductAttention, self).__init__() self.d_model = d_model self.d_k = d_model // h self.d_v = d_model // h self.h = h self.fc_o = nn.Linear(h * self.d_v, d_model) self.dropout = nn.Dropout(dropout) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = queries.view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) k = keys.view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) v = values.view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) att = torch.matmul(q, k) / np.sqrt(self.d_k) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) out = self.fc_o(out) return out class ChannelAttentionModule(nn.Module): def __init__(self, d_model=512, kernel_size=3, H=7, W=7): super().__init__() self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size, padding=(kernel_size - 1) // 2) self.pa = SimplifiedScaledDotProductAttention(H * W, h=1) def forward(self, x): bs, c, _h, _w = x.shape y = self.cnn(x) y = y.view(bs, c, -1) y = self.pa(y, y, y) return y def get_inputs(): return [torch.rand([4, 512, 1, 49])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np from torch import nn from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 49 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 49 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 512 * x2 + 25088 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, None) @triton.jit def triton_per_fused__softmax_sqrt_3(in_ptr0, out_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 512 * x0), None) tmp1 = tl.full([1], 7.0, tl.float64) tmp2 = tl.full([1], 0.0, tl.float64) tmp3 = tmp1 >= tmp2 tmp4 = 1.0 tmp5 = -1.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp8, 0)) tmp11 = tmp7 - tmp10 tmp12 = tmp6.to(tl.float64) tmp13 = tmp12 * tmp1 tmp14 = tmp13.to(tl.float32) tmp15 = tmp11 / tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tl.broadcast_to(tmp16, [RBLOCK]) tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0)) tmp20 = tmp16 / tmp19 tl.store(out_ptr2 + (r1 + 512 * x0), tmp20, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 512, 1, 49), (25088, 49, 49, 1)) assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_3, (512,), (1,)) assert_size_stride(primals_4, (49, 49), (49, 1)) assert_size_stride(primals_5, (49,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 1, 49), (25088, 1, 25088, 512), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(2048, 49)](primals_1, buf0, 2048, 49, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_1[grid(262144, 9)](primals_2, buf1, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 512, 1, 49), (25088, 1, 25088, 512)) buf3 = buf2 del buf2 triton_poi_fused_convolution_2[grid(100352)](buf3, primals_3, 100352, XBLOCK=1024, num_warps=4, num_stages=1) del primals_3 buf4 = empty_strided_cuda((4, 512, 512), (262144, 512, 1), torch. float32) extern_kernels.bmm(reinterpret_tensor(buf3, (4, 512, 49), (25088, 1, 512), 0), reinterpret_tensor(buf3, (4, 49, 512), (25088, 512, 1 ), 0), out=buf4) buf7 = empty_strided_cuda((4, 1, 512, 512), (262144, 1, 512, 1), torch.float32) triton_per_fused__softmax_sqrt_3[grid(2048)](buf4, buf7, 2048, 512, num_warps=4, num_stages=1) del buf4 buf8 = empty_strided_cuda((4, 512, 49), (25088, 49, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf7, (4, 512, 512), (262144, 512, 1), 0), reinterpret_tensor(buf3, (4, 512, 49), (25088, 1, 512), 0), out=buf8) buf9 = empty_strided_cuda((2048, 49), (49, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (2048, 49), (49, 1), 0), reinterpret_tensor(primals_4, (49, 49), (1, 49), 0 ), alpha=1, beta=1, out=buf9) del primals_5 return reinterpret_tensor(buf9, (4, 512, 49), (25088, 49, 1), 0 ), buf0, buf1, buf3, buf7, reinterpret_tensor(buf8, (2048, 49), (49, 1), 0), primals_4 class SimplifiedScaledDotProductAttention(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super(SimplifiedScaledDotProductAttention, self).__init__() self.d_model = d_model self.d_k = d_model // h self.d_v = d_model // h self.h = h self.fc_o = nn.Linear(h * self.d_v, d_model) self.dropout = nn.Dropout(dropout) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = queries.view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) k = keys.view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) v = values.view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) att = torch.matmul(q, k) / np.sqrt(self.d_k) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) out = self.fc_o(out) return out class ChannelAttentionModuleNew(nn.Module): def __init__(self, d_model=512, kernel_size=3, H=7, W=7): super().__init__() self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size, padding=(kernel_size - 1) // 2) self.pa = SimplifiedScaledDotProductAttention(H * W, h=1) def forward(self, input_0): primals_2 = self.cnn.weight primals_3 = self.cnn.bias primals_4 = self.pa.fc_o.weight primals_5 = self.pa.fc_o.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
rushirajsherlocked/External-Attention-pytorch
ChannelAttentionModule
false
4,233
[ "MIT" ]
0
7d6814b2d90909adf81c62f3f8a89e30a59d6481
https://github.com/rushirajsherlocked/External-Attention-pytorch/tree/7d6814b2d90909adf81c62f3f8a89e30a59d6481
import torch import numpy as np from torch import nn from torch.nn import init class SimplifiedScaledDotProductAttention(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super().__init__() self.d_model = d_model self.d_k = d_model // h self.d_v = d_model // h self.h = h self.fc_o = nn.Linear(h * self.d_v, d_model) self.dropout = nn.Dropout(dropout) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = queries.view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) k = keys.view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) v = values.view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) att = torch.matmul(q, k) / np.sqrt(self.d_k) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) out = self.fc_o(out) return out class Model(nn.Module): def __init__(self, d_model=512, kernel_size=3, H=7, W=7): super().__init__() self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size, padding=(kernel_size - 1) // 2) self.pa = SimplifiedScaledDotProductAttention(H * W, h=1) def forward(self, x): bs, c, _h, _w = x.shape y = self.cnn(x) y = y.view(bs, c, -1) y = self.pa(y, y, y) return y def get_inputs(): return [torch.rand([4, 512, 1, 49])] def get_init_inputs(): return []
LDEPooling
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/px/cpxgh7rygczo7s5i6nrfdx75l2hi6cjdfexsy2ctyfflclxdb7ye.py # Topologically Sorted Source Nodes: [r, pow_1, add, neg, pow_2, sum_1, mul, w], Original ATen: [aten.sub, aten.pow, aten.add, aten.neg, aten.sum, aten.mul, aten._softmax] # Source node to ATen node mapping: # add => add # mul => mul # neg => neg # pow_1 => pow_1 # pow_2 => pow_2 # r => sub # sum_1 => sum_1 # w => amax, exp, sub_1, sum_2 # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %primals_2), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, 1e-10), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%add,), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [2], True), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %sum_1), kwargs = {}) # %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%mul, [3], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [3], True), kwargs = {}) triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0 = async_compile.triton('triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 4 x1 = (xindex // 4) x3 = xindex tmp0 = tl.load(in_ptr0 + (r2), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0 + (16*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (r2), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (4 + x0 + (16*x1)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (64 + r2), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (8 + x0 + (16*x1)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (128 + r2), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (12 + x0 + (16*x1)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (192 + r2), None, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp2 = 1e-10 tmp3 = tmp1 + tmp2 tmp4 = -tmp3 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp21 = tmp19 - tmp20 tmp22 = tmp21 * tmp21 tmp23 = tmp18 + tmp22 tmp24 = tmp4 * tmp23 tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.where(xmask, tmp25, float("-inf")) tmp28 = triton_helpers.max2(tmp27, 1)[:, None] tmp29 = tmp24 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.where(xmask, tmp31, 0) tmp34 = tl.sum(tmp33, 1)[:, None] tl.store(out_ptr0 + (r2 + (64*x3)), tmp24, xmask) tl.store(out_ptr1 + (x3), tmp28, xmask) tl.store(out_ptr2 + (x3), tmp34, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5c/c5cyg6tmgybx2znb56tli3mxu474a5mhwo2sfz4cyzeil7dyv77v.py # Topologically Sorted Source Nodes: [r, w, mul_1, e], Original ATen: [aten.sub, aten._softmax, aten.mul, aten.mean] # Source node to ATen node mapping: # e => mean # mul_1 => mul_1 # r => sub # w => div, exp, sub_1 # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %primals_2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul_1, [1]), kwargs = {}) triton_poi_fused__softmax_mean_mul_sub_1 = async_compile.triton('triton_poi_fused__softmax_mean_mul_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mean_mul_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mean_mul_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = (xindex // 256) x4 = (xindex // 64) x3 = xindex % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (256*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (4*x2), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (4*x4), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x3), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (64 + x0 + (256*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr3 + (1 + (4*x4)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (128 + x0 + (256*x2)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr2 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr3 + (2 + (4*x4)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (192 + x0 + (256*x2)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp34 = tl.load(in_ptr2 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr3 + (3 + (4*x4)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp5 * tmp8 tmp12 = tmp10 - tmp11 tmp13 = tl_math.exp(tmp12) tmp15 = tmp13 / tmp14 tmp17 = tmp16 - tmp7 tmp18 = tmp15 * tmp17 tmp19 = tmp9 + tmp18 tmp22 = tmp20 - tmp21 tmp23 = tl_math.exp(tmp22) tmp25 = tmp23 / tmp24 tmp27 = tmp26 - tmp7 tmp28 = tmp25 * tmp27 tmp29 = tmp19 + tmp28 tmp32 = tmp30 - tmp31 tmp33 = tl_math.exp(tmp32) tmp35 = tmp33 / tmp34 tmp37 = tmp36 - tmp7 tmp38 = tmp35 * tmp37 tmp39 = tmp29 + tmp38 tmp40 = 4.0 tmp41 = tmp39 / tmp40 tl.store(out_ptr0 + (x5), tmp41, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 64), (64, 1)) assert_size_stride(primals_3, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 64), (256, 64, 1024, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [r, pow_1, add, neg, pow_2, sum_1, mul, w], Original ATen: [aten.sub, aten.pow, aten.add, aten.neg, aten.sum, aten.mul, aten._softmax] stream0 = get_raw_stream(0) triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0.run(primals_3, primals_1, primals_2, buf0, buf1, buf2, 16, 64, grid=grid(16), stream=stream0) buf3 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [r, w, mul_1, e], Original ATen: [aten.sub, aten._softmax, aten.mul, aten.mean] triton_poi_fused__softmax_mean_mul_sub_1.run(buf0, buf1, buf2, primals_1, primals_2, buf3, 1024, grid=grid(1024), stream=stream0) del buf0 return (reinterpret_tensor(buf3, (4, 256, 1), (256, 1, 1), 0), primals_1, primals_2, primals_3, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn class LDEPooling(torch.nn.Module): """A novel learnable dictionary encoding layer. Reference: Weicheng Cai, etc., "A NOVEL LEARNABLE DICTIONARY ENCODING LAYER FOR END-TO-END LANGUAGE IDENTIFICATION", icassp, 2018 """ def __init__(self, input_dim, c_num=64, eps=1e-10): super(LDEPooling, self).__init__() self.input_dim = input_dim self.output_dim = input_dim * c_num self.eps = eps self.mu = torch.nn.Parameter(torch.randn(input_dim, c_num)) self.s = torch.nn.Parameter(torch.ones(c_num)) self.softmax_for_w = torch.nn.Softmax(dim=3) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim r = inputs.transpose(1, 2).unsqueeze(3) - self.mu w = self.softmax_for_w(-(self.s ** 2 + self.eps) * torch.sum(r ** 2, dim=2, keepdim=True)) e = torch.mean(w * r, dim=1) return e.reshape(-1, self.output_dim, 1) def get_output_dim(self): return self.output_dim def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr ): xnumel = 16 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 4 x1 = xindex // 4 x3 = xindex tmp0 = tl.load(in_ptr0 + r2, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0 + 16 * x1), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr2 + r2, None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (4 + x0 + 16 * x1), xmask, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr2 + (64 + r2), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (8 + x0 + 16 * x1), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr2 + (128 + r2), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (12 + x0 + 16 * x1), xmask, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr2 + (192 + r2), None, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp2 = 1e-10 tmp3 = tmp1 + tmp2 tmp4 = -tmp3 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp21 = tmp19 - tmp20 tmp22 = tmp21 * tmp21 tmp23 = tmp18 + tmp22 tmp24 = tmp4 * tmp23 tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.where(xmask, tmp25, float('-inf')) tmp28 = triton_helpers.max2(tmp27, 1)[:, None] tmp29 = tmp24 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.where(xmask, tmp31, 0) tmp34 = tl.sum(tmp33, 1)[:, None] tl.store(out_ptr0 + (r2 + 64 * x3), tmp24, xmask) tl.store(out_ptr1 + x3, tmp28, xmask) tl.store(out_ptr2 + x3, tmp34, xmask) @triton.jit def triton_poi_fused__softmax_mean_mul_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex // 256 x4 = xindex // 64 x3 = xindex % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 256 * x2), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + 4 * x2, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + 4 * x4, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x3, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (64 + x0 + 256 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr2 + (1 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr3 + (1 + 4 * x4), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr0 + (128 + x0 + 256 * x2), xmask, eviction_policy ='evict_last') tmp21 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp24 = tl.load(in_ptr2 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp26 = tl.load(in_ptr3 + (2 + 4 * x4), xmask, eviction_policy='evict_last' ) tmp30 = tl.load(in_ptr0 + (192 + x0 + 256 * x2), xmask, eviction_policy ='evict_last') tmp31 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp34 = tl.load(in_ptr2 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp36 = tl.load(in_ptr3 + (3 + 4 * x4), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp5 * tmp8 tmp12 = tmp10 - tmp11 tmp13 = tl_math.exp(tmp12) tmp15 = tmp13 / tmp14 tmp17 = tmp16 - tmp7 tmp18 = tmp15 * tmp17 tmp19 = tmp9 + tmp18 tmp22 = tmp20 - tmp21 tmp23 = tl_math.exp(tmp22) tmp25 = tmp23 / tmp24 tmp27 = tmp26 - tmp7 tmp28 = tmp25 * tmp27 tmp29 = tmp19 + tmp28 tmp32 = tmp30 - tmp31 tmp33 = tl_math.exp(tmp32) tmp35 = tmp33 / tmp34 tmp37 = tmp36 - tmp7 tmp38 = tmp35 * tmp37 tmp39 = tmp29 + tmp38 tmp40 = 4.0 tmp41 = tmp39 / tmp40 tl.store(out_ptr0 + x5, tmp41, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 64), (64, 1)) assert_size_stride(primals_3, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 64), (256, 64, 1024, 1), torch. float32) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0[grid(16)](primals_3 , primals_1, primals_2, buf0, buf1, buf2, 16, 64, XBLOCK=8, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.float32) triton_poi_fused__softmax_mean_mul_sub_1[grid(1024)](buf0, buf1, buf2, primals_1, primals_2, buf3, 1024, XBLOCK=128, num_warps=4, num_stages=1) del buf0 return reinterpret_tensor(buf3, (4, 256, 1), (256, 1, 1), 0 ), primals_1, primals_2, primals_3, buf1, buf2 class LDEPoolingNew(torch.nn.Module): """A novel learnable dictionary encoding layer. Reference: Weicheng Cai, etc., "A NOVEL LEARNABLE DICTIONARY ENCODING LAYER FOR END-TO-END LANGUAGE IDENTIFICATION", icassp, 2018 """ def __init__(self, input_dim, c_num=64, eps=1e-10): super(LDEPoolingNew, self).__init__() self.input_dim = input_dim self.output_dim = input_dim * c_num self.eps = eps self.mu = torch.nn.Parameter(torch.randn(input_dim, c_num)) self.s = torch.nn.Parameter(torch.ones(c_num)) self.softmax_for_w = torch.nn.Softmax(dim=3) def get_output_dim(self): return self.output_dim def forward(self, input_0): primals_2 = self.mu primals_3 = self.s primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
qlindazm/asv-subtools
LDEPooling
false
4,234
[ "Apache-2.0" ]
0
fe1d31db9f3268622016babe944201f6ff81ed56
https://github.com/qlindazm/asv-subtools/tree/fe1d31db9f3268622016babe944201f6ff81ed56
import torch import torch.nn class Model(torch.nn.Module): """A novel learnable dictionary encoding layer. Reference: Weicheng Cai, etc., "A NOVEL LEARNABLE DICTIONARY ENCODING LAYER FOR END-TO-END LANGUAGE IDENTIFICATION", icassp, 2018 """ def __init__(self, input_dim, c_num=64, eps=1e-10): super().__init__() self.input_dim = input_dim self.output_dim = input_dim * c_num self.eps = eps self.mu = torch.nn.Parameter(torch.randn(input_dim, c_num)) self.s = torch.nn.Parameter(torch.ones(c_num)) self.softmax_for_w = torch.nn.Softmax(dim=3) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim r = inputs.transpose(1, 2).unsqueeze(3) - self.mu w = self.softmax_for_w(-(self.s ** 2 + self.eps) * torch.sum(r ** 2, dim=2, keepdim=True)) e = torch.mean(w * r, dim=1) return e.reshape(-1, self.output_dim, 1) def get_output_dim(self): return self.output_dim def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
SoftmaxAffineLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/2t/c2ttlvr2ngdhjnhfyvr646edvmboep3mriwuj3ygccebcw6w3uev.py # Topologically Sorted Source Nodes: [outputs, log_softmax], Original ATen: [aten.convolution, aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, sum_1 # outputs => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) triton_poi_fused__log_softmax_convolution_0 = async_compile.triton('triton_poi_fused__log_softmax_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_convolution_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp6 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp7 = tl.load(in_ptr1 + (1)) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp12 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp13 = tl.load(in_ptr1 + (2)) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp18 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp19 = tl.load(in_ptr1 + (3)) tmp20 = tl.broadcast_to(tmp19, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp9 = tmp6 + tmp8 tmp10 = tmp9 * tmp4 tmp11 = triton_helpers.maximum(tmp5, tmp10) tmp15 = tmp12 + tmp14 tmp16 = tmp15 * tmp4 tmp17 = triton_helpers.maximum(tmp11, tmp16) tmp21 = tmp18 + tmp20 tmp22 = tmp21 * tmp4 tmp23 = triton_helpers.maximum(tmp17, tmp22) tmp24 = tmp5 - tmp23 tmp25 = tmp24 * tmp4 tmp26 = tl_math.exp(tmp25) tmp27 = tmp10 - tmp23 tmp28 = tmp27 * tmp4 tmp29 = tl_math.exp(tmp28) tmp30 = tmp26 + tmp29 tmp31 = tmp16 - tmp23 tmp32 = tmp31 * tmp4 tmp33 = tl_math.exp(tmp32) tmp34 = tmp30 + tmp33 tmp35 = tmp22 - tmp23 tmp36 = tmp35 * tmp4 tmp37 = tl_math.exp(tmp36) tmp38 = tmp34 + tmp37 tl.store(out_ptr0 + (x2), tmp23, xmask) tl.store(out_ptr1 + (x2), tmp38, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nk/cnkyhgk4ekrtmfxabvrxv7cvf54d7vrdimis4qzz5tw33rjuejwh.py # Topologically Sorted Source Nodes: [outputs, log_softmax], Original ATen: [aten.convolution, aten._log_softmax] # Source node to ATen node mapping: # log_softmax => log, sub_1 # outputs => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_tensor, %log), kwargs = {}) triton_poi_fused__log_softmax_convolution_1 = async_compile.triton('triton_poi_fused__log_softmax_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp3 tmp9 = tl_math.log(tmp8) tmp10 = tmp7 - tmp9 tl.store(in_out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) buf1 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf2 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [outputs, log_softmax], Original ATen: [aten.convolution, aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_convolution_0.run(buf0, primals_3, buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [outputs, log_softmax], Original ATen: [aten.convolution, aten._log_softmax] triton_poi_fused__log_softmax_convolution_1.run(buf3, primals_3, buf1, buf2, 64, grid=grid(64), stream=stream0) del buf1 del buf2 del primals_3 return (buf3, primals_1, primals_2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn def to_device(device_object, tensor): """ Select device for non-parameters tensor w.r.t model or tensor which has been specified a device. """ if isinstance(device_object, torch.nn.Module): next(device_object.parameters()).device elif isinstance(device_object, torch.Tensor): pass return tensor class TdnnAffine(torch.nn.Module): """ An implemented tdnn affine component by conv1d y = splice(w * x, context) + b @input_dim: number of dims of frame <=> inputs channels of conv @output_dim: number of layer nodes <=> outputs channels of conv @context: a list of context e.g. [-2,0,2] If context is [0], then the TdnnAffine is equal to linear layer. """ def __init__(self, input_dim, output_dim, context=[0], bias=True, pad= True, stride=1, groups=1, norm_w=False, norm_f=False): super(TdnnAffine, self).__init__() assert input_dim % groups == 0 for index in range(0, len(context) - 1): if context[index] >= context[index + 1]: raise ValueError( 'Context tuple {} is invalid, such as the order.'. format(context)) self.input_dim = input_dim self.output_dim = output_dim self.context = context self.bool_bias = bias self.pad = pad self.groups = groups self.norm_w = norm_w self.norm_f = norm_f self.stride = stride self.left_context = context[0] if context[0] < 0 else 0 self.right_context = context[-1] if context[-1] > 0 else 0 self.tot_context = self.right_context - self.left_context + 1 if self.tot_context > 1 and self.norm_f: self.norm_f = False None kernel_size = self.tot_context, self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim // groups, *kernel_size)) if self.bool_bias: self.bias = torch.nn.Parameter(torch.randn(output_dim)) else: self.register_parameter('bias', None) self.init_weight() if len(context) != self.tot_context: self.mask = torch.tensor([[[(1 if index in context else 0) for index in range(self.left_context, self.right_context + 1)]]]) else: self.mask = None self.selected_device = False def init_weight(self): torch.nn.init.normal_(self.weight, 0.0, 0.01) if self.bias is not None: torch.nn.init.constant_(self.bias, 0.0) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim if self.pad: inputs = F.pad(inputs, (-self.left_context, self.right_context), mode='constant', value=0) assert inputs.shape[2] >= self.tot_context if not self.selected_device and self.mask is not None: self.mask = to_device(self, self.mask) self.selected_device = True filters = (self.weight * self.mask if self.mask is not None else self.weight) if self.norm_w: filters = F.normalize(filters, dim=1) if self.norm_f: inputs = F.normalize(inputs, dim=1) outputs = F.conv1d(inputs, filters, self.bias, stride=self.stride, padding=0, dilation=1, groups=self.groups) return outputs def extra_repr(self): return ( '{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}' .format(**self.__dict__)) @classmethod def thop_count(self, m, x, y): x = x[0] kernel_ops = torch.zeros(m.weight.size()[2:]).numel() bias_ops = 1 if m.bias is not None else 0 total_ops = y.nelement() * (m.input_dim * kernel_ops + bias_ops) m.total_ops += torch.DoubleTensor([int(total_ops)]) class SoftmaxAffineLayer(torch.nn.Module): """ An usual 2-fold softmax layer with an affine transform. @dim: which dim to apply softmax on """ def __init__(self, input_dim, output_dim, context=[0], dim=1, log=True, bias=True, groups=1, t=1.0, special_init=False): super(SoftmaxAffineLayer, self).__init__() self.affine = TdnnAffine(input_dim, output_dim, context=context, bias=bias, groups=groups) self.t = t if log: self.softmax = torch.nn.LogSoftmax(dim=dim) else: self.softmax = torch.nn.Softmax(dim=dim) if special_init: torch.nn.init.xavier_uniform_(self.affine.weight, gain=torch.nn .init.calculate_gain('sigmoid')) def forward(self, inputs): """ @inputs: any, such as a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ return self.softmax(self.affine(inputs) / self.t) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn.functional as F import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_convolution_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp6 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp7 = tl.load(in_ptr1 + 1) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp12 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp13 = tl.load(in_ptr1 + 2) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp18 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp19 = tl.load(in_ptr1 + 3) tmp20 = tl.broadcast_to(tmp19, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp9 = tmp6 + tmp8 tmp10 = tmp9 * tmp4 tmp11 = triton_helpers.maximum(tmp5, tmp10) tmp15 = tmp12 + tmp14 tmp16 = tmp15 * tmp4 tmp17 = triton_helpers.maximum(tmp11, tmp16) tmp21 = tmp18 + tmp20 tmp22 = tmp21 * tmp4 tmp23 = triton_helpers.maximum(tmp17, tmp22) tmp24 = tmp5 - tmp23 tmp25 = tmp24 * tmp4 tmp26 = tl_math.exp(tmp25) tmp27 = tmp10 - tmp23 tmp28 = tmp27 * tmp4 tmp29 = tl_math.exp(tmp28) tmp30 = tmp26 + tmp29 tmp31 = tmp16 - tmp23 tmp32 = tmp31 * tmp4 tmp33 = tl_math.exp(tmp32) tmp34 = tmp30 + tmp33 tmp35 = tmp22 - tmp23 tmp36 = tmp35 * tmp4 tmp37 = tl_math.exp(tmp36) tmp38 = tmp34 + tmp37 tl.store(out_ptr0 + x2, tmp23, xmask) tl.store(out_ptr1 + x2, tmp38, xmask) @triton.jit def triton_poi_fused__log_softmax_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp8 = tl.load(in_ptr2 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp3 tmp9 = tl_math.log(tmp8) tmp10 = tmp7 - tmp9 tl.store(in_out_ptr0 + x3, tmp10, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) buf1 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf2 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_convolution_0[grid(16)](buf0, primals_3, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = buf0 del buf0 triton_poi_fused__log_softmax_convolution_1[grid(64)](buf3, primals_3, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf1 del buf2 del primals_3 return buf3, primals_1, primals_2, buf3 def to_device(device_object, tensor): """ Select device for non-parameters tensor w.r.t model or tensor which has been specified a device. """ if isinstance(device_object, torch.nn.Module): next(device_object.parameters()).device elif isinstance(device_object, torch.Tensor): pass return tensor class TdnnAffine(torch.nn.Module): """ An implemented tdnn affine component by conv1d y = splice(w * x, context) + b @input_dim: number of dims of frame <=> inputs channels of conv @output_dim: number of layer nodes <=> outputs channels of conv @context: a list of context e.g. [-2,0,2] If context is [0], then the TdnnAffine is equal to linear layer. """ def __init__(self, input_dim, output_dim, context=[0], bias=True, pad= True, stride=1, groups=1, norm_w=False, norm_f=False): super(TdnnAffine, self).__init__() assert input_dim % groups == 0 for index in range(0, len(context) - 1): if context[index] >= context[index + 1]: raise ValueError( 'Context tuple {} is invalid, such as the order.'. format(context)) self.input_dim = input_dim self.output_dim = output_dim self.context = context self.bool_bias = bias self.pad = pad self.groups = groups self.norm_w = norm_w self.norm_f = norm_f self.stride = stride self.left_context = context[0] if context[0] < 0 else 0 self.right_context = context[-1] if context[-1] > 0 else 0 self.tot_context = self.right_context - self.left_context + 1 if self.tot_context > 1 and self.norm_f: self.norm_f = False None kernel_size = self.tot_context, self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim // groups, *kernel_size)) if self.bool_bias: self.bias = torch.nn.Parameter(torch.randn(output_dim)) else: self.register_parameter('bias', None) self.init_weight() if len(context) != self.tot_context: self.mask = torch.tensor([[[(1 if index in context else 0) for index in range(self.left_context, self.right_context + 1)]]]) else: self.mask = None self.selected_device = False def init_weight(self): torch.nn.init.normal_(self.weight, 0.0, 0.01) if self.bias is not None: torch.nn.init.constant_(self.bias, 0.0) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim if self.pad: inputs = F.pad(inputs, (-self.left_context, self.right_context), mode='constant', value=0) assert inputs.shape[2] >= self.tot_context if not self.selected_device and self.mask is not None: self.mask = to_device(self, self.mask) self.selected_device = True filters = (self.weight * self.mask if self.mask is not None else self.weight) if self.norm_w: filters = F.normalize(filters, dim=1) if self.norm_f: inputs = F.normalize(inputs, dim=1) outputs = F.conv1d(inputs, filters, self.bias, stride=self.stride, padding=0, dilation=1, groups=self.groups) return outputs def extra_repr(self): return ( '{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}' .format(**self.__dict__)) @classmethod def thop_count(self, m, x, y): x = x[0] kernel_ops = torch.zeros(m.weight.size()[2:]).numel() bias_ops = 1 if m.bias is not None else 0 total_ops = y.nelement() * (m.input_dim * kernel_ops + bias_ops) m.total_ops += torch.DoubleTensor([int(total_ops)]) class SoftmaxAffineLayerNew(torch.nn.Module): """ An usual 2-fold softmax layer with an affine transform. @dim: which dim to apply softmax on """ def __init__(self, input_dim, output_dim, context=[0], dim=1, log=True, bias=True, groups=1, t=1.0, special_init=False): super(SoftmaxAffineLayerNew, self).__init__() self.affine = TdnnAffine(input_dim, output_dim, context=context, bias=bias, groups=groups) self.t = t if log: self.softmax = torch.nn.LogSoftmax(dim=dim) else: self.softmax = torch.nn.Softmax(dim=dim) if special_init: torch.nn.init.xavier_uniform_(self.affine.weight, gain=torch.nn .init.calculate_gain('sigmoid')) def forward(self, input_0): primals_2 = self.affine.weight primals_3 = self.affine.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
qlindazm/asv-subtools
SoftmaxAffineLayer
false
4,235
[ "Apache-2.0" ]
0
fe1d31db9f3268622016babe944201f6ff81ed56
https://github.com/qlindazm/asv-subtools/tree/fe1d31db9f3268622016babe944201f6ff81ed56
import torch import torch.nn.functional as F import torch.nn def to_device(device_object, tensor): """ Select device for non-parameters tensor w.r.t model or tensor which has been specified a device. """ if isinstance(device_object, torch.nn.Module): next(device_object.parameters()).device elif isinstance(device_object, torch.Tensor): pass return tensor class TdnnAffine(torch.nn.Module): """ An implemented tdnn affine component by conv1d y = splice(w * x, context) + b @input_dim: number of dims of frame <=> inputs channels of conv @output_dim: number of layer nodes <=> outputs channels of conv @context: a list of context e.g. [-2,0,2] If context is [0], then the TdnnAffine is equal to linear layer. """ def __init__(self, input_dim, output_dim, context=[0], bias=True, pad= True, stride=1, groups=1, norm_w=False, norm_f=False): super().__init__() assert input_dim % groups == 0 for index in range(0, len(context) - 1): if context[index] >= context[index + 1]: raise ValueError( 'Context tuple {} is invalid, such as the order.'. format(context)) self.input_dim = input_dim self.output_dim = output_dim self.context = context self.bool_bias = bias self.pad = pad self.groups = groups self.norm_w = norm_w self.norm_f = norm_f self.stride = stride self.left_context = context[0] if context[0] < 0 else 0 self.right_context = context[-1] if context[-1] > 0 else 0 self.tot_context = self.right_context - self.left_context + 1 if self.tot_context > 1 and self.norm_f: self.norm_f = False None kernel_size = self.tot_context, self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim // groups, *kernel_size)) if self.bool_bias: self.bias = torch.nn.Parameter(torch.randn(output_dim)) else: self.register_parameter('bias', None) self.init_weight() if len(context) != self.tot_context: self.mask = torch.tensor([[[(1 if index in context else 0) for index in range(self.left_context, self.right_context + 1)]]]) else: self.mask = None self.selected_device = False def init_weight(self): torch.nn.init.normal_(self.weight, 0.0, 0.01) if self.bias is not None: torch.nn.init.constant_(self.bias, 0.0) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim if self.pad: inputs = F.pad(inputs, (-self.left_context, self.right_context), mode='constant', value=0) assert inputs.shape[2] >= self.tot_context if not self.selected_device and self.mask is not None: self.mask = to_device(self, self.mask) self.selected_device = True filters = (self.weight * self.mask if self.mask is not None else self.weight) if self.norm_w: filters = F.normalize(filters, dim=1) if self.norm_f: inputs = F.normalize(inputs, dim=1) outputs = F.conv1d(inputs, filters, self.bias, stride=self.stride, padding=0, dilation=1, groups=self.groups) return outputs def extra_repr(self): return ( '{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}' .format(**self.__dict__)) @classmethod def thop_count(self, m, x, y): x = x[0] kernel_ops = torch.zeros(m.weight.size()[2:]).numel() bias_ops = 1 if m.bias is # ... truncated (>4000 chars) for memory efficiency
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/dg/cdgsdqqvkke7xwl5f3y4wse55on55jonq2akapygqqfdobxlnfzx.py # Topologically Sorted Source Nodes: [z, output], Original ATen: [aten.cat, aten._log_softmax] # Source node to ATen node mapping: # output => amax, exp, sub, sum_1 # z => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution, %convolution],), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%cat, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cat, %amax), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) triton_poi_fused__log_softmax_cat_0 = async_compile.triton('triton_poi_fused__log_softmax_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_cat_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp6 = tl.load(in_ptr1 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp20 = tl.load(in_ptr1 + (1)) tmp21 = tl.broadcast_to(tmp20, [XBLOCK]) tmp32 = tl.load(in_ptr1 + (2)) tmp33 = tl.broadcast_to(tmp32, [XBLOCK]) tmp44 = tl.load(in_ptr1 + (3)) tmp45 = tl.broadcast_to(tmp44, [XBLOCK]) tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1)), tmp4 & xmask, other=0.0) tmp8 = tmp5 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 8, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr0 + (x0 + (16*((-4) + x1))), tmp11 & xmask, other=0.0) tmp15 = tmp14 + tmp7 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp11, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp10, tmp17) tmp19 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), tmp4 & xmask, other=0.0) tmp22 = tmp19 + tmp21 tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype) tmp24 = tl.where(tmp4, tmp22, tmp23) tmp25 = tl.load(in_ptr0 + (4 + x0 + (16*((-4) + x1))), tmp11 & xmask, other=0.0) tmp26 = tmp25 + tmp21 tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype) tmp28 = tl.where(tmp11, tmp26, tmp27) tmp29 = tl.where(tmp4, tmp24, tmp28) tmp30 = triton_helpers.maximum(tmp18, tmp29) tmp31 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), tmp4 & xmask, other=0.0) tmp34 = tmp31 + tmp33 tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype) tmp36 = tl.where(tmp4, tmp34, tmp35) tmp37 = tl.load(in_ptr0 + (8 + x0 + (16*((-4) + x1))), tmp11 & xmask, other=0.0) tmp38 = tmp37 + tmp33 tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp11, tmp38, tmp39) tmp41 = tl.where(tmp4, tmp36, tmp40) tmp42 = triton_helpers.maximum(tmp30, tmp41) tmp43 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), tmp4 & xmask, other=0.0) tmp46 = tmp43 + tmp45 tmp47 = tl.full(tmp46.shape, 0.0, tmp46.dtype) tmp48 = tl.where(tmp4, tmp46, tmp47) tmp49 = tl.load(in_ptr0 + (12 + x0 + (16*((-4) + x1))), tmp11 & xmask, other=0.0) tmp50 = tmp49 + tmp45 tmp51 = tl.full(tmp50.shape, 0.0, tmp50.dtype) tmp52 = tl.where(tmp11, tmp50, tmp51) tmp53 = tl.where(tmp4, tmp48, tmp52) tmp54 = triton_helpers.maximum(tmp42, tmp53) tmp55 = tmp18 - tmp54 tmp56 = tl_math.exp(tmp55) tmp57 = tmp29 - tmp54 tmp58 = tl_math.exp(tmp57) tmp59 = tmp56 + tmp58 tmp60 = tmp41 - tmp54 tmp61 = tl_math.exp(tmp60) tmp62 = tmp59 + tmp61 tmp63 = tmp53 - tmp54 tmp64 = tl_math.exp(tmp63) tmp65 = tmp62 + tmp64 tl.store(out_ptr0 + (x2), tmp54, xmask) tl.store(out_ptr1 + (x2), tmp65, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hu/chufshtfgijunlmszzic7i4cwvtzymt6wqmgz4g6trkzjukgnhg5.py # Topologically Sorted Source Nodes: [z, output], Original ATen: [aten.cat, aten._log_softmax] # Source node to ATen node mapping: # output => log, sub, sub_1 # z => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution, %convolution],), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cat, %amax), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_cat_1 = async_compile.triton('triton_poi_fused__log_softmax_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x3 = xindex % 16 x1 = (xindex // 4) % 4 x0 = xindex % 4 x4 = xindex tmp19 = tl.load(in_ptr2 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr3 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x3 + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 8, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr0 + (x3 + (16*((-4) + x2))), tmp10 & xmask, other=0.0) tmp14 = tl.load(in_ptr1 + (x1), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tmp13 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp9, tmp17) tmp20 = tmp18 - tmp19 tmp22 = tl_math.log(tmp21) tmp23 = tmp20 - tmp22 tl.store(out_ptr0 + (x4), tmp23, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x0], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1)) buf1 = empty_strided_cuda((8, 1, 2, 2), (4, 32, 2, 1), torch.float32) buf2 = empty_strided_cuda((8, 1, 2, 2), (4, 32, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [z, output], Original ATen: [aten.cat, aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_cat_0.run(buf0, primals_2, buf1, buf2, 32, grid=grid(32), stream=stream0) buf3 = empty_strided_cuda((8, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [z, output], Original ATen: [aten.cat, aten._log_softmax] triton_poi_fused__log_softmax_cat_1.run(buf0, primals_2, buf1, buf2, buf3, 128, grid=grid(128), stream=stream0) del buf0 del buf1 del buf2 del primals_2 return (buf3, primals_1, primals_3, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self, Cin, Cout): super(Net, self).__init__() self.conv1 = nn.Conv2d(Cin, Cout, (3, 3)) def forward(self, x): x0 = self.conv1(x) x1 = self.conv1(x) z = torch.cat([x0, x1]) output = F.log_softmax(z, dim=1) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'Cin': 4, 'Cout': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_cat_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp6 = tl.load(in_ptr1 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp20 = tl.load(in_ptr1 + 1) tmp21 = tl.broadcast_to(tmp20, [XBLOCK]) tmp32 = tl.load(in_ptr1 + 2) tmp33 = tl.broadcast_to(tmp32, [XBLOCK]) tmp44 = tl.load(in_ptr1 + 3) tmp45 = tl.broadcast_to(tmp44, [XBLOCK]) tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1), tmp4 & xmask, other=0.0) tmp8 = tmp5 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp14 = tl.load(in_ptr0 + (x0 + 16 * (-4 + x1)), tmp11 & xmask, other=0.0) tmp15 = tmp14 + tmp7 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp11, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp10, tmp17) tmp19 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), tmp4 & xmask, other=0.0) tmp22 = tmp19 + tmp21 tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype) tmp24 = tl.where(tmp4, tmp22, tmp23) tmp25 = tl.load(in_ptr0 + (4 + x0 + 16 * (-4 + x1)), tmp11 & xmask, other=0.0) tmp26 = tmp25 + tmp21 tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype) tmp28 = tl.where(tmp11, tmp26, tmp27) tmp29 = tl.where(tmp4, tmp24, tmp28) tmp30 = triton_helpers.maximum(tmp18, tmp29) tmp31 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), tmp4 & xmask, other=0.0) tmp34 = tmp31 + tmp33 tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype) tmp36 = tl.where(tmp4, tmp34, tmp35) tmp37 = tl.load(in_ptr0 + (8 + x0 + 16 * (-4 + x1)), tmp11 & xmask, other=0.0) tmp38 = tmp37 + tmp33 tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp11, tmp38, tmp39) tmp41 = tl.where(tmp4, tmp36, tmp40) tmp42 = triton_helpers.maximum(tmp30, tmp41) tmp43 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), tmp4 & xmask, other=0.0) tmp46 = tmp43 + tmp45 tmp47 = tl.full(tmp46.shape, 0.0, tmp46.dtype) tmp48 = tl.where(tmp4, tmp46, tmp47) tmp49 = tl.load(in_ptr0 + (12 + x0 + 16 * (-4 + x1)), tmp11 & xmask, other=0.0) tmp50 = tmp49 + tmp45 tmp51 = tl.full(tmp50.shape, 0.0, tmp50.dtype) tmp52 = tl.where(tmp11, tmp50, tmp51) tmp53 = tl.where(tmp4, tmp48, tmp52) tmp54 = triton_helpers.maximum(tmp42, tmp53) tmp55 = tmp18 - tmp54 tmp56 = tl_math.exp(tmp55) tmp57 = tmp29 - tmp54 tmp58 = tl_math.exp(tmp57) tmp59 = tmp56 + tmp58 tmp60 = tmp41 - tmp54 tmp61 = tl_math.exp(tmp60) tmp62 = tmp59 + tmp61 tmp63 = tmp53 - tmp54 tmp64 = tl_math.exp(tmp63) tmp65 = tmp62 + tmp64 tl.store(out_ptr0 + x2, tmp54, xmask) tl.store(out_ptr1 + x2, tmp65, xmask) @triton.jit def triton_poi_fused__log_softmax_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x3 = xindex % 16 x1 = xindex // 4 % 4 x0 = xindex % 4 x4 = xindex tmp19 = tl.load(in_ptr2 + (x0 + 4 * x2), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr3 + (x0 + 4 * x2), xmask, eviction_policy= 'evict_last') tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x3 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp13 = tl.load(in_ptr0 + (x3 + 16 * (-4 + x2)), tmp10 & xmask, other=0.0) tmp14 = tl.load(in_ptr1 + x1, tmp10 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tmp13 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp9, tmp17) tmp20 = tmp18 - tmp19 tmp22 = tl_math.log(tmp21) tmp23 = tmp20 - tmp22 tl.store(out_ptr0 + x4, tmp23, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1)) buf1 = empty_strided_cuda((8, 1, 2, 2), (4, 32, 2, 1), torch.float32) buf2 = empty_strided_cuda((8, 1, 2, 2), (4, 32, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_cat_0[grid(32)](buf0, primals_2, buf1, buf2, 32, XBLOCK=32, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((8, 4, 2, 2), (16, 4, 2, 1), torch.float32) triton_poi_fused__log_softmax_cat_1[grid(128)](buf0, primals_2, buf1, buf2, buf3, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del buf1 del buf2 del primals_2 return buf3, primals_1, primals_3, buf3 class NetNew(nn.Module): def __init__(self, Cin, Cout): super(NetNew, self).__init__() self.conv1 = nn.Conv2d(Cin, Cout, (3, 3)) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
saeta/mlir-npcomp
Net
false
4,236
[ "Apache-2.0" ]
0
85898aaf10ea30237ee1d66c977b966cf7fcf6d0
https://github.com/saeta/mlir-npcomp/tree/85898aaf10ea30237ee1d66c977b966cf7fcf6d0
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, Cin, Cout): super().__init__() self.conv1 = nn.Conv2d(Cin, Cout, (3, 3)) def forward(self, x): x0 = self.conv1(x) x1 = self.conv1(x) z = torch.cat([x0, x1]) output = F.log_softmax(z, dim=1) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ChunkSeparationAffine
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/qz/cqzgictjpi53mvqpidmypr6gvl6skq6ldd43ow7utchkt5n2ang3.py # Topologically Sorted Source Nodes: [inputs_1], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # inputs_1 => constant_pad_nd_1 # Graph fragment: # %constant_pad_nd_1 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%slice_3, [0, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = (xindex // 3) x2 = xindex tmp0 = tl.load(in_ptr0 + (1 + x0 + (4*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nu/cnuyr7sdimes3uxey6dc2ueydyjlbpvwyujhycu27ud2jg4ujepp.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution, %convolution_1], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 4 x0 = xindex % 2 x2 = (xindex // 8) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (2*x1) + (4*x2)), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 4, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr2 + (x0 + (2*((-2) + x1)) + (4*x2)), tmp10 & xmask, other=0.0) tmp14 = tl.load(in_ptr3 + ((-2) + x1), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tmp13 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp9, tmp17) tl.store(out_ptr0 + (x3), tmp18, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (2, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (2, ), (1, )) assert_size_stride(primals_4, (2, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 2), (4, 2, 1)) buf1 = empty_strided_cuda((4, 4, 3), (12, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [inputs_1], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf1, 48, grid=grid(48), stream=stream0) # Topologically Sorted Source Nodes: [outputs_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 2, 2), (4, 2, 1)) buf3 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf0, primals_3, buf2, primals_5, buf3, 32, grid=grid(32), stream=stream0) del buf0 del buf2 del primals_3 del primals_5 return (buf3, primals_1, primals_2, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn def to_device(device_object, tensor): """ Select device for non-parameters tensor w.r.t model or tensor which has been specified a device. """ if isinstance(device_object, torch.nn.Module): next(device_object.parameters()).device elif isinstance(device_object, torch.Tensor): pass return tensor class TdnnAffine(torch.nn.Module): """ An implemented tdnn affine component by conv1d y = splice(w * x, context) + b @input_dim: number of dims of frame <=> inputs channels of conv @output_dim: number of layer nodes <=> outputs channels of conv @context: a list of context e.g. [-2,0,2] If context is [0], then the TdnnAffine is equal to linear layer. """ def __init__(self, input_dim, output_dim, context=[0], bias=True, pad= True, stride=1, groups=1, norm_w=False, norm_f=False): super(TdnnAffine, self).__init__() assert input_dim % groups == 0 for index in range(0, len(context) - 1): if context[index] >= context[index + 1]: raise ValueError( 'Context tuple {} is invalid, such as the order.'. format(context)) self.input_dim = input_dim self.output_dim = output_dim self.context = context self.bool_bias = bias self.pad = pad self.groups = groups self.norm_w = norm_w self.norm_f = norm_f self.stride = stride self.left_context = context[0] if context[0] < 0 else 0 self.right_context = context[-1] if context[-1] > 0 else 0 self.tot_context = self.right_context - self.left_context + 1 if self.tot_context > 1 and self.norm_f: self.norm_f = False None kernel_size = self.tot_context, self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim // groups, *kernel_size)) if self.bool_bias: self.bias = torch.nn.Parameter(torch.randn(output_dim)) else: self.register_parameter('bias', None) self.init_weight() if len(context) != self.tot_context: self.mask = torch.tensor([[[(1 if index in context else 0) for index in range(self.left_context, self.right_context + 1)]]]) else: self.mask = None self.selected_device = False def init_weight(self): torch.nn.init.normal_(self.weight, 0.0, 0.01) if self.bias is not None: torch.nn.init.constant_(self.bias, 0.0) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim if self.pad: inputs = F.pad(inputs, (-self.left_context, self.right_context), mode='constant', value=0) assert inputs.shape[2] >= self.tot_context if not self.selected_device and self.mask is not None: self.mask = to_device(self, self.mask) self.selected_device = True filters = (self.weight * self.mask if self.mask is not None else self.weight) if self.norm_w: filters = F.normalize(filters, dim=1) if self.norm_f: inputs = F.normalize(inputs, dim=1) outputs = F.conv1d(inputs, filters, self.bias, stride=self.stride, padding=0, dilation=1, groups=self.groups) return outputs def extra_repr(self): return ( '{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}' .format(**self.__dict__)) @classmethod def thop_count(self, m, x, y): x = x[0] kernel_ops = torch.zeros(m.weight.size()[2:]).numel() bias_ops = 1 if m.bias is not None else 0 total_ops = y.nelement() * (m.input_dim * kernel_ops + bias_ops) m.total_ops += torch.DoubleTensor([int(total_ops)]) class ChunkSeparationAffine(torch.nn.Module): """By this component, the chunk will be grouped to two parts, odd and even. """ def __init__(self, input_dim, output_dim, **options): super(ChunkSeparationAffine, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.odd = TdnnAffine(input_dim, output_dim // 2, stride=2, **options) self.even = TdnnAffine(input_dim, output_dim // 2, stride=2, **options) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim if inputs.shape[2] % 2 != 0: inputs = F.pad(inputs, (0, 1), mode='constant', value=0) return torch.cat((self.odd(inputs), self.even(inputs[:, :, 1:])), dim=1 ) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.functional as F import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = xindex // 3 x2 = xindex tmp0 = tl.load(in_ptr0 + (1 + x0 + 4 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 4 x0 = xindex % 2 x2 = xindex // 8 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 2 * x1 + 4 * x2), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1], 4, tl.int64) tmp13 = tl.load(in_ptr2 + (x0 + 2 * (-2 + x1) + 4 * x2), tmp10 & xmask, other=0.0) tmp14 = tl.load(in_ptr3 + (-2 + x1), tmp10 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tmp13 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp9, tmp17) tl.store(out_ptr0 + x3, tmp18, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (2, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (2,), (1,)) assert_size_stride(primals_4, (2, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 2), (4, 2, 1)) buf1 = empty_strided_cuda((4, 4, 3), (12, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(48)](primals_1, buf1, 48, XBLOCK=64, num_warps=1, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf2, (4, 2, 2), (4, 2, 1)) buf3 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32) triton_poi_fused_cat_1[grid(32)](buf0, primals_3, buf2, primals_5, buf3, 32, XBLOCK=32, num_warps=1, num_stages=1) del buf0 del buf2 del primals_3 del primals_5 return buf3, primals_1, primals_2, primals_4, buf1 def to_device(device_object, tensor): """ Select device for non-parameters tensor w.r.t model or tensor which has been specified a device. """ if isinstance(device_object, torch.nn.Module): next(device_object.parameters()).device elif isinstance(device_object, torch.Tensor): pass return tensor class TdnnAffine(torch.nn.Module): """ An implemented tdnn affine component by conv1d y = splice(w * x, context) + b @input_dim: number of dims of frame <=> inputs channels of conv @output_dim: number of layer nodes <=> outputs channels of conv @context: a list of context e.g. [-2,0,2] If context is [0], then the TdnnAffine is equal to linear layer. """ def __init__(self, input_dim, output_dim, context=[0], bias=True, pad= True, stride=1, groups=1, norm_w=False, norm_f=False): super(TdnnAffine, self).__init__() assert input_dim % groups == 0 for index in range(0, len(context) - 1): if context[index] >= context[index + 1]: raise ValueError( 'Context tuple {} is invalid, such as the order.'. format(context)) self.input_dim = input_dim self.output_dim = output_dim self.context = context self.bool_bias = bias self.pad = pad self.groups = groups self.norm_w = norm_w self.norm_f = norm_f self.stride = stride self.left_context = context[0] if context[0] < 0 else 0 self.right_context = context[-1] if context[-1] > 0 else 0 self.tot_context = self.right_context - self.left_context + 1 if self.tot_context > 1 and self.norm_f: self.norm_f = False None kernel_size = self.tot_context, self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim // groups, *kernel_size)) if self.bool_bias: self.bias = torch.nn.Parameter(torch.randn(output_dim)) else: self.register_parameter('bias', None) self.init_weight() if len(context) != self.tot_context: self.mask = torch.tensor([[[(1 if index in context else 0) for index in range(self.left_context, self.right_context + 1)]]]) else: self.mask = None self.selected_device = False def init_weight(self): torch.nn.init.normal_(self.weight, 0.0, 0.01) if self.bias is not None: torch.nn.init.constant_(self.bias, 0.0) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim if self.pad: inputs = F.pad(inputs, (-self.left_context, self.right_context), mode='constant', value=0) assert inputs.shape[2] >= self.tot_context if not self.selected_device and self.mask is not None: self.mask = to_device(self, self.mask) self.selected_device = True filters = (self.weight * self.mask if self.mask is not None else self.weight) if self.norm_w: filters = F.normalize(filters, dim=1) if self.norm_f: inputs = F.normalize(inputs, dim=1) outputs = F.conv1d(inputs, filters, self.bias, stride=self.stride, padding=0, dilation=1, groups=self.groups) return outputs def extra_repr(self): return ( '{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}' .format(**self.__dict__)) @classmethod def thop_count(self, m, x, y): x = x[0] kernel_ops = torch.zeros(m.weight.size()[2:]).numel() bias_ops = 1 if m.bias is not None else 0 total_ops = y.nelement() * (m.input_dim * kernel_ops + bias_ops) m.total_ops += torch.DoubleTensor([int(total_ops)]) class ChunkSeparationAffineNew(torch.nn.Module): """By this component, the chunk will be grouped to two parts, odd and even. """ def __init__(self, input_dim, output_dim, **options): super(ChunkSeparationAffineNew, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.odd = TdnnAffine(input_dim, output_dim // 2, stride=2, **options) self.even = TdnnAffine(input_dim, output_dim // 2, stride=2, **options) def forward(self, input_0): primals_2 = self.odd.weight primals_3 = self.odd.bias primals_4 = self.even.weight primals_5 = self.even.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
qlindazm/asv-subtools
ChunkSeparationAffine
false
4,237
[ "Apache-2.0" ]
0
fe1d31db9f3268622016babe944201f6ff81ed56
https://github.com/qlindazm/asv-subtools/tree/fe1d31db9f3268622016babe944201f6ff81ed56
import torch import torch.nn.functional as F import torch.nn def to_device(device_object, tensor): """ Select device for non-parameters tensor w.r.t model or tensor which has been specified a device. """ if isinstance(device_object, torch.nn.Module): next(device_object.parameters()).device elif isinstance(device_object, torch.Tensor): pass return tensor class TdnnAffine(torch.nn.Module): """ An implemented tdnn affine component by conv1d y = splice(w * x, context) + b @input_dim: number of dims of frame <=> inputs channels of conv @output_dim: number of layer nodes <=> outputs channels of conv @context: a list of context e.g. [-2,0,2] If context is [0], then the TdnnAffine is equal to linear layer. """ def __init__(self, input_dim, output_dim, context=[0], bias=True, pad= True, stride=1, groups=1, norm_w=False, norm_f=False): super().__init__() assert input_dim % groups == 0 for index in range(0, len(context) - 1): if context[index] >= context[index + 1]: raise ValueError( 'Context tuple {} is invalid, such as the order.'. format(context)) self.input_dim = input_dim self.output_dim = output_dim self.context = context self.bool_bias = bias self.pad = pad self.groups = groups self.norm_w = norm_w self.norm_f = norm_f self.stride = stride self.left_context = context[0] if context[0] < 0 else 0 self.right_context = context[-1] if context[-1] > 0 else 0 self.tot_context = self.right_context - self.left_context + 1 if self.tot_context > 1 and self.norm_f: self.norm_f = False None kernel_size = self.tot_context, self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim // groups, *kernel_size)) if self.bool_bias: self.bias = torch.nn.Parameter(torch.randn(output_dim)) else: self.register_parameter('bias', None) self.init_weight() if len(context) != self.tot_context: self.mask = torch.tensor([[[(1 if index in context else 0) for index in range(self.left_context, self.right_context + 1)]]]) else: self.mask = None self.selected_device = False def init_weight(self): torch.nn.init.normal_(self.weight, 0.0, 0.01) if self.bias is not None: torch.nn.init.constant_(self.bias, 0.0) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim if self.pad: inputs = F.pad(inputs, (-self.left_context, self.right_context), mode='constant', value=0) assert inputs.shape[2] >= self.tot_context if not self.selected_device and self.mask is not None: self.mask = to_device(self, self.mask) self.selected_device = True filters = (self.weight * self.mask if self.mask is not None else self.weight) if self.norm_w: filters = F.normalize(filters, dim=1) if self.norm_f: inputs = F.normalize(inputs, dim=1) outputs = F.conv1d(inputs, filters, self.bias, stride=self.stride, padding=0, dilation=1, groups=self.groups) return outputs def extra_repr(self): return ( '{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}' .format(**self.__dict__)) @classmethod def thop_count(self, m, x, y): x = x[0] kernel_ops = torch.zeros(m.weight.size()[2:]).numel() bias_ops = 1 if m.bias is # ... truncated (>4000 chars) for memory efficiency
BartClassificationHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.tanh] # Source node to ATen node mapping: # hidden_states_2 => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vz/cvzje67emefmtrrwfoiqmxlqwwubkdlwr3p3l5lnagwt3ifl22gu.py # Topologically Sorted Source Nodes: [sent_scores_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # sent_scores_1 => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, %primals_6), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (x2), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (1, 4), (4, 1)) assert_size_stride(primals_5, (1, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sent_scores_1], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(buf3, primals_6, buf4, 256, grid=grid(256), stream=stream0) return (buf4, primals_6, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, buf3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.checkpoint class BartClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, input_dim: 'int', inner_dim: 'int', pooler_dropout: 'float'): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, 1, bias=True) self.sigmoid = nn.Sigmoid() def forward(self, hidden_states: 'torch.Tensor', mask: 'torch.Tensor'): hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) sent_scores = self.sigmoid(hidden_states) sent_scores = sent_scores.squeeze(-1) * mask.float() return sent_scores def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'inner_dim': 4, 'pooler_dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + x2, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (1, 4), (4, 1)) assert_size_stride(primals_5, (1,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_1[grid(256)](buf3, primals_6, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf4, primals_6, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), buf1, buf3, primals_4 class BartClassificationHeadNew(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, input_dim: 'int', inner_dim: 'int', pooler_dropout: 'float'): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, 1, bias=True) self.sigmoid = nn.Sigmoid() def forward(self, input_0, input_1): primals_2 = self.dense.weight primals_3 = self.dense.bias primals_4 = self.out_proj.weight primals_5 = self.out_proj.bias primals_1 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
sajastu/transformers-sent-curr
BartClassificationHead
false
4,238
[ "Apache-2.0" ]
0
6dc41545c4ac298a010090fbca4b454c2eaf3dbb
https://github.com/sajastu/transformers-sent-curr/tree/6dc41545c4ac298a010090fbca4b454c2eaf3dbb
import torch from torch import nn import torch.utils.checkpoint class Model(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, input_dim: 'int', inner_dim: 'int', pooler_dropout: 'float'): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, 1, bias=True) self.sigmoid = nn.Sigmoid() def forward(self, hidden_states: 'torch.Tensor', mask: 'torch.Tensor'): hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) sent_scores = self.sigmoid(hidden_states) sent_scores = sent_scores.squeeze(-1) * mask.float() return sent_scores def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 0.5]
GroupedLinearLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/v6/cv6odvhmmcyvquog4eo62pdliew53orxzwe2wfzampr64jy3ppa7.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.add] # Source node to ATen node mapping: # x_5 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_4, %primals_3), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 64, 4), (256, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (1, 64, 4), (4, 4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf1, reinterpret_tensor(primals_1, (1, 4, 64), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.checkpoint class GroupedLinearLayer(nn.Module): def __init__(self, input_size, output_size, num_groups): super().__init__() self.input_size = input_size self.output_size = output_size self.num_groups = num_groups self.group_in_dim = self.input_size // self.num_groups self.group_out_dim = self.output_size // self.num_groups self.weight = nn.Parameter(torch.empty(self.num_groups, self. group_in_dim, self.group_out_dim)) self.bias = nn.Parameter(torch.empty(output_size)) def forward(self, hidden_states): batch_size = list(hidden_states.size())[0] x = torch.reshape(hidden_states, [-1, self.num_groups, self. group_in_dim]) x = x.permute(1, 0, 2) x = torch.matmul(x, self.weight) x = x.permute(1, 0, 2) x = torch.reshape(x, [batch_size, -1, self.output_size]) x = x + self.bias return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'output_size': 4, 'num_groups': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 64, 4), (256, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (1, 64, 4), (4, 4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf1, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf1, reinterpret_tensor(primals_1, (1, 4, 64), (4, 1, 4), 0) class GroupedLinearLayerNew(nn.Module): def __init__(self, input_size, output_size, num_groups): super().__init__() self.input_size = input_size self.output_size = output_size self.num_groups = num_groups self.group_in_dim = self.input_size // self.num_groups self.group_out_dim = self.output_size // self.num_groups self.weight = nn.Parameter(torch.empty(self.num_groups, self. group_in_dim, self.group_out_dim)) self.bias = nn.Parameter(torch.empty(output_size)) def forward(self, input_0): primals_2 = self.weight primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sajastu/transformers-sent-curr
GroupedLinearLayer
false
4,239
[ "Apache-2.0" ]
0
6dc41545c4ac298a010090fbca4b454c2eaf3dbb
https://github.com/sajastu/transformers-sent-curr/tree/6dc41545c4ac298a010090fbca4b454c2eaf3dbb
import torch from torch import nn import torch.utils.checkpoint class Model(nn.Module): def __init__(self, input_size, output_size, num_groups): super().__init__() self.input_size = input_size self.output_size = output_size self.num_groups = num_groups self.group_in_dim = self.input_size // self.num_groups self.group_out_dim = self.output_size // self.num_groups self.weight = nn.Parameter(torch.empty(self.num_groups, self. group_in_dim, self.group_out_dim)) self.bias = nn.Parameter(torch.empty(output_size)) def forward(self, hidden_states): batch_size = list(hidden_states.size())[0] x = torch.reshape(hidden_states, [-1, self.num_groups, self. group_in_dim]) x = x.permute(1, 0, 2) x = torch.matmul(x, self.weight) x = x.permute(1, 0, 2) x = torch.reshape(x, [batch_size, -1, self.output_size]) x = x + self.bias return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 1]
HubertFeatureProjection
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/mz/cmzntnsms6lzyb35yqnfy7vd7osar32jl5popfgqekaoanmhac6c.py # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # hidden_states => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1.0), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1.0 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/lh/clhh73owbiuj4adasmetdqsot2nlmw2ljupnw2q4yt3du76mikww.py # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # hidden_states => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1.0), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0) del buf0 del buf1 del primals_1 del primals_2 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch from torch import nn import torch.utils.checkpoint class HubertFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config. layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(conv_dim=[4, 4], layer_norm_eps=1, hidden_size=4, feat_proj_dropout=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1.0 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(64)](primals_3, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(256)](primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del buf1 del primals_1 del primals_2 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4 class HubertFeatureProjectionNew(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config. layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, input_0): primals_1 = self.layer_norm.weight primals_2 = self.layer_norm.bias primals_4 = self.projection.weight primals_5 = self.projection.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
sajastu/transformers-sent-curr
HubertFeatureProjection
false
4,240
[ "Apache-2.0" ]
0
6dc41545c4ac298a010090fbca4b454c2eaf3dbb
https://github.com/sajastu/transformers-sent-curr/tree/6dc41545c4ac298a010090fbca4b454c2eaf3dbb
from _paritybench_helpers import _mock_config import torch from torch import nn import torch.utils.checkpoint class Model(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config. layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(conv_dim=[4, 4], layer_norm_eps=1, hidden_size=4, feat_proj_dropout=0.5)}]
Actor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/a2/ca2wr2cvkya5clovpxidv7ia56pdcyp7uq4omtpg5m2nr7ya3ryn.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_2 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_2 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 64), (64, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 4096, grid=grid(4096), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf3, primals_5, 4096, grid=grid(4096), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf6, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.distributions import Categorical from torch.distributions import Normal from torch.distributions import Independent class Actor(nn.Module): def __init__(self, obs_dim: 'int', ac_lim: 'float', ac_dim: 'int', discrete: 'bool'=True): super().__init__() self.ac_dim = ac_dim self.ac_lim = ac_lim self.obs_dim = obs_dim self.discrete = discrete self.fc1 = nn.Linear(obs_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, ac_dim) if not self.discrete: self.log_scale = nn.Parameter(0.3 * torch.ones(self.ac_dim), requires_grad=True) def forward(self, x): x = torch.tanh(self.fc1(x)) x = torch.tanh(self.fc2(x)) if self.discrete: x = torch.softmax(self.fc3(x), dim=1) else: x = torch.tanh(self.fc3(x)) return x def act(self, obs, deterministic=False): if self.discrete: action_prob = self.forward(obs) dist = Categorical(action_prob) if deterministic: action = torch.argmax(action_prob, dim=1) else: action = dist.sample() else: action_mean = self.forward(obs) action_mean = action_mean * self.ac_lim normal = Normal(action_mean, torch.exp(self.log_scale)) dist = Independent(normal, 1) if deterministic: action = action_mean.detach() else: action = dist.sample() action_logprobs = dist.log_prob(torch.squeeze(action)) return action, action_logprobs def get_actions_dist(self, obs): if self.discrete: action_prob = self.forward(obs) dist = Categorical(action_prob) else: action_mean = self.forward(obs) action_mean = action_mean * self.ac_lim normal = Normal(action_mean, torch.exp(self.log_scale)) dist = Independent(normal, 1) return dist def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'obs_dim': 4, 'ac_lim': 4, 'ac_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn from torch.distributions import Categorical from torch.distributions import Normal from torch.distributions import Independent assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, None) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 64), (64, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(4096)](buf1, primals_2, 4096, XBLOCK= 256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf2 triton_poi_fused_tanh_0[grid(4096)](buf3, primals_5, 4096, XBLOCK= 256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, buf6, primals_6, primals_4 class ActorNew(nn.Module): def __init__(self, obs_dim: 'int', ac_lim: 'float', ac_dim: 'int', discrete: 'bool'=True): super().__init__() self.ac_dim = ac_dim self.ac_lim = ac_lim self.obs_dim = obs_dim self.discrete = discrete self.fc1 = nn.Linear(obs_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, ac_dim) if not self.discrete: self.log_scale = nn.Parameter(0.3 * torch.ones(self.ac_dim), requires_grad=True) def act(self, obs, deterministic=False): if self.discrete: action_prob = self.forward(obs) dist = Categorical(action_prob) if deterministic: action = torch.argmax(action_prob, dim=1) else: action = dist.sample() else: action_mean = self.forward(obs) action_mean = action_mean * self.ac_lim normal = Normal(action_mean, torch.exp(self.log_scale)) dist = Independent(normal, 1) if deterministic: action = action_mean.detach() else: action = dist.sample() action_logprobs = dist.log_prob(torch.squeeze(action)) return action, action_logprobs def get_actions_dist(self, obs): if self.discrete: action_prob = self.forward(obs) dist = Categorical(action_prob) else: action_mean = self.forward(obs) action_mean = action_mean * self.ac_lim normal = Normal(action_mean, torch.exp(self.log_scale)) dist = Independent(normal, 1) return dist def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
raznem/rlex
Actor
false
4,242
[ "MIT" ]
0
d24b964d80067becc81d86f6ce87e5be413b7049
https://github.com/raznem/rlex/tree/d24b964d80067becc81d86f6ce87e5be413b7049
import torch import torch.nn as nn from torch.distributions import Categorical from torch.distributions import Normal from torch.distributions import Independent class Model(nn.Module): def __init__(self, obs_dim: 'int', ac_lim: 'float', ac_dim: 'int', discrete: 'bool'=True): super().__init__() self.ac_dim = ac_dim self.ac_lim = ac_lim self.obs_dim = obs_dim self.discrete = discrete self.fc1 = nn.Linear(obs_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, ac_dim) if not self.discrete: self.log_scale = nn.Parameter(0.3 * torch.ones(self.ac_dim), requires_grad=True) def forward(self, x): x = torch.tanh(self.fc1(x)) x = torch.tanh(self.fc2(x)) if self.discrete: x = torch.softmax(self.fc3(x), dim=1) else: x = torch.tanh(self.fc3(x)) return x def act(self, obs, deterministic=False): if self.discrete: action_prob = self.forward(obs) dist = Categorical(action_prob) if deterministic: action = torch.argmax(action_prob, dim=1) else: action = dist.sample() else: action_mean = self.forward(obs) action_mean = action_mean * self.ac_lim normal = Normal(action_mean, torch.exp(self.log_scale)) dist = Independent(normal, 1) if deterministic: action = action_mean.detach() else: action = dist.sample() action_logprobs = dist.log_prob(torch.squeeze(action)) return action, action_logprobs def get_actions_dist(self, obs): if self.discrete: action_prob = self.forward(obs) dist = Categorical(action_prob) else: action_mean = self.forward(obs) action_mean = action_mean * self.ac_lim normal = Normal(action_mean, torch.exp(self.log_scale)) dist = Independent(normal, 1) return dist def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
DiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/il/cile5rubx7j2trpwwhxvyx2n7vmplsdhfcaobcwnijtfsgj3p43b.py # Topologically Sorted Source Nodes: [mul, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, dice, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # dice => div # intersection => sum_1 # mul => mul # mul_1 => mul_1 # sub => sub # sum_2 => sum_2 # sum_3 => sum_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) triton_per_fused_add_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp2 = tl.load(in_ptr1 + (r0), None) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tl.broadcast_to(tmp1, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = tl.broadcast_to(tmp2, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 2.0 tmp14 = tmp6 * tmp13 tmp15 = 1.0 tmp16 = tmp14 + tmp15 tmp17 = tmp9 + tmp12 tmp18 = tmp17 + tmp15 tmp19 = tmp16 / tmp18 tmp20 = tmp15 - tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp20, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, dice, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0.run(buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DiceLoss(nn.Module): def __init__(self, weight=None, size_average=True): super(DiceLoss, self).__init__() def forward(self, inputs, targets, smooth=1): inputs = torch.sigmoid(inputs) inputs = inputs.view(-1) targets = targets.view(-1) intersection = (inputs * targets).sum() dice = (2.0 * intersection + smooth) / (inputs.sum() + targets.sum( ) + smooth) return 1 - dice def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp2 = tl.load(in_ptr1 + r0, None) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tl.broadcast_to(tmp1, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = tl.broadcast_to(tmp2, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 2.0 tmp14 = tmp6 * tmp13 tmp15 = 1.0 tmp16 = tmp14 + tmp15 tmp17 = tmp9 + tmp12 tmp18 = tmp17 + tmp15 tmp19 = tmp16 / tmp18 tmp20 = tmp15 - tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0[grid(1)](buf3, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class DiceLossNew(nn.Module): def __init__(self, weight=None, size_average=True): super(DiceLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
salem-devloper/COVID-Lung-Segment
DiceLoss
false
4,243
[ "MIT" ]
0
6896f6b0c56dac6d32e005afd4a94d59b1917b44
https://github.com/salem-devloper/COVID-Lung-Segment/tree/6896f6b0c56dac6d32e005afd4a94d59b1917b44
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, weight=None, size_average=True): super().__init__() def forward(self, inputs, targets, smooth=1): inputs = torch.sigmoid(inputs) inputs = inputs.view(-1) targets = targets.view(-1) intersection = (inputs * targets).sum() dice = (2.0 * intersection + smooth) / (inputs.sum() + targets.sum( ) + smooth) return 1 - dice def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ImageTransformationNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xi/cxi3ssslzv45liamqvbt6decmfms5gkzbjn7dtainfaa436qkyw3.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # pad => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_3, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 62208 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 72 x1 = (xindex // 72) % 72 x2 = (xindex // 5184) x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-4) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-4) + x1))))) + (4096*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zp/czpuakvx3zciuzfmemejrltenkqbzqirfyy2fnfbmrorwkdndz6e.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # x => convolution # x_1 => add, rsqrt, var_mean # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_red_fused__native_batch_norm_legit_convolution_1 = async_compile.triton('triton_red_fused__native_batch_norm_legit_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[128, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__native_batch_norm_legit_convolution_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 128 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 32 tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = triton_helpers.welford_reduce( tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0 ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + (4096*x3)), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford( tmp4_mean, tmp4_m2, tmp4_weight, 1 ) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6 = tmp6_tmp[:, None] tl.store(out_ptr0 + (x3), tmp4, xmask) tmp7 = 4096.0 tmp8 = tmp5 / tmp7 tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = libdevice.rsqrt(tmp10) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/in/ciny2bql3sygecchlvr6rxw73jnhl7dgi3s5w2g2fefaoug53zzz.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.repeat] # Source node to ATen node mapping: # x_1 => repeat # Graph fragment: # %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_4, [4]), kwargs = {}) triton_poi_fused_repeat_2 = async_compile.triton('triton_poi_fused_repeat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 % 32), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ii/ciidusl6utkne6h3zmwx3jccsnttcsdc42mtp3vanldcnxv4y7ov.py # Topologically Sorted Source Nodes: [x_2, pad_1], Original ATen: [aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # pad_1 => _unsafe_index_2, _unsafe_index_3 # x_2 => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %sub_6, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_6]), kwargs = {}) triton_poi_fused_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 557568 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = (xindex // 66) % 66 x2 = (xindex // 4356) x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/si/csiohvngy3nd4p3av6rdkonvlcuns665sjcyq5ggukrhfwpso4ay.py # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # x_3 => convolution_1 # x_4 => add_2, rsqrt_1, var_mean_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_4 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[256, 1024], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_4', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_4(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel): xnumel = 256 XBLOCK: tl.constexpr = 1 rnumel = 1024 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (r2 + (1024*x3)), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 1024, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 1024.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(in_out_ptr0 + (r2 + (1024*x3)), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp20, None) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bo/cbop6byfkkzzjktajzua3ovnpvhy32nxb7dbv364jfeaxunlv7bo.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.repeat] # Source node to ATen node mapping: # x_4 => repeat_2 # Graph fragment: # %repeat_2 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_8, [4]), kwargs = {}) triton_poi_fused_repeat_5 = async_compile.triton('triton_poi_fused_repeat_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 % 64), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/k6/ck6ljtglelyaqir7indwg3cp4wwudzqtlaof4xfdlyasdzhka7z5.py # Topologically Sorted Source Nodes: [x_5, pad_2], Original ATen: [aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # pad_2 => _unsafe_index_4, _unsafe_index_5 # x_5 => relu_1 # Graph fragment: # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %_unsafe_index_4 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %sub_11, None]), kwargs = {}) # %_unsafe_index_5 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_4, [None, None, None, %sub_11]), kwargs = {}) triton_poi_fused_reflection_pad2d_relu_6 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_relu_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = (xindex // 34) % 34 x2 = (xindex // 1156) x3 = xindex tmp0 = tl.load(in_ptr0 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/b3/cb3i36nfih3ah5aifo46hyitngbbqmrioka4h7sa3nz2vzd5toin.py # Topologically Sorted Source Nodes: [x_6, x_7, x_8], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.relu] # Source node to ATen node mapping: # x_6 => convolution_2 # x_7 => add_4, repeat_4, repeat_5, rsqrt_2, var_mean_2 # x_8 => relu_2 # Graph fragment: # %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_5, %primals_10, %primals_11, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %repeat_4 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_12, [4]), kwargs = {}) # %repeat_5 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_13, [4]), kwargs = {}) # %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {}) # %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, rnumel): xnumel = 512 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x0 % 128), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 % 128), None, eviction_policy='evict_last') tmp2 = tl.load(in_out_ptr0 + (r3 + (256*x0)), None) tmp3 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = tl.broadcast_to(tmp5, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = tl.full([1], 256, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp5 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0)) tmp18 = 256.0 tmp19 = tmp17 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp4 - tmp12 tmp24 = tmp23 * tmp22 tmp25 = tmp24 * tmp0 tmp26 = tmp25 + tmp1 tmp27 = tl.full([1], 0, tl.int32) tmp28 = triton_helpers.maximum(tmp27, tmp26) tl.store(out_ptr0 + (x0), tmp0, None) tl.store(out_ptr1 + (x0), tmp1, None) tl.store(in_out_ptr0 + (r3 + (256*x0)), tmp4, None) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp22, None) tl.store(out_ptr3 + (r3 + (256*x0)), tmp28, None) tl.store(out_ptr2 + (x0), tmp12, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/st/cstfzn4z33vdn3t4r76kkdoe3fox63ob7zbuq5lr4e2aj2wo3cfw.py # Topologically Sorted Source Nodes: [pad_3], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # pad_3 => _unsafe_index_6, _unsafe_index_7 # Graph fragment: # %_unsafe_index_6 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_2, [None, None, %sub_16, None]), kwargs = {}) # %_unsafe_index_7 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_6, [None, None, None, %sub_16]), kwargs = {}) triton_poi_fused_reflection_pad2d_8 = async_compile.triton('triton_poi_fused_reflection_pad2d_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 165888 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = (xindex // 18) % 18 x2 = (xindex // 324) x3 = xindex tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x2)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/e2/ce2xxpjelyctnuhefg5fuzcvwpa544akythto7ai5tgzpkjchqwu.py # Topologically Sorted Source Nodes: [a, b], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # a => convolution_3 # b => add_6, rsqrt_3, var_mean_3 # Graph fragment: # %convolution_3 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_7, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_3 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_6, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {}) # %rsqrt_3 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_6,), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_9 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_9', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_9(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel): xnumel = 512 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (r2 + (256*x3)), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 256, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(in_out_ptr0 + (r2 + (256*x3)), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp20, None) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/df/cdfz5yaux6hd3x6u7ywjjuon3rgwzpj6jchxqf6fmzsftmjj7luu.py # Topologically Sorted Source Nodes: [b], Original ATen: [aten.repeat] # Source node to ATen node mapping: # b => repeat_6 # Graph fragment: # %repeat_6 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_16, [4]), kwargs = {}) triton_poi_fused_repeat_10 = async_compile.triton('triton_poi_fused_repeat_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_10(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 % 128), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/72/c72anaicoavbg3ypt27amkloa7kkqjupcqqr7kifcj4pxrdujccb.py # Topologically Sorted Source Nodes: [c, pad_4], Original ATen: [aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # c => relu_3 # pad_4 => _unsafe_index_8, _unsafe_index_9 # Graph fragment: # %relu_3 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {}) # %_unsafe_index_8 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_3, [None, None, %sub_16, None]), kwargs = {}) # %_unsafe_index_9 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_8, [None, None, None, %sub_16]), kwargs = {}) triton_poi_fused_reflection_pad2d_relu_11 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_relu_11(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 165888 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = (xindex // 18) % 18 x2 = (xindex // 324) x3 = xindex tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x2)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uw/cuwpi6qqweeebr62gd5qsxad6j5c7lwn7o4osxti7yhqwp7fq4gh.py # Topologically Sorted Source Nodes: [d, e, add, x_9], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # add => add_10 # d => convolution_4 # e => add_8, repeat_8, rsqrt_4, var_mean_4 # x_9 => relu_4 # Graph fragment: # %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_9, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %repeat_8 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_20, [4]), kwargs = {}) # %var_mean_4 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_8, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {}) # %rsqrt_4 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_8,), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_9, %relu_2), kwargs = {}) # %relu_4 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_10,), kwargs = {}) # %le_208 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_12 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*i1', 8: '*fp32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_12', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_12(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel): xnumel = 512 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x0 % 128), None, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (r3 + (256*x0)), None) tmp2 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last') tmp27 = tl.load(in_out_ptr1 + (r3 + (256*x0)), None) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = tl.broadcast_to(tmp4, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.full([1], 256, tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 / tmp10 tmp12 = tmp4 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp3 - tmp11 tmp18 = 256.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp24 = tmp23 * tmp0 tmp26 = tmp24 + tmp25 tmp28 = tmp26 + tmp27 tmp29 = tl.full([1], 0, tl.int32) tmp30 = triton_helpers.maximum(tmp29, tmp28) tmp31 = 0.0 tmp32 = tmp30 <= tmp31 tl.store(out_ptr0 + (x0), tmp0, None) tl.store(in_out_ptr0 + (r3 + (256*x0)), tmp3, None) tl.store(in_out_ptr1 + (r3 + (256*x0)), tmp30, None) tl.store(out_ptr3 + (r3 + (256*x0)), tmp32, None) tl.store(out_ptr4 + (x0), tmp22, None) tl.store(out_ptr1 + (x0), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/sf/csfx6lqqcqwu47chkxt2vd5vxfv4wdyrim5pel6dbqfe4g5taxyv.py # Topologically Sorted Source Nodes: [d_1, e_1, add_1, x_10], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add, aten.relu] # Source node to ATen node mapping: # add_1 => add_15 # d_1 => convolution_6 # e_1 => add_13, repeat_12, rsqrt_6, var_mean_6 # x_10 => relu_6 # Graph fragment: # %convolution_6 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_13, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %repeat_12 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_28, [4]), kwargs = {}) # %var_mean_6 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_12, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_12, 1e-05), kwargs = {}) # %rsqrt_6 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_13,), kwargs = {}) # %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_13, %relu_4), kwargs = {}) # %relu_6 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_15,), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_13 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_13', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_13(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3, xnumel, rnumel): xnumel = 512 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x0 % 128), None, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (r3 + (256*x0)), None) tmp2 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last') tmp27 = tl.load(in_out_ptr1 + (r3 + (256*x0)), None) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = tl.broadcast_to(tmp4, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.full([1], 256, tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 / tmp10 tmp12 = tmp4 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp3 - tmp11 tmp18 = 256.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp24 = tmp23 * tmp0 tmp26 = tmp24 + tmp25 tmp28 = tmp26 + tmp27 tmp29 = tl.full([1], 0, tl.int32) tmp30 = triton_helpers.maximum(tmp29, tmp28) tl.store(out_ptr0 + (x0), tmp0, None) tl.store(in_out_ptr0 + (r3 + (256*x0)), tmp3, None) tl.store(in_out_ptr1 + (r3 + (256*x0)), tmp30, None) tl.store(out_ptr3 + (x0), tmp22, None) tl.store(out_ptr1 + (x0), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/4s/c4so2ujlsynrgjmhbb6bdgyvburbxi37bv7qd6z7gktzj7iyvro4.py # Topologically Sorted Source Nodes: [d_2, e_2, add_2, x_11], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # add_2 => add_20 # d_2 => convolution_8 # e_2 => add_18, repeat_16, rsqrt_8, var_mean_8 # x_11 => relu_8 # Graph fragment: # %convolution_8 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_17, %primals_34, %primals_35, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %repeat_16 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_36, [4]), kwargs = {}) # %var_mean_8 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_16, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_16, 1e-05), kwargs = {}) # %rsqrt_8 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_18,), kwargs = {}) # %add_20 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %relu_6), kwargs = {}) # %relu_8 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_20,), kwargs = {}) # %le_170 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_6, 0), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_14 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*i1', 9: '*fp32', 10: 'i32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_14(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, out_ptr5, xnumel, rnumel): xnumel = 512 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x0 % 128), None, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (r3 + (256*x0)), None) tmp2 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr3 + (r3 + (256*x0)), None) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = tl.broadcast_to(tmp4, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.full([1], 256, tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 / tmp10 tmp12 = tmp4 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp3 - tmp11 tmp18 = 256.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp24 = tmp23 * tmp0 tmp26 = tmp24 + tmp25 tmp28 = tmp26 + tmp27 tmp29 = tl.full([1], 0, tl.int32) tmp30 = triton_helpers.maximum(tmp29, tmp28) tmp31 = 0.0 tmp32 = tmp27 <= tmp31 tl.store(out_ptr0 + (x0), tmp0, None) tl.store(in_out_ptr0 + (r3 + (256*x0)), tmp3, None) tl.store(out_ptr3 + (r3 + (256*x0)), tmp30, None) tl.store(out_ptr4 + (r3 + (256*x0)), tmp32, None) tl.store(out_ptr5 + (x0), tmp22, None) tl.store(out_ptr1 + (x0), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ly/clydupk2lm4bctgb264fhwzs5hdkqtahpqr54znsdhxwmqqhws72.py # Topologically Sorted Source Nodes: [d_4, e_4, add_4, x_13], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # add_4 => add_30 # d_4 => convolution_12 # e_4 => add_28, repeat_24, rsqrt_12, var_mean_12 # x_13 => relu_12 # Graph fragment: # %convolution_12 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_25, %primals_50, %primals_51, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %repeat_24 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_52, [4]), kwargs = {}) # %var_mean_12 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_24, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_28 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_24, 1e-05), kwargs = {}) # %rsqrt_12 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_28,), kwargs = {}) # %add_30 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_25, %relu_10), kwargs = {}) # %relu_12 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_30,), kwargs = {}) # %le_56 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_12, 0), kwargs = {}) # %le_94 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_10, 0), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_15 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*i1', 9: '*i1', 10: '*fp32', 11: 'i32', 12: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_15(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, out_ptr5, out_ptr6, xnumel, rnumel): xnumel = 512 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x0 % 128), None, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (r3 + (256*x0)), None) tmp2 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr3 + (r3 + (256*x0)), None) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = tl.broadcast_to(tmp4, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.full([1], 256, tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 / tmp10 tmp12 = tmp4 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp3 - tmp11 tmp18 = 256.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp24 = tmp23 * tmp0 tmp26 = tmp24 + tmp25 tmp28 = tmp26 + tmp27 tmp29 = tl.full([1], 0, tl.int32) tmp30 = triton_helpers.maximum(tmp29, tmp28) tmp31 = 0.0 tmp32 = tmp30 <= tmp31 tmp33 = tmp27 <= tmp31 tl.store(out_ptr0 + (x0), tmp0, None) tl.store(in_out_ptr0 + (r3 + (256*x0)), tmp3, None) tl.store(out_ptr3 + (r3 + (256*x0)), tmp30, None) tl.store(out_ptr4 + (r3 + (256*x0)), tmp32, None) tl.store(out_ptr5 + (r3 + (256*x0)), tmp33, None) tl.store(out_ptr6 + (x0), tmp22, None) tl.store(out_ptr1 + (x0), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/no/cnojzm4gjo6slbfbwabtm5upo3o6uvnigj7no75s5aojpzw5wzr4.py # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.arange] # Source node to ATen node mapping: # x_14 => iota_26 # Graph fragment: # %iota_26 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_16 = async_compile.triton('triton_poi_fused_arange_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_16(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2h/c2hheqavb5rllatxmrmvnofganisndoonyp3cu676lprf6s7ubpu.py # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_14 => add_31, add_32, convert_element_type, convert_element_type_1, mul_26, mul_27 # Graph fragment: # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_26, 1), kwargs = {}) # %add_31 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_26, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_31, torch.float32), kwargs = {}) # %add_32 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {}) # %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_32, 0.5), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_27, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_17 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_17(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mu/cmukjopi7zbd5nmm7ni2ywqm2h7wm5r7cfj622rlm7uituqip6vb.py # Topologically Sorted Source Nodes: [x_14, pad_13], Original ATen: [aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # pad_13 => _unsafe_index_27, _unsafe_index_28 # x_14 => _unsafe_index_26 # Graph fragment: # %_unsafe_index_26 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_12, [None, None, %unsqueeze_52, %convert_element_type_1]), kwargs = {}) # %_unsafe_index_27 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_26, [None, None, %sub_11, None]), kwargs = {}) # %_unsafe_index_28 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_27, [None, None, None, %sub_11]), kwargs = {}) triton_poi_fused__unsafe_index_reflection_pad2d_18 = async_compile.triton('triton_poi_fused__unsafe_index_reflection_pad2d_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_reflection_pad2d_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_reflection_pad2d_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 591872 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 34) % 34 x0 = xindex % 34 x2 = (xindex // 1156) x5 = xindex tmp0 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (16*tmp4) + (256*x2)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (x5), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/in/cinwskifi65bderdnldodgkrn3bylj6iisgi2lh5ipgy6c5ig2rj.py # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.arange] # Source node to ATen node mapping: # x_18 => iota_30 # Graph fragment: # %iota_30 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_19 = async_compile.triton('triton_poi_fused_arange_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_19(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/v4/cv42sdg4rewp3ehn56p4plhqpzwdog65e62nqvd6kjpilkf2iz72.py # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_18 => add_37, add_38, convert_element_type_4, convert_element_type_5, mul_32, mul_33 # Graph fragment: # %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_30, 1), kwargs = {}) # %add_37 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_32, 0), kwargs = {}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_37, torch.float32), kwargs = {}) # %add_38 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {}) # %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_38, 0.5), kwargs = {}) # %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_33, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_20 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_20(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3k/c3klftkyl244cvqegoif27ebt6qdixk6jchr3pvyvcb4kgjcn3nu.py # Topologically Sorted Source Nodes: [x_17, x_18, pad_14], Original ATen: [aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # pad_14 => _unsafe_index_30, _unsafe_index_31 # x_17 => relu_13 # x_18 => _unsafe_index_29 # Graph fragment: # %relu_13 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_27,), kwargs = {}) # %_unsafe_index_29 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_13, [None, None, %unsqueeze_57, %convert_element_type_5]), kwargs = {}) # %_unsafe_index_30 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_29, [None, None, %sub_6, None]), kwargs = {}) # %_unsafe_index_31 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_30, [None, None, None, %sub_6]), kwargs = {}) triton_poi_fused__unsafe_index_reflection_pad2d_relu_21 = async_compile.triton('triton_poi_fused__unsafe_index_reflection_pad2d_relu_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_reflection_pad2d_relu_21', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_reflection_pad2d_relu_21(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 66) % 66 x0 = xindex % 66 x2 = (xindex // 4356) x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (32*tmp4) + (1024*x2)), xmask, eviction_policy='evict_last') tmp11 = tmp9 - tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 * tmp14 tmp17 = tmp15 + tmp16 tmp18 = tl.full([1], 0, tl.int32) tmp19 = triton_helpers.maximum(tmp18, tmp17) tl.store(out_ptr0 + (x5), tmp19, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uu/cuuhbrvjuevz367ve2ajclcc6uy5k2vtz5hjdsrcf7qo736pfhc3.py # Topologically Sorted Source Nodes: [x_21, pad_15], Original ATen: [aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # pad_15 => _unsafe_index_32, _unsafe_index_33 # x_21 => relu_14 # Graph fragment: # %relu_14 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_29,), kwargs = {}) # %_unsafe_index_32 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_14, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_33 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_32, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_relu_22 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_relu_22(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 663552 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 72 x1 = (xindex // 72) % 72 x2 = (xindex // 5184) x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-4) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-4) + x1))))) + (4096*x2)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/eu/ceuar2bmfx55pbipy63jgwlrppvhcxusapefl5k7l5zkznredoci.py # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_22 => convolution_15 # Graph fragment: # %convolution_15 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_33, %primals_62, %primals_63, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_23 = async_compile.triton('triton_poi_fused_convolution_23', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_23', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_23(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63 = args args.clear() assert_size_stride(primals_1, (32, 3, 9, 9), (243, 81, 9, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (32, ), (1, )) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, ), (1, )) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (128, ), (1, )) assert_size_stride(primals_13, (128, ), (1, )) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128, ), (1, )) assert_size_stride(primals_16, (128, ), (1, )) assert_size_stride(primals_17, (128, ), (1, )) assert_size_stride(primals_18, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_19, (128, ), (1, )) assert_size_stride(primals_20, (128, ), (1, )) assert_size_stride(primals_21, (128, ), (1, )) assert_size_stride(primals_22, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_23, (128, ), (1, )) assert_size_stride(primals_24, (128, ), (1, )) assert_size_stride(primals_25, (128, ), (1, )) assert_size_stride(primals_26, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_27, (128, ), (1, )) assert_size_stride(primals_28, (128, ), (1, )) assert_size_stride(primals_29, (128, ), (1, )) assert_size_stride(primals_30, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_31, (128, ), (1, )) assert_size_stride(primals_32, (128, ), (1, )) assert_size_stride(primals_33, (128, ), (1, )) assert_size_stride(primals_34, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_35, (128, ), (1, )) assert_size_stride(primals_36, (128, ), (1, )) assert_size_stride(primals_37, (128, ), (1, )) assert_size_stride(primals_38, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_39, (128, ), (1, )) assert_size_stride(primals_40, (128, ), (1, )) assert_size_stride(primals_41, (128, ), (1, )) assert_size_stride(primals_42, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_43, (128, ), (1, )) assert_size_stride(primals_44, (128, ), (1, )) assert_size_stride(primals_45, (128, ), (1, )) assert_size_stride(primals_46, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_47, (128, ), (1, )) assert_size_stride(primals_48, (128, ), (1, )) assert_size_stride(primals_49, (128, ), (1, )) assert_size_stride(primals_50, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_51, (128, ), (1, )) assert_size_stride(primals_52, (128, ), (1, )) assert_size_stride(primals_53, (128, ), (1, )) assert_size_stride(primals_54, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_55, (64, ), (1, )) assert_size_stride(primals_56, (64, ), (1, )) assert_size_stride(primals_57, (64, ), (1, )) assert_size_stride(primals_58, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_59, (32, ), (1, )) assert_size_stride(primals_60, (32, ), (1, )) assert_size_stride(primals_61, (32, ), (1, )) assert_size_stride(primals_62, (3, 32, 9, 9), (2592, 81, 9, 1)) assert_size_stride(primals_63, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 72, 72), (15552, 5184, 72, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_3, buf0, 62208, grid=grid(62208), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf2 = buf1; del buf1 # reuse buf5 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch.float32) buf6 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32) buf8 = reinterpret_tensor(buf6, (1, 128, 1, 1), (128, 1, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_red_fused__native_batch_norm_legit_convolution_1.run(buf2, buf8, primals_2, buf5, 128, 4096, grid=grid(128), stream=stream0) del primals_2 buf3 = empty_strided_cuda((128, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.repeat] triton_poi_fused_repeat_2.run(primals_4, buf3, 128, grid=grid(128), stream=stream0) del primals_4 buf4 = empty_strided_cuda((128, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.repeat] triton_poi_fused_repeat_2.run(primals_5, buf4, 128, grid=grid(128), stream=stream0) del primals_5 buf9 = empty_strided_cuda((4, 32, 66, 66), (139392, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2, pad_1], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_3.run(buf2, buf5, buf8, buf3, buf4, buf9, 557568, grid=grid(557568), stream=stream0) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_6, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf11 = buf10; del buf10 # reuse buf14 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch.float32) buf15 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf17 = reinterpret_tensor(buf15, (1, 256, 1, 1), (256, 1, 1, 1), 0); del buf15 # reuse # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_4.run(buf11, buf17, primals_7, buf14, 256, 1024, grid=grid(256), stream=stream0) del primals_7 buf12 = empty_strided_cuda((256, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.repeat] triton_poi_fused_repeat_5.run(primals_8, buf12, 256, grid=grid(256), stream=stream0) del primals_8 buf13 = empty_strided_cuda((256, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.repeat] triton_poi_fused_repeat_5.run(primals_9, buf13, 256, grid=grid(256), stream=stream0) del primals_9 buf18 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5, pad_2], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_6.run(buf11, buf14, buf17, buf12, buf13, buf18, 295936, grid=grid(295936), stream=stream0) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf18, primals_10, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1)) buf21 = empty_strided_cuda((512, ), (1, ), torch.float32) buf22 = empty_strided_cuda((512, ), (1, ), torch.float32) buf20 = buf19; del buf19 # reuse buf23 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf24 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf26 = reinterpret_tensor(buf24, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf24 # reuse buf27 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_6, x_7, x_8], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.relu] triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7.run(buf20, buf26, primals_12, primals_13, primals_11, buf21, buf22, buf23, buf27, 512, 256, grid=grid(512), stream=stream0) del primals_11 del primals_12 del primals_13 buf28 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_3], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_8.run(buf27, buf28, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [a], Original ATen: [aten.convolution] buf29 = extern_kernels.convolution(buf28, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf29, (4, 128, 16, 16), (32768, 256, 16, 1)) buf30 = buf29; del buf29 # reuse buf33 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf34 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf36 = reinterpret_tensor(buf34, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf34 # reuse # Topologically Sorted Source Nodes: [a, b], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_9.run(buf30, buf36, primals_15, buf33, 512, 256, grid=grid(512), stream=stream0) del primals_15 buf31 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [b], Original ATen: [aten.repeat] triton_poi_fused_repeat_10.run(primals_16, buf31, 512, grid=grid(512), stream=stream0) del primals_16 buf32 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [b], Original ATen: [aten.repeat] triton_poi_fused_repeat_10.run(primals_17, buf32, 512, grid=grid(512), stream=stream0) del primals_17 buf37 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [c, pad_4], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_11.run(buf30, buf33, buf36, buf31, buf32, buf37, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [d], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 128, 16, 16), (32768, 256, 16, 1)) buf40 = empty_strided_cuda((512, ), (1, ), torch.float32) buf39 = buf38; del buf38 # reuse buf41 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf45 = buf27; del buf27 # reuse buf147 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf44 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) # Topologically Sorted Source Nodes: [d, e, add, x_9], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add, aten.relu, aten.threshold_backward] triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_12.run(buf39, buf45, primals_20, primals_19, primals_21, buf40, buf41, buf147, buf44, 512, 256, grid=grid(512), stream=stream0) del primals_19 del primals_20 del primals_21 buf46 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_5], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_8.run(buf45, buf46, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.convolution] buf47 = extern_kernels.convolution(buf46, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf47, (4, 128, 16, 16), (32768, 256, 16, 1)) buf48 = buf47; del buf47 # reuse buf51 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf52 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf54 = reinterpret_tensor(buf52, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf52 # reuse # Topologically Sorted Source Nodes: [a_1, b_1], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_9.run(buf48, buf54, primals_23, buf51, 512, 256, grid=grid(512), stream=stream0) del primals_23 buf49 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [b_1], Original ATen: [aten.repeat] triton_poi_fused_repeat_10.run(primals_24, buf49, 512, grid=grid(512), stream=stream0) del primals_24 buf50 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [b_1], Original ATen: [aten.repeat] triton_poi_fused_repeat_10.run(primals_25, buf50, 512, grid=grid(512), stream=stream0) del primals_25 buf55 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [c_1, pad_6], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_11.run(buf48, buf51, buf54, buf49, buf50, buf55, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [d_1], Original ATen: [aten.convolution] buf56 = extern_kernels.convolution(buf55, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf56, (4, 128, 16, 16), (32768, 256, 16, 1)) buf58 = empty_strided_cuda((512, ), (1, ), torch.float32) buf57 = buf56; del buf56 # reuse buf59 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf63 = buf45; del buf45 # reuse buf62 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) # Topologically Sorted Source Nodes: [d_1, e_1, add_1, x_10], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add, aten.relu] triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_13.run(buf57, buf63, primals_28, primals_27, primals_29, buf58, buf59, buf62, 512, 256, grid=grid(512), stream=stream0) del primals_27 del primals_28 del primals_29 buf64 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_7], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_8.run(buf63, buf64, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [a_2], Original ATen: [aten.convolution] buf65 = extern_kernels.convolution(buf64, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf65, (4, 128, 16, 16), (32768, 256, 16, 1)) buf66 = buf65; del buf65 # reuse buf69 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf70 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf72 = reinterpret_tensor(buf70, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf70 # reuse # Topologically Sorted Source Nodes: [a_2, b_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_9.run(buf66, buf72, primals_31, buf69, 512, 256, grid=grid(512), stream=stream0) del primals_31 buf67 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [b_2], Original ATen: [aten.repeat] triton_poi_fused_repeat_10.run(primals_32, buf67, 512, grid=grid(512), stream=stream0) del primals_32 buf68 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [b_2], Original ATen: [aten.repeat] triton_poi_fused_repeat_10.run(primals_33, buf68, 512, grid=grid(512), stream=stream0) del primals_33 buf73 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [c_2, pad_8], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_11.run(buf66, buf69, buf72, buf67, buf68, buf73, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [d_2], Original ATen: [aten.convolution] buf74 = extern_kernels.convolution(buf73, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf74, (4, 128, 16, 16), (32768, 256, 16, 1)) buf76 = empty_strided_cuda((512, ), (1, ), torch.float32) buf75 = buf74; del buf74 # reuse buf77 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf81 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) buf146 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf80 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) # Topologically Sorted Source Nodes: [d_2, e_2, add_2, x_11], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add, aten.relu, aten.threshold_backward] triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_14.run(buf75, primals_36, primals_35, primals_37, buf63, buf76, buf77, buf81, buf146, buf80, 512, 256, grid=grid(512), stream=stream0) del primals_35 del primals_36 del primals_37 buf82 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_9], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_8.run(buf81, buf82, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [a_3], Original ATen: [aten.convolution] buf83 = extern_kernels.convolution(buf82, primals_38, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf83, (4, 128, 16, 16), (32768, 256, 16, 1)) buf84 = buf83; del buf83 # reuse buf87 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf88 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf90 = reinterpret_tensor(buf88, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf88 # reuse # Topologically Sorted Source Nodes: [a_3, b_3], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_9.run(buf84, buf90, primals_39, buf87, 512, 256, grid=grid(512), stream=stream0) del primals_39 buf85 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [b_3], Original ATen: [aten.repeat] triton_poi_fused_repeat_10.run(primals_40, buf85, 512, grid=grid(512), stream=stream0) del primals_40 buf86 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [b_3], Original ATen: [aten.repeat] triton_poi_fused_repeat_10.run(primals_41, buf86, 512, grid=grid(512), stream=stream0) del primals_41 buf91 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [c_3, pad_10], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_11.run(buf84, buf87, buf90, buf85, buf86, buf91, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [d_3], Original ATen: [aten.convolution] buf92 = extern_kernels.convolution(buf91, primals_42, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf92, (4, 128, 16, 16), (32768, 256, 16, 1)) buf94 = empty_strided_cuda((512, ), (1, ), torch.float32) buf93 = buf92; del buf92 # reuse buf95 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf99 = buf63; del buf63 # reuse buf145 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf98 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) # Topologically Sorted Source Nodes: [d_3, e_3, add_3, x_12], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add, aten.relu, aten.threshold_backward] triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_14.run(buf93, primals_44, primals_43, primals_45, buf81, buf94, buf95, buf99, buf145, buf98, 512, 256, grid=grid(512), stream=stream0) del primals_43 del primals_44 del primals_45 buf100 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_11], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_8.run(buf99, buf100, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [a_4], Original ATen: [aten.convolution] buf101 = extern_kernels.convolution(buf100, primals_46, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf101, (4, 128, 16, 16), (32768, 256, 16, 1)) buf102 = buf101; del buf101 # reuse buf105 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf106 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf108 = reinterpret_tensor(buf106, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf106 # reuse # Topologically Sorted Source Nodes: [a_4, b_4], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_9.run(buf102, buf108, primals_47, buf105, 512, 256, grid=grid(512), stream=stream0) del primals_47 buf103 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [b_4], Original ATen: [aten.repeat] triton_poi_fused_repeat_10.run(primals_48, buf103, 512, grid=grid(512), stream=stream0) del primals_48 buf104 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [b_4], Original ATen: [aten.repeat] triton_poi_fused_repeat_10.run(primals_49, buf104, 512, grid=grid(512), stream=stream0) del primals_49 buf109 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [c_4, pad_12], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_11.run(buf102, buf105, buf108, buf103, buf104, buf109, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [d_4], Original ATen: [aten.convolution] buf110 = extern_kernels.convolution(buf109, primals_50, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf110, (4, 128, 16, 16), (32768, 256, 16, 1)) buf112 = empty_strided_cuda((512, ), (1, ), torch.float32) buf111 = buf110; del buf110 # reuse buf113 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf117 = buf81; del buf81 # reuse buf143 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf144 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf116 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) # Topologically Sorted Source Nodes: [d_4, e_4, add_4, x_13], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add, aten.relu, aten.threshold_backward] triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_15.run(buf111, primals_52, primals_51, primals_53, buf99, buf112, buf113, buf117, buf143, buf144, buf116, 512, 256, grid=grid(512), stream=stream0) del buf99 del primals_51 del primals_52 del primals_53 buf118 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.arange] triton_poi_fused_arange_16.run(buf118, 32, grid=grid(32), stream=stream0) buf119 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_17.run(buf119, 32, grid=grid(32), stream=stream0) buf120 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [x_14, pad_13], Original ATen: [aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_reflection_pad2d_18.run(buf119, buf117, buf120, 591872, grid=grid(591872), stream=stream0) del buf117 # Topologically Sorted Source Nodes: [x_15], Original ATen: [aten.convolution] buf121 = extern_kernels.convolution(buf120, primals_54, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf121, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf122 = buf121; del buf121 # reuse buf125 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch.float32) buf126 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf128 = reinterpret_tensor(buf126, (1, 256, 1, 1), (256, 1, 1, 1), 0); del buf126 # reuse # Topologically Sorted Source Nodes: [x_15, x_16], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_4.run(buf122, buf128, primals_55, buf125, 256, 1024, grid=grid(256), stream=stream0) del primals_55 buf123 = empty_strided_cuda((256, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.repeat] triton_poi_fused_repeat_5.run(primals_56, buf123, 256, grid=grid(256), stream=stream0) del primals_56 buf124 = empty_strided_cuda((256, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.repeat] triton_poi_fused_repeat_5.run(primals_57, buf124, 256, grid=grid(256), stream=stream0) del primals_57 buf129 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.arange] triton_poi_fused_arange_19.run(buf129, 64, grid=grid(64), stream=stream0) buf130 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_20.run(buf130, 64, grid=grid(64), stream=stream0) buf131 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [x_17, x_18, pad_14], Original ATen: [aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_reflection_pad2d_relu_21.run(buf130, buf122, buf125, buf128, buf123, buf124, buf131, 1115136, grid=grid(1115136), stream=stream0) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.convolution] buf132 = extern_kernels.convolution(buf131, primals_58, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf132, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf133 = buf132; del buf132 # reuse buf136 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch.float32) buf137 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32) buf139 = reinterpret_tensor(buf137, (1, 128, 1, 1), (128, 1, 1, 1), 0); del buf137 # reuse # Topologically Sorted Source Nodes: [x_19, x_20], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_red_fused__native_batch_norm_legit_convolution_1.run(buf133, buf139, primals_59, buf136, 128, 4096, grid=grid(128), stream=stream0) del primals_59 buf134 = empty_strided_cuda((128, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.repeat] triton_poi_fused_repeat_2.run(primals_60, buf134, 128, grid=grid(128), stream=stream0) del primals_60 buf135 = empty_strided_cuda((128, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.repeat] triton_poi_fused_repeat_2.run(primals_61, buf135, 128, grid=grid(128), stream=stream0) del primals_61 buf140 = empty_strided_cuda((4, 32, 72, 72), (165888, 5184, 72, 1), torch.float32) # Topologically Sorted Source Nodes: [x_21, pad_15], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_22.run(buf133, buf136, buf139, buf134, buf135, buf140, 663552, grid=grid(663552), stream=stream0) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.convolution] buf141 = extern_kernels.convolution(buf140, primals_62, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf141, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf142 = buf141; del buf141 # reuse # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.convolution] triton_poi_fused_convolution_23.run(buf142, primals_63, 49152, grid=grid(49152), stream=stream0) del primals_63 return (buf142, primals_1, primals_6, primals_10, primals_14, primals_18, primals_22, primals_26, primals_30, primals_34, primals_38, primals_42, primals_46, primals_50, primals_54, primals_58, primals_62, buf0, buf2, buf3, buf4, buf5, buf8, buf9, buf11, buf12, buf13, buf14, buf17, buf18, buf20, buf21, buf22, buf23, buf26, buf28, buf30, buf31, buf32, buf33, buf36, buf37, buf39, buf40, reinterpret_tensor(buf44, (512, ), (1, ), 0), buf46, buf48, buf49, buf50, buf51, buf54, buf55, buf57, buf58, reinterpret_tensor(buf62, (512, ), (1, ), 0), buf64, buf66, buf67, buf68, buf69, buf72, buf73, buf75, buf76, reinterpret_tensor(buf80, (512, ), (1, ), 0), buf82, buf84, buf85, buf86, buf87, buf90, buf91, buf93, buf94, reinterpret_tensor(buf98, (512, ), (1, ), 0), buf100, buf102, buf103, buf104, buf105, buf108, buf109, buf111, buf112, reinterpret_tensor(buf116, (512, ), (1, ), 0), buf118, buf119, buf120, buf122, buf123, buf124, buf125, buf128, buf129, buf130, buf131, buf133, buf134, buf135, buf136, buf139, buf140, buf143, reinterpret_tensor(buf113, (1, 512, 1, 1), (512, 1, 1, 1), 0), buf144, reinterpret_tensor(buf95, (1, 512, 1, 1), (512, 1, 1, 1), 0), buf145, reinterpret_tensor(buf77, (1, 512, 1, 1), (512, 1, 1, 1), 0), buf146, reinterpret_tensor(buf59, (1, 512, 1, 1), (512, 1, 1, 1), 0), buf147, reinterpret_tensor(buf41, (1, 512, 1, 1), (512, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 3, 9, 9), (243, 81, 9, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_36 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_37 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_38 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_39 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_40 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_41 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_42 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_43 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_44 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_45 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_46 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_47 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_48 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_49 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_50 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_51 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_52 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_53 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_54 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_55 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_56 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_57 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_58 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_59 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_60 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_61 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_62 = rand_strided((3, 32, 9, 9), (2592, 81, 9, 1), device='cuda:0', dtype=torch.float32) primals_63 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ResidualBlock(nn.Module): """ Vanilla convolutional residual block from seminal paper by He et al. Use of instance normalization suggested by Ulyanov et al. in https://arxiv.org/pdf/1607.08022.pdf%C2%A0%C2%A0%C2%A0%C2%A0. """ def __init__(self, filters=128): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(filters, filters, (3, 3), padding=(1, 1), padding_mode='reflect') self.in_norm1 = nn.InstanceNorm2d(filters, affine=True) self.conv2 = nn.Conv2d(filters, filters, (3, 3), padding=(1, 1), padding_mode='reflect') self.in_norm2 = nn.InstanceNorm2d(filters, affine=True) def forward(self, x): a = self.conv1(x) b = self.in_norm1(a) c = F.relu(b) d = self.conv2(c) e = self.in_norm2(d) return F.relu(e + x) class ImageTransformationNet(nn.Module): """ The image transformation network described in the paper by Johnson et al., with instance normalization as suggested by Ulyanov et al. """ def __init__(self, vangoh=False): super(ImageTransformationNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, (9, 9), padding=(4, 4), padding_mode= 'reflect') self.in_norm1 = nn.InstanceNorm2d(32, affine=True) self.conv2 = nn.Conv2d(32, 64, (3, 3), padding=(1, 1), padding_mode ='reflect', stride=2) self.in_norm2 = nn.InstanceNorm2d(64, affine=True) self.conv3 = nn.Conv2d(64, 128, (3, 3), padding=(1, 1), padding_mode='reflect', stride=2) self.in_norm3 = nn.InstanceNorm2d(128, affine=True) self.block1 = ResidualBlock() self.block2 = ResidualBlock() self.block3 = ResidualBlock() self.block4 = ResidualBlock() self.block5 = ResidualBlock() self.conv4 = nn.Conv2d(128, 64, (3, 3), padding=(1, 1), padding_mode='reflect') self.in_norm4 = nn.InstanceNorm2d(64, affine=True) if vangoh: self.conv5 = nn.ConvTranspose2d(64, 32, (3, 3), padding=(1, 1)) else: self.conv5 = nn.Conv2d(64, 32, (3, 3), padding=(1, 1), padding_mode='reflect') self.in_norm5 = nn.InstanceNorm2d(32, affine=True) self.upsample = nn.Upsample(scale_factor=2, mode='nearest') self.conv6 = nn.Conv2d(32, 3, (9, 9), padding=(4, 4), padding_mode= 'reflect') def forward(self, x): x = self.conv1(x) x = self.in_norm1(x) x = F.relu(x) x = self.conv2(x) x = self.in_norm2(x) x = F.relu(x) x = self.conv3(x) x = self.in_norm3(x) x = F.relu(x) x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.block4(x) x = self.block5(x) x = self.upsample(x) x = self.conv4(x) x = self.in_norm4(x) x = F.relu(x) x = self.upsample(x) x = self.conv5(x) x = self.in_norm5(x) x = F.relu(x) x = self.conv6(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 62208 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 72 x1 = xindex // 72 % 72 x2 = xindex // 5184 x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-4 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-4 + x1)) + 4096 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 128 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 32 tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = (triton_helpers. welford_reduce(tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0) ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + 4096 * x3), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford(tmp4_mean, tmp4_m2, tmp4_weight, 1) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6_tmp[:, None] tl.store(out_ptr0 + x3, tmp4, xmask) tmp7 = 4096.0 tmp8 = tmp5 / tmp7 tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = libdevice.rsqrt(tmp10) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp11, xmask) @triton.jit def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0 % 32, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 557568 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = xindex // 66 % 66 x2 = xindex // 4356 x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_4(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (r2 + 1024 * x3), None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 1024, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 1024.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(in_out_ptr0 + (r2 + 1024 * x3), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp20, None) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused_repeat_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0 % 64, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_reflection_pad2d_relu_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = xindex // 34 % 34 x2 = xindex // 1156 x3 = xindex tmp0 = tl.load(in_ptr0 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7( in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 128 tmp0 = tl.load(in_ptr0 + x0 % 128, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x0 % 128, None, eviction_policy='evict_last') tmp2 = tl.load(in_out_ptr0 + (r3 + 256 * x0), None) tmp3 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = tl.broadcast_to(tmp5, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = tl.full([1], 256, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp5 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0)) tmp18 = 256.0 tmp19 = tmp17 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp4 - tmp12 tmp24 = tmp23 * tmp22 tmp25 = tmp24 * tmp0 tmp26 = tmp25 + tmp1 tmp27 = tl.full([1], 0, tl.int32) tmp28 = triton_helpers.maximum(tmp27, tmp26) tl.store(out_ptr0 + x0, tmp0, None) tl.store(out_ptr1 + x0, tmp1, None) tl.store(in_out_ptr0 + (r3 + 256 * x0), tmp4, None) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp22, None) tl.store(out_ptr3 + (r3 + 256 * x0), tmp28, None) tl.store(out_ptr2 + x0, tmp12, None) @triton.jit def triton_poi_fused_reflection_pad2d_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = xindex // 18 % 18 x2 = xindex // 324 x3 = xindex tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x2), None, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, None) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_9(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (r2 + 256 * x3), None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 256, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(in_out_ptr0 + (r2 + 256 * x3), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp20, None) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused_repeat_10(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0 % 128, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_reflection_pad2d_relu_11(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = xindex // 18 % 18 x2 = xindex // 324 x3 = xindex tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x2), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_12( in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 128 tmp0 = tl.load(in_ptr0 + x0 % 128, None, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (r3 + 256 * x0), None) tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp27 = tl.load(in_out_ptr1 + (r3 + 256 * x0), None) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = tl.broadcast_to(tmp4, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.full([1], 256, tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 / tmp10 tmp12 = tmp4 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp3 - tmp11 tmp18 = 256.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp24 = tmp23 * tmp0 tmp26 = tmp24 + tmp25 tmp28 = tmp26 + tmp27 tmp29 = tl.full([1], 0, tl.int32) tmp30 = triton_helpers.maximum(tmp29, tmp28) tmp31 = 0.0 tmp32 = tmp30 <= tmp31 tl.store(out_ptr0 + x0, tmp0, None) tl.store(in_out_ptr0 + (r3 + 256 * x0), tmp3, None) tl.store(in_out_ptr1 + (r3 + 256 * x0), tmp30, None) tl.store(out_ptr3 + (r3 + 256 * x0), tmp32, None) tl.store(out_ptr4 + x0, tmp22, None) tl.store(out_ptr1 + x0, tmp11, None) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_13( in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 128 tmp0 = tl.load(in_ptr0 + x0 % 128, None, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (r3 + 256 * x0), None) tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp27 = tl.load(in_out_ptr1 + (r3 + 256 * x0), None) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = tl.broadcast_to(tmp4, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.full([1], 256, tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 / tmp10 tmp12 = tmp4 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp3 - tmp11 tmp18 = 256.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp24 = tmp23 * tmp0 tmp26 = tmp24 + tmp25 tmp28 = tmp26 + tmp27 tmp29 = tl.full([1], 0, tl.int32) tmp30 = triton_helpers.maximum(tmp29, tmp28) tl.store(out_ptr0 + x0, tmp0, None) tl.store(in_out_ptr0 + (r3 + 256 * x0), tmp3, None) tl.store(in_out_ptr1 + (r3 + 256 * x0), tmp30, None) tl.store(out_ptr3 + x0, tmp22, None) tl.store(out_ptr1 + x0, tmp11, None) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_14( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, out_ptr5, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 128 tmp0 = tl.load(in_ptr0 + x0 % 128, None, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (r3 + 256 * x0), None) tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr3 + (r3 + 256 * x0), None) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = tl.broadcast_to(tmp4, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.full([1], 256, tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 / tmp10 tmp12 = tmp4 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp3 - tmp11 tmp18 = 256.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp24 = tmp23 * tmp0 tmp26 = tmp24 + tmp25 tmp28 = tmp26 + tmp27 tmp29 = tl.full([1], 0, tl.int32) tmp30 = triton_helpers.maximum(tmp29, tmp28) tmp31 = 0.0 tmp32 = tmp27 <= tmp31 tl.store(out_ptr0 + x0, tmp0, None) tl.store(in_out_ptr0 + (r3 + 256 * x0), tmp3, None) tl.store(out_ptr3 + (r3 + 256 * x0), tmp30, None) tl.store(out_ptr4 + (r3 + 256 * x0), tmp32, None) tl.store(out_ptr5 + x0, tmp22, None) tl.store(out_ptr1 + x0, tmp11, None) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_15( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, out_ptr5, out_ptr6, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 128 tmp0 = tl.load(in_ptr0 + x0 % 128, None, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (r3 + 256 * x0), None) tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr3 + (r3 + 256 * x0), None) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = tl.broadcast_to(tmp4, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.full([1], 256, tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 / tmp10 tmp12 = tmp4 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp3 - tmp11 tmp18 = 256.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp24 = tmp23 * tmp0 tmp26 = tmp24 + tmp25 tmp28 = tmp26 + tmp27 tmp29 = tl.full([1], 0, tl.int32) tmp30 = triton_helpers.maximum(tmp29, tmp28) tmp31 = 0.0 tmp32 = tmp30 <= tmp31 tmp33 = tmp27 <= tmp31 tl.store(out_ptr0 + x0, tmp0, None) tl.store(in_out_ptr0 + (r3 + 256 * x0), tmp3, None) tl.store(out_ptr3 + (r3 + 256 * x0), tmp30, None) tl.store(out_ptr4 + (r3 + 256 * x0), tmp32, None) tl.store(out_ptr5 + (r3 + 256 * x0), tmp33, None) tl.store(out_ptr6 + x0, tmp22, None) tl.store(out_ptr1 + x0, tmp11, None) @triton.jit def triton_poi_fused_arange_16(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_17(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_reflection_pad2d_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 34 % 34 x0 = xindex % 34 x2 = xindex // 1156 x5 = xindex tmp0 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x1))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0))), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 16 * tmp4 + 256 * x2), None, eviction_policy='evict_last') tl.store(out_ptr0 + x5, tmp9, None) @triton.jit def triton_poi_fused_arange_19(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_20(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_reflection_pad2d_relu_21(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 66 % 66 x0 = xindex % 66 x2 = xindex // 4356 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x1))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 32 * tmp4 + 1024 * x2), xmask, eviction_policy='evict_last') tmp11 = tmp9 - tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 * tmp14 tmp17 = tmp15 + tmp16 tmp18 = tl.full([1], 0, tl.int32) tmp19 = triton_helpers.maximum(tmp18, tmp17) tl.store(out_ptr0 + x5, tmp19, xmask) @triton.jit def triton_poi_fused_reflection_pad2d_relu_22(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 72 x1 = xindex // 72 % 72 x2 = xindex // 5184 x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-4 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-4 + x1)) + 4096 * x2), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused_convolution_23(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63 ) = args args.clear() assert_size_stride(primals_1, (32, 3, 9, 9), (243, 81, 9, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (32,), (1,)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64,), (1,)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (128,), (1,)) assert_size_stride(primals_13, (128,), (1,)) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128,), (1,)) assert_size_stride(primals_16, (128,), (1,)) assert_size_stride(primals_17, (128,), (1,)) assert_size_stride(primals_18, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_19, (128,), (1,)) assert_size_stride(primals_20, (128,), (1,)) assert_size_stride(primals_21, (128,), (1,)) assert_size_stride(primals_22, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_23, (128,), (1,)) assert_size_stride(primals_24, (128,), (1,)) assert_size_stride(primals_25, (128,), (1,)) assert_size_stride(primals_26, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_27, (128,), (1,)) assert_size_stride(primals_28, (128,), (1,)) assert_size_stride(primals_29, (128,), (1,)) assert_size_stride(primals_30, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_31, (128,), (1,)) assert_size_stride(primals_32, (128,), (1,)) assert_size_stride(primals_33, (128,), (1,)) assert_size_stride(primals_34, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_35, (128,), (1,)) assert_size_stride(primals_36, (128,), (1,)) assert_size_stride(primals_37, (128,), (1,)) assert_size_stride(primals_38, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_39, (128,), (1,)) assert_size_stride(primals_40, (128,), (1,)) assert_size_stride(primals_41, (128,), (1,)) assert_size_stride(primals_42, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_43, (128,), (1,)) assert_size_stride(primals_44, (128,), (1,)) assert_size_stride(primals_45, (128,), (1,)) assert_size_stride(primals_46, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_47, (128,), (1,)) assert_size_stride(primals_48, (128,), (1,)) assert_size_stride(primals_49, (128,), (1,)) assert_size_stride(primals_50, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_51, (128,), (1,)) assert_size_stride(primals_52, (128,), (1,)) assert_size_stride(primals_53, (128,), (1,)) assert_size_stride(primals_54, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_55, (64,), (1,)) assert_size_stride(primals_56, (64,), (1,)) assert_size_stride(primals_57, (64,), (1,)) assert_size_stride(primals_58, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_59, (32,), (1,)) assert_size_stride(primals_60, (32,), (1,)) assert_size_stride(primals_61, (32,), (1,)) assert_size_stride(primals_62, (3, 32, 9, 9), (2592, 81, 9, 1)) assert_size_stride(primals_63, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 72, 72), (15552, 5184, 72, 1), torch.float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(62208)](primals_3, buf0, 62208, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf2 = buf1 del buf1 buf5 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch.float32 ) buf6 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch .float32) buf8 = reinterpret_tensor(buf6, (1, 128, 1, 1), (128, 1, 1, 1), 0) del buf6 triton_red_fused__native_batch_norm_legit_convolution_1[grid(128)](buf2 , buf8, primals_2, buf5, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) del primals_2 buf3 = empty_strided_cuda((128,), (1,), torch.float32) triton_poi_fused_repeat_2[grid(128)](primals_4, buf3, 128, XBLOCK= 128, num_warps=4, num_stages=1) del primals_4 buf4 = empty_strided_cuda((128,), (1,), torch.float32) triton_poi_fused_repeat_2[grid(128)](primals_5, buf4, 128, XBLOCK= 128, num_warps=4, num_stages=1) del primals_5 buf9 = empty_strided_cuda((4, 32, 66, 66), (139392, 4356, 66, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_3[grid(557568)](buf2, buf5, buf8, buf3, buf4, buf9, 557568, XBLOCK=512, num_warps=8, num_stages=1) buf10 = extern_kernels.convolution(buf9, primals_6, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf11 = buf10 del buf10 buf14 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch. float32) buf15 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf17 = reinterpret_tensor(buf15, (1, 256, 1, 1), (256, 1, 1, 1), 0) del buf15 triton_per_fused__native_batch_norm_legit_convolution_4[grid(256)]( buf11, buf17, primals_7, buf14, 256, 1024, num_warps=8, num_stages=1) del primals_7 buf12 = empty_strided_cuda((256,), (1,), torch.float32) triton_poi_fused_repeat_5[grid(256)](primals_8, buf12, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_8 buf13 = empty_strided_cuda((256,), (1,), torch.float32) triton_poi_fused_repeat_5[grid(256)](primals_9, buf13, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_9 buf18 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_6[grid(295936)](buf11, buf14, buf17, buf12, buf13, buf18, 295936, XBLOCK=1024, num_warps=4, num_stages=1) buf19 = extern_kernels.convolution(buf18, primals_10, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1)) buf21 = empty_strided_cuda((512,), (1,), torch.float32) buf22 = empty_strided_cuda((512,), (1,), torch.float32) buf20 = buf19 del buf19 buf23 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf24 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf26 = reinterpret_tensor(buf24, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf24 buf27 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7[ grid(512)](buf20, buf26, primals_12, primals_13, primals_11, buf21, buf22, buf23, buf27, 512, 256, num_warps=2, num_stages=1) del primals_11 del primals_12 del primals_13 buf28 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_8[grid(165888)](buf27, buf28, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf29 = extern_kernels.convolution(buf28, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf29, (4, 128, 16, 16), (32768, 256, 16, 1)) buf30 = buf29 del buf29 buf33 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf34 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf36 = reinterpret_tensor(buf34, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf34 triton_per_fused__native_batch_norm_legit_convolution_9[grid(512)]( buf30, buf36, primals_15, buf33, 512, 256, num_warps=2, num_stages=1) del primals_15 buf31 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_10[grid(512)](primals_16, buf31, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_16 buf32 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_10[grid(512)](primals_17, buf32, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_17 buf37 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_11[grid(165888)](buf30, buf33, buf36, buf31, buf32, buf37, 165888, XBLOCK=1024, num_warps=4, num_stages=1) buf38 = extern_kernels.convolution(buf37, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 128, 16, 16), (32768, 256, 16, 1)) buf40 = empty_strided_cuda((512,), (1,), torch.float32) buf39 = buf38 del buf38 buf41 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf45 = buf27 del buf27 buf147 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf44 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_12[ grid(512)](buf39, buf45, primals_20, primals_19, primals_21, buf40, buf41, buf147, buf44, 512, 256, num_warps=2, num_stages=1) del primals_19 del primals_20 del primals_21 buf46 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_8[grid(165888)](buf45, buf46, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf47 = extern_kernels.convolution(buf46, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf47, (4, 128, 16, 16), (32768, 256, 16, 1)) buf48 = buf47 del buf47 buf51 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf52 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf54 = reinterpret_tensor(buf52, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf52 triton_per_fused__native_batch_norm_legit_convolution_9[grid(512)]( buf48, buf54, primals_23, buf51, 512, 256, num_warps=2, num_stages=1) del primals_23 buf49 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_10[grid(512)](primals_24, buf49, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_24 buf50 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_10[grid(512)](primals_25, buf50, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_25 buf55 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_11[grid(165888)](buf48, buf51, buf54, buf49, buf50, buf55, 165888, XBLOCK=1024, num_warps=4, num_stages=1) buf56 = extern_kernels.convolution(buf55, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf56, (4, 128, 16, 16), (32768, 256, 16, 1)) buf58 = empty_strided_cuda((512,), (1,), torch.float32) buf57 = buf56 del buf56 buf59 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf63 = buf45 del buf45 buf62 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_13[ grid(512)](buf57, buf63, primals_28, primals_27, primals_29, buf58, buf59, buf62, 512, 256, num_warps=2, num_stages=1) del primals_27 del primals_28 del primals_29 buf64 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_8[grid(165888)](buf63, buf64, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf65 = extern_kernels.convolution(buf64, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf65, (4, 128, 16, 16), (32768, 256, 16, 1)) buf66 = buf65 del buf65 buf69 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf70 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf72 = reinterpret_tensor(buf70, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf70 triton_per_fused__native_batch_norm_legit_convolution_9[grid(512)]( buf66, buf72, primals_31, buf69, 512, 256, num_warps=2, num_stages=1) del primals_31 buf67 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_10[grid(512)](primals_32, buf67, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_32 buf68 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_10[grid(512)](primals_33, buf68, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_33 buf73 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_11[grid(165888)](buf66, buf69, buf72, buf67, buf68, buf73, 165888, XBLOCK=1024, num_warps=4, num_stages=1) buf74 = extern_kernels.convolution(buf73, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf74, (4, 128, 16, 16), (32768, 256, 16, 1)) buf76 = empty_strided_cuda((512,), (1,), torch.float32) buf75 = buf74 del buf74 buf77 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf81 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) buf146 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf80 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_14[ grid(512)](buf75, primals_36, primals_35, primals_37, buf63, buf76, buf77, buf81, buf146, buf80, 512, 256, num_warps=2, num_stages=1) del primals_35 del primals_36 del primals_37 buf82 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_8[grid(165888)](buf81, buf82, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf83 = extern_kernels.convolution(buf82, primals_38, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf83, (4, 128, 16, 16), (32768, 256, 16, 1)) buf84 = buf83 del buf83 buf87 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf88 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf90 = reinterpret_tensor(buf88, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf88 triton_per_fused__native_batch_norm_legit_convolution_9[grid(512)]( buf84, buf90, primals_39, buf87, 512, 256, num_warps=2, num_stages=1) del primals_39 buf85 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_10[grid(512)](primals_40, buf85, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_40 buf86 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_10[grid(512)](primals_41, buf86, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_41 buf91 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_11[grid(165888)](buf84, buf87, buf90, buf85, buf86, buf91, 165888, XBLOCK=1024, num_warps=4, num_stages=1) buf92 = extern_kernels.convolution(buf91, primals_42, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf92, (4, 128, 16, 16), (32768, 256, 16, 1)) buf94 = empty_strided_cuda((512,), (1,), torch.float32) buf93 = buf92 del buf92 buf95 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf99 = buf63 del buf63 buf145 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf98 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_14[ grid(512)](buf93, primals_44, primals_43, primals_45, buf81, buf94, buf95, buf99, buf145, buf98, 512, 256, num_warps=2, num_stages=1) del primals_43 del primals_44 del primals_45 buf100 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_8[grid(165888)](buf99, buf100, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf101 = extern_kernels.convolution(buf100, primals_46, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf101, (4, 128, 16, 16), (32768, 256, 16, 1)) buf102 = buf101 del buf101 buf105 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf106 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf108 = reinterpret_tensor(buf106, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf106 triton_per_fused__native_batch_norm_legit_convolution_9[grid(512)]( buf102, buf108, primals_47, buf105, 512, 256, num_warps=2, num_stages=1) del primals_47 buf103 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_10[grid(512)](primals_48, buf103, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_48 buf104 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_10[grid(512)](primals_49, buf104, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_49 buf109 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_11[grid(165888)](buf102, buf105, buf108, buf103, buf104, buf109, 165888, XBLOCK=1024, num_warps=4, num_stages=1) buf110 = extern_kernels.convolution(buf109, primals_50, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf110, (4, 128, 16, 16), (32768, 256, 16, 1)) buf112 = empty_strided_cuda((512,), (1,), torch.float32) buf111 = buf110 del buf110 buf113 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf117 = buf81 del buf81 buf143 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf144 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf116 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_15[ grid(512)](buf111, primals_52, primals_51, primals_53, buf99, buf112, buf113, buf117, buf143, buf144, buf116, 512, 256, num_warps=2, num_stages=1) del buf99 del primals_51 del primals_52 del primals_53 buf118 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused_arange_16[grid(32)](buf118, 32, XBLOCK=32, num_warps=1, num_stages=1) buf119 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_17[grid(32)](buf119, 32, XBLOCK=32, num_warps=1, num_stages=1) buf120 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32) triton_poi_fused__unsafe_index_reflection_pad2d_18[grid(591872)](buf119 , buf117, buf120, 591872, XBLOCK=1024, num_warps=4, num_stages=1) del buf117 buf121 = extern_kernels.convolution(buf120, primals_54, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf121, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf122 = buf121 del buf121 buf125 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch. float32) buf126 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf128 = reinterpret_tensor(buf126, (1, 256, 1, 1), (256, 1, 1, 1), 0) del buf126 triton_per_fused__native_batch_norm_legit_convolution_4[grid(256)]( buf122, buf128, primals_55, buf125, 256, 1024, num_warps=8, num_stages=1) del primals_55 buf123 = empty_strided_cuda((256,), (1,), torch.float32) triton_poi_fused_repeat_5[grid(256)](primals_56, buf123, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_56 buf124 = empty_strided_cuda((256,), (1,), torch.float32) triton_poi_fused_repeat_5[grid(256)](primals_57, buf124, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_57 buf129 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_arange_19[grid(64)](buf129, 64, XBLOCK=64, num_warps=1, num_stages=1) buf130 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_20[grid(64)](buf130, 64, XBLOCK=64, num_warps=1, num_stages=1) buf131 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32) triton_poi_fused__unsafe_index_reflection_pad2d_relu_21[grid(1115136)]( buf130, buf122, buf125, buf128, buf123, buf124, buf131, 1115136, XBLOCK=512, num_warps=8, num_stages=1) buf132 = extern_kernels.convolution(buf131, primals_58, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf132, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf133 = buf132 del buf132 buf136 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch. float32) buf137 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32) buf139 = reinterpret_tensor(buf137, (1, 128, 1, 1), (128, 1, 1, 1), 0) del buf137 triton_red_fused__native_batch_norm_legit_convolution_1[grid(128)]( buf133, buf139, primals_59, buf136, 128, 4096, XBLOCK=1, RBLOCK =2048, num_warps=16, num_stages=1) del primals_59 buf134 = empty_strided_cuda((128,), (1,), torch.float32) triton_poi_fused_repeat_2[grid(128)](primals_60, buf134, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_60 buf135 = empty_strided_cuda((128,), (1,), torch.float32) triton_poi_fused_repeat_2[grid(128)](primals_61, buf135, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_61 buf140 = empty_strided_cuda((4, 32, 72, 72), (165888, 5184, 72, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_22[grid(663552)](buf133, buf136, buf139, buf134, buf135, buf140, 663552, XBLOCK=512, num_warps=8, num_stages=1) buf141 = extern_kernels.convolution(buf140, primals_62, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf141, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf142 = buf141 del buf141 triton_poi_fused_convolution_23[grid(49152)](buf142, primals_63, 49152, XBLOCK=256, num_warps=4, num_stages=1) del primals_63 return (buf142, primals_1, primals_6, primals_10, primals_14, primals_18, primals_22, primals_26, primals_30, primals_34, primals_38, primals_42, primals_46, primals_50, primals_54, primals_58, primals_62, buf0, buf2, buf3, buf4, buf5, buf8, buf9, buf11, buf12, buf13, buf14, buf17, buf18, buf20, buf21, buf22, buf23, buf26, buf28, buf30, buf31, buf32, buf33, buf36, buf37, buf39, buf40, reinterpret_tensor(buf44, (512,), (1,), 0), buf46, buf48, buf49, buf50, buf51, buf54, buf55, buf57, buf58, reinterpret_tensor(buf62, (512,), (1,), 0), buf64, buf66, buf67, buf68, buf69, buf72, buf73, buf75, buf76, reinterpret_tensor(buf80, (512,), (1,), 0), buf82, buf84, buf85, buf86, buf87, buf90, buf91, buf93, buf94, reinterpret_tensor(buf98, (512,), (1,), 0), buf100, buf102, buf103, buf104, buf105, buf108, buf109, buf111, buf112, reinterpret_tensor(buf116, (512,), (1,), 0), buf118, buf119, buf120, buf122, buf123, buf124, buf125, buf128, buf129, buf130, buf131, buf133, buf134, buf135, buf136, buf139, buf140, buf143, reinterpret_tensor(buf113, (1, 512, 1, 1), (512, 1, 1, 1), 0), buf144, reinterpret_tensor(buf95, (1, 512, 1, 1), (512, 1, 1, 1), 0 ), buf145, reinterpret_tensor(buf77, (1, 512, 1, 1), (512, 1, 1, 1), 0), buf146, reinterpret_tensor(buf59, (1, 512, 1, 1), (512, 1, 1, 1 ), 0), buf147, reinterpret_tensor(buf41, (1, 512, 1, 1), (512, 1, 1, 1), 0)) class ResidualBlock(nn.Module): """ Vanilla convolutional residual block from seminal paper by He et al. Use of instance normalization suggested by Ulyanov et al. in https://arxiv.org/pdf/1607.08022.pdf%C2%A0%C2%A0%C2%A0%C2%A0. """ def __init__(self, filters=128): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(filters, filters, (3, 3), padding=(1, 1), padding_mode='reflect') self.in_norm1 = nn.InstanceNorm2d(filters, affine=True) self.conv2 = nn.Conv2d(filters, filters, (3, 3), padding=(1, 1), padding_mode='reflect') self.in_norm2 = nn.InstanceNorm2d(filters, affine=True) def forward(self, x): a = self.conv1(x) b = self.in_norm1(a) c = F.relu(b) d = self.conv2(c) e = self.in_norm2(d) return F.relu(e + x) class ImageTransformationNetNew(nn.Module): """ The image transformation network described in the paper by Johnson et al., with instance normalization as suggested by Ulyanov et al. """ def __init__(self, vangoh=False): super(ImageTransformationNetNew, self).__init__() self.conv1 = nn.Conv2d(3, 32, (9, 9), padding=(4, 4), padding_mode= 'reflect') self.in_norm1 = nn.InstanceNorm2d(32, affine=True) self.conv2 = nn.Conv2d(32, 64, (3, 3), padding=(1, 1), padding_mode ='reflect', stride=2) self.in_norm2 = nn.InstanceNorm2d(64, affine=True) self.conv3 = nn.Conv2d(64, 128, (3, 3), padding=(1, 1), padding_mode='reflect', stride=2) self.in_norm3 = nn.InstanceNorm2d(128, affine=True) self.block1 = ResidualBlock() self.block2 = ResidualBlock() self.block3 = ResidualBlock() self.block4 = ResidualBlock() self.block5 = ResidualBlock() self.conv4 = nn.Conv2d(128, 64, (3, 3), padding=(1, 1), padding_mode='reflect') self.in_norm4 = nn.InstanceNorm2d(64, affine=True) if vangoh: self.conv5 = nn.ConvTranspose2d(64, 32, (3, 3), padding=(1, 1)) else: self.conv5 = nn.Conv2d(64, 32, (3, 3), padding=(1, 1), padding_mode='reflect') self.in_norm5 = nn.InstanceNorm2d(32, affine=True) self.upsample = nn.Upsample(scale_factor=2, mode='nearest') self.conv6 = nn.Conv2d(32, 3, (9, 9), padding=(4, 4), padding_mode= 'reflect') def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.in_norm1.weight primals_5 = self.in_norm1.bias primals_6 = self.conv2.weight primals_7 = self.conv2.bias primals_8 = self.in_norm2.weight primals_9 = self.in_norm2.bias primals_10 = self.conv3.weight primals_11 = self.conv3.bias primals_12 = self.in_norm3.weight primals_13 = self.in_norm3.bias primals_14 = self.block1.conv1.weight primals_15 = self.block1.conv1.bias primals_16 = self.block1.in_norm1.weight primals_17 = self.block1.in_norm1.bias primals_18 = self.block1.conv2.weight primals_19 = self.block1.conv2.bias primals_20 = self.block1.in_norm2.weight primals_21 = self.block1.in_norm2.bias primals_22 = self.block2.conv1.weight primals_23 = self.block2.conv1.bias primals_24 = self.block2.in_norm1.weight primals_25 = self.block2.in_norm1.bias primals_26 = self.block2.conv2.weight primals_27 = self.block2.conv2.bias primals_28 = self.block2.in_norm2.weight primals_29 = self.block2.in_norm2.bias primals_30 = self.block3.conv1.weight primals_31 = self.block3.conv1.bias primals_32 = self.block3.in_norm1.weight primals_33 = self.block3.in_norm1.bias primals_34 = self.block3.conv2.weight primals_35 = self.block3.conv2.bias primals_36 = self.block3.in_norm2.weight primals_37 = self.block3.in_norm2.bias primals_38 = self.block4.conv1.weight primals_39 = self.block4.conv1.bias primals_40 = self.block4.in_norm1.weight primals_41 = self.block4.in_norm1.bias primals_42 = self.block4.conv2.weight primals_43 = self.block4.conv2.bias primals_44 = self.block4.in_norm2.weight primals_45 = self.block4.in_norm2.bias primals_46 = self.block5.conv1.weight primals_47 = self.block5.conv1.bias primals_48 = self.block5.in_norm1.weight primals_49 = self.block5.in_norm1.bias primals_50 = self.block5.conv2.weight primals_51 = self.block5.conv2.bias primals_52 = self.block5.in_norm2.weight primals_53 = self.block5.in_norm2.bias primals_54 = self.conv4.weight primals_55 = self.conv4.bias primals_56 = self.in_norm4.weight primals_57 = self.in_norm4.bias primals_58 = self.conv5.weight primals_59 = self.conv5.bias primals_60 = self.in_norm5.weight primals_61 = self.in_norm5.bias primals_62 = self.conv6.weight primals_63 = self.conv6.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63]) return output[0]
rileypsmith/Fast-Style-Transfer
ImageTransformationNet
false
4,244
[ "MIT" ]
0
8b2164f8bc6d63530f914610b6c5c5c1b0f4ffd5
https://github.com/rileypsmith/Fast-Style-Transfer/tree/8b2164f8bc6d63530f914610b6c5c5c1b0f4ffd5
import torch import torch.nn as nn import torch.nn.functional as F class ResidualBlock(nn.Module): """ Vanilla convolutional residual block from seminal paper by He et al. Use of instance normalization suggested by Ulyanov et al. in https://arxiv.org/pdf/1607.08022.pdf%C2%A0%C2%A0%C2%A0%C2%A0. """ def __init__(self, filters=128): super().__init__() self.conv1 = nn.Conv2d(filters, filters, (3, 3), padding=(1, 1), padding_mode='reflect') self.in_norm1 = nn.InstanceNorm2d(filters, affine=True) self.conv2 = nn.Conv2d(filters, filters, (3, 3), padding=(1, 1), padding_mode='reflect') self.in_norm2 = nn.InstanceNorm2d(filters, affine=True) def forward(self, x): a = self.conv1(x) b = self.in_norm1(a) c = F.relu(b) d = self.conv2(c) e = self.in_norm2(d) return F.relu(e + x) class Model(nn.Module): """ The image transformation network described in the paper by Johnson et al., with instance normalization as suggested by Ulyanov et al. """ def __init__(self, vangoh=False): super().__init__() self.conv1 = nn.Conv2d(3, 32, (9, 9), padding=(4, 4), padding_mode= 'reflect') self.in_norm1 = nn.InstanceNorm2d(32, affine=True) self.conv2 = nn.Conv2d(32, 64, (3, 3), padding=(1, 1), padding_mode ='reflect', stride=2) self.in_norm2 = nn.InstanceNorm2d(64, affine=True) self.conv3 = nn.Conv2d(64, 128, (3, 3), padding=(1, 1), padding_mode='reflect', stride=2) self.in_norm3 = nn.InstanceNorm2d(128, affine=True) self.block1 = ResidualBlock() self.block2 = ResidualBlock() self.block3 = ResidualBlock() self.block4 = ResidualBlock() self.block5 = ResidualBlock() self.conv4 = nn.Conv2d(128, 64, (3, 3), padding=(1, 1), padding_mode='reflect') self.in_norm4 = nn.InstanceNorm2d(64, affine=True) if vangoh: self.conv5 = nn.ConvTranspose2d(64, 32, (3, 3), padding=(1, 1)) else: self.conv5 = nn.Conv2d(64, 32, (3, 3), padding=(1, 1), padding_mode='reflect') self.in_norm5 = nn.InstanceNorm2d(32, affine=True) self.upsample = nn.Upsample(scale_factor=2, mode='nearest') self.conv6 = nn.Conv2d(32, 3, (9, 9), padding=(4, 4), padding_mode= 'reflect') def forward(self, x): x = self.conv1(x) x = self.in_norm1(x) x = F.relu(x) x = self.conv2(x) x = self.in_norm2(x) x = F.relu(x) x = self.conv3(x) x = self.in_norm3(x) x = F.relu(x) x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.block4(x) x = self.block5(x) x = self.upsample(x) x = self.conv4(x) x = self.in_norm4(x) x = F.relu(x) x = self.upsample(x) x = self.conv5(x) x = self.in_norm5(x) x = F.relu(x) x = self.conv6(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
LayerNormCustom
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/zf/czfnaeipqg4a3qzttb2l6zy5ng44vshk3lfmp25jc2er665hxsmw.py # Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub] # Source node to ATen node mapping: # sub => sub # u => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/k3/ck3awyjmlyoxvkizg2opx6vtglv26uioox7nr33aabc2cmbcxgpr.py # Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, add_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # pow_1 => pow_1 # s => mean_1 # sqrt => sqrt # x => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-12), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_add_div_mean_mul_pow_sqrt_1 = async_compile.triton('triton_poi_fused_add_div_mean_mul_pow_sqrt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_pow_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-12 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + (x2), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_mean_sub_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, add_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] triton_poi_fused_add_div_mean_mul_pow_sqrt_1.run(primals_2, buf0, primals_3, buf1, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 del primals_3 return (buf1, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNormCustom(nn.Module): """A layernorm module in the TF style (epsilon inside the square root).""" def __init__(self, n_hidden, variance_epsilon=1e-12): super().__init__() self.gamma = nn.Parameter(torch.ones(n_hidden)) self.beta = nn.Parameter(torch.zeros(n_hidden)) self.variance_epsilon = variance_epsilon def forward(self, x): u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.gamma * x + self.beta def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_hidden': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-12 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + x2, tmp21, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_sub_0[grid(256)](primals_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_mean_mul_pow_sqrt_1[grid(256)](primals_2, buf0, primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_2 del primals_3 return buf1, primals_1 class LayerNormCustomNew(nn.Module): """A layernorm module in the TF style (epsilon inside the square root).""" def __init__(self, n_hidden, variance_epsilon=1e-12): super().__init__() self.gamma = nn.Parameter(torch.ones(n_hidden)) self.beta = nn.Parameter(torch.zeros(n_hidden)) self.variance_epsilon = variance_epsilon def forward(self, input_0): primals_2 = self.gamma primals_3 = self.beta primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
renebidart/pytorch-cifar
LayerNormCustom
false
4,245
[ "MIT" ]
0
8f623299c25f7f219bab34bc7df41fe24232b1af
https://github.com/renebidart/pytorch-cifar/tree/8f623299c25f7f219bab34bc7df41fe24232b1af
import torch import torch.nn as nn class Model(nn.Module): """A layernorm module in the TF style (epsilon inside the square root).""" def __init__(self, n_hidden, variance_epsilon=1e-12): super().__init__() self.gamma = nn.Parameter(torch.ones(n_hidden)) self.beta = nn.Parameter(torch.zeros(n_hidden)) self.variance_epsilon = variance_epsilon def forward(self, x): u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.gamma * x + self.beta def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
IBertLMHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/k2/ck2ensfw3jymkm3sdnn2b3sukex4hedkmwsqjeuwykarc22y3nse.py # Topologically Sorted Source Nodes: [mul, pow_1, mul_1, add, mul_2, tanh, add_1, x_1, x_2], Original ATen: [aten.mul, aten.pow, aten.add, aten.tanh, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # pow_1 => pow_1 # tanh => tanh # x_1 => mul_3 # x_2 => var_mean # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 3), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.044715), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.7978845608028654), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_2,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%mul_3, [3]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_mul_native_layer_norm_pow_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_native_layer_norm_pow_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_native_layer_norm_pow_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_native_layer_norm_pow_tanh_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = tmp0 * tmp0 tmp4 = tmp3 * tmp0 tmp5 = 0.044715 tmp6 = tmp4 * tmp5 tmp7 = tmp0 + tmp6 tmp8 = 0.7978845608028654 tmp9 = tmp7 * tmp8 tmp10 = libdevice.tanh(tmp9) tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp2 * tmp12 tmp15 = tmp14 * tmp1 tmp16 = tmp14 * tmp14 tmp17 = tmp16 * tmp14 tmp18 = tmp17 * tmp5 tmp19 = tmp14 + tmp18 tmp20 = tmp19 * tmp8 tmp21 = libdevice.tanh(tmp20) tmp22 = tmp21 + tmp11 tmp23 = tmp15 * tmp22 tmp24 = tmp13 + tmp23 tmp26 = tmp25 * tmp1 tmp27 = tmp25 * tmp25 tmp28 = tmp27 * tmp25 tmp29 = tmp28 * tmp5 tmp30 = tmp25 + tmp29 tmp31 = tmp30 * tmp8 tmp32 = libdevice.tanh(tmp31) tmp33 = tmp32 + tmp11 tmp34 = tmp26 * tmp33 tmp35 = tmp24 + tmp34 tmp37 = tmp36 * tmp1 tmp38 = tmp36 * tmp36 tmp39 = tmp38 * tmp36 tmp40 = tmp39 * tmp5 tmp41 = tmp36 + tmp40 tmp42 = tmp41 * tmp8 tmp43 = libdevice.tanh(tmp42) tmp44 = tmp43 + tmp11 tmp45 = tmp37 * tmp44 tmp46 = tmp35 + tmp45 tmp47 = 4.0 tmp48 = tmp46 / tmp47 tmp49 = tmp13 - tmp48 tmp50 = tmp49 * tmp49 tmp51 = tmp23 - tmp48 tmp52 = tmp51 * tmp51 tmp53 = tmp50 + tmp52 tmp54 = tmp34 - tmp48 tmp55 = tmp54 * tmp54 tmp56 = tmp53 + tmp55 tmp57 = tmp45 - tmp48 tmp58 = tmp57 * tmp57 tmp59 = tmp56 + tmp58 tmp60 = tmp59 / tmp47 tl.store(out_ptr0 + (x0), tmp48, xmask) tl.store(out_ptr1 + (x0), tmp60, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/4h/c4hcwvzif5h6zqdmh45kywbrslvqedlkzfpdkfds26puiwek6kyk.py # Topologically Sorted Source Nodes: [mul, pow_1, mul_1, add, mul_2, tanh, add_1, x_1, x_2], Original ATen: [aten.mul, aten.pow, aten.add, aten.tanh, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # pow_1 => pow_1 # tanh => tanh # x_1 => mul_3 # x_2 => add_2, add_3, mul_4, mul_5, rsqrt, sub # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 3), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.044715), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.7978845608028654), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_2,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1.0), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, %getitem_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %primals_4), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, %primals_5), kwargs = {}) triton_poi_fused_add_mul_native_layer_norm_pow_tanh_1 = async_compile.triton('triton_poi_fused_add_mul_native_layer_norm_pow_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_native_layer_norm_pow_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_native_layer_norm_pow_tanh_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp14 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = tmp0 * tmp0 tmp4 = tmp3 * tmp0 tmp5 = 0.044715 tmp6 = tmp4 * tmp5 tmp7 = tmp0 + tmp6 tmp8 = 0.7978845608028654 tmp9 = tmp7 * tmp8 tmp10 = libdevice.tanh(tmp9) tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp2 * tmp12 tmp15 = tmp13 - tmp14 tmp17 = tmp16 + tmp11 tmp18 = libdevice.rsqrt(tmp17) tmp19 = tmp15 * tmp18 tmp21 = tmp19 * tmp20 tmp23 = tmp21 + tmp22 tl.store(out_ptr0 + (x2), tmp23, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [mul, pow_1, mul_1, add, mul_2, tanh, add_1, x_1, x_2], Original ATen: [aten.mul, aten.pow, aten.add, aten.tanh, aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_native_layer_norm_pow_tanh_0.run(buf0, buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, pow_1, mul_1, add, mul_2, tanh, add_1, x_1, x_2], Original ATen: [aten.mul, aten.pow, aten.add, aten.tanh, aten.native_layer_norm] triton_poi_fused_add_mul_native_layer_norm_pow_tanh_1.run(buf0, buf1, buf2, primals_4, primals_5, buf3, 256, grid=grid(256), stream=stream0) del buf1 del buf2 del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch from torch import nn import torch.utils.checkpoint def gelu(x): return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) class IBertLMHead(nn.Module): """I-BERT Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config. layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) x = self.decoder(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, layer_norm_eps=1, vocab_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math from torch import nn import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_native_layer_norm_pow_tanh_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp36 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = tmp0 * tmp0 tmp4 = tmp3 * tmp0 tmp5 = 0.044715 tmp6 = tmp4 * tmp5 tmp7 = tmp0 + tmp6 tmp8 = 0.7978845608028654 tmp9 = tmp7 * tmp8 tmp10 = libdevice.tanh(tmp9) tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp2 * tmp12 tmp15 = tmp14 * tmp1 tmp16 = tmp14 * tmp14 tmp17 = tmp16 * tmp14 tmp18 = tmp17 * tmp5 tmp19 = tmp14 + tmp18 tmp20 = tmp19 * tmp8 tmp21 = libdevice.tanh(tmp20) tmp22 = tmp21 + tmp11 tmp23 = tmp15 * tmp22 tmp24 = tmp13 + tmp23 tmp26 = tmp25 * tmp1 tmp27 = tmp25 * tmp25 tmp28 = tmp27 * tmp25 tmp29 = tmp28 * tmp5 tmp30 = tmp25 + tmp29 tmp31 = tmp30 * tmp8 tmp32 = libdevice.tanh(tmp31) tmp33 = tmp32 + tmp11 tmp34 = tmp26 * tmp33 tmp35 = tmp24 + tmp34 tmp37 = tmp36 * tmp1 tmp38 = tmp36 * tmp36 tmp39 = tmp38 * tmp36 tmp40 = tmp39 * tmp5 tmp41 = tmp36 + tmp40 tmp42 = tmp41 * tmp8 tmp43 = libdevice.tanh(tmp42) tmp44 = tmp43 + tmp11 tmp45 = tmp37 * tmp44 tmp46 = tmp35 + tmp45 tmp47 = 4.0 tmp48 = tmp46 / tmp47 tmp49 = tmp13 - tmp48 tmp50 = tmp49 * tmp49 tmp51 = tmp23 - tmp48 tmp52 = tmp51 * tmp51 tmp53 = tmp50 + tmp52 tmp54 = tmp34 - tmp48 tmp55 = tmp54 * tmp54 tmp56 = tmp53 + tmp55 tmp57 = tmp45 - tmp48 tmp58 = tmp57 * tmp57 tmp59 = tmp56 + tmp58 tmp60 = tmp59 / tmp47 tl.store(out_ptr0 + x0, tmp48, xmask) tl.store(out_ptr1 + x0, tmp60, xmask) @triton.jit def triton_poi_fused_add_mul_native_layer_norm_pow_tanh_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp14 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = tmp0 * tmp0 tmp4 = tmp3 * tmp0 tmp5 = 0.044715 tmp6 = tmp4 * tmp5 tmp7 = tmp0 + tmp6 tmp8 = 0.7978845608028654 tmp9 = tmp7 * tmp8 tmp10 = libdevice.tanh(tmp9) tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp2 * tmp12 tmp15 = tmp13 - tmp14 tmp17 = tmp16 + tmp11 tmp18 = libdevice.rsqrt(tmp17) tmp19 = tmp15 * tmp18 tmp21 = tmp19 * tmp20 tmp23 = tmp21 + tmp22 tl.store(out_ptr0 + x2, tmp23, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_native_layer_norm_pow_tanh_0[grid(64)](buf0, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_native_layer_norm_pow_tanh_1[grid(256)](buf0, buf1, buf2, primals_4, primals_5, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del buf2 del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), primals_6 def gelu(x): return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) class IBertLMHeadNew(nn.Module): """I-BERT Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config. layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, input_0): primals_2 = self.bias primals_1 = self.dense.weight primals_4 = self.dense.bias primals_5 = self.layer_norm.weight primals_7 = self.layer_norm.bias primals_6 = self.decoder.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
sajastu/transformers-sent-curr
IBertLMHead
false
4,246
[ "Apache-2.0" ]
0
6dc41545c4ac298a010090fbca4b454c2eaf3dbb
https://github.com/sajastu/transformers-sent-curr/tree/6dc41545c4ac298a010090fbca4b454c2eaf3dbb
from _paritybench_helpers import _mock_config import math import torch from torch import nn import torch.utils.checkpoint def gelu(x): return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) class Model(nn.Module): """I-BERT Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config. layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) x = self.decoder(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, layer_norm_eps=1, vocab_size=4)}]
PatchSequential
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ts/ctsserxsekrwyqxewuhis2fi56hdzb4aa4jktxyotcweoqftjdww.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem_4, %getitem_5, %getitem_6, %getitem_7], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x5 = (xindex // 16) x6 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = x1 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp7 & tmp4 tmp9 = tl.load(in_ptr0 + ((16*x2) + (64*x3) + ((16*x3) % 16)), tmp8 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp5 >= tmp3 tmp11 = tl.full([1], 2, tl.int64) tmp12 = tmp5 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tmp13 & tmp4 tmp15 = tl.load(in_ptr0 + (4 + (16*x5)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp5 >= tmp11 tmp17 = tl.full([1], 3, tl.int64) tmp18 = tmp5 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tmp19 & tmp4 tmp21 = tl.load(in_ptr0 + (8 + (16*x5)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp5 >= tmp17 tmp23 = tl.full([1], 4, tl.int64) tmp24 = tmp5 < tmp23 tmp25 = tmp22 & tmp4 tmp26 = tl.load(in_ptr0 + (12 + (16*x5)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tl.where(tmp19, tmp21, tmp26) tmp28 = tl.where(tmp13, tmp15, tmp27) tmp29 = tl.where(tmp7, tmp9, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp4, tmp29, tmp30) tmp32 = tmp0 >= tmp3 tmp33 = tmp0 < tmp11 tmp34 = tmp32 & tmp33 tmp35 = tmp7 & tmp34 tmp36 = tl.load(in_ptr0 + (1 + (16*x5)), tmp35 & xmask, eviction_policy='evict_last', other=0.0) tmp37 = tmp13 & tmp34 tmp38 = tl.load(in_ptr0 + (5 + (16*x5)), tmp37 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tmp19 & tmp34 tmp40 = tl.load(in_ptr0 + (9 + (16*x5)), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp41 = tmp22 & tmp34 tmp42 = tl.load(in_ptr0 + (13 + (16*x5)), tmp41 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tl.where(tmp19, tmp40, tmp42) tmp44 = tl.where(tmp13, tmp38, tmp43) tmp45 = tl.where(tmp7, tmp36, tmp44) tmp46 = tl.full(tmp45.shape, 0.0, tmp45.dtype) tmp47 = tl.where(tmp34, tmp45, tmp46) tmp48 = tmp0 >= tmp11 tmp49 = tmp0 < tmp17 tmp50 = tmp48 & tmp49 tmp51 = tmp7 & tmp50 tmp52 = tl.load(in_ptr0 + (2 + (16*x5)), tmp51 & xmask, eviction_policy='evict_last', other=0.0) tmp53 = tmp13 & tmp50 tmp54 = tl.load(in_ptr0 + (6 + (16*x5)), tmp53 & xmask, eviction_policy='evict_last', other=0.0) tmp55 = tmp19 & tmp50 tmp56 = tl.load(in_ptr0 + (10 + (16*x5)), tmp55 & xmask, eviction_policy='evict_last', other=0.0) tmp57 = tmp22 & tmp50 tmp58 = tl.load(in_ptr0 + (14 + (16*x5)), tmp57 & xmask, eviction_policy='evict_last', other=0.0) tmp59 = tl.where(tmp19, tmp56, tmp58) tmp60 = tl.where(tmp13, tmp54, tmp59) tmp61 = tl.where(tmp7, tmp52, tmp60) tmp62 = tl.full(tmp61.shape, 0.0, tmp61.dtype) tmp63 = tl.where(tmp50, tmp61, tmp62) tmp64 = tmp0 >= tmp17 tmp65 = tmp0 < tmp23 tmp66 = tmp7 & tmp64 tmp67 = tl.load(in_ptr0 + (3 + (16*x5)), tmp66 & xmask, eviction_policy='evict_last', other=0.0) tmp68 = tmp13 & tmp64 tmp69 = tl.load(in_ptr0 + (7 + (16*x5)), tmp68 & xmask, eviction_policy='evict_last', other=0.0) tmp70 = tmp19 & tmp64 tmp71 = tl.load(in_ptr0 + (11 + (16*x5)), tmp70 & xmask, eviction_policy='evict_last', other=0.0) tmp72 = tmp22 & tmp64 tmp73 = tl.load(in_ptr0 + (15 + (16*x5)), tmp72 & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tl.where(tmp19, tmp71, tmp73) tmp75 = tl.where(tmp13, tmp69, tmp74) tmp76 = tl.where(tmp7, tmp67, tmp75) tmp77 = tl.full(tmp76.shape, 0.0, tmp76.dtype) tmp78 = tl.where(tmp64, tmp76, tmp77) tmp79 = tl.where(tmp50, tmp63, tmp78) tmp80 = tl.where(tmp34, tmp47, tmp79) tmp81 = tl.where(tmp4, tmp31, tmp80) tl.store(out_ptr0 + (x6), tmp81, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import warnings from typing import Dict from typing import Optional from typing import Tuple import torch.nn as nn import torch.nn.functional as F from typing import cast from typing import List from typing import Union from torch.distributions import Bernoulli from itertools import zip_longest from collections import OrderedDict from typing import Any from typing import Iterator from typing import NamedTuple from torch.nn.modules.utils import _pair from math import pi def _adapted_sampling(shape: 'Union[Tuple, torch.Size]', dist: 'torch.distributions.Distribution', same_on_batch=False) ->torch.Tensor: """The uniform sampling function that accepts 'same_on_batch'. If same_on_batch is True, all values generated will be exactly same given a batch_size (shape[0]). By default, same_on_batch is set to False. """ if same_on_batch: return dist.sample((1, *shape[1:])).repeat(shape[0], *([1] * (len( shape) - 1))) return dist.sample(shape) def _transform_output_shape(output: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]', shape: 'Tuple' ) ->Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """Collapse the broadcasted batch dimensions an input tensor to be the specified shape. Args: input: torch.Tensor shape: List/tuple of int Returns: torch.Tensor """ is_tuple = isinstance(output, tuple) out_tensor: 'torch.Tensor' trans_matrix: 'Optional[torch.Tensor]' if is_tuple: out_tensor, trans_matrix = cast(Tuple[torch.Tensor, torch.Tensor], output) else: out_tensor = cast(torch.Tensor, output) trans_matrix = None if trans_matrix is not None: if len(out_tensor.shape) > len(shape): assert trans_matrix.shape[0 ] == 1, f'Dimension 0 of transformation matrix is expected to be 1, got {trans_matrix.shape[0]}' trans_matrix = trans_matrix.squeeze(0) for dim in range(len(out_tensor.shape) - len(shape)): assert out_tensor.shape[0 ] == 1, f'Dimension {dim} of input is expected to be 1, got {out_tensor.shape[0]}' out_tensor = out_tensor.squeeze(0) return (out_tensor, trans_matrix) if is_tuple else out_tensor def _transform_input(input: 'torch.Tensor') ->torch.Tensor: """Reshape an input tensor to be (*, C, H, W). Accept either (H, W), (C, H, W) or (*, C, H, W). Args: input: torch.Tensor Returns: torch.Tensor """ if not torch.is_tensor(input): raise TypeError(f'Input type is not a torch.Tensor. Got {type(input)}') if len(input.shape) not in [2, 3, 4]: raise ValueError( f'Input size must have a shape of either (H, W), (C, H, W) or (*, C, H, W). Got {input.shape}' ) if len(input.shape) == 2: input = input.unsqueeze(0) if len(input.shape) == 3: input = input.unsqueeze(0) return input def _validate_input_dtype(input: 'torch.Tensor', accepted_dtypes: 'List' ) ->None: """Check if the dtype of the input tensor is in the range of accepted_dtypes Args: input: torch.Tensor accepted_dtypes: List. e.g. [torch.float32, torch.float64] """ if input.dtype not in accepted_dtypes: raise TypeError( f'Expected input of {accepted_dtypes}. Got {input.dtype}') def _extract_device_dtype(tensor_list: 'List[Optional[Any]]') ->Tuple[torch .device, torch.dtype]: """Check if all the input are in the same device (only if when they are torch.Tensor). If so, it would return a tuple of (device, dtype). Default: (cpu, ``get_default_dtype()``). Returns: [torch.device, torch.dtype] """ device, dtype = None, None for tensor in tensor_list: if tensor is not None: if not isinstance(tensor, (torch.Tensor,)): continue _device = tensor.device _dtype = tensor.dtype if device is None and dtype is None: device = _device dtype = _dtype elif device != _device or dtype != _dtype: raise ValueError( f'Passed values are not in the same device and dtype.Got ({device}, {dtype}) and ({_device}, {_dtype}).' ) if device is None: device = torch.device('cpu') if dtype is None: dtype = torch.get_default_dtype() return device, dtype def _joint_range_check(ranged_factor: 'torch.Tensor', name: 'str', bounds: 'Optional[Tuple[float, float]]'=None) ->None: """check if bounds[0] <= ranged_factor[0] <= ranged_factor[1] <= bounds[1]""" if bounds is None: bounds = float('-inf'), float('inf') if ranged_factor.dim() == 1 and len(ranged_factor) == 2: if not bounds[0] <= ranged_factor[0] or not bounds[1] >= ranged_factor[ 1]: raise ValueError( f'{name} out of bounds. Expected inside {bounds}, got {ranged_factor}.' ) if not bounds[0] <= ranged_factor[0] <= ranged_factor[1] <= bounds[1]: raise ValueError( f'{name}[0] should be smaller than {name}[1] got {ranged_factor}' ) else: raise TypeError( f'{name} should be a tensor with length 2 whose values between {bounds}. Got {ranged_factor}.' ) def _singular_range_check(ranged_factor: 'torch.Tensor', name: 'str', bounds: 'Optional[Tuple[float, float]]'=None, skip_none: 'bool'=False, mode: 'str'='2d') ->None: """check if bounds[0] <= ranged_factor[0] <= bounds[1] and bounds[0] <= ranged_factor[1] <= bounds[1]""" if mode == '2d': dim_size = 2 elif mode == '3d': dim_size = 3 else: raise ValueError(f"'mode' shall be either 2d or 3d. Got {mode}") if skip_none and ranged_factor is None: return if bounds is None: bounds = float('-inf'), float('inf') if ranged_factor.dim() == 1 and len(ranged_factor) == dim_size: for f in ranged_factor: if not bounds[0] <= f <= bounds[1]: raise ValueError( f'{name} out of bounds. Expected inside {bounds}, got {ranged_factor}.' ) else: raise TypeError( f'{name} should be a float number or a tuple with length {dim_size} whose values between {bounds}.Got {ranged_factor}' ) def _range_bound(factor: 'Union[torch.Tensor, float, Tuple[float, float], List[float]]', name: 'str', center: 'float'=0.0, bounds: 'Tuple[float, float]'=(0, float( 'inf')), check: 'Optional[str]'='joint', device: 'torch.device'=torch. device('cpu'), dtype: 'torch.dtype'=torch.get_default_dtype() ) ->torch.Tensor: """Check inputs and compute the corresponding factor bounds""" if not isinstance(factor, torch.Tensor): factor = torch.tensor(factor, device=device, dtype=dtype) factor_bound: 'torch.Tensor' if factor.dim() == 0: if factor < 0: raise ValueError( f'If {name} is a single number number, it must be non negative. Got {factor}' ) factor_bound = factor.repeat(2) * torch.tensor([-1.0, 1.0], device= factor.device, dtype=factor.dtype) + center factor_bound = factor_bound.clamp(bounds[0], bounds[1]) else: factor_bound = torch.as_tensor(factor, device=device, dtype=dtype) if check is not None: if check == 'joint': _joint_range_check(factor_bound, name, bounds) elif check == 'singular': _singular_range_check(factor_bound, name, bounds) else: raise NotImplementedError(f"methods '{check}' not implemented.") return factor_bound def adjust_brightness(input: 'torch.Tensor', brightness_factor: 'Union[float, torch.Tensor]') ->torch.Tensor: """Adjust Brightness of an image. .. image:: _static/img/adjust_brightness.png This implementation aligns OpenCV, not PIL. Hence, the output differs from TorchVision. The input image is expected to be in the range of [0, 1]. Args: input: image to be adjusted in the shape of :math:`(*, N)`. brightness_factor: Brightness adjust factor per element in the batch. 0 does not modify the input image while any other number modify the brightness. Return: Adjusted image in the shape of :math:`(*, N)`. Example: >>> x = torch.ones(1, 1, 2, 2) >>> adjust_brightness(x, 1.) tensor([[[[1., 1.], [1., 1.]]]]) >>> x = torch.ones(2, 5, 3, 3) >>> y = torch.tensor([0.25, 0.50]) >>> adjust_brightness(x, y).shape torch.Size([2, 5, 3, 3]) """ if not isinstance(input, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(input)}') if not isinstance(brightness_factor, (float, torch.Tensor)): raise TypeError( f'The factor should be either a float or torch.Tensor. Got {type(brightness_factor)}' ) if isinstance(brightness_factor, float): brightness_factor = torch.tensor([brightness_factor]) brightness_factor = brightness_factor.to(input.device) for _ in input.shape[1:]: brightness_factor = torch.unsqueeze(brightness_factor, dim=-1) x_adjust: 'torch.Tensor' = input + brightness_factor out: 'torch.Tensor' = torch.clamp(x_adjust, 0.0, 1.0) return out def adjust_contrast(input: 'torch.Tensor', contrast_factor: 'Union[float, torch.Tensor]') ->torch.Tensor: """Adjust Contrast of an image. .. image:: _static/img/adjust_contrast.png This implementation aligns OpenCV, not PIL. Hence, the output differs from TorchVision. The input image is expected to be in the range of [0, 1]. Args: input: Image to be adjusted in the shape of :math:`(*, N)`. contrast_factor: Contrast adjust factor per element in the batch. 0 generates a completely black image, 1 does not modify the input image while any other non-negative number modify the brightness by this factor. Return: Adjusted image in the shape of :math:`(*, N)`. Example: >>> x = torch.ones(1, 1, 2, 2) >>> adjust_contrast(x, 0.5) tensor([[[[0.5000, 0.5000], [0.5000, 0.5000]]]]) >>> x = torch.ones(2, 5, 3, 3) >>> y = torch.tensor([0.65, 0.50]) >>> adjust_contrast(x, y).shape torch.Size([2, 5, 3, 3]) """ if not isinstance(input, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(input)}') if not isinstance(contrast_factor, (float, torch.Tensor)): raise TypeError( f'The factor should be either a float or torch.Tensor. Got {type(contrast_factor)}' ) if isinstance(contrast_factor, float): contrast_factor = torch.tensor([contrast_factor]) contrast_factor = contrast_factor.to(input.device) if (contrast_factor < 0).any(): raise ValueError( f'Contrast factor must be non-negative. Got {contrast_factor}') for _ in input.shape[1:]: contrast_factor = torch.unsqueeze(contrast_factor, dim=-1) x_adjust: 'torch.Tensor' = input * contrast_factor out: 'torch.Tensor' = torch.clamp(x_adjust, 0.0, 1.0) return out def adjust_hue_raw(input: 'torch.Tensor', hue_factor: 'Union[float, torch.Tensor]') ->torch.Tensor: """Adjust hue of an image. Expecting input to be in hsv format already.""" if not isinstance(input, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(input)}') if not isinstance(hue_factor, (float, torch.Tensor)): raise TypeError( f'The hue_factor should be a float number or torch.Tensor in the range between [-PI, PI]. Got {type(hue_factor)}' ) if isinstance(hue_factor, float): hue_factor = torch.as_tensor(hue_factor) hue_factor = hue_factor for _ in input.shape[1:]: hue_factor = torch.unsqueeze(hue_factor, dim=-1) h, s, v = torch.chunk(input, chunks=3, dim=-3) divisor: 'float' = 2 * pi h_out: 'torch.Tensor' = torch.fmod(h + hue_factor, divisor) out: 'torch.Tensor' = torch.cat([h_out, s, v], dim=-3) return out def hsv_to_rgb(image: 'torch.Tensor') ->torch.Tensor: """Convert an image from HSV to RGB. The H channel values are assumed to be in the range 0..2pi. S and V are in the range 0..1. Args: image: HSV Image to be converted to HSV with shape of :math:`(*, 3, H, W)`. Returns: RGB version of the image with shape of :math:`(*, 3, H, W)`. Example: >>> input = torch.rand(2, 3, 4, 5) >>> output = hsv_to_rgb(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError('Input type is not a torch.Tensor. Got {}'.format( type(image))) if len(image.shape) < 3 or image.shape[-3] != 3: raise ValueError('Input size must have a shape of (*, 3, H, W). Got {}' .format(image.shape)) h: 'torch.Tensor' = image[..., 0, :, :] / (2 * math.pi) s: 'torch.Tensor' = image[..., 1, :, :] v: 'torch.Tensor' = image[..., 2, :, :] hi: 'torch.Tensor' = torch.floor(h * 6) % 6 f: 'torch.Tensor' = h * 6 % 6 - hi one: 'torch.Tensor' = torch.tensor(1.0).to(image.device) p: 'torch.Tensor' = v * (one - s) q: 'torch.Tensor' = v * (one - f * s) t: 'torch.Tensor' = v * (one - (one - f) * s) hi = hi.long() indices: 'torch.Tensor' = torch.stack([hi, hi + 6, hi + 12], dim=-3) out = torch.stack((v, q, p, p, t, v, t, v, v, q, p, p, p, p, t, v, v, q ), dim=-3) out = torch.gather(out, -3, indices) return out def rgb_to_hsv(image: 'torch.Tensor', eps: 'float'=1e-06) ->torch.Tensor: """Convert an image from RGB to HSV. .. image:: _static/img/rgb_to_hsv.png The image data is assumed to be in the range of (0, 1). Args: image: RGB Image to be converted to HSV with shape of :math:`(*, 3, H, W)`. eps: scalar to enforce numarical stability. Returns: HSV version of the image with shape of :math:`(*, 3, H, W)`. The H channel values are in the range 0..2pi. S and V are in the range 0..1. Example: >>> input = torch.rand(2, 3, 4, 5) >>> output = rgb_to_hsv(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError('Input type is not a torch.Tensor. Got {}'.format( type(image))) if len(image.shape) < 3 or image.shape[-3] != 3: raise ValueError('Input size must have a shape of (*, 3, H, W). Got {}' .format(image.shape)) maxc, _ = image.max(-3) maxc_mask = image == maxc.unsqueeze(-3) _, max_indices = ((maxc_mask.cumsum(-3) == 1) & maxc_mask).max(-3) minc: 'torch.Tensor' = image.min(-3)[0] v: 'torch.Tensor' = maxc deltac: 'torch.Tensor' = maxc - minc s: 'torch.Tensor' = deltac / (v + eps) deltac = torch.where(deltac == 0, torch.ones_like(deltac, device=deltac .device, dtype=deltac.dtype), deltac) maxc_tmp = maxc.unsqueeze(-3) - image rc: 'torch.Tensor' = maxc_tmp[..., 0, :, :] gc: 'torch.Tensor' = maxc_tmp[..., 1, :, :] bc: 'torch.Tensor' = maxc_tmp[..., 2, :, :] h = torch.stack([bc - gc, 2.0 * deltac + rc - bc, 4.0 * deltac + gc - rc], dim=-3) h = torch.gather(h, dim=-3, index=max_indices[..., None, :, :]) h = h.squeeze(-3) h = h / deltac h = h / 6.0 % 1.0 h = 2 * math.pi * h return torch.stack([h, s, v], dim=-3) def adjust_hue(input: 'torch.Tensor', hue_factor: 'Union[float, torch.Tensor]' ) ->torch.Tensor: """Adjust hue of an image. .. image:: _static/img/adjust_hue.png The input image is expected to be an RGB image in the range of [0, 1]. Args: input: Image to be adjusted in the shape of :math:`(*, 3, H, W)`. hue_factor: How much to shift the hue channel. Should be in [-PI, PI]. PI and -PI give complete reversal of hue channel in HSV space in positive and negative direction respectively. 0 means no shift. Therefore, both -PI and PI will give an image with complementary colors while 0 gives the original image. Return: Adjusted image in the shape of :math:`(*, 3, H, W)`. Example: >>> x = torch.ones(1, 3, 2, 2) >>> adjust_hue(x, 3.141516).shape torch.Size([1, 3, 2, 2]) >>> x = torch.ones(2, 3, 3, 3) >>> y = torch.ones(2) * 3.141516 >>> adjust_hue(x, y).shape torch.Size([2, 3, 3, 3]) """ x_hsv: 'torch.Tensor' = rgb_to_hsv(input) x_adjusted: 'torch.Tensor' = adjust_hue_raw(x_hsv, hue_factor) out: 'torch.Tensor' = hsv_to_rgb(x_adjusted) return out def adjust_saturation_raw(input: 'torch.Tensor', saturation_factor: 'Union[float, torch.Tensor]') ->torch.Tensor: """Adjust color saturation of an image. Expecting input to be in hsv format already.""" if not isinstance(input, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(input)}') if not isinstance(saturation_factor, (float, torch.Tensor)): raise TypeError( f'The saturation_factor should be a float number or torch.Tensor.Got {type(saturation_factor)}' ) if isinstance(saturation_factor, float): saturation_factor = torch.as_tensor(saturation_factor) saturation_factor = saturation_factor.to(input.device) for _ in input.shape[1:]: saturation_factor = torch.unsqueeze(saturation_factor, dim=-1) h, s, v = torch.chunk(input, chunks=3, dim=-3) s_out: 'torch.Tensor' = torch.clamp(s * saturation_factor, min=0, max=1) out: 'torch.Tensor' = torch.cat([h, s_out, v], dim=-3) return out def adjust_saturation(input: 'torch.Tensor', saturation_factor: 'Union[float, torch.Tensor]') ->torch.Tensor: """Adjust color saturation of an image. .. image:: _static/img/adjust_saturation.png The input image is expected to be an RGB image in the range of [0, 1]. Args: input: Image/Tensor to be adjusted in the shape of :math:`(*, 3, H, W)`. saturation_factor: How much to adjust the saturation. 0 will give a black and white image, 1 will give the original image while 2 will enhance the saturation by a factor of 2. Return: Adjusted image in the shape of :math:`(*, 3, H, W)`. Example: >>> x = torch.ones(1, 3, 3, 3) >>> adjust_saturation(x, 2.).shape torch.Size([1, 3, 3, 3]) >>> x = torch.ones(2, 3, 3, 3) >>> y = torch.tensor([1., 2.]) >>> adjust_saturation(x, y).shape torch.Size([2, 3, 3, 3]) """ x_hsv: 'torch.Tensor' = rgb_to_hsv(input) x_adjusted: 'torch.Tensor' = adjust_saturation_raw(x_hsv, saturation_factor ) out: 'torch.Tensor' = hsv_to_rgb(x_adjusted) return out def _extract_tensor_patchesnd(input: 'torch.Tensor', window_sizes: 'Tuple[int, ...]', strides: 'Tuple[int, ...]') ->torch.Tensor: batch_size, num_channels = input.size()[:2] dims = range(2, input.dim()) for dim, patch_size, stride in zip(dims, window_sizes, strides): input = input.unfold(dim, patch_size, stride) input = input.permute(0, *dims, 1, *[(dim + len(dims)) for dim in dims] ).contiguous() return input.view(batch_size, -1, num_channels, *window_sizes) def extract_tensor_patches(input: 'torch.Tensor', window_size: 'Union[int, Tuple[int, int]]', stride: 'Union[int, Tuple[int, int]]'=1, padding: 'Union[int, Tuple[int, int]]'=0) ->torch.Tensor: """Function that extract patches from tensors and stack them. See :class:`~kornia.contrib.ExtractTensorPatches` for details. """ if not torch.is_tensor(input): raise TypeError('Input input type is not a torch.Tensor. Got {}'. format(type(input))) if not len(input.shape) == 4: raise ValueError('Invalid input shape, we expect BxCxHxW. Got: {}'. format(input.shape)) if padding: pad_vert, pad_horz = _pair(padding) input = F.pad(input, [pad_horz, pad_horz, pad_vert, pad_vert]) return _extract_tensor_patchesnd(input, _pair(window_size), _pair(stride)) class _BasicAugmentationBase(nn.Module): """_BasicAugmentationBase base class for customized augmentation implementations. Plain augmentation base class without the functionality of transformation matrix calculations. By default, the random computations will be happened on CPU with ``torch.get_default_dtype()``. To change this behaviour, please use ``set_rng_device_and_dtype``. Args: p (float): probability for applying an augmentation. This param controls the augmentation probabilities element-wisely. p_batch (float): probability for applying an augmentation to a batch. This param controls the augmentation probabilities batch-wisely. same_on_batch (bool): apply the same transformation across the batch. Default: False. keepdim (bool): whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). Default: False. """ def __init__(self, p: 'float'=0.5, p_batch: 'float'=1.0, same_on_batch: 'bool'=False, keepdim: 'bool'=False) ->None: super(_BasicAugmentationBase, self).__init__() self.p = p self.p_batch = p_batch self.same_on_batch = same_on_batch self.keepdim = keepdim self._params: 'Dict[str, torch.Tensor]' = {} if p != 0.0 or p != 1.0: self._p_gen = Bernoulli(self.p) if p_batch != 0.0 or p_batch != 1.0: self._p_batch_gen = Bernoulli(self.p_batch) self.set_rng_device_and_dtype(torch.device('cpu'), torch. get_default_dtype()) def __repr__(self) ->str: return ( f'p={self.p}, p_batch={self.p_batch}, same_on_batch={self.same_on_batch}' ) def __unpack_input__(self, input: 'torch.Tensor') ->torch.Tensor: return input def __check_batching__(self, input: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]'): """Check if a transformation matrix is returned, it has to be in the same batching mode as output.""" raise NotImplementedError def transform_tensor(self, input: 'torch.Tensor') ->torch.Tensor: """Standardize input tensors.""" raise NotImplementedError def generate_parameters(self, batch_shape: 'torch.Size') ->Dict[str, torch.Tensor]: return {} def apply_transform(self, input: 'torch.Tensor', params: 'Dict[str, torch.Tensor]') ->torch.Tensor: raise NotImplementedError def set_rng_device_and_dtype(self, device: 'torch.device', dtype: 'torch.dtype') ->None: """Change the random generation device and dtype. Note: The generated random numbers are not reproducible across different devices and dtypes. """ self.device = device self.dtype = dtype def __batch_prob_generator__(self, batch_shape: 'torch.Size', p: 'float', p_batch: 'float', same_on_batch: 'bool') ->torch.Tensor: batch_prob: 'torch.Tensor' if p_batch == 1: batch_prob = torch.tensor([True]) elif p_batch == 0: batch_prob = torch.tensor([False]) else: batch_prob = _adapted_sampling((1,), self._p_batch_gen, same_on_batch).bool() if batch_prob.sum().item() == 1: elem_prob: 'torch.Tensor' if p == 1: elem_prob = torch.tensor([True] * batch_shape[0]) elif p == 0: elem_prob = torch.tensor([False] * batch_shape[0]) else: elem_prob = _adapted_sampling((batch_shape[0],), self. _p_gen, same_on_batch).bool() batch_prob = batch_prob * elem_prob else: batch_prob = batch_prob.repeat(batch_shape[0]) return batch_prob def forward_parameters(self, batch_shape): to_apply = self.__batch_prob_generator__(batch_shape, self.p, self. p_batch, self.same_on_batch) _params = self.generate_parameters(torch.Size((int(to_apply.sum(). item()), *batch_shape[1:]))) if _params is None: _params = {} _params['batch_prob'] = to_apply return _params def apply_func(self, input: 'torch.Tensor', params: 'Dict[str, torch.Tensor]') ->Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: input = self.transform_tensor(input) return self.apply_transform(input, params) def forward(self, input: 'torch.Tensor', params: 'Optional[Dict[str, torch.Tensor]]'=None) ->Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: in_tensor = self.__unpack_input__(input) self.__check_batching__(input) ori_shape = in_tensor.shape in_tensor = self.transform_tensor(in_tensor) batch_shape = in_tensor.shape if params is None: params = self.forward_parameters(batch_shape) self._params = params output = self.apply_func(input, self._params) return _transform_output_shape(output, ori_shape ) if self.keepdim else output class _AugmentationBase(_BasicAugmentationBase): """_AugmentationBase base class for customized augmentation implementations. Advanced augmentation base class with the functionality of transformation matrix calculations. Args: p (float): probability for applying an augmentation. This param controls the augmentation probabilities element-wisely for a batch. p_batch (float): probability for applying an augmentation to a batch. This param controls the augmentation probabilities batch-wisely. return_transform (bool): if ``True`` return the matrix describing the geometric transformation applied to each input tensor. If ``False`` and the input is a tuple the applied transformation wont be concatenated. same_on_batch (bool): apply the same transformation across the batch. Default: False. keepdim (bool): whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). Default: False. """ def __init__(self, return_transform: 'bool'=None, same_on_batch: 'bool' =False, p: 'float'=0.5, p_batch: 'float'=1.0, keepdim: 'bool'=False ) ->None: super(_AugmentationBase, self).__init__(p, p_batch=p_batch, same_on_batch=same_on_batch, keepdim=keepdim) self.p = p self.p_batch = p_batch self.return_transform = return_transform def __repr__(self) ->str: return super().__repr__( ) + f', return_transform={self.return_transform}' def identity_matrix(self, input: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError def compute_transformation(self, input: 'torch.Tensor', params: 'Dict[str, torch.Tensor]') ->torch.Tensor: raise NotImplementedError def apply_transform(self, input: 'torch.Tensor', params: 'Dict[str, torch.Tensor]', transform: 'Optional[torch.Tensor]'=None ) ->torch.Tensor: raise NotImplementedError def __unpack_input__(self, input: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]') ->Tuple[ torch.Tensor, Optional[torch.Tensor]]: if isinstance(input, tuple): in_tensor = input[0] in_transformation = input[1] return in_tensor, in_transformation in_tensor = input return in_tensor, None def apply_func(self, in_tensor: 'torch.Tensor', in_transform: 'Optional[torch.Tensor]', params: 'Dict[str, torch.Tensor]', return_transform: 'bool'=False) ->Union[torch.Tensor, Tuple[torch. Tensor, torch.Tensor]]: to_apply = params['batch_prob'] if torch.sum(to_apply) == 0: output = in_tensor trans_matrix = self.identity_matrix(in_tensor) elif torch.sum(to_apply) == len(to_apply): trans_matrix = self.compute_transformation(in_tensor, params) output = self.apply_transform(in_tensor, params, trans_matrix) else: output = in_tensor.clone() trans_matrix = self.identity_matrix(in_tensor) trans_matrix[to_apply] = self.compute_transformation(in_tensor[ to_apply], params) output[to_apply] = self.apply_transform(in_tensor[to_apply], params, trans_matrix[to_apply]) self._transform_matrix = trans_matrix if return_transform: out_transformation = (trans_matrix if in_transform is None else trans_matrix @ in_transform) return output, out_transformation if in_transform is not None: return output, in_transform return output def forward(self, input: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]', params: 'Optional[Dict[str, torch.Tensor]]'=None, return_transform: 'Optional[bool]'=None) ->Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: in_tensor, in_transform = self.__unpack_input__(input) self.__check_batching__(input) ori_shape = in_tensor.shape in_tensor = self.transform_tensor(in_tensor) batch_shape = in_tensor.shape if return_transform is None: return_transform = self.return_transform return_transform = cast(bool, return_transform) if params is None: params = self.forward_parameters(batch_shape) if 'batch_prob' not in params: params['batch_prob'] = torch.tensor([True] * batch_shape[0]) warnings.warn( '`batch_prob` is not found in params. Will assume applying on all data.' ) self._params = params output = self.apply_func(in_tensor, in_transform, self._params, return_transform) return _transform_output_shape(output, ori_shape ) if self.keepdim else output class AugmentationBase2D(_AugmentationBase): """AugmentationBase2D base class for customized augmentation implementations. For any augmentation, the implementation of "generate_parameters" and "apply_transform" are required while the "compute_transformation" is only required when passing "return_transform" as True. Args: p (float): probability for applying an augmentation. This param controls the augmentation probabilities element-wisely for a batch. p_batch (float): probability for applying an augmentation to a batch. This param controls the augmentation probabilities batch-wisely. return_transform (bool): if ``True`` return the matrix describing the geometric transformation applied to each input tensor. If ``False`` and the input is a tuple the applied transformation wont be concatenated. same_on_batch (bool): apply the same transformation across the batch. Default: False. keepdim (bool): whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). Default: False. """ def __check_batching__(self, input: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]'): if isinstance(input, tuple): inp, mat = input if len(inp.shape) == 4: assert len(mat.shape ) == 3, 'Input tensor is in batch mode but transformation matrix is not' assert mat.shape[0] == inp.shape[0 ], f'In batch dimension, input has {inp.shape[0]}but transformation matrix has {mat.shape[0]}' elif len(inp.shape) == 3 or len(inp.shape) == 2: assert len(mat.shape ) == 2, 'Input tensor is in non-batch mode but transformation matrix is not' else: raise ValueError( f'Unrecognized output shape. Expected 2, 3, or 4, got {len(inp.shape)}' ) def transform_tensor(self, input: 'torch.Tensor') ->torch.Tensor: """Convert any incoming (H, W), (C, H, W) and (B, C, H, W) into (B, C, H, W).""" _validate_input_dtype(input, accepted_dtypes=[torch.float16, torch. float32, torch.float64]) return _transform_input(input) def identity_matrix(self, input) ->torch.Tensor: """Return 3x3 identity matrix.""" return kornia.eye_like(3, input) class IntensityAugmentationBase2D(AugmentationBase2D): """IntensityAugmentationBase2D base class for customized intensity augmentation implementations. For any augmentation, the implementation of "generate_parameters" and "apply_transform" are required while the "compute_transformation" is only required when passing "return_transform" as True. Args: p (float): probability for applying an augmentation. This param controls the augmentation probabilities element-wisely for a batch. p_batch (float): probability for applying an augmentation to a batch. This param controls the augmentation probabilities batch-wisely. return_transform (bool): if ``True`` return the matrix describing the geometric transformation applied to each input tensor. If ``False`` and the input is a tuple the applied transformation wont be concatenated. same_on_batch (bool): apply the same transformation across the batch. Default: False. keepdim (bool): whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). Default: False. """ def compute_transformation(self, input: 'torch.Tensor', params: 'Dict[str, torch.Tensor]') ->torch.Tensor: return self.identity_matrix(input) class ParamItem(NamedTuple): name: 'str' data: 'Union[dict, list]' class ImageSequential(nn.Sequential): """Sequential for creating kornia image processing pipeline. Args: *args : a list of kornia augmentation and image operation modules. same_on_batch: apply the same transformation across the batch. If None, it will not overwrite the function-wise settings. return_transform: if ``True`` return the matrix describing the transformation applied to each. If None, it will not overwrite the function-wise settings. keepdim: whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). If None, it will not overwrite the function-wise settings. random_apply: randomly select a sublist (order agnostic) of args to apply transformation. If int, a fixed number of transformations will be selected. If (a,), x number of transformations (a <= x <= len(args)) will be selected. If (a, b), x number of transformations (a <= x <= b) will be selected. If True, the whole list of args will be processed as a sequence in a random order. If False, the whole list of args will be processed as a sequence in original order. Returns: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: the tensor (, and the transformation matrix) has been sequentially modified by the args. Examples: >>> import kornia >>> input = torch.randn(2, 3, 5, 6) >>> aug_list = ImageSequential( ... kornia.color.BgrToRgb(), ... kornia.augmentation.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0), ... kornia.filters.MedianBlur((3, 3)), ... kornia.augmentation.RandomAffine(360, p=1.0), ... kornia.enhance.Invert(), ... return_transform=True, ... same_on_batch=True, ... random_apply=10, ... ) >>> out = aug_list(input) >>> out[0].shape, out[1].shape (torch.Size([2, 3, 5, 6]), torch.Size([2, 3, 3])) Reproduce with provided params. >>> out2 = aug_list(input, params=aug_list._params) >>> torch.equal(out[0], out2[0]), torch.equal(out[1], out2[1]) (True, True) Note: Transformation matrix returned only considers the transformation applied in ``kornia.augmentation`` module. Those transformations in ``kornia.geometry`` will not be taken into account. """ def __init__(self, *args: nn.Module, same_on_batch: Optional[bool]=None, return_transform: Optional[bool]=None, keepdim: Optional[bool]=None, random_apply: Union[int, bool, Tuple[int, int]]=False) ->None: self.same_on_batch = same_on_batch self.return_transform = return_transform self.keepdim = keepdim _args = OrderedDict() for idx, arg in enumerate(args): if not isinstance(arg, nn.Module): raise NotImplementedError( f'Only nn.Module are supported at this moment. Got {arg}.') if isinstance(arg, _AugmentationBase): if same_on_batch is not None: arg.same_on_batch = same_on_batch if return_transform is not None: arg.return_transform = return_transform if keepdim is not None: arg.keepdim = keepdim _args.update({f'{arg.__class__.__name__}_{idx}': arg}) super(ImageSequential, self).__init__(_args) self._params: 'List[Any]' = [] self.random_apply: 'Union[Tuple[int, int], bool]' if random_apply: if isinstance(random_apply, (bool,)) and random_apply is True: self.random_apply = len(args), len(args) + 1 elif isinstance(random_apply, (int,)): self.random_apply = random_apply, random_apply + 1 elif isinstance(random_apply, (tuple,)) and len(random_apply ) == 2 and isinstance(random_apply[0], (int,)) and isinstance( random_apply[1], (int,)): self.random_apply = random_apply[0], random_apply[1] + 1 elif isinstance(random_apply, (tuple,)) and len(random_apply ) == 1 and isinstance(random_apply[0], (int,)): self.random_apply = random_apply[0], len(args) + 1 else: raise ValueError( f'Non-readable random_apply. Got {random_apply}.') assert isinstance(self.random_apply, (tuple,)) and len(self. random_apply) == 2 and isinstance(self.random_apply[0], (int,) ) and isinstance(self.random_apply[0], (int,) ), f'Expect a tuple of (int, int). Got {self.random_apply}.' else: self.random_apply = False def _get_child_sequence(self) ->Iterator[Tuple[str, nn.Module]]: if self.random_apply: num_samples = int(torch.randint(*self.random_apply, (1,)).item()) indices = torch.multinomial(torch.ones((len(self),)), num_samples, replacement=True if num_samples > len(self) else False) return self._get_children_by_indices(indices) return self.named_children() def _get_children_by_indices(self, indices: 'torch.Tensor') ->Iterator[ Tuple[str, nn.Module]]: modules = list(self.named_children()) for idx in indices: yield modules[idx] def _get_children_by_module_names(self, names: 'List[str]') ->Iterator[ Tuple[str, nn.Module]]: modules = list(self.named_children()) for name in names: yield modules[list(dict(self.named_children()).keys()).index(name)] def get_forward_sequence(self, params: 'Optional[List[ParamItem]]'=None ) ->Iterator[Tuple[str, nn.Module]]: if params is None: named_modules = self._get_child_sequence() else: named_modules = self._get_children_by_module_names([p.name for p in params]) return named_modules def apply_to_input(self, input: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]', module_name: 'str', module: 'Optional[nn.Module]'=None, param: 'Optional[ParamItem]'=None) ->Union[torch.Tensor, Tuple[torch. Tensor, torch.Tensor]]: if module is None: module = self.get_submodule(module_name) if param is not None: assert module_name == param.name _param = param.data else: _param = None if isinstance(module, (_AugmentationBase, ImageSequential) ) and _param is None: input = module(input) self._params.append(ParamItem(module_name, module._params)) elif isinstance(module, (_AugmentationBase, ImageSequential) ) and _param is not None: input = module(input, params=_param) self._params.append(ParamItem(module_name, _param)) else: assert _param == { } or _param is None, f'Non-augmentaion operation {module_name} require empty parameters. Got {module}.' if isinstance(input, (tuple, list)): input = module(input[0]), input[1] else: input = module(input) self._params.append(ParamItem(module_name, {})) return input def forward(self, input: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]', params: 'Optional[List[ParamItem]]'=None) ->Union[torch.Tensor, Tuple[torch .Tensor, torch.Tensor]]: self._params = [] named_modules = self.get_forward_sequence(params) params = [] if params is None else params for (name, module), param in zip_longest(named_modules, params): input = self.apply_to_input(input, name, module, param=param) return input class ColorJitter(IntensityAugmentationBase2D): """Applies a random transformation to the brightness, contrast, saturation and hue of a tensor image. .. image:: _static/img/ColorJitter.png Args: p: probability of applying the transformation. brightness: The brightness factor to apply. contrast: The contrast factor to apply. saturation: The saturation factor to apply. hue: The hue factor to apply. return_transform: if ``True`` return the matrix describing the transformation applied to each input tensor. If ``False`` and the input is a tuple the applied transformation wont be concatenated. same_on_batch: apply the same transformation across the batch. keepdim: whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). Shape: - Input: :math:`(C, H, W)` or :math:`(B, C, H, W)`, Optional: :math:`(B, 3, 3)` - Output: :math:`(B, C, H, W)` Note: Input tensor must be float and normalized into [0, 1] for the best differentiability support. Additionally, this function accepts another transformation tensor (:math:`(B, 3, 3)`), then the applied transformation will be merged int to the input transformation tensor and returned. Examples: >>> rng = torch.manual_seed(0) >>> inputs = torch.ones(1, 3, 3, 3) >>> aug = ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.) >>> aug(inputs) tensor([[[[0.9993, 0.9993, 0.9993], [0.9993, 0.9993, 0.9993], [0.9993, 0.9993, 0.9993]], <BLANKLINE> [[0.9993, 0.9993, 0.9993], [0.9993, 0.9993, 0.9993], [0.9993, 0.9993, 0.9993]], <BLANKLINE> [[0.9993, 0.9993, 0.9993], [0.9993, 0.9993, 0.9993], [0.9993, 0.9993, 0.9993]]]]) """ def __init__(self, brightness: 'Union[torch.Tensor, float, Tuple[float, float], List[float]]'=0.0, contrast: 'Union[torch.Tensor, float, Tuple[float, float], List[float]]'=0.0, saturation: 'Union[torch.Tensor, float, Tuple[float, float], List[float]]'=0.0, hue: 'Union[torch.Tensor, float, Tuple[float, float], List[float]]' =0.0, return_transform: 'bool'=False, same_on_batch: 'bool'=False, p: 'float'=1.0, keepdim: 'bool'=False) ->None: super(ColorJitter, self).__init__(p=p, return_transform= return_transform, same_on_batch=same_on_batch, keepdim=keepdim) self._device, self._dtype = _extract_device_dtype([brightness, contrast, hue, saturation]) self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue def __repr__(self) ->str: repr = ( f'brightness={self.brightness}, contrast={self.contrast}, saturation={self.saturation}, hue={self.hue}' ) return self.__class__.__name__ + f'({repr}, {super().__repr__()})' def generate_parameters(self, batch_shape: 'torch.Size') ->Dict[str, torch.Tensor]: brightness: 'torch.Tensor' = _range_bound(self.brightness, 'brightness', center=1.0, bounds=(0, 2), device=self._device, dtype=self._dtype) contrast: 'torch.Tensor' = _range_bound(self.contrast, 'contrast', center=1.0, device=self._device, dtype=self._dtype) saturation: 'torch.Tensor' = _range_bound(self.saturation, 'saturation', center=1.0, device=self._device, dtype=self._dtype) hue: 'torch.Tensor' = _range_bound(self.hue, 'hue', bounds=(-0.5, 0.5), device=self._device, dtype=self._dtype) return rg.random_color_jitter_generator(batch_shape[0], brightness, contrast, saturation, hue, self.same_on_batch, self.device, self.dtype) def apply_transform(self, input: 'torch.Tensor', params: 'Dict[str, torch.Tensor]', transform: 'Optional[torch.Tensor]'=None ) ->torch.Tensor: transforms = [lambda img: adjust_brightness(img, params[ 'brightness_factor'] - 1), lambda img: adjust_contrast(img, params['contrast_factor']), lambda img: adjust_saturation(img, params['saturation_factor']), lambda img: adjust_hue(img, params['hue_factor'] * 2 * pi)] jittered = input for idx in params['order'].tolist(): t = transforms[idx] jittered = t(jittered) return jittered class PatchSequential(ImageSequential): """Container for performing patch-level image processing. .. image:: https://kornia-tutorials.readthedocs.io/en/latest/_images/data_patch_sequential_5_1.png PatchSequential breaks input images into patches by a given grid size, which will be resembled back afterwards. Different image processing and augmentation methods will be performed on each patch region. Args: *args: a list of processing modules. grid_size: controls the grid board seperation. padding: same or valid padding. If same padding, it will pad to include all pixels if the input tensor cannot be divisible by grid_size. If valid padding, the redundent border will be removed. same_on_batch: apply the same transformation across the batch. If None, it will not overwrite the function-wise settings. keepdim: whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). If None, it will not overwrite the function-wise settings. patchwise_apply: apply image processing args will be applied patch-wisely. if ``True``, the number of args must be equal to grid number. if ``False``, the image processing args will be applied as a sequence to all patches. Default: False. random_apply: randomly select a sublist (order agnostic) of args to apply transformation. If ``int`` (batchwise mode only), a fixed number of transformations will be selected. If ``(a,)`` (batchwise mode only), x number of transformations (a <= x <= len(args)) will be selected. If ``(a, b)`` (batchwise mode only), x number of transformations (a <= x <= b) will be selected. If ``True``, the whole list of args will be processed in a random order. If ``False``, the whole list of args will be processed in original order. Return: List[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]]: the tensor (, and the transformation matrix) has been sequentially modified by the args. Examples: >>> import kornia.augmentation as K >>> input = torch.randn(2, 3, 224, 224) >>> seq = PatchSequential( ... ImageSequential( ... K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=0.5), ... K.RandomPerspective(0.2, p=0.5), ... K.RandomSolarize(0.1, 0.1, p=0.5), ... ), ... K.RandomAffine(360, p=1.0), ... ImageSequential( ... K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=0.5), ... K.RandomPerspective(0.2, p=0.5), ... K.RandomSolarize(0.1, 0.1, p=0.5), ... ), ... K.RandomSolarize(0.1, 0.1, p=0.1), ... grid_size=(2,2), ... patchwise_apply=False, ... same_on_batch=True, ... random_apply=True, ... ) >>> out = seq(input) >>> out.shape torch.Size([2, 3, 224, 224]) >>> out1 = seq(input, seq._params) >>> torch.equal(out, out1) True """ def __init__(self, *args: nn.Module, grid_size: Tuple[int, int]=(4, 4), padding: str='same', same_on_batch: Optional[bool]=None, keepdim: Optional[bool]=None, patchwise_apply: bool=False, random_apply: Union[int, bool, Tuple[int, int]]=False) ->None: _random_apply: 'Optional[Union[int, Tuple[int, int]]]' if patchwise_apply and random_apply is True: _random_apply = grid_size[0] * grid_size[1], grid_size[0 ] * grid_size[1] elif patchwise_apply and random_apply is False: assert len(args) == grid_size[0] * grid_size[1 ], f'The number of processing modules must be equal with grid size.Got {len(args)} and {grid_size[0] * grid_size[1]}.' _random_apply = random_apply elif patchwise_apply and isinstance(random_apply, (int, tuple)): raise ValueError( f'Only boolean value allowed when `patchwise_apply` is set to True. Got {random_apply}.' ) else: _random_apply = random_apply super(PatchSequential, self).__init__(*args, same_on_batch= same_on_batch, return_transform=False, keepdim=keepdim, random_apply=_random_apply) assert padding in ['same', 'valid' ], f'`padding` must be either `same` or `valid`. Got {padding}.' self.grid_size = grid_size self.padding = padding self.patchwise_apply = patchwise_apply def is_intensity_only(self) ->bool: """Check if all transformations are intensity-based. Note: patch processing would break the continuity of labels (e.g. bbounding boxes, masks). """ for arg in self.children(): if isinstance(arg, (ImageSequential,)): for _arg in arg.children(): if not isinstance(_arg, IntensityAugmentationBase2D): return False elif not isinstance(_arg, IntensityAugmentationBase2D): return False return True def __repeat_param_across_patches__(self, param: 'torch.Tensor', patch_num: 'int') ->torch.Tensor: """Repeat parameters across patches. The input is shaped as (B, ...), while to output (B * patch_num, ...), which to guarentee that the same transformation would happen for each patch index. (B1, B2, ..., Bn) => (B1, ... Bn, B1, ..., Bn, ..., B1, ..., Bn) | pt_size | | pt_size | ..., | pt_size | """ repeated = torch.cat([param] * patch_num, dim=0) return repeated def compute_padding(self, input: 'torch.Tensor', padding: 'str', grid_size: 'Optional[Tuple[int, int]]'=None) ->Tuple[int, int, int, int ]: if grid_size is None: grid_size = self.grid_size if padding == 'valid': ph, pw = input.size(-2) // grid_size[0], input.size(-1 ) // grid_size[1] return -pw // 2, pw // 2 - pw, -ph // 2, ph // 2 - ph elif padding == 'same': ph = input.size(-2) - input.size(-2) // grid_size[0] * grid_size[0] pw = input.size(-1) - input.size(-1) // grid_size[1] * grid_size[1] return pw // 2, pw - pw // 2, ph // 2, ph - ph // 2 else: raise NotImplementedError( f"Expect `padding` as either 'valid' or 'same'. Got {padding}." ) def extract_patches(self, input: 'torch.Tensor', grid_size: 'Optional[Tuple[int, int]]'=None, pad: 'Optional[Tuple[int, int, int, int]]'=None) ->torch.Tensor: """Extract patches from tensor. Example: >>> import kornia.augmentation as K >>> pas = PatchSequential(K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0)) >>> pas.extract_patches(torch.arange(16).view(1, 1, 4, 4), grid_size=(2, 2)) tensor([[[[[ 0, 1], [ 4, 5]]], <BLANKLINE> <BLANKLINE> [[[ 2, 3], [ 6, 7]]], <BLANKLINE> <BLANKLINE> [[[ 8, 9], [12, 13]]], <BLANKLINE> <BLANKLINE> [[[10, 11], [14, 15]]]]]) >>> pas.extract_patches(torch.arange(54).view(1, 1, 6, 9), grid_size=(2, 2), pad=(-1, -1, -2, -2)) tensor([[[[[19, 20, 21]]], <BLANKLINE> <BLANKLINE> [[[22, 23, 24]]], <BLANKLINE> <BLANKLINE> [[[28, 29, 30]]], <BLANKLINE> <BLANKLINE> [[[31, 32, 33]]]]]) """ if pad is not None: input = torch.nn.functional.pad(input, list(pad)) if grid_size is None: grid_size = self.grid_size window_size = input.size(-2) // grid_size[-2], input.size(-1 ) // grid_size[-1] stride = window_size return extract_tensor_patches(input, window_size, stride) def restore_from_patches(self, patches: 'torch.Tensor', grid_size: 'Tuple[int, int]'=(4, 4), pad: 'Optional[Tuple[int, int, int, int]]'=None) ->torch.Tensor: """Restore input from patches. Example: >>> import kornia.augmentation as K >>> pas = PatchSequential(K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0)) >>> out = pas.extract_patches(torch.arange(16).view(1, 1, 4, 4), grid_size=(2, 2)) >>> pas.restore_from_patches(out, grid_size=(2, 2)) tensor([[[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]]]) """ if grid_size is None: grid_size = self.grid_size patches_tensor = patches.view(-1, grid_size[0], grid_size[1], * patches.shape[-3:]) restored_tensor = torch.cat(torch.chunk(patches_tensor, grid_size[0 ], dim=1), -2).squeeze(1) restored_tensor = torch.cat(torch.chunk(restored_tensor, grid_size[ 1], dim=1), -1).squeeze(1) if pad is not None: restored_tensor = torch.nn.functional.pad(restored_tensor, [(-i ) for i in pad]) return restored_tensor def forward_patchwise(self, input: 'torch.Tensor', params: 'Optional[List[List[ParamItem]]]'=None) ->torch.Tensor: if params is None: params = [[]] * input.size(1) auglist = [self.get_forward_sequence() for _ in range(input. size(1))] else: auglist = [self.get_forward_sequence(p) for p in params] assert input.size(0) == len(auglist) == len(params) out = [] self._params = [] for inp, proc, param in zip(input, auglist, params): o = [] p = [] for inp_pat, (proc_name, proc_pat), _param in zip_longest(inp, proc, param): if isinstance(proc_pat, (_AugmentationBase, ImageSequential)): o.append(proc_pat(inp_pat[None], _param.data if _param is not None else None)) p.append(ParamItem(proc_name, proc_pat._params)) else: o.append(proc_pat(inp_pat[None])) p.append(ParamItem(proc_name, {})) out.append(torch.cat(o, dim=0)) self._params.append(p) input = torch.stack(out, dim=0) return input def forward_batchwise(self, input: 'torch.Tensor', params: 'Optional[List[ParamItem]]'=None) ->torch.Tensor: if self.same_on_batch: batch_shape = input.size(1), *input.shape[-3:] patch_num = input.size(0) else: batch_shape = input.size(0) * input.size(1), *input.shape[-3:] if params is None: params = [] for name, aug in self.get_forward_sequence(): if isinstance(aug, _AugmentationBase): aug.same_on_batch = False param = aug.forward_parameters(batch_shape) if self.same_on_batch: for k, v in param.items(): if not (k == 'order' and isinstance(aug, ColorJitter)): param.update({k: self. __repeat_param_across_patches__(v, patch_num)}) aug.same_on_batch = True else: param = None params.append(ParamItem(name, param)) input = super().forward(input.view(-1, *input.shape[-3:]), params) return input def forward(self, input: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]', params: 'Optional[Union[List[ParamItem], List[List[ParamItem]]]]'=None ) ->Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """Input transformation will be returned if input is a tuple.""" if isinstance(input, (tuple,)): pad = self.compute_padding(input[0], self.padding) input = self.extract_patches(input[0], self.grid_size, pad), input[ 1] else: pad = self.compute_padding(input, self.padding) input = self.extract_patches(input, self.grid_size, pad) if not self.patchwise_apply: params = cast(List[ParamItem], params) if isinstance(input, (tuple,)): input = self.forward_batchwise(input[0], params), input[1] else: input = self.forward_batchwise(input, params) else: params = cast(List[List[ParamItem]], params) if isinstance(input, (tuple,)): input = self.forward_patchwise(input[0], params), input[1] else: input = self.forward_patchwise(input, params) if isinstance(input, (tuple,)): input = self.restore_from_patches(input[0], self.grid_size, pad=pad ), input[1] else: input = self.restore_from_patches(input, self.grid_size, pad=pad) return input def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import warnings from typing import Dict from typing import Optional from typing import Tuple import torch.nn as nn import torch.nn.functional as F from typing import cast from typing import List from typing import Union from torch.distributions import Bernoulli from itertools import zip_longest from collections import OrderedDict from typing import Any from typing import Iterator from typing import NamedTuple from torch.nn.modules.utils import _pair from math import pi assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x5 = xindex // 16 x6 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = x1 tmp7 = tmp5 < tmp3 tmp8 = tmp7 & tmp4 tmp9 = tl.load(in_ptr0 + (16 * x2 + 64 * x3 + 16 * x3 % 16), tmp8 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp5 >= tmp3 tmp11 = tl.full([1], 2, tl.int64) tmp12 = tmp5 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tmp13 & tmp4 tmp15 = tl.load(in_ptr0 + (4 + 16 * x5), tmp14 & xmask, eviction_policy ='evict_last', other=0.0) tmp16 = tmp5 >= tmp11 tmp17 = tl.full([1], 3, tl.int64) tmp18 = tmp5 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tmp19 & tmp4 tmp21 = tl.load(in_ptr0 + (8 + 16 * x5), tmp20 & xmask, eviction_policy ='evict_last', other=0.0) tmp22 = tmp5 >= tmp17 tl.full([1], 4, tl.int64) tmp25 = tmp22 & tmp4 tmp26 = tl.load(in_ptr0 + (12 + 16 * x5), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tl.where(tmp19, tmp21, tmp26) tmp28 = tl.where(tmp13, tmp15, tmp27) tmp29 = tl.where(tmp7, tmp9, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp4, tmp29, tmp30) tmp32 = tmp0 >= tmp3 tmp33 = tmp0 < tmp11 tmp34 = tmp32 & tmp33 tmp35 = tmp7 & tmp34 tmp36 = tl.load(in_ptr0 + (1 + 16 * x5), tmp35 & xmask, eviction_policy ='evict_last', other=0.0) tmp37 = tmp13 & tmp34 tmp38 = tl.load(in_ptr0 + (5 + 16 * x5), tmp37 & xmask, eviction_policy ='evict_last', other=0.0) tmp39 = tmp19 & tmp34 tmp40 = tl.load(in_ptr0 + (9 + 16 * x5), tmp39 & xmask, eviction_policy ='evict_last', other=0.0) tmp41 = tmp22 & tmp34 tmp42 = tl.load(in_ptr0 + (13 + 16 * x5), tmp41 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tl.where(tmp19, tmp40, tmp42) tmp44 = tl.where(tmp13, tmp38, tmp43) tmp45 = tl.where(tmp7, tmp36, tmp44) tmp46 = tl.full(tmp45.shape, 0.0, tmp45.dtype) tmp47 = tl.where(tmp34, tmp45, tmp46) tmp48 = tmp0 >= tmp11 tmp49 = tmp0 < tmp17 tmp50 = tmp48 & tmp49 tmp51 = tmp7 & tmp50 tmp52 = tl.load(in_ptr0 + (2 + 16 * x5), tmp51 & xmask, eviction_policy ='evict_last', other=0.0) tmp53 = tmp13 & tmp50 tmp54 = tl.load(in_ptr0 + (6 + 16 * x5), tmp53 & xmask, eviction_policy ='evict_last', other=0.0) tmp55 = tmp19 & tmp50 tmp56 = tl.load(in_ptr0 + (10 + 16 * x5), tmp55 & xmask, eviction_policy='evict_last', other=0.0) tmp57 = tmp22 & tmp50 tmp58 = tl.load(in_ptr0 + (14 + 16 * x5), tmp57 & xmask, eviction_policy='evict_last', other=0.0) tmp59 = tl.where(tmp19, tmp56, tmp58) tmp60 = tl.where(tmp13, tmp54, tmp59) tmp61 = tl.where(tmp7, tmp52, tmp60) tmp62 = tl.full(tmp61.shape, 0.0, tmp61.dtype) tmp63 = tl.where(tmp50, tmp61, tmp62) tmp64 = tmp0 >= tmp17 tmp66 = tmp7 & tmp64 tmp67 = tl.load(in_ptr0 + (3 + 16 * x5), tmp66 & xmask, eviction_policy ='evict_last', other=0.0) tmp68 = tmp13 & tmp64 tmp69 = tl.load(in_ptr0 + (7 + 16 * x5), tmp68 & xmask, eviction_policy ='evict_last', other=0.0) tmp70 = tmp19 & tmp64 tmp71 = tl.load(in_ptr0 + (11 + 16 * x5), tmp70 & xmask, eviction_policy='evict_last', other=0.0) tmp72 = tmp22 & tmp64 tmp73 = tl.load(in_ptr0 + (15 + 16 * x5), tmp72 & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tl.where(tmp19, tmp71, tmp73) tmp75 = tl.where(tmp13, tmp69, tmp74) tmp76 = tl.where(tmp7, tmp67, tmp75) tmp77 = tl.full(tmp76.shape, 0.0, tmp76.dtype) tmp78 = tl.where(tmp64, tmp76, tmp77) tmp79 = tl.where(tmp50, tmp63, tmp78) tmp80 = tl.where(tmp34, tmp47, tmp79) tmp81 = tl.where(tmp4, tmp31, tmp80) tl.store(out_ptr0 + x6, tmp81, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), def _adapted_sampling(shape: 'Union[Tuple, torch.Size]', dist: 'torch.distributions.Distribution', same_on_batch=False) ->torch.Tensor: """The uniform sampling function that accepts 'same_on_batch'. If same_on_batch is True, all values generated will be exactly same given a batch_size (shape[0]). By default, same_on_batch is set to False. """ if same_on_batch: return dist.sample((1, *shape[1:])).repeat(shape[0], *([1] * (len( shape) - 1))) return dist.sample(shape) def _transform_output_shape(output: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]', shape: 'Tuple' ) ->Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """Collapse the broadcasted batch dimensions an input tensor to be the specified shape. Args: input: torch.Tensor shape: List/tuple of int Returns: torch.Tensor """ is_tuple = isinstance(output, tuple) out_tensor: 'torch.Tensor' trans_matrix: 'Optional[torch.Tensor]' if is_tuple: out_tensor, trans_matrix = cast(Tuple[torch.Tensor, torch.Tensor], output) else: out_tensor = cast(torch.Tensor, output) trans_matrix = None if trans_matrix is not None: if len(out_tensor.shape) > len(shape): assert trans_matrix.shape[0 ] == 1, f'Dimension 0 of transformation matrix is expected to be 1, got {trans_matrix.shape[0]}' trans_matrix = trans_matrix.squeeze(0) for dim in range(len(out_tensor.shape) - len(shape)): assert out_tensor.shape[0 ] == 1, f'Dimension {dim} of input is expected to be 1, got {out_tensor.shape[0]}' out_tensor = out_tensor.squeeze(0) return (out_tensor, trans_matrix) if is_tuple else out_tensor def _transform_input(input: 'torch.Tensor') ->torch.Tensor: """Reshape an input tensor to be (*, C, H, W). Accept either (H, W), (C, H, W) or (*, C, H, W). Args: input: torch.Tensor Returns: torch.Tensor """ if not torch.is_tensor(input): raise TypeError(f'Input type is not a torch.Tensor. Got {type(input)}') if len(input.shape) not in [2, 3, 4]: raise ValueError( f'Input size must have a shape of either (H, W), (C, H, W) or (*, C, H, W). Got {input.shape}' ) if len(input.shape) == 2: input = input.unsqueeze(0) if len(input.shape) == 3: input = input.unsqueeze(0) return input def _validate_input_dtype(input: 'torch.Tensor', accepted_dtypes: 'List' ) ->None: """Check if the dtype of the input tensor is in the range of accepted_dtypes Args: input: torch.Tensor accepted_dtypes: List. e.g. [torch.float32, torch.float64] """ if input.dtype not in accepted_dtypes: raise TypeError( f'Expected input of {accepted_dtypes}. Got {input.dtype}') def _extract_device_dtype(tensor_list: 'List[Optional[Any]]') ->Tuple[torch .device, torch.dtype]: """Check if all the input are in the same device (only if when they are torch.Tensor). If so, it would return a tuple of (device, dtype). Default: (cpu, ``get_default_dtype()``). Returns: [torch.device, torch.dtype] """ device, dtype = None, None for tensor in tensor_list: if tensor is not None: if not isinstance(tensor, (torch.Tensor,)): continue _device = tensor.device _dtype = tensor.dtype if device is None and dtype is None: device = _device dtype = _dtype elif device != _device or dtype != _dtype: raise ValueError( f'Passed values are not in the same device and dtype.Got ({device}, {dtype}) and ({_device}, {_dtype}).' ) if device is None: device = torch.device('cpu') if dtype is None: dtype = torch.get_default_dtype() return device, dtype def _joint_range_check(ranged_factor: 'torch.Tensor', name: 'str', bounds: 'Optional[Tuple[float, float]]'=None) ->None: """check if bounds[0] <= ranged_factor[0] <= ranged_factor[1] <= bounds[1]""" if bounds is None: bounds = float('-inf'), float('inf') if ranged_factor.dim() == 1 and len(ranged_factor) == 2: if not bounds[0] <= ranged_factor[0] or not bounds[1] >= ranged_factor[ 1]: raise ValueError( f'{name} out of bounds. Expected inside {bounds}, got {ranged_factor}.' ) if not bounds[0] <= ranged_factor[0] <= ranged_factor[1] <= bounds[1]: raise ValueError( f'{name}[0] should be smaller than {name}[1] got {ranged_factor}' ) else: raise TypeError( f'{name} should be a tensor with length 2 whose values between {bounds}. Got {ranged_factor}.' ) def _singular_range_check(ranged_factor: 'torch.Tensor', name: 'str', bounds: 'Optional[Tuple[float, float]]'=None, skip_none: 'bool'=False, mode: 'str'='2d') ->None: """check if bounds[0] <= ranged_factor[0] <= bounds[1] and bounds[0] <= ranged_factor[1] <= bounds[1]""" if mode == '2d': dim_size = 2 elif mode == '3d': dim_size = 3 else: raise ValueError(f"'mode' shall be either 2d or 3d. Got {mode}") if skip_none and ranged_factor is None: return if bounds is None: bounds = float('-inf'), float('inf') if ranged_factor.dim() == 1 and len(ranged_factor) == dim_size: for f in ranged_factor: if not bounds[0] <= f <= bounds[1]: raise ValueError( f'{name} out of bounds. Expected inside {bounds}, got {ranged_factor}.' ) else: raise TypeError( f'{name} should be a float number or a tuple with length {dim_size} whose values between {bounds}.Got {ranged_factor}' ) def _range_bound(factor: 'Union[torch.Tensor, float, Tuple[float, float], List[float]]', name: 'str', center: 'float'=0.0, bounds: 'Tuple[float, float]'=(0, float( 'inf')), check: 'Optional[str]'='joint', device: 'torch.device'=torch. device('cpu'), dtype: 'torch.dtype'=torch.get_default_dtype() ) ->torch.Tensor: """Check inputs and compute the corresponding factor bounds""" if not isinstance(factor, torch.Tensor): factor = torch.tensor(factor, device=device, dtype=dtype) factor_bound: 'torch.Tensor' if factor.dim() == 0: if factor < 0: raise ValueError( f'If {name} is a single number number, it must be non negative. Got {factor}' ) factor_bound = factor.repeat(2) * torch.tensor([-1.0, 1.0], device= factor.device, dtype=factor.dtype) + center factor_bound = factor_bound.clamp(bounds[0], bounds[1]) else: factor_bound = torch.as_tensor(factor, device=device, dtype=dtype) if check is not None: if check == 'joint': _joint_range_check(factor_bound, name, bounds) elif check == 'singular': _singular_range_check(factor_bound, name, bounds) else: raise NotImplementedError(f"methods '{check}' not implemented.") return factor_bound def adjust_brightness(input: 'torch.Tensor', brightness_factor: 'Union[float, torch.Tensor]') ->torch.Tensor: """Adjust Brightness of an image. .. image:: _static/img/adjust_brightness.png This implementation aligns OpenCV, not PIL. Hence, the output differs from TorchVision. The input image is expected to be in the range of [0, 1]. Args: input: image to be adjusted in the shape of :math:`(*, N)`. brightness_factor: Brightness adjust factor per element in the batch. 0 does not modify the input image while any other number modify the brightness. Return: Adjusted image in the shape of :math:`(*, N)`. Example: >>> x = torch.ones(1, 1, 2, 2) >>> adjust_brightness(x, 1.) tensor([[[[1., 1.], [1., 1.]]]]) >>> x = torch.ones(2, 5, 3, 3) >>> y = torch.tensor([0.25, 0.50]) >>> adjust_brightness(x, y).shape torch.Size([2, 5, 3, 3]) """ if not isinstance(input, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(input)}') if not isinstance(brightness_factor, (float, torch.Tensor)): raise TypeError( f'The factor should be either a float or torch.Tensor. Got {type(brightness_factor)}' ) if isinstance(brightness_factor, float): brightness_factor = torch.tensor([brightness_factor]) brightness_factor = brightness_factor.to(input.device) for _ in input.shape[1:]: brightness_factor = torch.unsqueeze(brightness_factor, dim=-1) x_adjust: 'torch.Tensor' = input + brightness_factor out: 'torch.Tensor' = torch.clamp(x_adjust, 0.0, 1.0) return out def adjust_contrast(input: 'torch.Tensor', contrast_factor: 'Union[float, torch.Tensor]') ->torch.Tensor: """Adjust Contrast of an image. .. image:: _static/img/adjust_contrast.png This implementation aligns OpenCV, not PIL. Hence, the output differs from TorchVision. The input image is expected to be in the range of [0, 1]. Args: input: Image to be adjusted in the shape of :math:`(*, N)`. contrast_factor: Contrast adjust factor per element in the batch. 0 generates a completely black image, 1 does not modify the input image while any other non-negative number modify the brightness by this factor. Return: Adjusted image in the shape of :math:`(*, N)`. Example: >>> x = torch.ones(1, 1, 2, 2) >>> adjust_contrast(x, 0.5) tensor([[[[0.5000, 0.5000], [0.5000, 0.5000]]]]) >>> x = torch.ones(2, 5, 3, 3) >>> y = torch.tensor([0.65, 0.50]) >>> adjust_contrast(x, y).shape torch.Size([2, 5, 3, 3]) """ if not isinstance(input, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(input)}') if not isinstance(contrast_factor, (float, torch.Tensor)): raise TypeError( f'The factor should be either a float or torch.Tensor. Got {type(contrast_factor)}' ) if isinstance(contrast_factor, float): contrast_factor = torch.tensor([contrast_factor]) contrast_factor = contrast_factor.to(input.device) if (contrast_factor < 0).any(): raise ValueError( f'Contrast factor must be non-negative. Got {contrast_factor}') for _ in input.shape[1:]: contrast_factor = torch.unsqueeze(contrast_factor, dim=-1) x_adjust: 'torch.Tensor' = input * contrast_factor out: 'torch.Tensor' = torch.clamp(x_adjust, 0.0, 1.0) return out def adjust_hue_raw(input: 'torch.Tensor', hue_factor: 'Union[float, torch.Tensor]') ->torch.Tensor: """Adjust hue of an image. Expecting input to be in hsv format already.""" if not isinstance(input, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(input)}') if not isinstance(hue_factor, (float, torch.Tensor)): raise TypeError( f'The hue_factor should be a float number or torch.Tensor in the range between [-PI, PI]. Got {type(hue_factor)}' ) if isinstance(hue_factor, float): hue_factor = torch.as_tensor(hue_factor) hue_factor = hue_factor for _ in input.shape[1:]: hue_factor = torch.unsqueeze(hue_factor, dim=-1) h, s, v = torch.chunk(input, chunks=3, dim=-3) divisor: 'float' = 2 * pi h_out: 'torch.Tensor' = torch.fmod(h + hue_factor, divisor) out: 'torch.Tensor' = torch.cat([h_out, s, v], dim=-3) return out def hsv_to_rgb(image: 'torch.Tensor') ->torch.Tensor: """Convert an image from HSV to RGB. The H channel values are assumed to be in the range 0..2pi. S and V are in the range 0..1. Args: image: HSV Image to be converted to HSV with shape of :math:`(*, 3, H, W)`. Returns: RGB version of the image with shape of :math:`(*, 3, H, W)`. Example: >>> input = torch.rand(2, 3, 4, 5) >>> output = hsv_to_rgb(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError('Input type is not a torch.Tensor. Got {}'.format( type(image))) if len(image.shape) < 3 or image.shape[-3] != 3: raise ValueError('Input size must have a shape of (*, 3, H, W). Got {}' .format(image.shape)) h: 'torch.Tensor' = image[..., 0, :, :] / (2 * math.pi) s: 'torch.Tensor' = image[..., 1, :, :] v: 'torch.Tensor' = image[..., 2, :, :] hi: 'torch.Tensor' = torch.floor(h * 6) % 6 f: 'torch.Tensor' = h * 6 % 6 - hi one: 'torch.Tensor' = torch.tensor(1.0).to(image.device) p: 'torch.Tensor' = v * (one - s) q: 'torch.Tensor' = v * (one - f * s) t: 'torch.Tensor' = v * (one - (one - f) * s) hi = hi.long() indices: 'torch.Tensor' = torch.stack([hi, hi + 6, hi + 12], dim=-3) out = torch.stack((v, q, p, p, t, v, t, v, v, q, p, p, p, p, t, v, v, q ), dim=-3) out = torch.gather(out, -3, indices) return out def rgb_to_hsv(image: 'torch.Tensor', eps: 'float'=1e-06) ->torch.Tensor: """Convert an image from RGB to HSV. .. image:: _static/img/rgb_to_hsv.png The image data is assumed to be in the range of (0, 1). Args: image: RGB Image to be converted to HSV with shape of :math:`(*, 3, H, W)`. eps: scalar to enforce numarical stability. Returns: HSV version of the image with shape of :math:`(*, 3, H, W)`. The H channel values are in the range 0..2pi. S and V are in the range 0..1. Example: >>> input = torch.rand(2, 3, 4, 5) >>> output = rgb_to_hsv(input) # 2x3x4x5 """ if not isinstance(image, torch.Tensor): raise TypeError('Input type is not a torch.Tensor. Got {}'.format( type(image))) if len(image.shape) < 3 or image.shape[-3] != 3: raise ValueError('Input size must have a shape of (*, 3, H, W). Got {}' .format(image.shape)) maxc, _ = image.max(-3) maxc_mask = image == maxc.unsqueeze(-3) _, max_indices = ((maxc_mask.cumsum(-3) == 1) & maxc_mask).max(-3) minc: 'torch.Tensor' = image.min(-3)[0] v: 'torch.Tensor' = maxc deltac: 'torch.Tensor' = maxc - minc s: 'torch.Tensor' = deltac / (v + eps) deltac = torch.where(deltac == 0, torch.ones_like(deltac, device=deltac .device, dtype=deltac.dtype), deltac) maxc_tmp = maxc.unsqueeze(-3) - image rc: 'torch.Tensor' = maxc_tmp[..., 0, :, :] gc: 'torch.Tensor' = maxc_tmp[..., 1, :, :] bc: 'torch.Tensor' = maxc_tmp[..., 2, :, :] h = torch.stack([bc - gc, 2.0 * deltac + rc - bc, 4.0 * deltac + gc - rc], dim=-3) h = torch.gather(h, dim=-3, index=max_indices[..., None, :, :]) h = h.squeeze(-3) h = h / deltac h = h / 6.0 % 1.0 h = 2 * math.pi * h return torch.stack([h, s, v], dim=-3) def adjust_hue(input: 'torch.Tensor', hue_factor: 'Union[float, torch.Tensor]' ) ->torch.Tensor: """Adjust hue of an image. .. image:: _static/img/adjust_hue.png The input image is expected to be an RGB image in the range of [0, 1]. Args: input: Image to be adjusted in the shape of :math:`(*, 3, H, W)`. hue_factor: How much to shift the hue channel. Should be in [-PI, PI]. PI and -PI give complete reversal of hue channel in HSV space in positive and negative direction respectively. 0 means no shift. Therefore, both -PI and PI will give an image with complementary colors while 0 gives the original image. Return: Adjusted image in the shape of :math:`(*, 3, H, W)`. Example: >>> x = torch.ones(1, 3, 2, 2) >>> adjust_hue(x, 3.141516).shape torch.Size([1, 3, 2, 2]) >>> x = torch.ones(2, 3, 3, 3) >>> y = torch.ones(2) * 3.141516 >>> adjust_hue(x, y).shape torch.Size([2, 3, 3, 3]) """ x_hsv: 'torch.Tensor' = rgb_to_hsv(input) x_adjusted: 'torch.Tensor' = adjust_hue_raw(x_hsv, hue_factor) out: 'torch.Tensor' = hsv_to_rgb(x_adjusted) return out def adjust_saturation_raw(input: 'torch.Tensor', saturation_factor: 'Union[float, torch.Tensor]') ->torch.Tensor: """Adjust color saturation of an image. Expecting input to be in hsv format already.""" if not isinstance(input, torch.Tensor): raise TypeError(f'Input type is not a torch.Tensor. Got {type(input)}') if not isinstance(saturation_factor, (float, torch.Tensor)): raise TypeError( f'The saturation_factor should be a float number or torch.Tensor.Got {type(saturation_factor)}' ) if isinstance(saturation_factor, float): saturation_factor = torch.as_tensor(saturation_factor) saturation_factor = saturation_factor.to(input.device) for _ in input.shape[1:]: saturation_factor = torch.unsqueeze(saturation_factor, dim=-1) h, s, v = torch.chunk(input, chunks=3, dim=-3) s_out: 'torch.Tensor' = torch.clamp(s * saturation_factor, min=0, max=1) out: 'torch.Tensor' = torch.cat([h, s_out, v], dim=-3) return out def adjust_saturation(input: 'torch.Tensor', saturation_factor: 'Union[float, torch.Tensor]') ->torch.Tensor: """Adjust color saturation of an image. .. image:: _static/img/adjust_saturation.png The input image is expected to be an RGB image in the range of [0, 1]. Args: input: Image/Tensor to be adjusted in the shape of :math:`(*, 3, H, W)`. saturation_factor: How much to adjust the saturation. 0 will give a black and white image, 1 will give the original image while 2 will enhance the saturation by a factor of 2. Return: Adjusted image in the shape of :math:`(*, 3, H, W)`. Example: >>> x = torch.ones(1, 3, 3, 3) >>> adjust_saturation(x, 2.).shape torch.Size([1, 3, 3, 3]) >>> x = torch.ones(2, 3, 3, 3) >>> y = torch.tensor([1., 2.]) >>> adjust_saturation(x, y).shape torch.Size([2, 3, 3, 3]) """ x_hsv: 'torch.Tensor' = rgb_to_hsv(input) x_adjusted: 'torch.Tensor' = adjust_saturation_raw(x_hsv, saturation_factor ) out: 'torch.Tensor' = hsv_to_rgb(x_adjusted) return out def _extract_tensor_patchesnd(input: 'torch.Tensor', window_sizes: 'Tuple[int, ...]', strides: 'Tuple[int, ...]') ->torch.Tensor: batch_size, num_channels = input.size()[:2] dims = range(2, input.dim()) for dim, patch_size, stride in zip(dims, window_sizes, strides): input = input.unfold(dim, patch_size, stride) input = input.permute(0, *dims, 1, *[(dim + len(dims)) for dim in dims] ).contiguous() return input.view(batch_size, -1, num_channels, *window_sizes) def extract_tensor_patches(input: 'torch.Tensor', window_size: 'Union[int, Tuple[int, int]]', stride: 'Union[int, Tuple[int, int]]'=1, padding: 'Union[int, Tuple[int, int]]'=0) ->torch.Tensor: """Function that extract patches from tensors and stack them. See :class:`~kornia.contrib.ExtractTensorPatches` for details. """ if not torch.is_tensor(input): raise TypeError('Input input type is not a torch.Tensor. Got {}'. format(type(input))) if not len(input.shape) == 4: raise ValueError('Invalid input shape, we expect BxCxHxW. Got: {}'. format(input.shape)) if padding: pad_vert, pad_horz = _pair(padding) input = F.pad(input, [pad_horz, pad_horz, pad_vert, pad_vert]) return _extract_tensor_patchesnd(input, _pair(window_size), _pair(stride)) class _BasicAugmentationBase(nn.Module): """_BasicAugmentationBase base class for customized augmentation implementations. Plain augmentation base class without the functionality of transformation matrix calculations. By default, the random computations will be happened on CPU with ``torch.get_default_dtype()``. To change this behaviour, please use ``set_rng_device_and_dtype``. Args: p (float): probability for applying an augmentation. This param controls the augmentation probabilities element-wisely. p_batch (float): probability for applying an augmentation to a batch. This param controls the augmentation probabilities batch-wisely. same_on_batch (bool): apply the same transformation across the batch. Default: False. keepdim (bool): whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). Default: False. """ def __init__(self, p: 'float'=0.5, p_batch: 'float'=1.0, same_on_batch: 'bool'=False, keepdim: 'bool'=False) ->None: super(_BasicAugmentationBase, self).__init__() self.p = p self.p_batch = p_batch self.same_on_batch = same_on_batch self.keepdim = keepdim self._params: 'Dict[str, torch.Tensor]' = {} if p != 0.0 or p != 1.0: self._p_gen = Bernoulli(self.p) if p_batch != 0.0 or p_batch != 1.0: self._p_batch_gen = Bernoulli(self.p_batch) self.set_rng_device_and_dtype(torch.device('cpu'), torch. get_default_dtype()) def __repr__(self) ->str: return ( f'p={self.p}, p_batch={self.p_batch}, same_on_batch={self.same_on_batch}' ) def __unpack_input__(self, input: 'torch.Tensor') ->torch.Tensor: return input def __check_batching__(self, input: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]'): """Check if a transformation matrix is returned, it has to be in the same batching mode as output.""" raise NotImplementedError def transform_tensor(self, input: 'torch.Tensor') ->torch.Tensor: """Standardize input tensors.""" raise NotImplementedError def generate_parameters(self, batch_shape: 'torch.Size') ->Dict[str, torch.Tensor]: return {} def apply_transform(self, input: 'torch.Tensor', params: 'Dict[str, torch.Tensor]') ->torch.Tensor: raise NotImplementedError def set_rng_device_and_dtype(self, device: 'torch.device', dtype: 'torch.dtype') ->None: """Change the random generation device and dtype. Note: The generated random numbers are not reproducible across different devices and dtypes. """ self.device = device self.dtype = dtype def __batch_prob_generator__(self, batch_shape: 'torch.Size', p: 'float', p_batch: 'float', same_on_batch: 'bool') ->torch.Tensor: batch_prob: 'torch.Tensor' if p_batch == 1: batch_prob = torch.tensor([True]) elif p_batch == 0: batch_prob = torch.tensor([False]) else: batch_prob = _adapted_sampling((1,), self._p_batch_gen, same_on_batch).bool() if batch_prob.sum().item() == 1: elem_prob: 'torch.Tensor' if p == 1: elem_prob = torch.tensor([True] * batch_shape[0]) elif p == 0: elem_prob = torch.tensor([False] * batch_shape[0]) else: elem_prob = _adapted_sampling((batch_shape[0],), self. _p_gen, same_on_batch).bool() batch_prob = batch_prob * elem_prob else: batch_prob = batch_prob.repeat(batch_shape[0]) return batch_prob def forward_parameters(self, batch_shape): to_apply = self.__batch_prob_generator__(batch_shape, self.p, self. p_batch, self.same_on_batch) _params = self.generate_parameters(torch.Size((int(to_apply.sum(). item()), *batch_shape[1:]))) if _params is None: _params = {} _params['batch_prob'] = to_apply return _params def apply_func(self, input: 'torch.Tensor', params: 'Dict[str, torch.Tensor]') ->Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: input = self.transform_tensor(input) return self.apply_transform(input, params) def forward(self, input: 'torch.Tensor', params: 'Optional[Dict[str, torch.Tensor]]'=None) ->Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: in_tensor = self.__unpack_input__(input) self.__check_batching__(input) ori_shape = in_tensor.shape in_tensor = self.transform_tensor(in_tensor) batch_shape = in_tensor.shape if params is None: params = self.forward_parameters(batch_shape) self._params = params output = self.apply_func(input, self._params) return _transform_output_shape(output, ori_shape ) if self.keepdim else output class _AugmentationBase(_BasicAugmentationBase): """_AugmentationBase base class for customized augmentation implementations. Advanced augmentation base class with the functionality of transformation matrix calculations. Args: p (float): probability for applying an augmentation. This param controls the augmentation probabilities element-wisely for a batch. p_batch (float): probability for applying an augmentation to a batch. This param controls the augmentation probabilities batch-wisely. return_transform (bool): if ``True`` return the matrix describing the geometric transformation applied to each input tensor. If ``False`` and the input is a tuple the applied transformation wont be concatenated. same_on_batch (bool): apply the same transformation across the batch. Default: False. keepdim (bool): whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). Default: False. """ def __init__(self, return_transform: 'bool'=None, same_on_batch: 'bool' =False, p: 'float'=0.5, p_batch: 'float'=1.0, keepdim: 'bool'=False ) ->None: super(_AugmentationBase, self).__init__(p, p_batch=p_batch, same_on_batch=same_on_batch, keepdim=keepdim) self.p = p self.p_batch = p_batch self.return_transform = return_transform def __repr__(self) ->str: return super().__repr__( ) + f', return_transform={self.return_transform}' def identity_matrix(self, input: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError def compute_transformation(self, input: 'torch.Tensor', params: 'Dict[str, torch.Tensor]') ->torch.Tensor: raise NotImplementedError def apply_transform(self, input: 'torch.Tensor', params: 'Dict[str, torch.Tensor]', transform: 'Optional[torch.Tensor]'=None ) ->torch.Tensor: raise NotImplementedError def __unpack_input__(self, input: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]') ->Tuple[ torch.Tensor, Optional[torch.Tensor]]: if isinstance(input, tuple): in_tensor = input[0] in_transformation = input[1] return in_tensor, in_transformation in_tensor = input return in_tensor, None def apply_func(self, in_tensor: 'torch.Tensor', in_transform: 'Optional[torch.Tensor]', params: 'Dict[str, torch.Tensor]', return_transform: 'bool'=False) ->Union[torch.Tensor, Tuple[torch. Tensor, torch.Tensor]]: to_apply = params['batch_prob'] if torch.sum(to_apply) == 0: output = in_tensor trans_matrix = self.identity_matrix(in_tensor) elif torch.sum(to_apply) == len(to_apply): trans_matrix = self.compute_transformation(in_tensor, params) output = self.apply_transform(in_tensor, params, trans_matrix) else: output = in_tensor.clone() trans_matrix = self.identity_matrix(in_tensor) trans_matrix[to_apply] = self.compute_transformation(in_tensor[ to_apply], params) output[to_apply] = self.apply_transform(in_tensor[to_apply], params, trans_matrix[to_apply]) self._transform_matrix = trans_matrix if return_transform: out_transformation = (trans_matrix if in_transform is None else trans_matrix @ in_transform) return output, out_transformation if in_transform is not None: return output, in_transform return output def forward(self, input: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]', params: 'Optional[Dict[str, torch.Tensor]]'=None, return_transform: 'Optional[bool]'=None) ->Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: in_tensor, in_transform = self.__unpack_input__(input) self.__check_batching__(input) ori_shape = in_tensor.shape in_tensor = self.transform_tensor(in_tensor) batch_shape = in_tensor.shape if return_transform is None: return_transform = self.return_transform return_transform = cast(bool, return_transform) if params is None: params = self.forward_parameters(batch_shape) if 'batch_prob' not in params: params['batch_prob'] = torch.tensor([True] * batch_shape[0]) warnings.warn( '`batch_prob` is not found in params. Will assume applying on all data.' ) self._params = params output = self.apply_func(in_tensor, in_transform, self._params, return_transform) return _transform_output_shape(output, ori_shape ) if self.keepdim else output class AugmentationBase2D(_AugmentationBase): """AugmentationBase2D base class for customized augmentation implementations. For any augmentation, the implementation of "generate_parameters" and "apply_transform" are required while the "compute_transformation" is only required when passing "return_transform" as True. Args: p (float): probability for applying an augmentation. This param controls the augmentation probabilities element-wisely for a batch. p_batch (float): probability for applying an augmentation to a batch. This param controls the augmentation probabilities batch-wisely. return_transform (bool): if ``True`` return the matrix describing the geometric transformation applied to each input tensor. If ``False`` and the input is a tuple the applied transformation wont be concatenated. same_on_batch (bool): apply the same transformation across the batch. Default: False. keepdim (bool): whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). Default: False. """ def __check_batching__(self, input: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]'): if isinstance(input, tuple): inp, mat = input if len(inp.shape) == 4: assert len(mat.shape ) == 3, 'Input tensor is in batch mode but transformation matrix is not' assert mat.shape[0] == inp.shape[0 ], f'In batch dimension, input has {inp.shape[0]}but transformation matrix has {mat.shape[0]}' elif len(inp.shape) == 3 or len(inp.shape) == 2: assert len(mat.shape ) == 2, 'Input tensor is in non-batch mode but transformation matrix is not' else: raise ValueError( f'Unrecognized output shape. Expected 2, 3, or 4, got {len(inp.shape)}' ) def transform_tensor(self, input: 'torch.Tensor') ->torch.Tensor: """Convert any incoming (H, W), (C, H, W) and (B, C, H, W) into (B, C, H, W).""" _validate_input_dtype(input, accepted_dtypes=[torch.float16, torch. float32, torch.float64]) return _transform_input(input) def identity_matrix(self, input) ->torch.Tensor: """Return 3x3 identity matrix.""" return kornia.eye_like(3, input) class IntensityAugmentationBase2D(AugmentationBase2D): """IntensityAugmentationBase2D base class for customized intensity augmentation implementations. For any augmentation, the implementation of "generate_parameters" and "apply_transform" are required while the "compute_transformation" is only required when passing "return_transform" as True. Args: p (float): probability for applying an augmentation. This param controls the augmentation probabilities element-wisely for a batch. p_batch (float): probability for applying an augmentation to a batch. This param controls the augmentation probabilities batch-wisely. return_transform (bool): if ``True`` return the matrix describing the geometric transformation applied to each input tensor. If ``False`` and the input is a tuple the applied transformation wont be concatenated. same_on_batch (bool): apply the same transformation across the batch. Default: False. keepdim (bool): whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). Default: False. """ def compute_transformation(self, input: 'torch.Tensor', params: 'Dict[str, torch.Tensor]') ->torch.Tensor: return self.identity_matrix(input) class ParamItem(NamedTuple): name: 'str' data: 'Union[dict, list]' class ImageSequential(nn.Sequential): """Sequential for creating kornia image processing pipeline. Args: *args : a list of kornia augmentation and image operation modules. same_on_batch: apply the same transformation across the batch. If None, it will not overwrite the function-wise settings. return_transform: if ``True`` return the matrix describing the transformation applied to each. If None, it will not overwrite the function-wise settings. keepdim: whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). If None, it will not overwrite the function-wise settings. random_apply: randomly select a sublist (order agnostic) of args to apply transformation. If int, a fixed number of transformations will be selected. If (a,), x number of transformations (a <= x <= len(args)) will be selected. If (a, b), x number of transformations (a <= x <= b) will be selected. If True, the whole list of args will be processed as a sequence in a random order. If False, the whole list of args will be processed as a sequence in original order. Returns: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: the tensor (, and the transformation matrix) has been sequentially modified by the args. Examples: >>> import kornia >>> input = torch.randn(2, 3, 5, 6) >>> aug_list = ImageSequential( ... kornia.color.BgrToRgb(), ... kornia.augmentation.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0), ... kornia.filters.MedianBlur((3, 3)), ... kornia.augmentation.RandomAffine(360, p=1.0), ... kornia.enhance.Invert(), ... return_transform=True, ... same_on_batch=True, ... random_apply=10, ... ) >>> out = aug_list(input) >>> out[0].shape, out[1].shape (torch.Size([2, 3, 5, 6]), torch.Size([2, 3, 3])) Reproduce with provided params. >>> out2 = aug_list(input, params=aug_list._params) >>> torch.equal(out[0], out2[0]), torch.equal(out[1], out2[1]) (True, True) Note: Transformation matrix returned only considers the transformation applied in ``kornia.augmentation`` module. Those transformations in ``kornia.geometry`` will not be taken into account. """ def __init__(self, *args: nn.Module, same_on_batch: Optional[bool]=None, return_transform: Optional[bool]=None, keepdim: Optional[bool]=None, random_apply: Union[int, bool, Tuple[int, int]]=False) ->None: self.same_on_batch = same_on_batch self.return_transform = return_transform self.keepdim = keepdim _args = OrderedDict() for idx, arg in enumerate(args): if not isinstance(arg, nn.Module): raise NotImplementedError( f'Only nn.Module are supported at this moment. Got {arg}.') if isinstance(arg, _AugmentationBase): if same_on_batch is not None: arg.same_on_batch = same_on_batch if return_transform is not None: arg.return_transform = return_transform if keepdim is not None: arg.keepdim = keepdim _args.update({f'{arg.__class__.__name__}_{idx}': arg}) super(ImageSequential, self).__init__(_args) self._params: 'List[Any]' = [] self.random_apply: 'Union[Tuple[int, int], bool]' if random_apply: if isinstance(random_apply, (bool,)) and random_apply is True: self.random_apply = len(args), len(args) + 1 elif isinstance(random_apply, (int,)): self.random_apply = random_apply, random_apply + 1 elif isinstance(random_apply, (tuple,)) and len(random_apply ) == 2 and isinstance(random_apply[0], (int,)) and isinstance( random_apply[1], (int,)): self.random_apply = random_apply[0], random_apply[1] + 1 elif isinstance(random_apply, (tuple,)) and len(random_apply ) == 1 and isinstance(random_apply[0], (int,)): self.random_apply = random_apply[0], len(args) + 1 else: raise ValueError( f'Non-readable random_apply. Got {random_apply}.') assert isinstance(self.random_apply, (tuple,)) and len(self. random_apply) == 2 and isinstance(self.random_apply[0], (int,) ) and isinstance(self.random_apply[0], (int,) ), f'Expect a tuple of (int, int). Got {self.random_apply}.' else: self.random_apply = False def _get_child_sequence(self) ->Iterator[Tuple[str, nn.Module]]: if self.random_apply: num_samples = int(torch.randint(*self.random_apply, (1,)).item()) indices = torch.multinomial(torch.ones((len(self),)), num_samples, replacement=True if num_samples > len(self) else False) return self._get_children_by_indices(indices) return self.named_children() def _get_children_by_indices(self, indices: 'torch.Tensor') ->Iterator[ Tuple[str, nn.Module]]: modules = list(self.named_children()) for idx in indices: yield modules[idx] def _get_children_by_module_names(self, names: 'List[str]') ->Iterator[ Tuple[str, nn.Module]]: modules = list(self.named_children()) for name in names: yield modules[list(dict(self.named_children()).keys()).index(name)] def get_forward_sequence(self, params: 'Optional[List[ParamItem]]'=None ) ->Iterator[Tuple[str, nn.Module]]: if params is None: named_modules = self._get_child_sequence() else: named_modules = self._get_children_by_module_names([p.name for p in params]) return named_modules def apply_to_input(self, input: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]', module_name: 'str', module: 'Optional[nn.Module]'=None, param: 'Optional[ParamItem]'=None) ->Union[torch.Tensor, Tuple[torch. Tensor, torch.Tensor]]: if module is None: module = self.get_submodule(module_name) if param is not None: assert module_name == param.name _param = param.data else: _param = None if isinstance(module, (_AugmentationBase, ImageSequential) ) and _param is None: input = module(input) self._params.append(ParamItem(module_name, module._params)) elif isinstance(module, (_AugmentationBase, ImageSequential) ) and _param is not None: input = module(input, params=_param) self._params.append(ParamItem(module_name, _param)) else: assert _param == { } or _param is None, f'Non-augmentaion operation {module_name} require empty parameters. Got {module}.' if isinstance(input, (tuple, list)): input = module(input[0]), input[1] else: input = module(input) self._params.append(ParamItem(module_name, {})) return input def forward(self, input: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]', params: 'Optional[List[ParamItem]]'=None) ->Union[torch.Tensor, Tuple[torch .Tensor, torch.Tensor]]: self._params = [] named_modules = self.get_forward_sequence(params) params = [] if params is None else params for (name, module), param in zip_longest(named_modules, params): input = self.apply_to_input(input, name, module, param=param) return input class ColorJitter(IntensityAugmentationBase2D): """Applies a random transformation to the brightness, contrast, saturation and hue of a tensor image. .. image:: _static/img/ColorJitter.png Args: p: probability of applying the transformation. brightness: The brightness factor to apply. contrast: The contrast factor to apply. saturation: The saturation factor to apply. hue: The hue factor to apply. return_transform: if ``True`` return the matrix describing the transformation applied to each input tensor. If ``False`` and the input is a tuple the applied transformation wont be concatenated. same_on_batch: apply the same transformation across the batch. keepdim: whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). Shape: - Input: :math:`(C, H, W)` or :math:`(B, C, H, W)`, Optional: :math:`(B, 3, 3)` - Output: :math:`(B, C, H, W)` Note: Input tensor must be float and normalized into [0, 1] for the best differentiability support. Additionally, this function accepts another transformation tensor (:math:`(B, 3, 3)`), then the applied transformation will be merged int to the input transformation tensor and returned. Examples: >>> rng = torch.manual_seed(0) >>> inputs = torch.ones(1, 3, 3, 3) >>> aug = ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.) >>> aug(inputs) tensor([[[[0.9993, 0.9993, 0.9993], [0.9993, 0.9993, 0.9993], [0.9993, 0.9993, 0.9993]], <BLANKLINE> [[0.9993, 0.9993, 0.9993], [0.9993, 0.9993, 0.9993], [0.9993, 0.9993, 0.9993]], <BLANKLINE> [[0.9993, 0.9993, 0.9993], [0.9993, 0.9993, 0.9993], [0.9993, 0.9993, 0.9993]]]]) """ def __init__(self, brightness: 'Union[torch.Tensor, float, Tuple[float, float], List[float]]'=0.0, contrast: 'Union[torch.Tensor, float, Tuple[float, float], List[float]]'=0.0, saturation: 'Union[torch.Tensor, float, Tuple[float, float], List[float]]'=0.0, hue: 'Union[torch.Tensor, float, Tuple[float, float], List[float]]' =0.0, return_transform: 'bool'=False, same_on_batch: 'bool'=False, p: 'float'=1.0, keepdim: 'bool'=False) ->None: super(ColorJitter, self).__init__(p=p, return_transform= return_transform, same_on_batch=same_on_batch, keepdim=keepdim) self._device, self._dtype = _extract_device_dtype([brightness, contrast, hue, saturation]) self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue def __repr__(self) ->str: repr = ( f'brightness={self.brightness}, contrast={self.contrast}, saturation={self.saturation}, hue={self.hue}' ) return self.__class__.__name__ + f'({repr}, {super().__repr__()})' def generate_parameters(self, batch_shape: 'torch.Size') ->Dict[str, torch.Tensor]: brightness: 'torch.Tensor' = _range_bound(self.brightness, 'brightness', center=1.0, bounds=(0, 2), device=self._device, dtype=self._dtype) contrast: 'torch.Tensor' = _range_bound(self.contrast, 'contrast', center=1.0, device=self._device, dtype=self._dtype) saturation: 'torch.Tensor' = _range_bound(self.saturation, 'saturation', center=1.0, device=self._device, dtype=self._dtype) hue: 'torch.Tensor' = _range_bound(self.hue, 'hue', bounds=(-0.5, 0.5), device=self._device, dtype=self._dtype) return rg.random_color_jitter_generator(batch_shape[0], brightness, contrast, saturation, hue, self.same_on_batch, self.device, self.dtype) def apply_transform(self, input: 'torch.Tensor', params: 'Dict[str, torch.Tensor]', transform: 'Optional[torch.Tensor]'=None ) ->torch.Tensor: transforms = [lambda img: adjust_brightness(img, params[ 'brightness_factor'] - 1), lambda img: adjust_contrast(img, params['contrast_factor']), lambda img: adjust_saturation(img, params['saturation_factor']), lambda img: adjust_hue(img, params['hue_factor'] * 2 * pi)] jittered = input for idx in params['order'].tolist(): t = transforms[idx] jittered = t(jittered) return jittered class PatchSequentialNew(ImageSequential): """Container for performing patch-level image processing. .. image:: https://kornia-tutorials.readthedocs.io/en/latest/_images/data_patch_sequential_5_1.png PatchSequential breaks input images into patches by a given grid size, which will be resembled back afterwards. Different image processing and augmentation methods will be performed on each patch region. Args: *args: a list of processing modules. grid_size: controls the grid board seperation. padding: same or valid padding. If same padding, it will pad to include all pixels if the input tensor cannot be divisible by grid_size. If valid padding, the redundent border will be removed. same_on_batch: apply the same transformation across the batch. If None, it will not overwrite the function-wise settings. keepdim: whether to keep the output shape the same as input (True) or broadcast it to the batch form (False). If None, it will not overwrite the function-wise settings. patchwise_apply: apply image processing args will be applied patch-wisely. if ``True``, the number of args must be equal to grid number. if ``False``, the image processing args will be applied as a sequence to all patches. Default: False. random_apply: randomly select a sublist (order agnostic) of args to apply transformation. If ``int`` (batchwise mode only), a fixed number of transformations will be selected. If ``(a,)`` (batchwise mode only), x number of transformations (a <= x <= len(args)) will be selected. If ``(a, b)`` (batchwise mode only), x number of transformations (a <= x <= b) will be selected. If ``True``, the whole list of args will be processed in a random order. If ``False``, the whole list of args will be processed in original order. Return: List[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]]: the tensor (, and the transformation matrix) has been sequentially modified by the args. Examples: >>> import kornia.augmentation as K >>> input = torch.randn(2, 3, 224, 224) >>> seq = PatchSequential( ... ImageSequential( ... K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=0.5), ... K.RandomPerspective(0.2, p=0.5), ... K.RandomSolarize(0.1, 0.1, p=0.5), ... ), ... K.RandomAffine(360, p=1.0), ... ImageSequential( ... K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=0.5), ... K.RandomPerspective(0.2, p=0.5), ... K.RandomSolarize(0.1, 0.1, p=0.5), ... ), ... K.RandomSolarize(0.1, 0.1, p=0.1), ... grid_size=(2,2), ... patchwise_apply=False, ... same_on_batch=True, ... random_apply=True, ... ) >>> out = seq(input) >>> out.shape torch.Size([2, 3, 224, 224]) >>> out1 = seq(input, seq._params) >>> torch.equal(out, out1) True """ def __init__(self, *args: nn.Module, grid_size: Tuple[int, int]=(4, 4), padding: str='same', same_on_batch: Optional[bool]=None, keepdim: Optional[bool]=None, patchwise_apply: bool=False, random_apply: Union[int, bool, Tuple[int, int]]=False) ->None: _random_apply: 'Optional[Union[int, Tuple[int, int]]]' if patchwise_apply and random_apply is True: _random_apply = grid_size[0] * grid_size[1], grid_size[0 ] * grid_size[1] elif patchwise_apply and random_apply is False: assert len(args) == grid_size[0] * grid_size[1 ], f'The number of processing modules must be equal with grid size.Got {len(args)} and {grid_size[0] * grid_size[1]}.' _random_apply = random_apply elif patchwise_apply and isinstance(random_apply, (int, tuple)): raise ValueError( f'Only boolean value allowed when `patchwise_apply` is set to True. Got {random_apply}.' ) else: _random_apply = random_apply super(PatchSequentialNew, self).__init__(*args, same_on_batch= same_on_batch, return_transform=False, keepdim=keepdim, random_apply=_random_apply) assert padding in ['same', 'valid' ], f'`padding` must be either `same` or `valid`. Got {padding}.' self.grid_size = grid_size self.padding = padding self.patchwise_apply = patchwise_apply def is_intensity_only(self) ->bool: """Check if all transformations are intensity-based. Note: patch processing would break the continuity of labels (e.g. bbounding boxes, masks). """ for arg in self.children(): if isinstance(arg, (ImageSequential,)): for _arg in arg.children(): if not isinstance(_arg, IntensityAugmentationBase2D): return False elif not isinstance(_arg, IntensityAugmentationBase2D): return False return True def __repeat_param_across_patches__(self, param: 'torch.Tensor', patch_num: 'int') ->torch.Tensor: """Repeat parameters across patches. The input is shaped as (B, ...), while to output (B * patch_num, ...), which to guarentee that the same transformation would happen for each patch index. (B1, B2, ..., Bn) => (B1, ... Bn, B1, ..., Bn, ..., B1, ..., Bn) | pt_size | | pt_size | ..., | pt_size | """ repeated = torch.cat([param] * patch_num, dim=0) return repeated def compute_padding(self, input: 'torch.Tensor', padding: 'str', grid_size: 'Optional[Tuple[int, int]]'=None) ->Tuple[int, int, int, int ]: if grid_size is None: grid_size = self.grid_size if padding == 'valid': ph, pw = input.size(-2) // grid_size[0], input.size(-1 ) // grid_size[1] return -pw // 2, pw // 2 - pw, -ph // 2, ph // 2 - ph elif padding == 'same': ph = input.size(-2) - input.size(-2) // grid_size[0] * grid_size[0] pw = input.size(-1) - input.size(-1) // grid_size[1] * grid_size[1] return pw // 2, pw - pw // 2, ph // 2, ph - ph // 2 else: raise NotImplementedError( f"Expect `padding` as either 'valid' or 'same'. Got {padding}." ) def extract_patches(self, input: 'torch.Tensor', grid_size: 'Optional[Tuple[int, int]]'=None, pad: 'Optional[Tuple[int, int, int, int]]'=None) ->torch.Tensor: """Extract patches from tensor. Example: >>> import kornia.augmentation as K >>> pas = PatchSequential(K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0)) >>> pas.extract_patches(torch.arange(16).view(1, 1, 4, 4), grid_size=(2, 2)) tensor([[[[[ 0, 1], [ 4, 5]]], <BLANKLINE> <BLANKLINE> [[[ 2, 3], [ 6, 7]]], <BLANKLINE> <BLANKLINE> [[[ 8, 9], [12, 13]]], <BLANKLINE> <BLANKLINE> [[[10, 11], [14, 15]]]]]) >>> pas.extract_patches(torch.arange(54).view(1, 1, 6, 9), grid_size=(2, 2), pad=(-1, -1, -2, -2)) tensor([[[[[19, 20, 21]]], <BLANKLINE> <BLANKLINE> [[[22, 23, 24]]], <BLANKLINE> <BLANKLINE> [[[28, 29, 30]]], <BLANKLINE> <BLANKLINE> [[[31, 32, 33]]]]]) """ if pad is not None: input = torch.nn.functional.pad(input, list(pad)) if grid_size is None: grid_size = self.grid_size window_size = input.size(-2) // grid_size[-2], input.size(-1 ) // grid_size[-1] stride = window_size return extract_tensor_patches(input, window_size, stride) def restore_from_patches(self, patches: 'torch.Tensor', grid_size: 'Tuple[int, int]'=(4, 4), pad: 'Optional[Tuple[int, int, int, int]]'=None) ->torch.Tensor: """Restore input from patches. Example: >>> import kornia.augmentation as K >>> pas = PatchSequential(K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0)) >>> out = pas.extract_patches(torch.arange(16).view(1, 1, 4, 4), grid_size=(2, 2)) >>> pas.restore_from_patches(out, grid_size=(2, 2)) tensor([[[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]]]) """ if grid_size is None: grid_size = self.grid_size patches_tensor = patches.view(-1, grid_size[0], grid_size[1], * patches.shape[-3:]) restored_tensor = torch.cat(torch.chunk(patches_tensor, grid_size[0 ], dim=1), -2).squeeze(1) restored_tensor = torch.cat(torch.chunk(restored_tensor, grid_size[ 1], dim=1), -1).squeeze(1) if pad is not None: restored_tensor = torch.nn.functional.pad(restored_tensor, [(-i ) for i in pad]) return restored_tensor def forward_patchwise(self, input: 'torch.Tensor', params: 'Optional[List[List[ParamItem]]]'=None) ->torch.Tensor: if params is None: params = [[]] * input.size(1) auglist = [self.get_forward_sequence() for _ in range(input. size(1))] else: auglist = [self.get_forward_sequence(p) for p in params] assert input.size(0) == len(auglist) == len(params) out = [] self._params = [] for inp, proc, param in zip(input, auglist, params): o = [] p = [] for inp_pat, (proc_name, proc_pat), _param in zip_longest(inp, proc, param): if isinstance(proc_pat, (_AugmentationBase, ImageSequential)): o.append(proc_pat(inp_pat[None], _param.data if _param is not None else None)) p.append(ParamItem(proc_name, proc_pat._params)) else: o.append(proc_pat(inp_pat[None])) p.append(ParamItem(proc_name, {})) out.append(torch.cat(o, dim=0)) self._params.append(p) input = torch.stack(out, dim=0) return input def forward_batchwise(self, input: 'torch.Tensor', params: 'Optional[List[ParamItem]]'=None) ->torch.Tensor: if self.same_on_batch: batch_shape = input.size(1), *input.shape[-3:] patch_num = input.size(0) else: batch_shape = input.size(0) * input.size(1), *input.shape[-3:] if params is None: params = [] for name, aug in self.get_forward_sequence(): if isinstance(aug, _AugmentationBase): aug.same_on_batch = False param = aug.forward_parameters(batch_shape) if self.same_on_batch: for k, v in param.items(): if not (k == 'order' and isinstance(aug, ColorJitter)): param.update({k: self. __repeat_param_across_patches__(v, patch_num)}) aug.same_on_batch = True else: param = None params.append(ParamItem(name, param)) input = super().forward(input.view(-1, *input.shape[-3:]), params) return input def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
rozumden/kornia
PatchSequential
false
4,247
[ "ECL-2.0", "Apache-2.0" ]
0
f62f324b201eea50e1e50db3fbf3e968e0a337c5
https://github.com/rozumden/kornia/tree/f62f324b201eea50e1e50db3fbf3e968e0a337c5
import math import torch import warnings from typing import Dict from typing import Optional from typing import Tuple import torch.nn as nn import torch.nn.functional as F from typing import cast from typing import List from typing import Union from torch.distributions import Bernoulli from itertools import zip_longest from collections import OrderedDict from typing import Any from typing import Iterator from typing import NamedTuple from torch.nn.modules.utils import _pair from math import pi def _adapted_sampling(shape: 'Union[Tuple, torch.Size]', dist: 'torch.distributions.Distribution', same_on_batch=False) ->torch.Tensor: """The uniform sampling function that accepts 'same_on_batch'. If same_on_batch is True, all values generated will be exactly same given a batch_size (shape[0]). By default, same_on_batch is set to False. """ if same_on_batch: return dist.sample((1, *shape[1:])).repeat(shape[0], *([1] * (len( shape) - 1))) return dist.sample(shape) def _transform_output_shape(output: 'Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]', shape: 'Tuple' ) ->Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """Collapse the broadcasted batch dimensions an input tensor to be the specified shape. Args: input: torch.Tensor shape: List/tuple of int Returns: torch.Tensor """ is_tuple = isinstance(output, tuple) out_tensor: 'torch.Tensor' trans_matrix: 'Optional[torch.Tensor]' if is_tuple: out_tensor, trans_matrix = cast(Tuple[torch.Tensor, torch.Tensor], output) else: out_tensor = cast(torch.Tensor, output) trans_matrix = None if trans_matrix is not None: if len(out_tensor.shape) > len(shape): assert trans_matrix.shape[0 ] == 1, f'Dimension 0 of transformation matrix is expected to be 1, got {trans_matrix.shape[0]}' trans_matrix = trans_matrix.squeeze(0) for dim in range(len(out_tensor.shape) - len(shape)): assert out_tensor.shape[0 ] == 1, f'Dimension {dim} of input is expected to be 1, got {out_tensor.shape[0]}' out_tensor = out_tensor.squeeze(0) return (out_tensor, trans_matrix) if is_tuple else out_tensor def _transform_input(input: 'torch.Tensor') ->torch.Tensor: """Reshape an input tensor to be (*, C, H, W). Accept either (H, W), (C, H, W) or (*, C, H, W). Args: input: torch.Tensor Returns: torch.Tensor """ if not torch.is_tensor(input): raise TypeError(f'Input type is not a torch.Tensor. Got {type(input)}') if len(input.shape) not in [2, 3, 4]: raise ValueError( f'Input size must have a shape of either (H, W), (C, H, W) or (*, C, H, W). Got {input.shape}' ) if len(input.shape) == 2: input = input.unsqueeze(0) if len(input.shape) == 3: input = input.unsqueeze(0) return input def _validate_input_dtype(input: 'torch.Tensor', accepted_dtypes: 'List' ) ->None: """Check if the dtype of the input tensor is in the range of accepted_dtypes Args: input: torch.Tensor accepted_dtypes: List. e.g. [torch.float32, torch.float64] """ if input.dtype not in accepted_dtypes: raise TypeError( f'Expected input of {accepted_dtypes}. Got {input.dtype}') def _extract_device_dtype(tensor_list: 'List[Optional[Any]]') ->Tuple[torch .device, torch.dtype]: """Check if all the input are in the same device (only if when they are torch.Tensor). If so, it would return a tuple of (device, dtype). Default: (cpu, ``get_default_dtype()``). Returns: [torch.device, torch.dtype] """ device, dtype = None, None for tensor in tensor_list: if tensor is not None: if not isinstance(tensor, (torch.Tensor,)): continue _device = tensor.device _dtype = tensor.d # ... truncated (>4000 chars) for memory efficiency
DAModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/p6/cp6vuooninjiuju55qtiu7u3yjx4izmj5jtvx2lkeddu4rheo45u.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 49 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (49*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (25088*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oc/cochsno6wpkwamgsqz5legelnxxchuje5twfzhozvusus3e5bzmo.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 262144 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kn/cknbstongwqs3wrbq3bfnzsirzut4ooksppthlbpnxztongpfx6s.py # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 100352 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5z/c5zbvh6jpdpmmwxvjaaeyoc5gh4nmeke3mou5c7akohm5ejrn7eh.py # Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax] # Source node to ATen node mapping: # att_1 => div_1, exp, sum_1 # wrapped_sqrt => full_default # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 22.62741699796952), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False}) # %scalar_tensor_default_1 : [num_users=3] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False}) # %ge_scalar_1 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%full_default, 0), kwargs = {}) # %neg_default_1 : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default_1,), kwargs = {}) # %where_self_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar_1, %scalar_tensor_default_1, %neg_default_1), kwargs = {}) # %mul_tensor_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_12, %where_self_1), kwargs = {}) # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_2, [-1], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_2, %amax_default_1), kwargs = {}) # %mul_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self_1, %full_default), kwargs = {}) # %div_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, %mul_tensor_3), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_sqrt_3 = async_compile.triton('triton_per_fused__softmax_sqrt_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[256, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_sqrt_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_sqrt_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 196 rnumel = 49 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex x2 = xindex % 49 x3 = (xindex // 49) tmp0 = tl.load(in_ptr0 + (r1 + (49*x0)), rmask & xmask, other=0.0) tmp1 = tl.full([1, 1], 22.62741699796952, tl.float64) tmp2 = tl.full([1, 1], 0.0, tl.float64) tmp3 = tmp1 >= tmp2 tmp4 = 1.0 tmp5 = -1.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = tl.where(rmask & xmask, tmp8, float("-inf")) tmp11 = triton_helpers.max2(tmp10, 1)[:, None] tmp12 = tmp7 - tmp11 tmp13 = tmp6.to(tl.float64) tmp14 = tmp13 * tmp1 tmp15 = tmp14.to(tl.float32) tmp16 = tmp12 / tmp15 tmp17 = tl_math.exp(tmp16) tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp20 = tl.where(rmask & xmask, tmp18, 0) tmp21 = tl.sum(tmp20, 1)[:, None] tmp22 = tmp17 / tmp21 tl.store(out_ptr2 + (r1 + (49*x2) + (2432*x3)), tmp22, rmask & xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rm/crmnosmbl45e7ixhpxrfpqt6wmsmhumqck6slidwiut6es7773qu.py # Topologically Sorted Source Nodes: [wrapped_sqrt_1, att_4], Original ATen: [aten.sqrt, aten._softmax] # Source node to ATen node mapping: # att_4 => div_3, exp_1, sum_2 # wrapped_sqrt_1 => full_default_1 # Graph fragment: # %scalar_tensor_default_1 : [num_users=3] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False}) # %neg_default_1 : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default_1,), kwargs = {}) # %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 7.0), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False}) # %ge_scalar : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%full_default_1, 0), kwargs = {}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar, %scalar_tensor_default_1, %neg_default_1), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_25, %where_self), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self, %full_default_1), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, %mul_tensor_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {}) # %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) triton_per_fused__softmax_sqrt_4 = async_compile.triton('triton_per_fused__softmax_sqrt_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[2048, 512], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_sqrt_4', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_sqrt_4(in_ptr0, out_ptr2, xnumel, rnumel): xnumel = 2048 XBLOCK: tl.constexpr = 1 rnumel = 512 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (512*x0)), None) tmp1 = tl.full([1], 7.0, tl.float64) tmp2 = tl.full([1], 0.0, tl.float64) tmp3 = tmp1 >= tmp2 tmp4 = 1.0 tmp5 = -1.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp8, 0)) tmp11 = tmp7 - tmp10 tmp12 = tmp6.to(tl.float64) tmp13 = tmp12 * tmp1 tmp14 = tmp13.to(tl.float32) tmp15 = tmp11 / tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tl.broadcast_to(tmp16, [RBLOCK]) tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0)) tmp20 = tmp16 / tmp19 tl.store(out_ptr2 + (r1 + (512*x0)), tmp20, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ls/clskvd4qdnewc7cysnrd6bzcenviumrko6rb6ldndg35xjjrfbzr.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add_3 # Graph fragment: # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_32, %view_33), kwargs = {}) triton_poi_fused_add_5 = async_compile.triton('triton_poi_fused_add_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 512], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 196 xnumel = 512 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 49 y1 = (yindex // 49) tmp0 = tl.load(in_out_ptr0 + (x2 + (512*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (y0 + (49*x2) + (25088*y1)), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + (512*y3)), tmp6, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (4, 512, 1, 49), (25088, 49, 49, 1)) assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_3, (512, ), (1, )) assert_size_stride(primals_4, (512, 512), (512, 1)) assert_size_stride(primals_5, (512, ), (1, )) assert_size_stride(primals_6, (512, 512), (512, 1)) assert_size_stride(primals_7, (512, ), (1, )) assert_size_stride(primals_8, (512, 512), (512, 1)) assert_size_stride(primals_9, (512, ), (1, )) assert_size_stride(primals_10, (512, 512), (512, 1)) assert_size_stride(primals_11, (512, ), (1, )) assert_size_stride(primals_12, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_13, (512, ), (1, )) assert_size_stride(primals_14, (49, 49), (49, 1)) assert_size_stride(primals_15, (49, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 1, 49), (25088, 1, 25088, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 2048, 49, grid=grid(2048, 49), stream=stream0) del primals_1 buf1 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_2, buf1, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_2 buf2 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_12, buf2, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_12 # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 512, 1, 49), (25088, 1, 25088, 512)) buf4 = reinterpret_tensor(buf3, (4, 49, 512), (25088, 512, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf4, primals_3, 100352, grid=grid(100352), stream=stream0) del primals_3 buf5 = empty_strided_cuda((196, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (196, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 512), (1, 512), 0), out=buf5) buf6 = empty_strided_cuda((196, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (196, 512), (512, 1), 0), reinterpret_tensor(primals_6, (512, 512), (1, 512), 0), out=buf6) buf7 = empty_strided_cuda((196, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (196, 512), (512, 1), 0), reinterpret_tensor(primals_8, (512, 512), (1, 512), 0), out=buf7) buf8 = reinterpret_tensor(buf5, (4, 49, 512), (25088, 512, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.add] triton_poi_fused_clone_2.run(buf8, primals_5, 100352, grid=grid(100352), stream=stream0) del primals_5 buf9 = reinterpret_tensor(buf6, (4, 49, 512), (25088, 512, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.add] triton_poi_fused_clone_2.run(buf9, primals_7, 100352, grid=grid(100352), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 49, 49), (2401, 49, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(buf8, reinterpret_tensor(buf9, (4, 512, 49), (25088, 1, 512), 0), out=buf10) buf13 = empty_strided_cuda((4, 1, 49, 49), (2432, 49, 49, 1), torch.float32) # Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax] triton_per_fused__softmax_sqrt_3.run(buf10, buf13, 196, 49, grid=grid(196), stream=stream0) del buf10 buf14 = reinterpret_tensor(buf7, (4, 49, 512), (25088, 512, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.add] triton_poi_fused_clone_2.run(buf14, primals_9, 100352, grid=grid(100352), stream=stream0) del primals_9 buf15 = empty_strided_cuda((4, 49, 512), (25088, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf13, (4, 49, 49), (2432, 49, 1), 0), buf14, out=buf15) buf16 = empty_strided_cuda((196, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf15, (196, 512), (512, 1), 0), reinterpret_tensor(primals_10, (512, 512), (1, 512), 0), out=buf16) # Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf0, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 512, 1, 49), (25088, 1, 25088, 512)) buf18 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.convolution] triton_poi_fused_clone_2.run(buf18, primals_13, 100352, grid=grid(100352), stream=stream0) del primals_13 buf19 = empty_strided_cuda((4, 512, 512), (262144, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf18, (4, 512, 49), (25088, 1, 512), 0), reinterpret_tensor(buf18, (4, 49, 512), (25088, 512, 1), 0), out=buf19) buf22 = empty_strided_cuda((4, 1, 512, 512), (262144, 1, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [wrapped_sqrt_1, att_4], Original ATen: [aten.sqrt, aten._softmax] triton_per_fused__softmax_sqrt_4.run(buf19, buf22, 2048, 512, grid=grid(2048), stream=stream0) del buf19 buf23 = empty_strided_cuda((4, 512, 49), (25088, 49, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_3], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf22, (4, 512, 512), (262144, 512, 1), 0), reinterpret_tensor(buf18, (4, 512, 49), (25088, 1, 512), 0), out=buf23) buf24 = empty_strided_cuda((2048, 49), (49, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf23, (2048, 49), (49, 1), 0), reinterpret_tensor(primals_14, (49, 49), (1, 49), 0), out=buf24) buf25 = reinterpret_tensor(buf16, (4, 512, 1, 49), (25088, 1, 25088, 512), 0); del buf16 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_5.run(buf25, primals_11, buf24, primals_15, 196, 512, grid=grid(196, 512), stream=stream0) del buf24 del primals_11 del primals_15 return (buf25, buf0, buf1, buf2, reinterpret_tensor(buf4, (196, 512), (512, 1), 0), buf13, reinterpret_tensor(buf15, (196, 512), (512, 1), 0), buf18, buf22, reinterpret_tensor(buf23, (2048, 49), (49, 1), 0), primals_14, primals_10, reinterpret_tensor(buf14, (4, 512, 49), (25088, 1, 512), 0), reinterpret_tensor(buf8, (4, 512, 49), (25088, 1, 512), 0), buf9, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 512, 1, 49), (25088, 49, 49, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((49, 49), (49, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((49, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn from torch.nn import init class ScaledDotProductAttention(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, d_k, d_v, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super(ScaledDotProductAttention, self).__init__() self.fc_q = nn.Linear(d_model, h * d_k) self.fc_k = nn.Linear(d_model, h * d_k) self.fc_v = nn.Linear(d_model, h * d_v) self.fc_o = nn.Linear(h * d_v, d_model) self.dropout = nn.Dropout(dropout) self.d_model = d_model self.d_k = d_k self.d_v = d_v self.h = h self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) att = torch.matmul(q, k) / np.sqrt(self.d_k) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) out = self.fc_o(out) return out class PositionAttentionModule(nn.Module): def __init__(self, d_model=512, kernel_size=3, H=7, W=7): super().__init__() self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size, padding=(kernel_size - 1) // 2) self.pa = ScaledDotProductAttention(d_model, d_k=d_model, d_v= d_model, h=1) def forward(self, x): bs, c, _h, _w = x.shape y = self.cnn(x) y = y.view(bs, c, -1).permute(0, 2, 1) y = self.pa(y, y, y) return y class SimplifiedScaledDotProductAttention(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super(SimplifiedScaledDotProductAttention, self).__init__() self.d_model = d_model self.d_k = d_model // h self.d_v = d_model // h self.h = h self.fc_o = nn.Linear(h * self.d_v, d_model) self.dropout = nn.Dropout(dropout) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = queries.view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) k = keys.view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) v = values.view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) att = torch.matmul(q, k) / np.sqrt(self.d_k) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) out = self.fc_o(out) return out class ChannelAttentionModule(nn.Module): def __init__(self, d_model=512, kernel_size=3, H=7, W=7): super().__init__() self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size, padding=(kernel_size - 1) // 2) self.pa = SimplifiedScaledDotProductAttention(H * W, h=1) def forward(self, x): bs, c, _h, _w = x.shape y = self.cnn(x) y = y.view(bs, c, -1) y = self.pa(y, y, y) return y class DAModule(nn.Module): def __init__(self, d_model=512, kernel_size=3, H=7, W=7): super().__init__() self.position_attention_module = PositionAttentionModule(d_model= 512, kernel_size=3, H=7, W=7) self.channel_attention_module = ChannelAttentionModule(d_model=512, kernel_size=3, H=7, W=7) def forward(self, input): bs, c, h, w = input.shape p_out = self.position_attention_module(input) c_out = self.channel_attention_module(input) p_out = p_out.permute(0, 2, 1).view(bs, c, h, w) c_out = c_out.view(bs, c, h, w) return p_out + c_out def get_inputs(): return [torch.rand([4, 512, 1, 49])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np from torch import nn from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 49 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 49 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 512 * x2 + 25088 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_clone_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, None) @triton.jit def triton_per_fused__softmax_sqrt_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 196 rnumel = 49 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex x2 = xindex % 49 x3 = xindex // 49 tmp0 = tl.load(in_ptr0 + (r1 + 49 * x0), rmask & xmask, other=0.0) tmp1 = tl.full([1, 1], 22.62741699796952, tl.float64) tmp2 = tl.full([1, 1], 0.0, tl.float64) tmp3 = tmp1 >= tmp2 tmp4 = 1.0 tmp5 = -1.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = tl.where(rmask & xmask, tmp8, float('-inf')) tmp11 = triton_helpers.max2(tmp10, 1)[:, None] tmp12 = tmp7 - tmp11 tmp13 = tmp6.to(tl.float64) tmp14 = tmp13 * tmp1 tmp15 = tmp14.to(tl.float32) tmp16 = tmp12 / tmp15 tmp17 = tl_math.exp(tmp16) tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp20 = tl.where(rmask & xmask, tmp18, 0) tmp21 = tl.sum(tmp20, 1)[:, None] tmp22 = tmp17 / tmp21 tl.store(out_ptr2 + (r1 + 49 * x2 + 2432 * x3), tmp22, rmask & xmask) @triton.jit def triton_per_fused__softmax_sqrt_4(in_ptr0, out_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 512 * x0), None) tmp1 = tl.full([1], 7.0, tl.float64) tmp2 = tl.full([1], 0.0, tl.float64) tmp3 = tmp1 >= tmp2 tmp4 = 1.0 tmp5 = -1.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp8, 0)) tmp11 = tmp7 - tmp10 tmp12 = tmp6.to(tl.float64) tmp13 = tmp12 * tmp1 tmp14 = tmp13.to(tl.float32) tmp15 = tmp11 / tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tl.broadcast_to(tmp16, [RBLOCK]) tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0)) tmp20 = tmp16 / tmp19 tl.store(out_ptr2 + (r1 + 512 * x0), tmp20, None) @triton.jit def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 196 xnumel = 512 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 49 y1 = yindex // 49 tmp0 = tl.load(in_out_ptr0 + (x2 + 512 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (y0 + 49 * x2 + 25088 * y1), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + 512 * y3), tmp6, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (4, 512, 1, 49), (25088, 49, 49, 1)) assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_3, (512,), (1,)) assert_size_stride(primals_4, (512, 512), (512, 1)) assert_size_stride(primals_5, (512,), (1,)) assert_size_stride(primals_6, (512, 512), (512, 1)) assert_size_stride(primals_7, (512,), (1,)) assert_size_stride(primals_8, (512, 512), (512, 1)) assert_size_stride(primals_9, (512,), (1,)) assert_size_stride(primals_10, (512, 512), (512, 1)) assert_size_stride(primals_11, (512,), (1,)) assert_size_stride(primals_12, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_13, (512,), (1,)) assert_size_stride(primals_14, (49, 49), (49, 1)) assert_size_stride(primals_15, (49,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 1, 49), (25088, 1, 25088, 512), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(2048, 49)](primals_1, buf0, 2048, 49, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_1[grid(262144, 9)](primals_2, buf1, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_1[grid(262144, 9)](primals_12, buf2, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_12 buf3 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 512, 1, 49), (25088, 1, 25088, 512)) buf4 = reinterpret_tensor(buf3, (4, 49, 512), (25088, 512, 1), 0) del buf3 triton_poi_fused_clone_2[grid(100352)](buf4, primals_3, 100352, XBLOCK=1024, num_warps=4, num_stages=1) del primals_3 buf5 = empty_strided_cuda((196, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (196, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 512), (1, 512), 0), out=buf5) buf6 = empty_strided_cuda((196, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (196, 512), (512, 1), 0), reinterpret_tensor(primals_6, (512, 512), (1, 512), 0), out=buf6) buf7 = empty_strided_cuda((196, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (196, 512), (512, 1), 0), reinterpret_tensor(primals_8, (512, 512), (1, 512), 0), out=buf7) buf8 = reinterpret_tensor(buf5, (4, 49, 512), (25088, 512, 1), 0) del buf5 triton_poi_fused_clone_2[grid(100352)](buf8, primals_5, 100352, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf9 = reinterpret_tensor(buf6, (4, 49, 512), (25088, 512, 1), 0) del buf6 triton_poi_fused_clone_2[grid(100352)](buf9, primals_7, 100352, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 49, 49), (2401, 49, 1), torch.float32) extern_kernels.bmm(buf8, reinterpret_tensor(buf9, (4, 512, 49), ( 25088, 1, 512), 0), out=buf10) buf13 = empty_strided_cuda((4, 1, 49, 49), (2432, 49, 49, 1), torch .float32) triton_per_fused__softmax_sqrt_3[grid(196)](buf10, buf13, 196, 49, XBLOCK=1, num_warps=2, num_stages=1) del buf10 buf14 = reinterpret_tensor(buf7, (4, 49, 512), (25088, 512, 1), 0) del buf7 triton_poi_fused_clone_2[grid(100352)](buf14, primals_9, 100352, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf15 = empty_strided_cuda((4, 49, 512), (25088, 512, 1), torch.float32 ) extern_kernels.bmm(reinterpret_tensor(buf13, (4, 49, 49), (2432, 49, 1), 0), buf14, out=buf15) buf16 = empty_strided_cuda((196, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf15, (196, 512), (512, 1), 0 ), reinterpret_tensor(primals_10, (512, 512), (1, 512), 0), out =buf16) buf17 = extern_kernels.convolution(buf0, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 512, 1, 49), (25088, 1, 25088, 512)) buf18 = buf17 del buf17 triton_poi_fused_clone_2[grid(100352)](buf18, primals_13, 100352, XBLOCK=1024, num_warps=4, num_stages=1) del primals_13 buf19 = empty_strided_cuda((4, 512, 512), (262144, 512, 1), torch. float32) extern_kernels.bmm(reinterpret_tensor(buf18, (4, 512, 49), (25088, 1, 512), 0), reinterpret_tensor(buf18, (4, 49, 512), (25088, 512, 1), 0), out=buf19) buf22 = empty_strided_cuda((4, 1, 512, 512), (262144, 1, 512, 1), torch.float32) triton_per_fused__softmax_sqrt_4[grid(2048)](buf19, buf22, 2048, 512, num_warps=4, num_stages=1) del buf19 buf23 = empty_strided_cuda((4, 512, 49), (25088, 49, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf22, (4, 512, 512), (262144, 512, 1), 0), reinterpret_tensor(buf18, (4, 512, 49), (25088, 1, 512), 0), out=buf23) buf24 = empty_strided_cuda((2048, 49), (49, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf23, (2048, 49), (49, 1), 0), reinterpret_tensor(primals_14, (49, 49), (1, 49), 0), out=buf24) buf25 = reinterpret_tensor(buf16, (4, 512, 1, 49), (25088, 1, 25088, 512), 0) del buf16 triton_poi_fused_add_5[grid(196, 512)](buf25, primals_11, buf24, primals_15, 196, 512, XBLOCK=16, YBLOCK=256, num_warps=8, num_stages=1) del buf24 del primals_11 del primals_15 return buf25, buf0, buf1, buf2, reinterpret_tensor(buf4, (196, 512), ( 512, 1), 0), buf13, reinterpret_tensor(buf15, (196, 512), (512, 1), 0 ), buf18, buf22, reinterpret_tensor(buf23, (2048, 49), (49, 1), 0 ), primals_14, primals_10, reinterpret_tensor(buf14, (4, 512, 49), (25088, 1, 512), 0), reinterpret_tensor(buf8, (4, 512, 49), (25088, 1, 512), 0), buf9, primals_8, primals_6, primals_4 class ScaledDotProductAttention(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, d_k, d_v, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super(ScaledDotProductAttention, self).__init__() self.fc_q = nn.Linear(d_model, h * d_k) self.fc_k = nn.Linear(d_model, h * d_k) self.fc_v = nn.Linear(d_model, h * d_v) self.fc_o = nn.Linear(h * d_v, d_model) self.dropout = nn.Dropout(dropout) self.d_model = d_model self.d_k = d_k self.d_v = d_v self.h = h self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) att = torch.matmul(q, k) / np.sqrt(self.d_k) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) out = self.fc_o(out) return out class PositionAttentionModule(nn.Module): def __init__(self, d_model=512, kernel_size=3, H=7, W=7): super().__init__() self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size, padding=(kernel_size - 1) // 2) self.pa = ScaledDotProductAttention(d_model, d_k=d_model, d_v= d_model, h=1) def forward(self, x): bs, c, _h, _w = x.shape y = self.cnn(x) y = y.view(bs, c, -1).permute(0, 2, 1) y = self.pa(y, y, y) return y class SimplifiedScaledDotProductAttention(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super(SimplifiedScaledDotProductAttention, self).__init__() self.d_model = d_model self.d_k = d_model // h self.d_v = d_model // h self.h = h self.fc_o = nn.Linear(h * self.d_v, d_model) self.dropout = nn.Dropout(dropout) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = queries.view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) k = keys.view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) v = values.view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) att = torch.matmul(q, k) / np.sqrt(self.d_k) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) out = self.fc_o(out) return out class ChannelAttentionModule(nn.Module): def __init__(self, d_model=512, kernel_size=3, H=7, W=7): super().__init__() self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size, padding=(kernel_size - 1) // 2) self.pa = SimplifiedScaledDotProductAttention(H * W, h=1) def forward(self, x): bs, c, _h, _w = x.shape y = self.cnn(x) y = y.view(bs, c, -1) y = self.pa(y, y, y) return y class DAModuleNew(nn.Module): def __init__(self, d_model=512, kernel_size=3, H=7, W=7): super().__init__() self.position_attention_module = PositionAttentionModule(d_model= 512, kernel_size=3, H=7, W=7) self.channel_attention_module = ChannelAttentionModule(d_model=512, kernel_size=3, H=7, W=7) def forward(self, input_0): primals_2 = self.position_attention_module.cnn.weight primals_3 = self.position_attention_module.cnn.bias primals_4 = self.position_attention_module.pa.fc_q.weight primals_5 = self.position_attention_module.pa.fc_q.bias primals_6 = self.position_attention_module.pa.fc_k.weight primals_7 = self.position_attention_module.pa.fc_k.bias primals_8 = self.position_attention_module.pa.fc_v.weight primals_9 = self.position_attention_module.pa.fc_v.bias primals_10 = self.position_attention_module.pa.fc_o.weight primals_11 = self.position_attention_module.pa.fc_o.bias primals_12 = self.channel_attention_module.cnn.weight primals_13 = self.channel_attention_module.cnn.bias primals_14 = self.channel_attention_module.pa.fc_o.weight primals_15 = self.channel_attention_module.pa.fc_o.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
rushirajsherlocked/External-Attention-pytorch
DAModule
false
4,248
[ "MIT" ]
0
7d6814b2d90909adf81c62f3f8a89e30a59d6481
https://github.com/rushirajsherlocked/External-Attention-pytorch/tree/7d6814b2d90909adf81c62f3f8a89e30a59d6481
import torch import numpy as np from torch import nn from torch.nn import init class ScaledDotProductAttention(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, d_k, d_v, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super().__init__() self.fc_q = nn.Linear(d_model, h * d_k) self.fc_k = nn.Linear(d_model, h * d_k) self.fc_v = nn.Linear(d_model, h * d_v) self.fc_o = nn.Linear(h * d_v, d_model) self.dropout = nn.Dropout(dropout) self.d_model = d_model self.d_k = d_k self.d_v = d_v self.h = h self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): """ Computes :param queries: Queries (b_s, nq, d_model) :param keys: Keys (b_s, nk, d_model) :param values: Values (b_s, nk, d_model) :param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking. :param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk). :return: """ b_s, nq = queries.shape[:2] nk = keys.shape[1] q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) att = torch.matmul(q, k) / np.sqrt(self.d_k) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) out = self.fc_o(out) return out class PositionAttentionModule(nn.Module): def __init__(self, d_model=512, kernel_size=3, H=7, W=7): super().__init__() self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size, padding=(kernel_size - 1) // 2) self.pa = ScaledDotProductAttention(d_model, d_k=d_model, d_v= d_model, h=1) def forward(self, x): bs, c, _h, _w = x.shape y = self.cnn(x) y = y.view(bs, c, -1).permute(0, 2, 1) y = self.pa(y, y, y) return y class SimplifiedScaledDotProductAttention(nn.Module): """ Scaled dot-product attention """ def __init__(self, d_model, h, dropout=0.1): """ :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads """ super().__init__() self.d_model = d_model self.d_k = d_model // h self.d_v = d_model // h self.h = h self.fc_o = nn.Linear(h * self.d_v, d_model) self.dropout = nn.Dropout(dropout) self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.we # ... truncated (>4000 chars) for memory efficiency
MaskedWordPredictions
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/k6/ck6o2ucwdqtvjyw7bruyzgade2k6iruvl53t2wmqy2xkgypurpgf.py # Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1, u, sub, pow_1, s], Original ATen: [aten.mul, aten.div, aten.erf, aten.add, aten.mean, aten.sub, aten.pow] # Source node to ATen node mapping: # add => add # erf => erf # hidden_states_1 => mul_1 # mul => mul # pow_1 => pow_1 # s => mean_1 # sub => sub # truediv => div # u => mean # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, 1.4142135623730951), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul_1, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %mean), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) triton_poi_fused_add_div_erf_mean_mul_pow_sub_0 = async_compile.triton('triton_poi_fused_add_div_erf_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mean_mul_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_erf_mean_mul_pow_sub_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tmp10 = tmp9 * tmp1 tmp11 = tmp9 * tmp3 tmp12 = libdevice.erf(tmp11) tmp13 = tmp12 + tmp6 tmp14 = tmp10 * tmp13 tmp15 = tmp8 + tmp14 tmp17 = tmp16 * tmp1 tmp18 = tmp16 * tmp3 tmp19 = libdevice.erf(tmp18) tmp20 = tmp19 + tmp6 tmp21 = tmp17 * tmp20 tmp22 = tmp15 + tmp21 tmp24 = tmp23 * tmp1 tmp25 = tmp23 * tmp3 tmp26 = libdevice.erf(tmp25) tmp27 = tmp26 + tmp6 tmp28 = tmp24 * tmp27 tmp29 = tmp22 + tmp28 tmp30 = 4.0 tmp31 = tmp29 / tmp30 tmp32 = tmp8 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tmp14 - tmp31 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp21 - tmp31 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp28 - tmp31 tmp41 = tmp40 * tmp40 tmp42 = tmp39 + tmp41 tmp43 = tmp42 / tmp30 tl.store(out_ptr0 + (x0), tmp31, xmask) tl.store(out_ptr1 + (x0), tmp43, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pg/cpgs2sqnuixouquussvupjwsl3m3pfglz6posqku5lqt2uwjaend.py # Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1, sub, add_1, sqrt, x, mul_2, hidden_states_2], Original ATen: [aten.mul, aten.div, aten.erf, aten.add, aten.sub, aten.sqrt] # Source node to ATen node mapping: # add => add # add_1 => add_1 # erf => erf # hidden_states_1 => mul_1 # hidden_states_2 => add_2 # mul => mul # mul_2 => mul_2 # sqrt => sqrt # sub => sub # truediv => div # x => div_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, 1.4142135623730951), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %mean), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-12), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %div_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_5), kwargs = {}) triton_poi_fused_add_div_erf_mul_sqrt_sub_1 = async_compile.triton('triton_poi_fused_add_div_erf_mul_sqrt_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mul_sqrt_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_erf_mul_sqrt_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp10 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = 0.7071067811865475 tmp5 = tmp1 * tmp4 tmp6 = libdevice.erf(tmp5) tmp7 = 1.0 tmp8 = tmp6 + tmp7 tmp9 = tmp3 * tmp8 tmp11 = tmp9 - tmp10 tmp13 = 1e-12 tmp14 = tmp12 + tmp13 tmp15 = libdevice.sqrt(tmp14) tmp16 = tmp11 / tmp15 tmp17 = tmp0 * tmp16 tmp19 = tmp17 + tmp18 tl.store(out_ptr0 + (x2), tmp19, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/54/c54scjtvk2o35gotra5iaxkdvh5gkumub7zcwgocxnyspbrgsbol.py # Topologically Sorted Source Nodes: [hidden_states_3], Original ATen: [aten.add] # Source node to ATen node mapping: # hidden_states_3 => add_3 # Graph fragment: # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_7), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1, u, sub, pow_1, s], Original ATen: [aten.mul, aten.div, aten.erf, aten.add, aten.mean, aten.sub, aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_add_div_erf_mean_mul_pow_sub_0.run(buf0, buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1, sub, add_1, sqrt, x, mul_2, hidden_states_2], Original ATen: [aten.mul, aten.div, aten.erf, aten.add, aten.sub, aten.sqrt] triton_poi_fused_add_div_erf_mul_sqrt_sub_1.run(primals_4, buf0, buf1, buf2, primals_5, buf3, 256, grid=grid(256), stream=stream0) del buf1 del buf2 del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [hidden_states_3], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf5, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 return (buf5, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch from torch import nn def gelu(x): """Gaussian Error Linear Unitという活性化関数です。 LeLUが0でカクっと不連続なので、そこを連続になるように滑らかにした形のLeLUです。 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """LayerNormalization層です。 学習済みモデルをそのままロードするため、学習済みモデルの変数名に変えています。 オリジナルのGitHubの実装から変数名を変えています。 weight→gamma、bias→beta """ super(BertLayerNorm, self).__init__() self.gamma = nn.Parameter(torch.ones(hidden_size)) self.beta = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.gamma * x + self.beta class BertPredictionHeadTransform(nn.Module): """MaskedWordPredictionsにて、BERTからの特徴量を変換するモジュール(入出力のサイズは同じ)""" def __init__(self, config): super(BertPredictionHeadTransform, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = gelu self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) def forward(self, hidden_states): """hidden_statesはsequence_output:[minibatch, seq_len, hidden_size]""" hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class MaskedWordPredictions(nn.Module): def __init__(self, config): """事前学習課題:Masked Language Model用のモジュール 元の[2]の実装では、BertLMPredictionHeadという名前です。 """ super(MaskedWordPredictions, self).__init__() self.transform = BertPredictionHeadTransform(config) self.decoder = nn.Linear(in_features=config.hidden_size, out_features=config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) def forward(self, hidden_states): """ hidden_states:BERTからの出力[batch_size, seq_len, hidden_size] """ hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, vocab_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_div_erf_mean_mul_pow_sub_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tmp10 = tmp9 * tmp1 tmp11 = tmp9 * tmp3 tmp12 = libdevice.erf(tmp11) tmp13 = tmp12 + tmp6 tmp14 = tmp10 * tmp13 tmp15 = tmp8 + tmp14 tmp17 = tmp16 * tmp1 tmp18 = tmp16 * tmp3 tmp19 = libdevice.erf(tmp18) tmp20 = tmp19 + tmp6 tmp21 = tmp17 * tmp20 tmp22 = tmp15 + tmp21 tmp24 = tmp23 * tmp1 tmp25 = tmp23 * tmp3 tmp26 = libdevice.erf(tmp25) tmp27 = tmp26 + tmp6 tmp28 = tmp24 * tmp27 tmp29 = tmp22 + tmp28 tmp30 = 4.0 tmp31 = tmp29 / tmp30 tmp32 = tmp8 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tmp14 - tmp31 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp21 - tmp31 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp28 - tmp31 tmp41 = tmp40 * tmp40 tmp42 = tmp39 + tmp41 tmp43 = tmp42 / tmp30 tl.store(out_ptr0 + x0, tmp31, xmask) tl.store(out_ptr1 + x0, tmp43, xmask) @triton.jit def triton_poi_fused_add_div_erf_mul_sqrt_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp10 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = 0.7071067811865475 tmp5 = tmp1 * tmp4 tmp6 = libdevice.erf(tmp5) tmp7 = 1.0 tmp8 = tmp6 + tmp7 tmp9 = tmp3 * tmp8 tmp11 = tmp9 - tmp10 tmp13 = 1e-12 tmp14 = tmp12 + tmp13 tmp15 = libdevice.sqrt(tmp14) tmp16 = tmp11 / tmp15 tmp17 = tmp0 * tmp16 tmp19 = tmp17 + tmp18 tl.store(out_ptr0 + x2, tmp19, xmask) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_erf_mean_mul_pow_sub_0[grid(64)](buf0, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_erf_mul_sqrt_sub_1[grid(256)](primals_4, buf0, buf1, buf2, primals_5, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del buf2 del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 triton_poi_fused_add_2[grid(256)](buf5, primals_7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 return buf5, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), primals_6 def gelu(x): """Gaussian Error Linear Unitという活性化関数です。 LeLUが0でカクっと不連続なので、そこを連続になるように滑らかにした形のLeLUです。 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """LayerNormalization層です。 学習済みモデルをそのままロードするため、学習済みモデルの変数名に変えています。 オリジナルのGitHubの実装から変数名を変えています。 weight→gamma、bias→beta """ super(BertLayerNorm, self).__init__() self.gamma = nn.Parameter(torch.ones(hidden_size)) self.beta = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.gamma * x + self.beta class BertPredictionHeadTransform(nn.Module): """MaskedWordPredictionsにて、BERTからの特徴量を変換するモジュール(入出力のサイズは同じ)""" def __init__(self, config): super(BertPredictionHeadTransform, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = gelu self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) def forward(self, hidden_states): """hidden_statesはsequence_output:[minibatch, seq_len, hidden_size]""" hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class MaskedWordPredictionsNew(nn.Module): def __init__(self, config): """事前学習課題:Masked Language Model用のモジュール 元の[2]の実装では、BertLMPredictionHeadという名前です。 """ super(MaskedWordPredictionsNew, self).__init__() self.transform = BertPredictionHeadTransform(config) self.decoder = nn.Linear(in_features=config.hidden_size, out_features=config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) def forward(self, input_0): primals_2 = self.bias primals_1 = self.transform.dense.weight primals_4 = self.transform.dense.bias primals_5 = self.transform.LayerNorm.gamma primals_7 = self.transform.LayerNorm.beta primals_6 = self.decoder.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
kimihitosugiyama/text_analysis
MaskedWordPredictions
false
4,249
[ "Apache-2.0" ]
0
8f51022957928c31e52af1e0fd407daca3addb40
https://github.com/kimihitosugiyama/text_analysis/tree/8f51022957928c31e52af1e0fd407daca3addb40
from _paritybench_helpers import _mock_config import math import torch from torch import nn def gelu(x): """Gaussian Error Linear Unitという活性化関数です。 LeLUが0でカクっと不連続なので、そこを連続になるように滑らかにした形のLeLUです。 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """LayerNormalization層です。 学習済みモデルをそのままロードするため、学習済みモデルの変数名に変えています。 オリジナルのGitHubの実装から変数名を変えています。 weight→gamma、bias→beta """ super().__init__() self.gamma = nn.Parameter(torch.ones(hidden_size)) self.beta = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.gamma * x + self.beta class BertPredictionHeadTransform(nn.Module): """MaskedWordPredictionsにて、BERTからの特徴量を変換するモジュール(入出力のサイズは同じ)""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = gelu self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) def forward(self, hidden_states): """hidden_statesはsequence_output:[minibatch, seq_len, hidden_size]""" hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class Model(nn.Module): def __init__(self, config): """事前学習課題:Masked Language Model用のモジュール 元の[2]の実装では、BertLMPredictionHeadという名前です。 """ super().__init__() self.transform = BertPredictionHeadTransform(config) self.decoder = nn.Linear(in_features=config.hidden_size, out_features=config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) def forward(self, hidden_states): """ hidden_states:BERTからの出力[batch_size, seq_len, hidden_size] """ hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Conv1dLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/24/c247lstrpia4xuwjphutxw2zn36dsajpgqm4zjinubb3jymwwkd3.py # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 3 y1 = (yindex // 3) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (3*x2) + (12*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ht/chtsnjuwkomolt5fx5l7wyg4kjhr7idbfplladpp2ezlbh6j4v67.py # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.add] # Source node to ATen node mapping: # linear => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_5), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/74/c74kvo3dqgusjb7cihtkodmg7zdl3agdwtohp7aozh6d6fuoyxrj.py # Topologically Sorted Source Nodes: [conv1d, relu], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv1d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 3), (12, 3, 1)) del buf0 buf2 = empty_strided_cuda((4, 3, 4), (12, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf1, primals_3, buf2, 12, 4, grid=grid(12, 4), stream=stream0) buf3 = empty_strided_cuda((12, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (12, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 3, 4), (12, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf4, primals_5, 48, grid=grid(48), stream=stream0) del primals_5 buf5 = empty_strided_cuda((4, 4, 3), (12, 3, 1), torch.bool) # Topologically Sorted Source Nodes: [conv1d, relu], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_3.run(buf1, primals_3, buf5, 48, grid=grid(48), stream=stream0) del buf1 del primals_3 return (buf4, primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf2, (12, 4), (4, 1), 0), primals_4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn class Conv1dLinear(torch.nn.Module): """Conv1D + Linear for Transformer block. A variant of MultiLayeredConv1d, which replaces second conv-layer to linear. """ def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate): """Initialize Conv1dLinear module. Args: in_chans (int): Number of input channels. hidden_chans (int): Number of hidden channels. kernel_size (int): Kernel size of conv1d. dropout_rate (float): Dropout rate. """ super(Conv1dLinear, self).__init__() self.w_1 = torch.nn.Conv1d(in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2) self.w_2 = torch.nn.Linear(hidden_chans, in_chans) self.dropout = torch.nn.Dropout(dropout_rate) def forward(self, x): """Calculate forward propagation. Args: x (Tensor): Batch of input tensors (B, *, in_chans). Returns: Tensor: Batch of output tensors (B, *, hidden_chans) """ x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) return self.w_2(self.dropout(x)) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_chans': 4, 'hidden_chans': 4, 'kernel_size': 4, 'dropout_rate': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 12 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 3 y1 = yindex // 3 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 3 * x2 + 12 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 3), (12, 3, 1)) del buf0 buf2 = empty_strided_cuda((4, 3, 4), (12, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(12, 4)](buf1, primals_3, buf2, 12, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((12, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (12, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 3, 4), (12, 4, 1), 0) del buf3 triton_poi_fused_add_2[grid(48)](buf4, primals_5, 48, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((4, 4, 3), (12, 3, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_3[grid(48)](buf1, primals_3, buf5, 48, XBLOCK=64, num_warps=1, num_stages=1) del buf1 del primals_3 return buf4, primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf2, (12, 4), (4, 1), 0), primals_4, buf5 class Conv1dLinearNew(torch.nn.Module): """Conv1D + Linear for Transformer block. A variant of MultiLayeredConv1d, which replaces second conv-layer to linear. """ def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate): """Initialize Conv1dLinear module. Args: in_chans (int): Number of input channels. hidden_chans (int): Number of hidden channels. kernel_size (int): Kernel size of conv1d. dropout_rate (float): Dropout rate. """ super(Conv1dLinearNew, self).__init__() self.w_1 = torch.nn.Conv1d(in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2) self.w_2 = torch.nn.Linear(hidden_chans, in_chans) self.dropout = torch.nn.Dropout(dropout_rate) def forward(self, input_0): primals_1 = self.w_1.weight primals_3 = self.w_1.bias primals_4 = self.w_2.weight primals_5 = self.w_2.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
qlindazm/asv-subtools
Conv1dLinear
false
4,250
[ "Apache-2.0" ]
0
fe1d31db9f3268622016babe944201f6ff81ed56
https://github.com/qlindazm/asv-subtools/tree/fe1d31db9f3268622016babe944201f6ff81ed56
import torch import torch.nn class Model(torch.nn.Module): """Conv1D + Linear for Transformer block. A variant of MultiLayeredConv1d, which replaces second conv-layer to linear. """ def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate): """Initialize Conv1dLinear module. Args: in_chans (int): Number of input channels. hidden_chans (int): Number of hidden channels. kernel_size (int): Kernel size of conv1d. dropout_rate (float): Dropout rate. """ super().__init__() self.w_1 = torch.nn.Conv1d(in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2) self.w_2 = torch.nn.Linear(hidden_chans, in_chans) self.dropout = torch.nn.Dropout(dropout_rate) def forward(self, x): """Calculate forward propagation. Args: x (Tensor): Batch of input tensors (B, *, in_chans). Returns: Tensor: Batch of output tensors (B, *, hidden_chans) """ x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) return self.w_2(self.dropout(x)) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_chans': 4, 'hidden_chans': 4, 'kernel_size': 4, 'dropout_rate': 0.5}]
PositionWiseFeedForward
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/za/czajqsynheujzbcanx5rs2m5vkipgvedkdayw54ylduw3bknhzng.py # Topologically Sorted Source Nodes: [conv2d, mul, truediv, erf, add, mul_1], Original ATen: [aten.convolution, aten.mul, aten.div, aten.erf, aten.add] # Source node to ATen node mapping: # add => add # conv2d => convolution # erf => erf # mul => mul # mul_1 => mul_1 # truediv => div # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%convolution, 1.4142135623730951), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) triton_poi_fused_add_convolution_div_erf_mul_0 = async_compile.triton('triton_poi_fused_add_convolution_div_erf_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_erf_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_div_erf_mul_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865475 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_1, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, mul, truediv, erf, add, mul_1], Original ATen: [aten.convolution, aten.mul, aten.div, aten.erf, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_convolution_div_erf_mul_0.run(buf1, primals_2, buf2, 1024, grid=grid(1024), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf4, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf4, primals_1, primals_3, primals_4, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn def gelu(x): """Implementation of the gelu activation function by Hugging Face""" return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class PositionWiseFeedForward(nn.Module): """ FeedForward Neural Networks for each position """ def __init__(self, n_hidden): super().__init__() self.fc1 = nn.Conv2d(n_hidden, n_hidden * 4, kernel_size=1, bias=True) self.fc2 = nn.Conv2d(n_hidden * 4, n_hidden, kernel_size=1, bias=True) def forward(self, x): return self.fc2(gelu(self.fc1(x))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_hidden': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_convolution_div_erf_mul_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865475 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32 ) get_raw_stream(0) triton_poi_fused_add_convolution_div_erf_mul_0[grid(1024)](buf1, primals_2, buf2, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_1[grid(256)](buf4, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf4, primals_1, primals_3, primals_4, buf1, buf2 def gelu(x): """Implementation of the gelu activation function by Hugging Face""" return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class PositionWiseFeedForwardNew(nn.Module): """ FeedForward Neural Networks for each position """ def __init__(self, n_hidden): super().__init__() self.fc1 = nn.Conv2d(n_hidden, n_hidden * 4, kernel_size=1, bias=True) self.fc2 = nn.Conv2d(n_hidden * 4, n_hidden, kernel_size=1, bias=True) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
renebidart/pytorch-cifar
PositionWiseFeedForward
false
4,251
[ "MIT" ]
0
8f623299c25f7f219bab34bc7df41fe24232b1af
https://github.com/renebidart/pytorch-cifar/tree/8f623299c25f7f219bab34bc7df41fe24232b1af
import math import torch import torch.nn as nn def gelu(x): """Implementation of the gelu activation function by Hugging Face""" return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class Model(nn.Module): """ FeedForward Neural Networks for each position """ def __init__(self, n_hidden): super().__init__() self.fc1 = nn.Conv2d(n_hidden, n_hidden * 4, kernel_size=1, bias=True) self.fc2 = nn.Conv2d(n_hidden * 4, n_hidden, kernel_size=1, bias=True) def forward(self, x): return self.fc2(gelu(self.fc1(x))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
FC_Decoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/az/cazao7d5hdb3kcfc76acvd3yerra6cq3h4spci3xujm27v6xwinj.py # Topologically Sorted Source Nodes: [h3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # h3 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/b3/cb3q7iauu5ues625wabsv7x5gf5ycfqrby4odqljsmjvbvhzfz5h.py # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # sigmoid => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 784 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (1024, 4), (4, 1)) assert_size_stride(primals_2, (1024, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (784, 1024), (1024, 1)) assert_size_stride(primals_5, (784, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0); del buf0 # reuse buf4 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool) # Topologically Sorted Source Nodes: [h3], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 65536, grid=grid(65536), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 784), (784, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_4, (1024, 784), (1, 1024), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 784), (12544, 3136, 784, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf3, primals_5, 50176, grid=grid(50176), stream=stream0) del primals_5 return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), buf3, primals_4, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1024, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((784, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((784, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class FC_Decoder(nn.Module): def __init__(self, embedding_size): super(FC_Decoder, self).__init__() self.fc3 = nn.Linear(embedding_size, 1024) self.fc4 = nn.Linear(1024, 784) def forward(self, z): h3 = F.relu(self.fc3(z)) return torch.sigmoid(self.fc4(h3)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'embedding_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 784 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (1024, 4), (4, 1)) assert_size_stride(primals_2, (1024,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (784, 1024), (1024, 1)) assert_size_stride(primals_5, (784,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0) del buf0 buf4 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(65536)](buf1, primals_2, buf4, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 784), (784, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0 ), reinterpret_tensor(primals_4, (1024, 784), (1, 1024), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 784), (12544, 3136, 784, 1), 0) del buf2 triton_poi_fused_sigmoid_1[grid(50176)](buf3, primals_5, 50176, XBLOCK=512, num_warps=4, num_stages=1) del primals_5 return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0 ), buf3, primals_4, buf4 class FC_DecoderNew(nn.Module): def __init__(self, embedding_size): super(FC_DecoderNew, self).__init__() self.fc3 = nn.Linear(embedding_size, 1024) self.fc4 = nn.Linear(1024, 784) def forward(self, input_0): primals_1 = self.fc3.weight primals_2 = self.fc3.bias primals_4 = self.fc4.weight primals_5 = self.fc4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
saksham36/LangGrounding
FC_Decoder
false
4,252
[ "MIT" ]
0
89ee9e5b8090e61e6bf7bf2b3e1dd45edf9664b7
https://github.com/saksham36/LangGrounding/tree/89ee9e5b8090e61e6bf7bf2b3e1dd45edf9664b7
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, embedding_size): super().__init__() self.fc3 = nn.Linear(embedding_size, 1024) self.fc4 = nn.Linear(1024, 784) def forward(self, z): h3 = F.relu(self.fc3(z)) return torch.sigmoid(self.fc4(h3)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Word2Vec
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/u5/cu5ua3ykbptipkew3i3zng4a7a4hy4f6xs547ovdooepce7uyfwz.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x3), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0) del buf2 return (buf3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf0, buf3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Word2Vec(nn.Module): def __init__(self, features, embedding_size): super().__init__() 0.5 / embedding_size self.fc1 = nn.Linear(features, embedding_size) self.fc2 = nn.Linear(embedding_size, features) def forward(self, one_hot): x = self.fc1(one_hot.float()) x = self.fc2(x) log_softmax = torch.nn.functional.log_softmax(x, dim=1) return log_softmax def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'features': 4, 'embedding_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x3, tmp13, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](buf1, buf2, 256, XBLOCK= 128, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused__log_softmax_1[grid(256)](buf2, buf3, 256, XBLOCK= 128, num_warps=4, num_stages=1) del buf2 return buf3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), buf0, buf3, primals_4 class Word2VecNew(nn.Module): def __init__(self, features, embedding_size): super().__init__() 0.5 / embedding_size self.fc1 = nn.Linear(features, embedding_size) self.fc2 = nn.Linear(embedding_size, features) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
salmanedhi/NNTI-WS2021-NLP-Project
Word2Vec
false
4,253
[ "MIT" ]
0
5b0a8f1258ef4e835a6e647082a8286078a0bdd6
https://github.com/salmanedhi/NNTI-WS2021-NLP-Project/tree/5b0a8f1258ef4e835a6e647082a8286078a0bdd6
import torch from torch import nn class Model(nn.Module): def __init__(self, features, embedding_size): super().__init__() 0.5 / embedding_size self.fc1 = nn.Linear(features, embedding_size) self.fc2 = nn.Linear(embedding_size, features) def forward(self, one_hot): x = self.fc1(one_hot.float()) x = self.fc2(x) log_softmax = torch.nn.functional.log_softmax(x, dim=1) return log_softmax def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Beta
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/vl/cvlekk7mg6q4mdm2ff42mapcgym5nn43grvi5dksbd4j5rg2sv57.py # Topologically Sorted Source Nodes: [softplus, alpha], Original ATen: [aten.softplus, aten.add] # Source node to ATen node mapping: # alpha => add # softplus => exp, gt, log1p, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %log1p), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, 1), kwargs = {}) triton_poi_fused_add_softplus_0 = async_compile.triton('triton_poi_fused_add_softplus_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_softplus_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_softplus_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softplus, alpha], Original ATen: [aten.softplus, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_softplus_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 0, 4, 4), (0, 16, 4, 1), torch.float32) return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.functional as F import torch.nn.functional as F class BoundedBeta(torch.distributions.Beta): def log_prob(self, x): return super().log_prob((x + 1) / 2) class Beta(nn.Module): def __init__(self, action_dim): super(Beta, self).__init__() self.action_dim = action_dim def forward(self, alpha_beta): alpha = 1 + F.softplus(alpha_beta[:, :self.action_dim]) beta = 1 + F.softplus(alpha_beta[:, self.action_dim:]) return alpha, beta def sample(self, x, deterministic): if deterministic is False: action = self.evaluate(x).sample() else: return self.evaluate(x).mean return 2 * action - 1 def evaluate(self, x): alpha, beta = self(x) return BoundedBeta(alpha, beta) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'action_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_softplus_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_softplus_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 0, 4, 4), (0, 16, 4, 1), torch.float32) return buf0, buf1 class BoundedBeta(torch.distributions.Beta): def log_prob(self, x): return super().log_prob((x + 1) / 2) class BetaNew(nn.Module): def __init__(self, action_dim): super(BetaNew, self).__init__() self.action_dim = action_dim def sample(self, x, deterministic): if deterministic is False: action = self.evaluate(x).sample() else: return self.evaluate(x).mean return 2 * action - 1 def evaluate(self, x): alpha, beta = self(x) return BoundedBeta(alpha, beta) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0], output[1]
samarth-robo/apex
Beta
false
4,254
[ "MIT" ]
0
db24044acacd0fcd006886eb1677eaa2f2beedad
https://github.com/samarth-robo/apex/tree/db24044acacd0fcd006886eb1677eaa2f2beedad
import torch import torch.nn as nn import torch.functional as F import torch.nn.functional as F class BoundedBeta(torch.distributions.Beta): def log_prob(self, x): return super().log_prob((x + 1) / 2) class Model(nn.Module): def __init__(self, action_dim): super().__init__() self.action_dim = action_dim def forward(self, alpha_beta): alpha = 1 + F.softplus(alpha_beta[:, :self.action_dim]) beta = 1 + F.softplus(alpha_beta[:, self.action_dim:]) return alpha, beta def sample(self, x, deterministic): if deterministic is False: action = self.evaluate(x).sample() else: return self.evaluate(x).mean return 2 * action - 1 def evaluate(self, x): alpha, beta = self(x) return BoundedBeta(alpha, beta) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Actor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ix/cixxyusyg44s2hkoufcgbrv3ix5ookwqjl4ia3xkv7bdqi4yrzus.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 400 x2 = xindex % 1600 x3 = (xindex // 1600) tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/op/coptu6xep3awc4lajb4xivopppqmjtx3zy7ebtazm45rqvyeknds.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_3 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 300 x2 = (xindex // 1200) x3 = xindex % 1200 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + (1216*x2)), tmp4, xmask) tl.store(out_ptr1 + (x3 + (1280*x2)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/as/casrc7bf7ghsendgi7tkqxk3hj4ic6aqb4rmkxzuk5dhbidznia7.py # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.relu, aten.view] # Source node to ATen node mapping: # out_3 => relu_1 # out_4 => view_4 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %view_4 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu_1, [64, 300]), kwargs = {}) triton_poi_fused_relu_view_2 = async_compile.triton('triton_poi_fused_relu_view_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_view_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 300 x1 = (xindex // 300) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (300*(x1 % 4)) + (1216*(x1 // 4))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xp/cxpqywcqam7evubfwwa5zmt733w2zov6otomgqgpramgjdsnjg5k.py # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # out_5 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_5,), kwargs = {}) triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (300, 400), (400, 1)) assert_size_stride(primals_5, (300, ), (1, )) assert_size_stride(primals_6, (4, 300), (300, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0); del buf0 # reuse buf8 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 25600, grid=grid(25600), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 300), (300, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(primals_4, (400, 300), (1, 400), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_5, buf3, buf7, 19200, grid=grid(19200), stream=stream0) del primals_5 buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.relu, aten.view] triton_poi_fused_relu_view_2.run(buf3, buf4, 19200, grid=grid(19200), stream=stream0) del buf3 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf4, reinterpret_tensor(primals_6, (300, 4), (1, 300), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_3.run(buf6, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 400), (400, 1), 0), buf4, buf6, primals_6, buf7, primals_4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((400, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((300, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((300, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 300), (300, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from torch.optim.lr_scheduler import * import torch.optim.lr_scheduler import torch.quantization import torch.onnx import torch.testing class Actor(nn.Module): def __init__(self, nb_states, nb_actions, hidden1=400, hidden2=300): super(Actor, self).__init__() self.fc1 = nn.Linear(nb_states, hidden1) self.fc2 = nn.Linear(hidden1, hidden2) self.fc3 = nn.Linear(hidden2, nb_actions) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) out = self.relu(out) out = self.fc3(out) out = self.sigmoid(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nb_states': 4, 'nb_actions': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from torch.optim.lr_scheduler import * import torch.optim.lr_scheduler import torch.quantization import torch.onnx import torch.testing assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 400 x2 = xindex % 1600 x3 = xindex // 1600 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 300 x2 = xindex // 1200 x3 = xindex % 1200 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + 1216 * x2), tmp4, xmask) tl.store(out_ptr1 + (x3 + 1280 * x2), tmp6, xmask) @triton.jit def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 300 x1 = xindex // 300 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 300 * (x1 % 4) + 1216 * (x1 // 4)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (300, 400), (400, 1)) assert_size_stride(primals_5, (300,), (1,)) assert_size_stride(primals_6, (4, 300), (300, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0 ) del buf0 buf8 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(25600)](buf1, primals_2, buf8, 25600, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 300), (300, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(primals_4, (400, 300), (1, 400), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(19200)](buf2, primals_5, buf3, buf7, 19200, XBLOCK=128, num_warps=4, num_stages=1 ) del primals_5 buf4 = buf2 del buf2 triton_poi_fused_relu_view_2[grid(19200)](buf3, buf4, 19200, XBLOCK =256, num_warps=4, num_stages=1) del buf3 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf4, reinterpret_tensor(primals_6, (300, 4), (1, 300), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_sigmoid_3[grid(256)](buf6, primals_7, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_7 return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 400), (400, 1), 0 ), buf4, buf6, primals_6, buf7, primals_4, buf8 class ActorNew(nn.Module): def __init__(self, nb_states, nb_actions, hidden1=400, hidden2=300): super(ActorNew, self).__init__() self.fc1 = nn.Linear(nb_states, hidden1) self.fc2 = nn.Linear(hidden1, hidden2) self.fc3 = nn.Linear(hidden2, nb_actions) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
saman-aghazadeh/distiller
Actor
false
4,255
[ "Apache-2.0" ]
0
7e8d3e6193c807f7c55d8453f64e1bc3c02eee30
https://github.com/saman-aghazadeh/distiller/tree/7e8d3e6193c807f7c55d8453f64e1bc3c02eee30
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from torch.optim.lr_scheduler import * import torch.optim.lr_scheduler import torch.quantization import torch.onnx import torch.testing class Model(nn.Module): def __init__(self, nb_states, nb_actions, hidden1=400, hidden2=300): super().__init__() self.fc1 = nn.Linear(nb_states, hidden1) self.fc2 = nn.Linear(hidden1, hidden2) self.fc3 = nn.Linear(hidden2, nb_actions) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) out = self.relu(out) out = self.fc3(out) out = self.sigmoid(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Beta2
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/up/cup6o5cbzbunxrgsjove7ghgc4dkxlfpf5zncfpxjlrgo5zjrjpe.py # Topologically Sorted Source Nodes: [mean, sub_2, exp, var, truediv_1, mul_1, sub_3, sub, truediv, pow_2, mul, alpha, beta], Original ATen: [aten.sigmoid, aten.rsub, aten.exp, aten.pow, aten.div, aten.mul, aten.sub] # Source node to ATen node mapping: # alpha => sub_1 # beta => sub_4 # exp => exp # mean => sigmoid # mul => mul # mul_1 => mul_1 # pow_2 => pow_2 # sub => sub # sub_2 => sub_2 # sub_3 => sub_3 # truediv => div # truediv_1 => div_1 # var => pow_1 # Graph fragment: # %sigmoid : [num_users=5] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg1_1,), kwargs = {}) # %pow_1 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%exp, 2), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, %pow_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %sigmoid), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %pow_1), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sigmoid, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %pow_2), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sigmoid), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_3, %sub_1), kwargs = {}) triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0 = async_compile.triton('triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tl_math.exp(tmp4) tmp6 = tmp5 * tmp5 tmp7 = tmp3 / tmp6 tmp8 = tmp1 * tmp1 tmp9 = tmp7 * tmp8 tmp10 = tmp9 - tmp1 tmp11 = tmp7 * tmp1 tmp12 = tmp11 - tmp2 tmp13 = tmp12 - tmp10 tl.store(out_ptr0 + (x2), tmp10, xmask) tl.store(out_ptr1 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, sub_2, exp, var, truediv_1, mul_1, sub_3, sub, truediv, pow_2, mul, alpha, beta], Original ATen: [aten.sigmoid, aten.rsub, aten.exp, aten.pow, aten.div, aten.mul, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0.run(arg0_1, arg1_1, buf0, buf1, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn class BoundedBeta(torch.distributions.Beta): def log_prob(self, x): return super().log_prob((x + 1) / 2) class Beta2(nn.Module): def __init__(self, action_dim, init_std=0.25, learn_std=False): super(Beta2, self).__init__() assert init_std < 0.5, 'Beta distribution has a max std dev of 0.5' self.action_dim = action_dim self.logstd = nn.Parameter(torch.ones(1, action_dim) * np.log( init_std), requires_grad=learn_std) self.learn_std = learn_std def forward(self, x): mean = torch.sigmoid(x) var = self.logstd.exp().pow(2) """ alpha = ((1 - mu) / sigma^2 - 1 / mu) * mu^2 beta = alpha * (1 / mu - 1) Implemented slightly differently for numerical stability. """ alpha = (1 - mean) / var * mean.pow(2) - mean beta = (1 - mean) / var * mean - 1 - alpha return alpha, beta def sample(self, x, deterministic): if deterministic is False: action = self.evaluate(x).sample() else: return self.evaluate(x).mean return 2 * action - 1 def evaluate(self, x): alpha, beta = self(x) return BoundedBeta(alpha, beta) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'action_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tl_math.exp(tmp4) tmp6 = tmp5 * tmp5 tmp7 = tmp3 / tmp6 tmp8 = tmp1 * tmp1 tmp9 = tmp7 * tmp8 tmp10 = tmp9 - tmp1 tmp11 = tmp7 * tmp1 tmp12 = tmp11 - tmp2 tmp13 = tmp12 - tmp10 tl.store(out_ptr0 + x2, tmp10, xmask) tl.store(out_ptr1 + x2, tmp13, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0[grid(256)](arg0_1, arg1_1, buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, buf1 class BoundedBeta(torch.distributions.Beta): def log_prob(self, x): return super().log_prob((x + 1) / 2) class Beta2New(nn.Module): def __init__(self, action_dim, init_std=0.25, learn_std=False): super(Beta2New, self).__init__() assert init_std < 0.5, 'Beta distribution has a max std dev of 0.5' self.action_dim = action_dim self.logstd = nn.Parameter(torch.ones(1, action_dim) * np.log( init_std), requires_grad=learn_std) self.learn_std = learn_std def sample(self, x, deterministic): if deterministic is False: action = self.evaluate(x).sample() else: return self.evaluate(x).mean return 2 * action - 1 def evaluate(self, x): alpha, beta = self(x) return BoundedBeta(alpha, beta) def forward(self, input_0): arg1_1 = self.logstd arg0_1 = input_0 output = call([arg0_1, arg1_1]) return output[0], output[1]
samarth-robo/apex
Beta2
false
4,256
[ "MIT" ]
0
db24044acacd0fcd006886eb1677eaa2f2beedad
https://github.com/samarth-robo/apex/tree/db24044acacd0fcd006886eb1677eaa2f2beedad
import torch import numpy as np import torch.nn as nn class BoundedBeta(torch.distributions.Beta): def log_prob(self, x): return super().log_prob((x + 1) / 2) class Model(nn.Module): def __init__(self, action_dim, init_std=0.25, learn_std=False): super().__init__() assert init_std < 0.5, 'Beta distribution has a max std dev of 0.5' self.action_dim = action_dim self.logstd = nn.Parameter(torch.ones(1, action_dim) * np.log( init_std), requires_grad=learn_std) self.learn_std = learn_std def forward(self, x): mean = torch.sigmoid(x) var = self.logstd.exp().pow(2) """ alpha = ((1 - mu) / sigma^2 - 1 / mu) * mu^2 beta = alpha * (1 / mu - 1) Implemented slightly differently for numerical stability. """ alpha = (1 - mean) / var * mean.pow(2) - mean beta = (1 - mean) / var * mean - 1 - alpha return alpha, beta def sample(self, x, deterministic): if deterministic is False: action = self.evaluate(x).sample() else: return self.evaluate(x).mean return 2 * action - 1 def evaluate(self, x): alpha, beta = self(x) return BoundedBeta(alpha, beta) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
BertPooler2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yj/cyjqjllbc3bikte2womjnjqgo2d7wrcb5dt3tpl2sgyogireta4f.py # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone] # Source node to ATen node mapping: # pooled_output => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2g/c2gw7362i2a6wsfdx2sxyywx4o6ronjg6goebvdn44w6gpjsxpbc.py # Topologically Sorted Source Nodes: [pooled_output, pooled_output_1], Original ATen: [aten.add, aten.tanh] # Source node to ATen node mapping: # pooled_output => add # pooled_output_1 => tanh # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_tanh_1 = async_compile.triton('triton_poi_fused_add_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [pooled_output, pooled_output_1], Original ATen: [aten.add, aten.tanh] triton_poi_fused_add_tanh_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch from torch import nn import torch.nn.parallel import torch.optim from torch.utils.data import * import torch.nn.functional class BertPooler2(nn.Module): def __init__(self, config): super(BertPooler2, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): first_token_tensor = hidden_states[:, 1] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.nn.parallel import torch.optim from torch.utils.data import * import torch.nn.functional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused_add_tanh_1[grid(64)](buf2, primals_3, 64, XBLOCK= 64, num_warps=1, num_stages=1) del primals_3 return buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2 class BertPooler2New(nn.Module): def __init__(self, config): super(BertPooler2New, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, input_0): primals_2 = self.dense.weight primals_3 = self.dense.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
samuelyu2002/PACS
BertPooler2
false
4,257
[ "MIT" ]
0
5010b2f0d20933b0647e3d6230d673e1830249ec
https://github.com/samuelyu2002/PACS/tree/5010b2f0d20933b0647e3d6230d673e1830249ec
from _paritybench_helpers import _mock_config import torch from torch import nn import torch.nn.parallel import torch.optim from torch.utils.data import * import torch.nn.functional class Model(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): first_token_tensor = hidden_states[:, 1] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ModelWithDuplicates
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/x7/cx7zib5vfcs4tjugjecjyojpxio3h7wkcy5bqp7pc5phvne4zdgj.py # Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.convolution, aten.relu, aten.tanh, aten.threshold_backward] # Source node to ATen node mapping: # x => convolution # x_1 => relu # x_2 => tanh # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%relu,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_tanh_threshold_backward_0 = async_compile.triton('triton_poi_fused_convolution_relu_tanh_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_tanh_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_tanh_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 144000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3600) % 10 x0 = xindex % 3600 x4 = (xindex // 3600) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = libdevice.tanh(tmp4) tmp6 = 0.0 tmp7 = tmp4 <= tmp6 tl.store(out_ptr0 + (x3), tmp5, xmask) tl.store(out_ptr1 + (x0 + (3712*x4)), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/sl/cslyor46ejkl5lvclqvfd2qnnvpo2y3hutdhtpmver5xbwv2l3ek.py # Topologically Sorted Source Nodes: [x_3, x_4, x_5], Original ATen: [aten.convolution, aten.relu, aten.tanh, aten.threshold_backward] # Source node to ATen node mapping: # x_3 => convolution_1 # x_4 => relu_1 # x_5 => tanh_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%tanh, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %tanh_1 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%relu_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_tanh_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_tanh_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_tanh_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_tanh_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 269120 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3364) % 20 x0 = xindex % 3364 x4 = (xindex // 3364) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = libdevice.tanh(tmp4) tmp6 = 0.0 tmp7 = tmp4 <= tmp6 tl.store(out_ptr0 + (x3), tmp5, xmask) tl.store(out_ptr1 + (x0 + (3456*x4)), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (10, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (10, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (20, 10, 3, 3), (90, 9, 3, 1)) assert_size_stride(primals_5, (20, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 10, 60, 60), (36000, 3600, 60, 1)) buf1 = empty_strided_cuda((4, 10, 60, 60), (36000, 3600, 60, 1), torch.float32) buf5 = empty_strided_cuda((4, 10, 60, 60), (37120, 3712, 60, 1), torch.bool) # Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.convolution, aten.relu, aten.tanh, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_tanh_threshold_backward_0.run(buf0, primals_2, buf1, buf5, 144000, grid=grid(144000), stream=stream0) del buf0 del primals_2 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 20, 58, 58), (67280, 3364, 58, 1)) buf3 = empty_strided_cuda((4, 20, 58, 58), (67280, 3364, 58, 1), torch.float32) buf4 = empty_strided_cuda((4, 20, 58, 58), (69120, 3456, 58, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3, x_4, x_5], Original ATen: [aten.convolution, aten.relu, aten.tanh, aten.threshold_backward] triton_poi_fused_convolution_relu_tanh_threshold_backward_1.run(buf2, primals_5, buf3, buf4, 269120, grid=grid(269120), stream=stream0) del buf2 del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, buf3, buf4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((10, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((20, 10, 3, 3), (90, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from collections import OrderedDict import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from torch.optim.lr_scheduler import * import torch.optim.lr_scheduler import torch.quantization import torch.onnx import torch.testing class ModelWithDuplicates(nn.Module): def __init__(self): super(ModelWithDuplicates, self).__init__() self.conv1 = nn.Conv2d(3, 10, 5) self.post_conv1 = nn.ModuleList([nn.ReLU(), nn.Tanh()]) self.conv2 = nn.Conv2d(10, 20, 3) self.post_conv2 = self.post_conv1 self.expected_mlist_to_dmlist = OrderedDict([('post_conv1', [ 'post_conv1']), ('post_conv2', ['post_conv2'])]) self.expected_list_contents_name_changes = OrderedDict([( 'post_conv1.0', 'post_conv1_0'), ('post_conv1.1', 'post_conv1_1'), ('post_conv2.0', 'post_conv2_0'), ( 'post_conv2.1', 'post_conv2_1')]) def forward(self, x): x = self.conv1(x) for m in self.post_conv1: x = m(x) x = self.conv2(x) for m in self.post_conv2: x = m(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from collections import OrderedDict import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from torch.optim.lr_scheduler import * import torch.optim.lr_scheduler import torch.quantization import torch.onnx import torch.testing assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_tanh_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 144000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3600 % 10 x0 = xindex % 3600 x4 = xindex // 3600 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = libdevice.tanh(tmp4) tmp6 = 0.0 tmp7 = tmp4 <= tmp6 tl.store(out_ptr0 + x3, tmp5, xmask) tl.store(out_ptr1 + (x0 + 3712 * x4), tmp7, xmask) @triton.jit def triton_poi_fused_convolution_relu_tanh_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 269120 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3364 % 20 x0 = xindex % 3364 x4 = xindex // 3364 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = libdevice.tanh(tmp4) tmp6 = 0.0 tmp7 = tmp4 <= tmp6 tl.store(out_ptr0 + x3, tmp5, xmask) tl.store(out_ptr1 + (x0 + 3456 * x4), tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (10, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (10,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (20, 10, 3, 3), (90, 9, 3, 1)) assert_size_stride(primals_5, (20,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 10, 60, 60), (36000, 3600, 60, 1)) buf1 = empty_strided_cuda((4, 10, 60, 60), (36000, 3600, 60, 1), torch.float32) buf5 = empty_strided_cuda((4, 10, 60, 60), (37120, 3712, 60, 1), torch.bool) get_raw_stream(0) triton_poi_fused_convolution_relu_tanh_threshold_backward_0[grid( 144000)](buf0, primals_2, buf1, buf5, 144000, XBLOCK=1024, num_warps=4, num_stages=1) del buf0 del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 20, 58, 58), (67280, 3364, 58, 1)) buf3 = empty_strided_cuda((4, 20, 58, 58), (67280, 3364, 58, 1), torch.float32) buf4 = empty_strided_cuda((4, 20, 58, 58), (69120, 3456, 58, 1), torch.bool) triton_poi_fused_convolution_relu_tanh_threshold_backward_1[grid( 269120)](buf2, primals_5, buf3, buf4, 269120, XBLOCK=512, num_warps=8, num_stages=1) del buf2 del primals_5 return buf3, primals_1, primals_3, primals_4, buf1, buf3, buf4, buf5 class ModelWithDuplicatesNew(nn.Module): def __init__(self): super(ModelWithDuplicatesNew, self).__init__() self.conv1 = nn.Conv2d(3, 10, 5) self.post_conv1 = nn.ModuleList([nn.ReLU(), nn.Tanh()]) self.conv2 = nn.Conv2d(10, 20, 3) self.post_conv2 = self.post_conv1 self.expected_mlist_to_dmlist = OrderedDict([('post_conv1', [ 'post_conv1']), ('post_conv2', ['post_conv2'])]) self.expected_list_contents_name_changes = OrderedDict([( 'post_conv1.0', 'post_conv1_0'), ('post_conv1.1', 'post_conv1_1'), ('post_conv2.0', 'post_conv2_0'), ( 'post_conv2.1', 'post_conv2_1')]) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
saman-aghazadeh/distiller
ModelWithDuplicates
false
4,258
[ "Apache-2.0" ]
0
7e8d3e6193c807f7c55d8453f64e1bc3c02eee30
https://github.com/saman-aghazadeh/distiller/tree/7e8d3e6193c807f7c55d8453f64e1bc3c02eee30
import torch from collections import OrderedDict import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from torch.optim.lr_scheduler import * import torch.optim.lr_scheduler import torch.quantization import torch.onnx import torch.testing class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 10, 5) self.post_conv1 = nn.ModuleList([nn.ReLU(), nn.Tanh()]) self.conv2 = nn.Conv2d(10, 20, 3) self.post_conv2 = self.post_conv1 self.expected_mlist_to_dmlist = OrderedDict([('post_conv1', [ 'post_conv1']), ('post_conv2', ['post_conv2'])]) self.expected_list_contents_name_changes = OrderedDict([( 'post_conv1.0', 'post_conv1_0'), ('post_conv1.1', 'post_conv1_1'), ('post_conv2.0', 'post_conv2_0'), ( 'post_conv2.1', 'post_conv2_1')]) def forward(self, x): x = self.conv1(x) for m in self.post_conv1: x = m(x) x = self.conv2(x) for m in self.post_conv2: x = m(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
MySimpleNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nu/cnuuaznpt4szfn74bn46qfjkdypvlkfa5x44ywjpperdjt2a66rj.py # Topologically Sorted Source Nodes: [X], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # X => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 640 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 10 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mp/cmpdsbnpgfsr7uwb7env74mojrq3nlzieqot6rnnkfpbzkkensbi.py # Topologically Sorted Source Nodes: [X_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # X_2 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/z5/cz5xs7y3thsep5yn6qoths757rduuevog6mtea3nqr4nwnh2olnx.py # Topologically Sorted Source Nodes: [X_3], Original ATen: [aten._softmax] # Source node to ATen node mapping: # X_3 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = (xindex // 32) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nv/cnvo7i3x3dm4mdtrcmoddo2p4odl6hgahimnieftjxkqwe7ehw54.py # Topologically Sorted Source Nodes: [X_3], Original ATen: [aten._softmax] # Source node to ATen node mapping: # X_3 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = (xindex // 32) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (10, 4), (4, 1)) assert_size_stride(primals_2, (10, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 10), (10, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (2, 4), (4, 1)) assert_size_stride(primals_7, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0); del buf0 # reuse buf8 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool) # Topologically Sorted Source Nodes: [X], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 640, grid=grid(640), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(primals_4, (10, 4), (1, 10), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [X_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf7, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [X_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf4, buf5, 128, grid=grid(128), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [X_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf5, buf6, 128, grid=grid(128), stream=stream0) del buf5 return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((10, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 10), (10, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch import nn class MySimpleNet(nn.Module): """ Very simple 2-layer net, slightly adapted from the docs: https://skorch.readthedocs.io/en/stable/user/quickstart.html """ def __init__(self, num_in, num_feat, num_hidden=10, nonlin=F.relu): super(MySimpleNet, self).__init__() self.dense0 = nn.Linear(num_in, num_hidden) self.nonlin = nonlin self.dropout = nn.Dropout(0.5) self.dense1 = nn.Linear(num_hidden, num_feat) self.output = nn.Linear(num_feat, 2) def forward(self, X, **kwargs): X = self.nonlin(self.dense0(X)) X = self.dropout(X) X = F.relu(self.dense1(X)) X = F.softmax(self.output(X)) return X def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_in': 4, 'num_feat': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn.functional as F from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 640 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 10 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = xindex // 32 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = xindex // 32 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (10, 4), (4, 1)) assert_size_stride(primals_2, (10,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 10), (10, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (2, 4), (4, 1)) assert_size_stride(primals_7, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0) del buf0 buf8 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(640)](buf1, primals_2, buf8, 640, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(primals_4, (10, 4), (1, 10), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(256)](buf3, primals_5, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) triton_poi_fused__softmax_2[grid(128)](buf4, buf5, 128, XBLOCK=128, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf4 triton_poi_fused__softmax_3[grid(128)](buf5, buf6, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf5 return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8 class MySimpleNetNew(nn.Module): """ Very simple 2-layer net, slightly adapted from the docs: https://skorch.readthedocs.io/en/stable/user/quickstart.html """ def __init__(self, num_in, num_feat, num_hidden=10, nonlin=F.relu): super(MySimpleNetNew, self).__init__() self.dense0 = nn.Linear(num_in, num_hidden) self.nonlin = nonlin self.dropout = nn.Dropout(0.5) self.dense1 = nn.Linear(num_hidden, num_feat) self.output = nn.Linear(num_feat, 2) def forward(self, input_0): primals_1 = self.dense0.weight primals_2 = self.dense0.bias primals_4 = self.dense1.weight primals_5 = self.dense1.bias primals_6 = self.output.weight primals_7 = self.output.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
samxu0823/anfis-pytorch
MySimpleNet
false
4,259
[ "MIT" ]
0
b4ec3f0e8259963800e9e0a2904a580d1e56cc1c
https://github.com/samxu0823/anfis-pytorch/tree/b4ec3f0e8259963800e9e0a2904a580d1e56cc1c
import torch import torch.nn.functional as F from torch import nn class Model(nn.Module): """ Very simple 2-layer net, slightly adapted from the docs: https://skorch.readthedocs.io/en/stable/user/quickstart.html """ def __init__(self, num_in, num_feat, num_hidden=10, nonlin=F.relu): super().__init__() self.dense0 = nn.Linear(num_in, num_hidden) self.nonlin = nonlin self.dropout = nn.Dropout(0.5) self.dense1 = nn.Linear(num_hidden, num_feat) self.output = nn.Linear(num_feat, 2) def forward(self, X, **kwargs): X = self.nonlin(self.dense0(X)) X = self.dropout(X) X = F.relu(self.dense1(X)) X = F.softmax(self.output(X)) return X def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
BahdanauAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ao/caoovxtqrx42gvkmjirowqmmbh6kppvfh5ebrzzv4kzkgwm2umii.py # Topologically Sorted Source Nodes: [processed_query], Original ATen: [aten.clone] # Source node to ATen node mapping: # processed_query => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bg/cbgmsaps4ljzc6rkbd4imsj3jo73tgvkd46dy7obklnnvintmaea.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.mv] # Source node to ATen node mapping: # out => mul, sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %primals_5), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) triton_poi_fused_mv_1 = async_compile.triton('triton_poi_fused_mv_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mv_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mv_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*(x0 // 4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + ((4*(x0 % 4)) + (16*(x0 // 16))), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (0)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr0 + (1 + (4*(x0 // 4))), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1 + (4*(x0 % 4)) + (16*(x0 // 16))), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr2 + (1)) tmp12 = tl.broadcast_to(tmp11, [XBLOCK]) tmp15 = tl.load(in_ptr0 + (2 + (4*(x0 // 4))), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (2 + (4*(x0 % 4)) + (16*(x0 // 16))), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr2 + (2)) tmp20 = tl.broadcast_to(tmp19, [XBLOCK]) tmp23 = tl.load(in_ptr0 + (3 + (4*(x0 // 4))), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr1 + (3 + (4*(x0 % 4)) + (16*(x0 // 16))), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr2 + (3)) tmp28 = tl.broadcast_to(tmp27, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tmp6 = tmp3 * tmp5 tmp9 = tmp7 + tmp8 tmp10 = libdevice.tanh(tmp9) tmp13 = tmp10 * tmp12 tmp14 = tmp6 + tmp13 tmp17 = tmp15 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp21 = tmp18 * tmp20 tmp22 = tmp14 + tmp21 tmp25 = tmp23 + tmp24 tmp26 = libdevice.tanh(tmp25) tmp29 = tmp26 * tmp28 tmp30 = tmp22 + tmp29 tl.store(out_ptr0 + (x0), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hg/chg3iq6bscxmmxv5f7tuzgwycb4mgrimwfhv2nauw5rj4tt5cmv2.py # Topologically Sorted Source Nodes: [scores_normalized], Original ATen: [aten._softmax] # Source node to ATen node mapping: # scores_normalized => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zu/czuvep3dmpmqmhiiliwubh4ghdt2qr27va67sszkua7trziinwov.py # Topologically Sorted Source Nodes: [scores_normalized], Original ATen: [aten._softmax] # Source node to ATen node mapping: # scores_normalized => div, sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [processed_query], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_2, buf0, 64, grid=grid(64), stream=stream0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [processed_query], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [processed_key], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(primals_1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [processed_key], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) del primals_4 buf4 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.mv] triton_poi_fused_mv_1.run(buf1, buf3, primals_5, buf4, 64, grid=grid(64), stream=stream0) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [scores_normalized], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [scores_normalized], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf5, buf6, 64, grid=grid(64), stream=stream0) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [context], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(primals_1, (4, 4, 4), (4, 16, 1), 0), out=buf7) return (reinterpret_tensor(buf7, (4, 4, 4), (4, 16, 1), 0), reinterpret_tensor(buf6, (4, 4, 4), (4, 16, 1), 0), primals_5, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf3, buf6, reinterpret_tensor(primals_1, (4, 4, 4), (4, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from torch.optim.lr_scheduler import * import torch.optim.lr_scheduler import torch.quantization from torch.nn.parameter import Parameter import torch.onnx import torch.testing class EltwiseAdd(nn.Module): def __init__(self, inplace=False): """Element-wise addition""" super().__init__() self.inplace = inplace def forward(self, *input): res = input[0] if self.inplace: for t in input[1:]: res += t else: for t in input[1:]: res = res + t return res class EltwiseMult(nn.Module): def __init__(self, inplace=False): """Element-wise multiplication""" super().__init__() self.inplace = inplace def forward(self, *input): res = input[0] if self.inplace: for t in input[1:]: res *= t else: for t in input[1:]: res = res * t return res class Matmul(nn.Module): """ A wrapper module for matmul operation between 2 tensors. """ def __init__(self): super(Matmul, self).__init__() def forward(self, a: 'torch.Tensor', b: 'torch.Tensor'): return a.matmul(b) class BatchMatmul(nn.Module): """ A wrapper module for torch.bmm operation between 2 tensors. """ def __init__(self): super(BatchMatmul, self).__init__() def forward(self, a: 'torch.Tensor', b: 'torch.Tensor'): return torch.bmm(a, b) class BahdanauAttention(nn.Module): """ It should be very similar to tf.contrib.seq2seq.BahdanauAttention """ def __init__(self, query_size, key_size, num_units, normalize=False, dropout=0, batch_first=False): super(BahdanauAttention, self).__init__() self.normalize = normalize self.batch_first = batch_first self.num_units = num_units self.linear_q = nn.Linear(query_size, num_units, bias=False) self.linear_k = nn.Linear(key_size, num_units, bias=False) self.linear_att = Parameter(torch.Tensor(num_units)) self.dropout = nn.Dropout(dropout) self.mask = None self.eltwiseadd_qk = EltwiseAdd() self.eltwiseadd_norm_bias = EltwiseAdd() self.eltwisemul_norm_scaler = EltwiseMult() self.tanh = nn.Tanh() self.matmul_score = Matmul() self.softmax_att = nn.Softmax(dim=-1) self.context_matmul = BatchMatmul() if self.normalize: self.normalize_scalar = Parameter(torch.Tensor(1)) self.normalize_bias = Parameter(torch.Tensor(num_units)) else: self.register_parameter('normalize_scalar', None) self.register_parameter('normalize_bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.num_units) self.linear_att.data.uniform_(-stdv, stdv) if self.normalize: self.normalize_scalar.data.fill_(stdv) self.normalize_bias.data.zero_() def set_mask(self, context_len, context): """ sets self.mask which is applied before softmax ones for inactive context fields, zeros for active context fields :param context_len: b :param context: if batch_first: (b x t_k x n) else: (t_k x b x n) self.mask: (b x t_k) """ if self.batch_first: max_len = context.size(1) else: max_len = context.size(0) indices = torch.arange(0, max_len, dtype=torch.int64, device= context.device) self.mask = indices >= context_len.unsqueeze(1) def calc_score(self, att_query, att_keys): """ Calculate Bahdanau score :param att_query: b x t_q x n :param att_keys: b x t_k x n return b x t_q x t_k scores """ b, t_k, n = att_keys.size() t_q = att_query.size(1) att_query = att_query.unsqueeze(2).expand(b, t_q, t_k, n) att_keys = att_keys.unsqueeze(1).expand(b, t_q, t_k, n) sum_qk = self.eltwiseadd_qk(att_query, att_keys) if self.normalize: sum_qk = self.eltwiseadd_norm_bias(sum_qk, self.normalize_bias) tmp = self.linear_att linear_att = tmp / tmp.norm() linear_att = linear_att linear_att = self.eltwisemul_norm_scaler(linear_att, self. normalize_scalar) else: linear_att = self.linear_att out = self.matmul_score(self.tanh(sum_qk), linear_att) return out def forward(self, query, keys): """ :param query: if batch_first: (b x t_q x n) else: (t_q x b x n) :param keys: if batch_first: (b x t_k x n) else (t_k x b x n) :returns: (context, scores_normalized) context: if batch_first: (b x t_q x n) else (t_q x b x n) scores_normalized: if batch_first (b x t_q x t_k) else (t_q x b x t_k) """ if not self.batch_first: keys = keys.transpose(0, 1) if query.dim() == 3: query = query.transpose(0, 1) if query.dim() == 2: single_query = True query = query.unsqueeze(1) else: single_query = False b = query.size(0) t_k = keys.size(1) t_q = query.size(1) processed_query = self.linear_q(query) processed_key = self.linear_k(keys) scores = self.calc_score(processed_query, processed_key) if self.mask is not None: mask = self.mask.unsqueeze(1).expand(b, t_q, t_k) scores.data.masked_fill_(mask, -65504.0) scores_normalized = self.softmax_att(scores) scores_normalized = self.dropout(scores_normalized) context = self.context_matmul(scores_normalized, keys) if single_query: context = context.squeeze(1) scores_normalized = scores_normalized.squeeze(1) elif not self.batch_first: context = context.transpose(0, 1) scores_normalized = scores_normalized.transpose(0, 1) return context, scores_normalized def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'query_size': 4, 'key_size': 4, 'num_units': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from torch.optim.lr_scheduler import * import torch.optim.lr_scheduler import torch.quantization from torch.nn.parameter import Parameter import torch.onnx import torch.testing assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_mv_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * (x0 // 4), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + (4 * (x0 % 4) + 16 * (x0 // 16)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr0 + (1 + 4 * (x0 // 4)), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr1 + (1 + 4 * (x0 % 4) + 16 * (x0 // 16)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr2 + 1) tmp12 = tl.broadcast_to(tmp11, [XBLOCK]) tmp15 = tl.load(in_ptr0 + (2 + 4 * (x0 // 4)), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + (2 + 4 * (x0 % 4) + 16 * (x0 // 16)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr2 + 2) tmp20 = tl.broadcast_to(tmp19, [XBLOCK]) tmp23 = tl.load(in_ptr0 + (3 + 4 * (x0 // 4)), xmask, eviction_policy= 'evict_last') tmp24 = tl.load(in_ptr1 + (3 + 4 * (x0 % 4) + 16 * (x0 // 16)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr2 + 3) tmp28 = tl.broadcast_to(tmp27, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tmp6 = tmp3 * tmp5 tmp9 = tmp7 + tmp8 tmp10 = libdevice.tanh(tmp9) tmp13 = tmp10 * tmp12 tmp14 = tmp6 + tmp13 tmp17 = tmp15 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp21 = tmp18 * tmp20 tmp22 = tmp14 + tmp21 tmp25 = tmp23 + tmp24 tmp26 = libdevice.tanh(tmp25) tmp29 = tmp26 * tmp28 tmp30 = tmp22 + tmp29 tl.store(out_ptr0 + x0, tmp30, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_2, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_0[grid(64)](primals_1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) del primals_4 buf4 = empty_strided_cuda((64,), (1,), torch.float32) triton_poi_fused_mv_1[grid(64)](buf1, buf3, primals_5, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0) del buf4 triton_poi_fused__softmax_3[grid(64)](buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = buf5 del buf5 extern_kernels.bmm(buf6, reinterpret_tensor(primals_1, (4, 4, 4), ( 4, 16, 1), 0), out=buf7) return reinterpret_tensor(buf7, (4, 4, 4), (4, 16, 1), 0 ), reinterpret_tensor(buf6, (4, 4, 4), (4, 16, 1), 0 ), primals_5, reinterpret_tensor(buf0, (16, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (16, 4), (4, 1), 0 ), buf3, buf6, reinterpret_tensor(primals_1, (4, 4, 4), (4, 1, 16), 0) class EltwiseAdd(nn.Module): def __init__(self, inplace=False): """Element-wise addition""" super().__init__() self.inplace = inplace def forward(self, *input): res = input[0] if self.inplace: for t in input[1:]: res += t else: for t in input[1:]: res = res + t return res class EltwiseMult(nn.Module): def __init__(self, inplace=False): """Element-wise multiplication""" super().__init__() self.inplace = inplace def forward(self, *input): res = input[0] if self.inplace: for t in input[1:]: res *= t else: for t in input[1:]: res = res * t return res class Matmul(nn.Module): """ A wrapper module for matmul operation between 2 tensors. """ def __init__(self): super(Matmul, self).__init__() def forward(self, a: 'torch.Tensor', b: 'torch.Tensor'): return a.matmul(b) class BatchMatmul(nn.Module): """ A wrapper module for torch.bmm operation between 2 tensors. """ def __init__(self): super(BatchMatmul, self).__init__() def forward(self, a: 'torch.Tensor', b: 'torch.Tensor'): return torch.bmm(a, b) class BahdanauAttentionNew(nn.Module): """ It should be very similar to tf.contrib.seq2seq.BahdanauAttention """ def __init__(self, query_size, key_size, num_units, normalize=False, dropout=0, batch_first=False): super(BahdanauAttentionNew, self).__init__() self.normalize = normalize self.batch_first = batch_first self.num_units = num_units self.linear_q = nn.Linear(query_size, num_units, bias=False) self.linear_k = nn.Linear(key_size, num_units, bias=False) self.linear_att = Parameter(torch.Tensor(num_units)) self.dropout = nn.Dropout(dropout) self.mask = None self.eltwiseadd_qk = EltwiseAdd() self.eltwiseadd_norm_bias = EltwiseAdd() self.eltwisemul_norm_scaler = EltwiseMult() self.tanh = nn.Tanh() self.matmul_score = Matmul() self.softmax_att = nn.Softmax(dim=-1) self.context_matmul = BatchMatmul() if self.normalize: self.normalize_scalar = Parameter(torch.Tensor(1)) self.normalize_bias = Parameter(torch.Tensor(num_units)) else: self.register_parameter('normalize_scalar', None) self.register_parameter('normalize_bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.num_units) self.linear_att.data.uniform_(-stdv, stdv) if self.normalize: self.normalize_scalar.data.fill_(stdv) self.normalize_bias.data.zero_() def set_mask(self, context_len, context): """ sets self.mask which is applied before softmax ones for inactive context fields, zeros for active context fields :param context_len: b :param context: if batch_first: (b x t_k x n) else: (t_k x b x n) self.mask: (b x t_k) """ if self.batch_first: max_len = context.size(1) else: max_len = context.size(0) indices = torch.arange(0, max_len, dtype=torch.int64, device= context.device) self.mask = indices >= context_len.unsqueeze(1) def calc_score(self, att_query, att_keys): """ Calculate Bahdanau score :param att_query: b x t_q x n :param att_keys: b x t_k x n return b x t_q x t_k scores """ b, t_k, n = att_keys.size() t_q = att_query.size(1) att_query = att_query.unsqueeze(2).expand(b, t_q, t_k, n) att_keys = att_keys.unsqueeze(1).expand(b, t_q, t_k, n) sum_qk = self.eltwiseadd_qk(att_query, att_keys) if self.normalize: sum_qk = self.eltwiseadd_norm_bias(sum_qk, self.normalize_bias) tmp = self.linear_att linear_att = tmp / tmp.norm() linear_att = linear_att linear_att = self.eltwisemul_norm_scaler(linear_att, self. normalize_scalar) else: linear_att = self.linear_att out = self.matmul_score(self.tanh(sum_qk), linear_att) return out def forward(self, input_0, input_1): primals_5 = self.linear_att primals_3 = self.linear_q.weight primals_4 = self.linear_k.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
saman-aghazadeh/distiller
BahdanauAttention
false
4,260
[ "Apache-2.0" ]
0
7e8d3e6193c807f7c55d8453f64e1bc3c02eee30
https://github.com/saman-aghazadeh/distiller/tree/7e8d3e6193c807f7c55d8453f64e1bc3c02eee30
import math import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from torch.optim.lr_scheduler import * import torch.optim.lr_scheduler import torch.quantization from torch.nn.parameter import Parameter import torch.onnx import torch.testing class EltwiseAdd(nn.Module): def __init__(self, inplace=False): """Element-wise addition""" super().__init__() self.inplace = inplace def forward(self, *input): res = input[0] if self.inplace: for t in input[1:]: res += t else: for t in input[1:]: res = res + t return res class EltwiseMult(nn.Module): def __init__(self, inplace=False): """Element-wise multiplication""" super().__init__() self.inplace = inplace def forward(self, *input): res = input[0] if self.inplace: for t in input[1:]: res *= t else: for t in input[1:]: res = res * t return res class Matmul(nn.Module): """ A wrapper module for matmul operation between 2 tensors. """ def __init__(self): super().__init__() def forward(self, a: 'torch.Tensor', b: 'torch.Tensor'): return a.matmul(b) class BatchMatmul(nn.Module): """ A wrapper module for torch.bmm operation between 2 tensors. """ def __init__(self): super().__init__() def forward(self, a: 'torch.Tensor', b: 'torch.Tensor'): return torch.bmm(a, b) class Model(nn.Module): """ It should be very similar to tf.contrib.seq2seq.BahdanauAttention """ def __init__(self, query_size, key_size, num_units, normalize=False, dropout=0, batch_first=False): super().__init__() self.normalize = normalize self.batch_first = batch_first self.num_units = num_units self.linear_q = nn.Linear(query_size, num_units, bias=False) self.linear_k = nn.Linear(key_size, num_units, bias=False) self.linear_att = Parameter(torch.Tensor(num_units)) self.dropout = nn.Dropout(dropout) self.mask = None self.eltwiseadd_qk = EltwiseAdd() self.eltwiseadd_norm_bias = EltwiseAdd() self.eltwisemul_norm_scaler = EltwiseMult() self.tanh = nn.Tanh() self.matmul_score = Matmul() self.softmax_att = nn.Softmax(dim=-1) self.context_matmul = BatchMatmul() if self.normalize: self.normalize_scalar = Parameter(torch.Tensor(1)) self.normalize_bias = Parameter(torch.Tensor(num_units)) else: self.register_parameter('normalize_scalar', None) self.register_parameter('normalize_bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.num_units) self.linear_att.data.uniform_(-stdv, stdv) if self.normalize: self.normalize_scalar.data.fill_(stdv) self.normalize_bias.data.zero_() def set_mask(self, context_len, context): """ sets self.mask which is applied before softmax ones for inactive context fields, zeros for active context fields :param context_len: b :param context: if batch_first: (b x t_k x n) else: (t_k x b x n) self.mask: (b x t_k) """ if self.batch_first: max_len = context.size(1) else: max_len = context.size(0) indices = torch.arange(0, max_len, dtype=torch.int64, device= context.device) self.mask = indices >= context_len.unsqueeze(1) def calc_score(self, att_query, att_keys): """ Calculate Bahdanau score :param att_query: b x t_q x n :param att_keys: b x t_k x n return b x t_q x t_k scores """ b, t_k, n = att_keys.size() t_q = att_query.size(1) # ... truncated (>4000 chars) for memory efficiency
GaussMembFunc
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/4z/c4z5f5sypbvdzckwli2vgwoo37wqsejweryvcktm6nccmzns6jtu.py # Topologically Sorted Source Nodes: [sub, pow_1, neg, pow_2, mul, truediv, val], Original ATen: [aten.sub, aten.pow, aten.neg, aten.mul, aten.div, aten.exp] # Source node to ATen node mapping: # mul => mul # neg => neg # pow_1 => pow_1 # pow_2 => pow_2 # sub => sub # truediv => div # val => exp # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_1,), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, 2), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, %mul), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div,), kwargs = {}) triton_poi_fused_div_exp_mul_neg_pow_sub_0 = async_compile.triton('triton_poi_fused_div_exp_mul_neg_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_exp_mul_neg_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_exp_mul_neg_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp6 = tl.load(in_ptr2 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp3 = tmp0 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = -tmp4 tmp8 = tmp7 * tmp7 tmp9 = 2.0 tmp10 = tmp8 * tmp9 tmp11 = tmp5 / tmp10 tmp12 = tl_math.exp(tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, pow_1, neg, pow_2, mul, truediv, val], Original ATen: [aten.sub, aten.pow, aten.neg, aten.mul, aten.div, aten.exp] stream0 = get_raw_stream(0) triton_poi_fused_div_exp_mul_neg_pow_sub_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0) return (buf0, primals_1, primals_2, primals_3, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch def _mk_param(val): """Make a torch parameter from a scalar value""" if isinstance(val, torch.Tensor): val = val.item() return torch.nn.Parameter(torch.tensor(val, dtype=torch.float)) class GaussMembFunc(torch.nn.Module): """ Gaussian membership functions, defined by two parameters: mu, the mean (center) sigma, the standard deviation. """ def __init__(self, mu, sigma): super(GaussMembFunc, self).__init__() self.register_parameter('mu', _mk_param(mu)) self.register_parameter('sigma', _mk_param(sigma)) def forward(self, x): val = torch.exp(-torch.pow(x - self.mu, 2) / (2 * self.sigma ** 2)) return val def pretty(self): return 'GaussMembFunc {} {}'.format(self.mu, self.sigma) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'mu': 4, 'sigma': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_exp_mul_neg_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp6 = tl.load(in_ptr2 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp3 = tmp0 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = -tmp4 tmp8 = tmp7 * tmp7 tmp9 = 2.0 tmp10 = tmp8 * tmp9 tmp11 = tmp5 / tmp10 tmp12 = tl_math.exp(tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_exp_mul_neg_pow_sub_0[grid(256)](primals_2, primals_1, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf0, primals_1, primals_2, primals_3, buf0 def _mk_param(val): """Make a torch parameter from a scalar value""" if isinstance(val, torch.Tensor): val = val.item() return torch.nn.Parameter(torch.tensor(val, dtype=torch.float)) class GaussMembFuncNew(torch.nn.Module): """ Gaussian membership functions, defined by two parameters: mu, the mean (center) sigma, the standard deviation. """ def __init__(self, mu, sigma): super(GaussMembFuncNew, self).__init__() self.register_parameter('mu', _mk_param(mu)) self.register_parameter('sigma', _mk_param(sigma)) def pretty(self): return 'GaussMembFunc {} {}'.format(self.mu, self.sigma) def forward(self, input_0): primals_1 = self.mu primals_3 = self.sigma primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
samxu0823/anfis-pytorch
GaussMembFunc
false
4,261
[ "MIT" ]
0
b4ec3f0e8259963800e9e0a2904a580d1e56cc1c
https://github.com/samxu0823/anfis-pytorch/tree/b4ec3f0e8259963800e9e0a2904a580d1e56cc1c
import torch def _mk_param(val): """Make a torch parameter from a scalar value""" if isinstance(val, torch.Tensor): val = val.item() return torch.nn.Parameter(torch.tensor(val, dtype=torch.float)) class Model(torch.nn.Module): """ Gaussian membership functions, defined by two parameters: mu, the mean (center) sigma, the standard deviation. """ def __init__(self, mu, sigma): super().__init__() self.register_parameter('mu', _mk_param(mu)) self.register_parameter('sigma', _mk_param(sigma)) def forward(self, x): val = torch.exp(-torch.pow(x - self.mu, 2) / (2 * self.sigma ** 2)) return val def pretty(self): return 'GaussMembFunc {} {}'.format(self.mu, self.sigma) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
qy
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu] # Source node to ATen node mapping: # h => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [loc_y], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class qy(nn.Module): def __init__(self, d_dim, x_dim, y_dim, z_dim): super(qy, self).__init__() self.fc1 = nn.Linear(z_dim, y_dim) torch.nn.init.xavier_uniform_(self.fc1.weight) self.fc1.bias.data.zero_() def forward(self, zy): h = F.relu(zy) loc_y = self.fc1(h) return loc_y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_dim': 4, 'x_dim': 4, 'y_dim': 4, 'z_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (64, 4), (4, 1), 0) class qyNew(nn.Module): def __init__(self, d_dim, x_dim, y_dim, z_dim): super(qyNew, self).__init__() self.fc1 = nn.Linear(z_dim, y_dim) torch.nn.init.xavier_uniform_(self.fc1.weight) self.fc1.bias.data.zero_() def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sautami26/DIVA
qy
false
4,262
[ "MIT" ]
0
52af683db216cb6e2ac777597fd9ec744ce7c8f2
https://github.com/sautami26/DIVA/tree/52af683db216cb6e2ac777597fd9ec744ce7c8f2
import torch import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): def __init__(self, d_dim, x_dim, y_dim, z_dim): super().__init__() self.fc1 = nn.Linear(z_dim, y_dim) torch.nn.init.xavier_uniform_(self.fc1.weight) self.fc1.bias.data.zero_() def forward(self, zy): h = F.relu(zy) loc_y = self.fc1(h) return loc_y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4, 4]
BertAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6m/c6mhj5zwirfhy5e4o45uaeov72uwfby4udubpm2fcz42iqvs2g57.py # Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # hidden_states_2 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_3), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/l3/cl3bnd5pv2p4ydfmlj74bv4mbiwr2ntrdvbubnjubetyhosmxag6.py # Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # hidden_states_2 => add_1, add_2, mul, mul_1, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1.0), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_10), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_11), kwargs = {}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf2, primals_7, buf8, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_9 buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(buf11, primals_3, buf12, buf13, 16, grid=grid(16), stream=stream0) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(buf11, primals_3, buf12, buf13, primals_10, primals_11, buf14, 64, grid=grid(64), stream=stream0) del buf12 del buf13 del primals_11 return (buf14, primals_3, primals_10, buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, primals_8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch import torch.nn as nn import torch.utils.checkpoint class BertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if (config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, 'embedding_size')): raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, 'position_embedding_type', 'absolute') if (self.position_embedding_type == 'relative_key' or self. position_embedding_type == 'relative_key_query'): self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config. max_position_embeddings - 1, self.attention_head_size) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) if encoder_hidden_states is not None: mixed_key_layer = self.key(encoder_hidden_states) mixed_value_layer = self.value(encoder_hidden_states) attention_mask = encoder_attention_mask else: mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if (self.position_embedding_type == 'relative_key' or self. position_embedding_type == 'relative_key_query'): seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self. max_position_embeddings - 1) positional_embedding = positional_embedding if self.position_embedding_type == 'relative_key': relative_position_scores = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == 'relative_key_query': relative_position_scores_query = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding) relative_position_scores_key = torch.einsum('bhrd,lrd->bhlr', key_layer, positional_embedding) attention_scores = (attention_scores + relative_position_scores_query + relative_position_scores_key) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class BertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config. layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices(heads, self.self. num_attention_heads, self.self.attention_head_size, self. pruned_heads) self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) self.self.num_attention_heads = self.self.num_attention_heads - len( heads) self.self.all_head_size = (self.self.attention_head_size * self. self.num_attention_heads) self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=False): self_outputs = self.self(hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] return outputs def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5, position_embedding_type=4, layer_norm_eps=1, hidden_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 triton_poi_fused_3[grid(16, 4)](buf2, primals_7, buf8, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_7 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.addmm(primals_9, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_9 buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(16)](buf11, primals_3, buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(64)](buf11, primals_3, buf12, buf13, primals_10, primals_11, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf12 del buf13 del primals_11 return buf14, primals_3, primals_10, buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, primals_8 class BertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if (config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, 'embedding_size')): raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, 'position_embedding_type', 'absolute') if (self.position_embedding_type == 'relative_key' or self. position_embedding_type == 'relative_key_query'): self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config. max_position_embeddings - 1, self.attention_head_size) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) if encoder_hidden_states is not None: mixed_key_layer = self.key(encoder_hidden_states) mixed_value_layer = self.value(encoder_hidden_states) attention_mask = encoder_attention_mask else: mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if (self.position_embedding_type == 'relative_key' or self. position_embedding_type == 'relative_key_query'): seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self. max_position_embeddings - 1) positional_embedding = positional_embedding if self.position_embedding_type == 'relative_key': relative_position_scores = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == 'relative_key_query': relative_position_scores_query = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding) relative_position_scores_key = torch.einsum('bhrd,lrd->bhlr', key_layer, positional_embedding) attention_scores = (attention_scores + relative_position_scores_query + relative_position_scores_key) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class BertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config. layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttentionNew(nn.Module): def __init__(self, config): super().__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices(heads, self.self. num_attention_heads, self.self.attention_head_size, self. pruned_heads) self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) self.self.num_attention_heads = self.self.num_attention_heads - len( heads) self.self.all_head_size = (self.self.attention_head_size * self. self.num_attention_heads) self.pruned_heads = self.pruned_heads.union(heads) def forward(self, input_0): primals_1 = self.self.query.weight primals_2 = self.self.query.bias primals_4 = self.self.key.weight primals_5 = self.self.key.bias primals_6 = self.self.value.weight primals_7 = self.self.value.bias primals_8 = self.output.dense.weight primals_9 = self.output.dense.bias primals_10 = self.output.LayerNorm.weight primals_11 = self.output.LayerNorm.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
Hzfinfdu/Black-Box-Tuning
BertAttention
false
4,263
[ "MIT" ]
0
64eb5505875dc1b242c6f0a2a2f07e4000c24cb4
https://github.com/Hzfinfdu/Black-Box-Tuning/tree/64eb5505875dc1b242c6f0a2a2f07e4000c24cb4
from _paritybench_helpers import _mock_config import math import torch import torch.nn as nn import torch.utils.checkpoint class BertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if (config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, 'embedding_size')): raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, 'position_embedding_type', 'absolute') if (self.position_embedding_type == 'relative_key' or self. position_embedding_type == 'relative_key_query'): self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config. max_position_embeddings - 1, self.attention_head_size) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) if encoder_hidden_states is not None: mixed_key_layer = self.key(encoder_hidden_states) mixed_value_layer = self.value(encoder_hidden_states) attention_mask = encoder_attention_mask else: mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if (self.position_embedding_type == 'relative_key' or self. position_embedding_type == 'relative_key_query'): seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self. max_position_embeddings - 1) positional_embedding = positional_embedding if self.position_embedding_type == 'relative_key': relative_position_scores = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == 'relative_key_query': relative_position_scores_query = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding) relative_position_scores_key = torch.einsum('bhrd,lrd->bhlr', key_layer, positional_embedding) attention_scores = (attention_scores + relative_position_scores_query + # ... truncated (>4000 chars) for memory efficiency
down
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/e6/ce6fwb7cuhy3qppzvzwzq3dqytlyhklktwnjhzdza6cxmtqodq25.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_1, [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/j6/cj6n5qdz5f6f2g4oatwbm2xfskl6mdyix2skekye6ilanaqhphqv.py # Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # x_1 => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.1), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 15376 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 961) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zg/czgcv4szvzqiitflipuf2423tmuqp5ogktsqdb2cvy5thsi6rpqj.py # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_2 => gt_1, mul_1, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 14400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 900) % 4 x2 = (xindex // 3600) x4 = xindex % 3600 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x4 + (3712*x2)), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(primals_1, buf0, 16384, grid=grid(16384), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 31, 31), (3844, 961, 31, 1)) buf2 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_1.run(buf1, primals_3, buf2, buf3, 15376, grid=grid(15376), stream=stream0) del buf1 del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 30, 30), (3600, 900, 30, 1)) buf5 = empty_strided_cuda((4, 4, 30, 30), (3712, 900, 30, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 30, 30), (3600, 900, 30, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf4, primals_5, buf5, buf6, 14400, grid=grid(14400), stream=stream0) del buf4 del primals_5 return (buf6, primals_2, primals_4, buf0, buf2, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.functional import F import torch.nn as nn import torch.nn.functional as F class down(nn.Module): """ A class for creating neural network blocks containing layers: Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels, filterSize): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used as input and output channels for the second convolutional layer. filterSize : int filter size for the convolution filter. input N would create a N x N filter. """ super(down, self).__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride= 1, padding=int((filterSize - 1) / 2)) self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride =1, padding=int((filterSize - 1) / 2)) def forward(self, x): """ Returns output tensor after passing input `x` to the neural network block. Parameters ---------- x : tensor input to the NN block. Returns ------- tensor output of the NN block. """ x = F.avg_pool2d(x, 2) x = F.leaky_relu(self.conv1(x), negative_slope=0.1) x = F.leaky_relu(self.conv2(x), negative_slope=0.1) return x def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [[], {'inChannels': 4, 'outChannels': 4, 'filterSize': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 15376 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 961 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 14400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 900 % 4 x2 = xindex // 3600 x4 = xindex % 3600 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x4 + 3712 * x2), tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(16384)](primals_1, buf0, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 31, 31), (3844, 961, 31, 1)) buf2 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch .bool) buf3 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch .float32) triton_poi_fused_convolution_leaky_relu_1[grid(15376)](buf1, primals_3, buf2, buf3, 15376, XBLOCK=256, num_warps=4, num_stages=1 ) del buf1 del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 30, 30), (3600, 900, 30, 1)) buf5 = empty_strided_cuda((4, 4, 30, 30), (3712, 900, 30, 1), torch .bool) buf6 = empty_strided_cuda((4, 4, 30, 30), (3600, 900, 30, 1), torch .float32) triton_poi_fused_convolution_leaky_relu_2[grid(14400)](buf4, primals_5, buf5, buf6, 14400, XBLOCK=256, num_warps=4, num_stages=1 ) del buf4 del primals_5 return buf6, primals_2, primals_4, buf0, buf2, buf3, buf5 class downNew(nn.Module): """ A class for creating neural network blocks containing layers: Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels, filterSize): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used as input and output channels for the second convolutional layer. filterSize : int filter size for the convolution filter. input N would create a N x N filter. """ super(downNew, self).__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride= 1, padding=int((filterSize - 1) / 2)) self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride =1, padding=int((filterSize - 1) / 2)) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
samuelpietri/Super-SloMo
down
false
4,264
[ "MIT" ]
0
e20eaa5550c30737be42b61f8e82e731cfd17457
https://github.com/samuelpietri/Super-SloMo/tree/e20eaa5550c30737be42b61f8e82e731cfd17457
import torch from torch.functional import F import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ A class for creating neural network blocks containing layers: Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels, filterSize): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used as input and output channels for the second convolutional layer. filterSize : int filter size for the convolution filter. input N would create a N x N filter. """ super().__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride= 1, padding=int((filterSize - 1) / 2)) self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride =1, padding=int((filterSize - 1) / 2)) def forward(self, x): """ Returns output tensor after passing input `x` to the neural network block. Parameters ---------- x : tensor input to the NN block. Returns ------- tensor output of the NN block. """ x = F.avg_pool2d(x, 2) x = F.leaky_relu(self.conv1(x), negative_slope=0.1) x = F.leaky_relu(self.conv2(x), negative_slope=0.1) return x def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [4, 4, 4]
BellMembFunc
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/eb/cebvdz62qer4oz5rwrmgolin6f7xce7tjvzcl2p4jvitglhropzk.py # Topologically Sorted Source Nodes: [sub, truediv, dist, pow_2, add, reciprocal], Original ATen: [aten.sub, aten.div, aten.pow, aten.add, aten.reciprocal] # Source node to ATen node mapping: # add => add # dist => pow_1 # pow_2 => pow_2 # reciprocal => reciprocal # sub => sub # truediv => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %primals_3), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div, 2), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%pow_1, %primals_4), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add,), kwargs = {}) triton_poi_fused_add_div_pow_reciprocal_sub_0 = async_compile.triton('triton_poi_fused_add_div_pow_reciprocal_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_reciprocal_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_pow_reciprocal_sub_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + (0)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp8 = tl.load(in_ptr3 + (0)) tmp9 = tl.broadcast_to(tmp8, [XBLOCK]) tmp3 = tmp0 - tmp2 tmp6 = tmp3 / tmp5 tmp7 = tmp6 * tmp6 tmp10 = libdevice.pow(tmp7, tmp9) tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tl.full([1], 1, tl.int32) tmp14 = tmp13 / tmp12 tl.store(out_ptr0 + (x0), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (), ()) assert_size_stride(primals_4, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, truediv, dist, pow_2, add, reciprocal], Original ATen: [aten.sub, aten.div, aten.pow, aten.add, aten.reciprocal] stream0 = get_raw_stream(0) triton_poi_fused_add_div_pow_reciprocal_sub_0.run(primals_2, primals_1, primals_3, primals_4, buf0, 256, grid=grid(256), stream=stream0) return (buf0, primals_1, primals_2, primals_3, primals_4, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((), (), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch def _mk_param(val): """Make a torch parameter from a scalar value""" if isinstance(val, torch.Tensor): val = val.item() return torch.nn.Parameter(torch.tensor(val, dtype=torch.float)) class BellMembFunc(torch.nn.Module): """ Generalised Bell membership function; defined by three parameters: a, the half-width (at the crossover point) b, controls the slope at the crossover point (which is -b/2a) c, the center point """ def __init__(self, a, b, c): super(BellMembFunc, self).__init__() self.register_parameter('a', _mk_param(a)) self.register_parameter('b', _mk_param(b)) self.register_parameter('c', _mk_param(c)) self.b.register_hook(BellMembFunc.b_log_hook) @staticmethod def b_log_hook(grad): """ Possibility of a log(0) in the grad for b, giving a nan. Fix this by replacing any nan in the grad with ~0. """ grad[torch.isnan(grad)] = 1e-09 return grad def forward(self, x): dist = torch.pow((x - self.c) / self.a, 2) return torch.reciprocal(1 + torch.pow(dist, self.b)) def pretty(self): return 'BellMembFunc {} {} {}'.format(self.a, self.b, self.c) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'a': 4, 'b': 4, 'c': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_pow_reciprocal_sub_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp8 = tl.load(in_ptr3 + 0) tmp9 = tl.broadcast_to(tmp8, [XBLOCK]) tmp3 = tmp0 - tmp2 tmp6 = tmp3 / tmp5 tmp7 = tmp6 * tmp6 tmp10 = libdevice.pow(tmp7, tmp9) tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tl.full([1], 1, tl.int32) tmp14 = tmp13 / tmp12 tl.store(out_ptr0 + x0, tmp14, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (), ()) assert_size_stride(primals_4, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_pow_reciprocal_sub_0[grid(256)](primals_2, primals_1, primals_3, primals_4, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf0, primals_1, primals_2, primals_3, primals_4, buf0 def _mk_param(val): """Make a torch parameter from a scalar value""" if isinstance(val, torch.Tensor): val = val.item() return torch.nn.Parameter(torch.tensor(val, dtype=torch.float)) class BellMembFuncNew(torch.nn.Module): """ Generalised Bell membership function; defined by three parameters: a, the half-width (at the crossover point) b, controls the slope at the crossover point (which is -b/2a) c, the center point """ def __init__(self, a, b, c): super(BellMembFuncNew, self).__init__() self.register_parameter('a', _mk_param(a)) self.register_parameter('b', _mk_param(b)) self.register_parameter('c', _mk_param(c)) self.b.register_hook(BellMembFuncNew.b_log_hook) @staticmethod def b_log_hook(grad): """ Possibility of a log(0) in the grad for b, giving a nan. Fix this by replacing any nan in the grad with ~0. """ grad[torch.isnan(grad)] = 1e-09 return grad def pretty(self): return 'BellMembFunc {} {} {}'.format(self.a, self.b, self.c) def forward(self, input_0): primals_1 = self.a primals_3 = self.b primals_4 = self.c primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
samxu0823/anfis-pytorch
BellMembFunc
false
4,265
[ "MIT" ]
0
b4ec3f0e8259963800e9e0a2904a580d1e56cc1c
https://github.com/samxu0823/anfis-pytorch/tree/b4ec3f0e8259963800e9e0a2904a580d1e56cc1c
import torch def _mk_param(val): """Make a torch parameter from a scalar value""" if isinstance(val, torch.Tensor): val = val.item() return torch.nn.Parameter(torch.tensor(val, dtype=torch.float)) class Model(torch.nn.Module): """ Generalised Bell membership function; defined by three parameters: a, the half-width (at the crossover point) b, controls the slope at the crossover point (which is -b/2a) c, the center point """ def __init__(self, a, b, c): super().__init__() self.register_parameter('a', _mk_param(a)) self.register_parameter('b', _mk_param(b)) self.register_parameter('c', _mk_param(c)) self.b.register_hook(BellMembFunc.b_log_hook) @staticmethod def b_log_hook(grad): """ Possibility of a log(0) in the grad for b, giving a nan. Fix this by replacing any nan in the grad with ~0. """ grad[torch.isnan(grad)] = 1e-09 return grad def forward(self, x): dist = torch.pow((x - self.c) / self.a, 2) return torch.reciprocal(1 + torch.pow(dist, self.b)) def pretty(self): return 'BellMembFunc {} {} {}'.format(self.a, self.b, self.c) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
qd
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu] # Source node to ATen node mapping: # h => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [loc_d], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class qd(nn.Module): def __init__(self, d_dim, x_dim, y_dim, z_dim): super(qd, self).__init__() self.fc1 = nn.Linear(z_dim, d_dim) torch.nn.init.xavier_uniform_(self.fc1.weight) self.fc1.bias.data.zero_() def forward(self, zd): h = F.relu(zd) loc_d = self.fc1(h) return loc_d def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_dim': 4, 'x_dim': 4, 'y_dim': 4, 'z_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (64, 4), (4, 1), 0) class qdNew(nn.Module): def __init__(self, d_dim, x_dim, y_dim, z_dim): super(qdNew, self).__init__() self.fc1 = nn.Linear(z_dim, d_dim) torch.nn.init.xavier_uniform_(self.fc1.weight) self.fc1.bias.data.zero_() def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sautami26/DIVA
qd
false
4,266
[ "MIT" ]
0
52af683db216cb6e2ac777597fd9ec744ce7c8f2
https://github.com/sautami26/DIVA/tree/52af683db216cb6e2ac777597fd9ec744ce7c8f2
import torch import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): def __init__(self, d_dim, x_dim, y_dim, z_dim): super().__init__() self.fc1 = nn.Linear(z_dim, d_dim) torch.nn.init.xavier_uniform_(self.fc1.weight) self.fc1.bias.data.zero_() def forward(self, zd): h = F.relu(zd) loc_d = self.fc1(h) return loc_d def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4, 4]
ConditionalBatchNorm2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/7h/c7h472oam6vlzx7yb5mtc3kdy3p5vvd7jgap45mgevlf5geawq4f.py # Topologically Sorted Source Nodes: [matmul, norm], Original ATen: [aten.mv, aten.linalg_vector_norm] # Source node to ATen node mapping: # matmul => mul_2, sum_1 # norm => pow_1, sum_2 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute, %primals_4), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {}) triton_per_fused_linalg_vector_norm_mv_0 = async_compile.triton('triton_per_fused_linalg_vector_norm_mv_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_mv_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_linalg_vector_norm_mv_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.load(in_ptr0 + (4 + r0), None) tmp5 = tl.load(in_ptr1 + (1)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp9 = tl.load(in_ptr0 + (8 + r0), None) tmp10 = tl.load(in_ptr1 + (2)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr0 + (12 + r0), None) tmp15 = tl.load(in_ptr1 + (3)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = tmp18 * tmp18 tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK]) tmp22 = tl.sum(tmp20, 1)[:, None] tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp18, None) tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp22, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vn/cvni2qgjd2juowltkhd53nvyjor5s5rs2db3273tfh2p6in366cc.py # Topologically Sorted Source Nodes: [norm, add, v, matmul_1, norm_1, add_1, u, sigma], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mv, aten.dot] # Source node to ATen node mapping: # add => add_1 # add_1 => add_2 # matmul_1 => mul_3, sum_3 # norm => pow_2 # norm_1 => pow_3, pow_4, sum_4 # sigma => mul_5, sum_6 # u => div_1 # v => div # Graph fragment: # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 0.0001), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %div), kwargs = {}) # %sum_3 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 2), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, None), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_4, 0.5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_4, 0.0001), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %add_2), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %sum_3), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_5,), kwargs = {}) triton_per_fused_add_div_dot_linalg_vector_norm_mv_1 = async_compile.triton('triton_per_fused_add_div_dot_linalg_vector_norm_mv_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_dot_linalg_vector_norm_mv_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_dot_linalg_vector_norm_mv_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp3 = tl.load(in_ptr2 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp10 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (1)) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp16 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (2)) tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp22 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + (3)) tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp5 = libdevice.sqrt(tmp4) tmp6 = 0.0001 tmp7 = tmp5 + tmp6 tmp8 = tmp2 / tmp7 tmp9 = tmp0 * tmp8 tmp13 = tmp12 / tmp7 tmp14 = tmp10 * tmp13 tmp15 = tmp9 + tmp14 tmp19 = tmp18 / tmp7 tmp20 = tmp16 * tmp19 tmp21 = tmp15 + tmp20 tmp25 = tmp24 / tmp7 tmp26 = tmp22 * tmp25 tmp27 = tmp21 + tmp26 tmp28 = tmp27 * tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.sum(tmp29, 1)[:, None] tmp32 = libdevice.sqrt(tmp31) tmp33 = tmp32 + tmp6 tmp34 = tmp27 / tmp33 tmp35 = tmp34 * tmp27 tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK]) tmp38 = tl.sum(tmp36, 1)[:, None] tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp38, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qa/cqacjmg5thruiiympgmeg563tgu547tvricd27codfxv36x3vdcv.py # Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div] # Source node to ATen node mapping: # truediv_2 => div_2 # Graph fragment: # %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_5, %expand), kwargs = {}) triton_poi_fused_div_2 = async_compile.triton('triton_poi_fused_div_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 / tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7p/c7pbdjyinlr4jzoslxhdn74su3e6kah3nd373g2lidkiorfsskik.py # Topologically Sorted Source Nodes: [out, mul, out_1], Original ATen: [aten._native_batch_norm_legit_no_training, aten.mul, aten.add] # Source node to ATen node mapping: # mul => mul_10 # out => mul_1, sub # out_1 => add_6 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %unsqueeze_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %unsqueeze_3), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_6, %mul_1), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_10, %view_7), kwargs = {}) triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3 = async_compile.triton('triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = (xindex // 16) x4 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x4), None) tmp4 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x1), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr4 + (x3), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp5 = tmp3 - tmp4 tmp7 = 0.0001 tmp8 = tmp6 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = tl.full([1], 1, tl.int32) tmp11 = tmp10 / tmp9 tmp12 = tmp11 * tmp1 tmp13 = tmp5 * tmp12 tmp14 = tmp2 * tmp13 tmp16 = tmp14 + tmp15 tl.store(out_ptr0 + (x4), tmp16, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (64, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.float32) buf1 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [matmul, norm], Original ATen: [aten.mv, aten.linalg_vector_norm] stream0 = get_raw_stream(0) triton_per_fused_linalg_vector_norm_mv_0.run(primals_5, primals_4, buf0, buf1, 1, 4, grid=grid(1), stream=stream0) buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [norm, add, v, matmul_1, norm_1, add_1, u, sigma], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mv, aten.dot] triton_per_fused_add_div_dot_linalg_vector_norm_mv_1.run(buf4, primals_5, buf0, buf1, 1, 4, grid=grid(1), stream=stream0) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div] triton_poi_fused_div_2.run(primals_5, buf4, buf5, 16, grid=grid(16), stream=stream0) buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (4, 4), (1, 4), 0), out=buf6) buf7 = buf0; del buf0 # reuse buf8 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [matmul_2, norm_2], Original ATen: [aten.mv, aten.linalg_vector_norm] triton_per_fused_linalg_vector_norm_mv_0.run(primals_8, primals_7, buf7, buf8, 1, 4, grid=grid(1), stream=stream0) buf10 = buf1; del buf1 # reuse buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [norm_2, add_3, v_1, matmul_3, norm_3, add_4, u_1, sigma_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mv, aten.dot] triton_per_fused_add_div_dot_linalg_vector_norm_mv_1.run(buf11, primals_8, buf7, buf8, 1, 4, grid=grid(1), stream=stream0) del buf7 del buf8 buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv_5], Original ATen: [aten.div] triton_poi_fused_div_2.run(primals_8, buf11, buf12, 16, grid=grid(16), stream=stream0) del buf11 buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [beta], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(buf12, (4, 4), (1, 4), 0), out=buf13) buf14 = empty_strided_cuda((64, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out, mul, out_1], Original ATen: [aten._native_batch_norm_legit_no_training, aten.mul, aten.add] triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3.run(buf6, primals_1, primals_2, primals_3, buf13, buf14, 4096, grid=grid(4096), stream=stream0) del buf13 del buf6 return (buf14, buf5, buf12, primals_1, primals_2, primals_3, primals_4, primals_5, primals_7, primals_8, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import Parameter def l2normalize(v, eps=0.0001): return v / (v.norm() + eps) class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] _w = w.view(height, -1) for _ in range(self.power_iterations): v = l2normalize(torch.matmul(_w.t(), u)) u = l2normalize(torch.matmul(_w, v)) sigma = u.dot(_w.mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class ConditionalBatchNorm2d(nn.Module): def __init__(self, num_features, num_classes, eps=0.0001, momentum=0.1): super().__init__() self.num_features = num_features self.bn = nn.BatchNorm2d(num_features, affine=False, eps=eps, momentum=momentum) self.gamma_embed = SpectralNorm(nn.Linear(num_classes, num_features, bias=False)) self.beta_embed = SpectralNorm(nn.Linear(num_classes, num_features, bias=False)) def forward(self, x, y): out = self.bn(x) gamma = self.gamma_embed(y) + 1 beta = self.beta_embed(y) out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1, self.num_features, 1, 1) return out def get_inputs(): return [torch.rand([64, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_features': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_linalg_vector_norm_mv_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.load(in_ptr0 + (4 + r0), None) tmp5 = tl.load(in_ptr1 + 1) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp9 = tl.load(in_ptr0 + (8 + r0), None) tmp10 = tl.load(in_ptr1 + 2) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr0 + (12 + r0), None) tmp15 = tl.load(in_ptr1 + 3) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = tmp18 * tmp18 tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK]) tmp22 = tl.sum(tmp20, 1)[:, None] tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp18, None) tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp22, None) @triton.jit def triton_per_fused_add_div_dot_linalg_vector_norm_mv_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp3 = tl.load(in_ptr2 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp10 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + 1) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp16 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + 2) tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp22 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + 3) tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp5 = libdevice.sqrt(tmp4) tmp6 = 0.0001 tmp7 = tmp5 + tmp6 tmp8 = tmp2 / tmp7 tmp9 = tmp0 * tmp8 tmp13 = tmp12 / tmp7 tmp14 = tmp10 * tmp13 tmp15 = tmp9 + tmp14 tmp19 = tmp18 / tmp7 tmp20 = tmp16 * tmp19 tmp21 = tmp15 + tmp20 tmp25 = tmp24 / tmp7 tmp26 = tmp22 * tmp25 tmp27 = tmp21 + tmp26 tmp28 = tmp27 * tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.sum(tmp29, 1)[:, None] tmp32 = libdevice.sqrt(tmp31) tmp33 = tmp32 + tmp6 tmp34 = tmp27 / tmp33 tmp35 = tmp34 * tmp27 tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK]) tmp38 = tl.sum(tmp36, 1)[:, None] tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp38, None) @triton.jit def triton_poi_fused_div_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 / tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex // 16 x4 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x4, None) tmp4 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x1, None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr4 + x3, None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp5 = tmp3 - tmp4 tmp7 = 0.0001 tmp8 = tmp6 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = tl.full([1], 1, tl.int32) tmp11 = tmp10 / tmp9 tmp12 = tmp11 * tmp1 tmp13 = tmp5 * tmp12 tmp14 = tmp2 * tmp13 tmp16 = tmp14 + tmp15 tl.store(out_ptr0 + x4, tmp16, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (64, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) buf1 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_linalg_vector_norm_mv_0[grid(1)](primals_5, primals_4, buf0, buf1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3 del buf3 triton_per_fused_add_div_dot_linalg_vector_norm_mv_1[grid(1)](buf4, primals_5, buf0, buf1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_div_2[grid(16)](primals_5, buf4, buf5, 16, XBLOCK= 16, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (4, 4), (1, 4), 0), out=buf6) buf7 = buf0 del buf0 buf8 = buf4 del buf4 triton_per_fused_linalg_vector_norm_mv_0[grid(1)](primals_8, primals_7, buf7, buf8, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf10 = buf1 del buf1 buf11 = buf10 del buf10 triton_per_fused_add_div_dot_linalg_vector_norm_mv_1[grid(1)](buf11, primals_8, buf7, buf8, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf7 del buf8 buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_div_2[grid(16)](primals_8, buf11, buf12, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf11 buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(buf12, (4, 4), (1, 4), 0), out=buf13) buf14 = empty_strided_cuda((64, 4, 4, 4), (64, 16, 4, 1), torch.float32 ) triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3[grid (4096)](buf6, primals_1, primals_2, primals_3, buf13, buf14, 4096, XBLOCK=256, num_warps=4, num_stages=1) del buf13 del buf6 return (buf14, buf5, buf12, primals_1, primals_2, primals_3, primals_4, primals_5, primals_7, primals_8, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0)) def l2normalize(v, eps=0.0001): return v / (v.norm() + eps) class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] _w = w.view(height, -1) for _ in range(self.power_iterations): v = l2normalize(torch.matmul(_w.t(), u)) u = l2normalize(torch.matmul(_w, v)) sigma = u.dot(_w.mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class ConditionalBatchNorm2dNew(nn.Module): def __init__(self, num_features, num_classes, eps=0.0001, momentum=0.1): super().__init__() self.num_features = num_features self.bn = nn.BatchNorm2d(num_features, affine=False, eps=eps, momentum=momentum) self.gamma_embed = SpectralNorm(nn.Linear(num_classes, num_features, bias=False)) self.beta_embed = SpectralNorm(nn.Linear(num_classes, num_features, bias=False)) def forward(self, input_0, input_1): primals_2 = self.gamma_embed.module.weight_u primals_3 = self.gamma_embed.module.weight_v primals_5 = self.gamma_embed.module.weight_bar primals_4 = self.beta_embed.module.weight_u primals_7 = self.beta_embed.module.weight_v primals_8 = self.beta_embed.module.weight_bar primals_1 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
samuelemarro/anne
ConditionalBatchNorm2d
false
4,267
[ "MIT" ]
0
918022eb029a46fbfd1589369e9817f570d5651c
https://github.com/samuelemarro/anne/tree/918022eb029a46fbfd1589369e9817f570d5651c
import torch import torch.nn as nn from torch.nn import Parameter def l2normalize(v, eps=0.0001): return v / (v.norm() + eps) class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super().__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] _w = w.view(height, -1) for _ in range(self.power_iterations): v = l2normalize(torch.matmul(_w.t(), u)) u = l2normalize(torch.matmul(_w, v)) sigma = u.dot(_w.mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class Model(nn.Module): def __init__(self, num_features, num_classes, eps=0.0001, momentum=0.1): super().__init__() self.num_features = num_features self.bn = nn.BatchNorm2d(num_features, affine=False, eps=eps, momentum=momentum) self.gamma_embed = SpectralNorm(nn.Linear(num_classes, num_features, bias=False)) self.beta_embed = SpectralNorm(nn.Linear(num_classes, num_features, bias=False)) def forward(self, x, y): out = self.bn(x) gamma = self.gamma_embed(y) + 1 beta = self.beta_embed(y) out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1, self.num_features, 1, 1) return out def get_inputs(): return [torch.rand([64, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
GlobalAvgPool1d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/an/canusqrnw4njor7uwvf6vo7b6joi5xh6pmd66qfugkeeoq5wo34u.py # Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # avg_pool1d => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%unsqueeze, [1, 4], [1, 4]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from abc import abstractmethod from torch.nn import functional class AvgPool(nn.Module): """ AvgPool Module. """ def __init__(self): super().__init__() @abstractmethod def forward(self, input_tensor): pass class GlobalAvgPool1d(AvgPool): """ GlobalAvgPool1d Module. """ def forward(self, input_tensor): return functional.avg_pool1d(input_tensor, input_tensor.size()[2:] ).view(input_tensor.size()[:2]) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from abc import abstractmethod assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4), (4, 1), 0), class AvgPool(nn.Module): """ AvgPool Module. """ def __init__(self): super().__init__() @abstractmethod def forward(self, input_tensor): pass class GlobalAvgPool1dNew(AvgPool): """ GlobalAvgPool1d Module. """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
savan77/nni
GlobalAvgPool1d
false
4,268
[ "MIT" ]
0
510213393d9cae58c5a8cccd21f322f7bba4e0cf
https://github.com/savan77/nni/tree/510213393d9cae58c5a8cccd21f322f7bba4e0cf
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from abc import abstractmethod from torch.nn import functional class AvgPool(nn.Module): """ AvgPool Module. """ def __init__(self): super().__init__() @abstractmethod def forward(self, input_tensor): pass class Model(AvgPool): """ GlobalAvgPool1d Module. """ def forward(self, input_tensor): return functional.avg_pool1d(input_tensor, input_tensor.size()[2:] ).view(input_tensor.size()[:2]) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return []
DeepQNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/dw/cdw2zafobuhspvpds5vqtjyxlmdcpljwkwnnptboqhmdn4cucexl.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%squeeze_3, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/d6/cd6bapa2aseihiysk43m4ehqqsq6x6isa2ykn4ebi4nl4fn2uk5x.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze_4,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%squeeze_7, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/65/c65tc5xm2a3caq7ssexgjgocmcydeqgh76csqhvewry2b7btv4fj.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_4 => relu_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (32, 4, 9, 9), (324, 81, 9, 1)) assert_size_stride(primals_3, (32, ), (1, )) assert_size_stride(primals_4, (64, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (512, 16), (16, 1)) assert_size_stride(primals_9, (512, ), (1, )) assert_size_stride(primals_10, (4, 512), (512, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (64, 16, 4, 1), 0), primals_2, stride=(4, 4), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 32, 1, 1), (32, 1, 1, 1)) buf1 = reinterpret_tensor(buf0, (32, 1, 1), (1, 1, 1), 0); del buf0 # reuse buf11 = empty_strided_cuda((32, 1, 1), (1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf11, 32, grid=grid(32), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 32, 1, 1), (0, 1, 0, 0), 0), primals_4, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (1, 64, 1, 1), (64, 1, 1, 1)) buf3 = reinterpret_tensor(buf2, (64, 1, 1), (1, 1, 1), 0); del buf2 # reuse buf10 = empty_strided_cuda((64, 1, 1), (1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf10, 64, grid=grid(64), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(reinterpret_tensor(buf3, (1, 64, 1, 1), (0, 1, 0, 0), 0), primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (1, 64, 1, 1), (64, 1, 1, 1)) buf5 = reinterpret_tensor(buf4, (64, 1, 1), (1, 1, 1), 0); del buf4 # reuse buf9 = empty_strided_cuda((64, 1, 1), (1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf5, primals_7, buf9, 64, grid=grid(64), stream=stream0) del primals_7 buf6 = empty_strided_cuda((4, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (4, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 512), (1, 16), 0), out=buf6) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] triton_poi_fused_relu_2.run(buf7, primals_9, 2048, grid=grid(2048), stream=stream0) del primals_9 buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf7, reinterpret_tensor(primals_10, (512, 4), (1, 512), 0), alpha=1, beta=1, out=buf8) del primals_11 return (buf8, primals_2, primals_4, primals_6, reinterpret_tensor(primals_1, (1, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf1, (1, 32, 1, 1), (32, 1, 1, 1), 0), reinterpret_tensor(buf3, (1, 64, 1, 1), (64, 1, 1, 1), 0), reinterpret_tensor(buf5, (4, 16), (16, 1), 0), buf7, primals_10, primals_8, buf9, buf10, buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, 4, 9, 9), (324, 81, 9, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((512, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class DeepQNetwork(nn.Module): def __init__(self, imagesize, num_input_frames, num_actions, **kwargs): super(DeepQNetwork, self).__init__() self.conv1 = nn.Conv2d(in_channels=num_input_frames, out_channels= 32, kernel_size=9, stride=4, padding=4) self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size =5, stride=2, padding=2) self.conv3 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size =3, stride=1, padding=1) in_features = 64 * imagesize[0] * imagesize[1] // 64 self.fc1 = nn.Linear(in_features=in_features, out_features=512) self.fc2 = nn.Linear(in_features=512, out_features=num_actions) def forward(self, x): batch_size = x.size(0) x = F.relu(self.conv1(x), inplace=True) x = F.relu(self.conv2(x), inplace=True) x = F.relu(self.conv3(x), inplace=True) x = x.view(batch_size, -1) x = F.relu(self.fc1(x), inplace=True) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'imagesize': [4, 4], 'num_input_frames': 4, 'num_actions': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (32, 4, 9, 9), (324, 81, 9, 1)) assert_size_stride(primals_3, (32,), (1,)) assert_size_stride(primals_4, (64, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (512, 16), (16, 1)) assert_size_stride(primals_9, (512,), (1,)) assert_size_stride(primals_10, (4, 512), (512, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (64, 16, 4, 1), 0), primals_2, stride=(4, 4), padding =(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 32, 1, 1), (32, 1, 1, 1)) buf1 = reinterpret_tensor(buf0, (32, 1, 1), (1, 1, 1), 0) del buf0 buf11 = empty_strided_cuda((32, 1, 1), (1, 1, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(32)](buf1, primals_3, buf11, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 32, 1, 1), (0, 1, 0, 0), 0), primals_4, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (1, 64, 1, 1), (64, 1, 1, 1)) buf3 = reinterpret_tensor(buf2, (64, 1, 1), (1, 1, 1), 0) del buf2 buf10 = empty_strided_cuda((64, 1, 1), (1, 1, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(64)](buf3, primals_5, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(reinterpret_tensor(buf3, (1, 64, 1, 1), (0, 1, 0, 0), 0), primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (1, 64, 1, 1), (64, 1, 1, 1)) buf5 = reinterpret_tensor(buf4, (64, 1, 1), (1, 1, 1), 0) del buf4 buf9 = empty_strided_cuda((64, 1, 1), (1, 1, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(64)](buf5, primals_7, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_7 buf6 = empty_strided_cuda((4, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (4, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 512), (1, 16), 0), out=buf6) buf7 = buf6 del buf6 triton_poi_fused_relu_2[grid(2048)](buf7, primals_9, 2048, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_11, buf7, reinterpret_tensor( primals_10, (512, 4), (1, 512), 0), alpha=1, beta=1, out=buf8) del primals_11 return buf8, primals_2, primals_4, primals_6, reinterpret_tensor(primals_1, (1, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf1, (1, 32, 1, 1), (32, 1, 1, 1), 0), reinterpret_tensor(buf3, (1, 64, 1, 1), ( 64, 1, 1, 1), 0), reinterpret_tensor(buf5, (4, 16), (16, 1), 0 ), buf7, primals_10, primals_8, buf9, buf10, buf11 class DeepQNetworkNew(nn.Module): def __init__(self, imagesize, num_input_frames, num_actions, **kwargs): super(DeepQNetworkNew, self).__init__() self.conv1 = nn.Conv2d(in_channels=num_input_frames, out_channels= 32, kernel_size=9, stride=4, padding=4) self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size =5, stride=2, padding=2) self.conv3 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size =3, stride=1, padding=1) in_features = 64 * imagesize[0] * imagesize[1] // 64 self.fc1 = nn.Linear(in_features=in_features, out_features=512) self.fc2 = nn.Linear(in_features=512, out_features=num_actions) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.fc1.weight primals_9 = self.fc1.bias primals_10 = self.fc2.weight primals_11 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
sanmusane/AIGames
DeepQNetwork
false
4,269
[ "MIT" ]
0
3f4eecdd02089911d1989e40e2b336e13b800e55
https://github.com/sanmusane/AIGames/tree/3f4eecdd02089911d1989e40e2b336e13b800e55
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, imagesize, num_input_frames, num_actions, **kwargs): super().__init__() self.conv1 = nn.Conv2d(in_channels=num_input_frames, out_channels= 32, kernel_size=9, stride=4, padding=4) self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size =5, stride=2, padding=2) self.conv3 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size =3, stride=1, padding=1) in_features = 64 * imagesize[0] * imagesize[1] // 64 self.fc1 = nn.Linear(in_features=in_features, out_features=512) self.fc2 = nn.Linear(in_features=512, out_features=num_actions) def forward(self, x): batch_size = x.size(0) x = F.relu(self.conv1(x), inplace=True) x = F.relu(self.conv2(x), inplace=True) x = F.relu(self.conv3(x), inplace=True) x = x.view(batch_size, -1) x = F.relu(self.fc1(x), inplace=True) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4]
Mask
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/pl/cpls7julgyzyzgsc5ycrh5sravin2piuyc3s5guflad7adet6qmj.py # Topologically Sorted Source Nodes: [eq, zeros_like, where], Original ATen: [aten.eq, aten.zeros_like, aten.where] # Source node to ATen node mapping: # eq => eq # where => where # zeros_like => full_default # Graph fragment: # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%permute, 1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %arg1_1, %full_default), kwargs = {}) triton_poi_fused_eq_where_zeros_like_0 = async_compile.triton('triton_poi_fused_eq_where_zeros_like_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_where_zeros_like_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_eq_where_zeros_like_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y1 = (yindex // 4) y0 = yindex % 4 tmp0 = tl.load(in_ptr0 + (x2 + (4*y1)), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2 + (4*y0)), xmask & ymask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 == tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + (y0 + (4*x2) + (16*y1)), tmp5, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [eq, zeros_like, where], Original ATen: [aten.eq, aten.zeros_like, aten.where] stream0 = get_raw_stream(0) triton_poi_fused_eq_where_zeros_like_0.run(arg0_1, arg1_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class Mask(nn.Module): def forward(self, seq, mask): seq_mask = torch.unsqueeze(mask, 2) seq_mask = torch.transpose(seq_mask.repeat(1, 1, seq.size()[1]), 1, 2) return seq.where(torch.eq(seq_mask, 1), torch.zeros_like(seq)) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_eq_where_zeros_like_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y1 = yindex // 4 y0 = yindex % 4 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y1), xmask & ymask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr1 + (x2 + 4 * y0), xmask & ymask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 == tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + (y0 + 4 * x2 + 16 * y1), tmp5, xmask & ymask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_eq_where_zeros_like_0[grid(16, 4)](arg0_1, arg1_1, buf0, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del arg0_1 del arg1_1 return buf0, class MaskNew(nn.Module): def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
savan77/nni
Mask
false
4,270
[ "MIT" ]
0
510213393d9cae58c5a8cccd21f322f7bba4e0cf
https://github.com/savan77/nni/tree/510213393d9cae58c5a8cccd21f322f7bba4e0cf
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class Model(nn.Module): def forward(self, seq, mask): seq_mask = torch.unsqueeze(mask, 2) seq_mask = torch.transpose(seq_mask.repeat(1, 1, seq.size()[1]), 1, 2) return seq.where(torch.eq(seq_mask, 1), torch.zeros_like(seq)) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return []
Pooling
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/dz/cdz3nkgyrhben4dg5ahsmw55wko3y32durc6eb6vfqmjdr6gb3ir.py # Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [3, 3], [1, 1], [1, 1], False, False), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + x4), tmp10 & xmask, other=0.0) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + x4), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + x4), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + x4), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x4), tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + x4), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + x4), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + x4), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))*((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) + (((4) * ((4) <= (2 + x0)) + (2 + x0) * ((2 + x0) < (4)))*((4) * ((4) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))*((4) * ((4) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))*((4) * ((4) <= (2 + x0)) + (2 + x0) * ((2 + x0) < (4)))) tmp53 = tmp51 / tmp52 tl.store(out_ptr0 + (x4), tmp53, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class ReLUConvBN(nn.Module): """ Parameters --- C_in: int the number of input channels C_out: int the number of output channels stride: int stride of the convolution padding: int zero-padding added to both sides of the input dilation: int spacing between kernel elements bn_affine: bool If set to ``True``, ``torch.nn.BatchNorm2d`` will have learnable affine parameters. Default: True bn_momentun: float the value used for the running_mean and running_var computation. Default: 0.1 bn_track_running_stats: bool When set to ``True``, ``torch.nn.BatchNorm2d`` tracks the running mean and variance. Default: True """ def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, bn_affine=True, bn_momentum=0.1, bn_track_running_stats=True): super(ReLUConvBN, self).__init__() self.op = nn.Sequential(nn.ReLU(inplace=False), nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation= dilation, bias=False), nn.BatchNorm2d(C_out, affine=bn_affine, momentum=bn_momentum, track_running_stats=bn_track_running_stats)) def forward(self, x): """ Parameters --- x: torch.Tensor input tensor """ return self.op(x) class Pooling(nn.Module): """ Parameters --- C_in: int the number of input channels C_out: int the number of output channels stride: int stride of the convolution bn_affine: bool If set to ``True``, ``torch.nn.BatchNorm2d`` will have learnable affine parameters. Default: True bn_momentun: float the value used for the running_mean and running_var computation. Default: 0.1 bn_track_running_stats: bool When set to ``True``, ``torch.nn.BatchNorm2d`` tracks the running mean and variance. Default: True """ def __init__(self, C_in, C_out, stride, bn_affine=True, bn_momentum=0.1, bn_track_running_stats=True): super(Pooling, self).__init__() if C_in == C_out: self.preprocess = None else: self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, 0, bn_affine, bn_momentum, bn_track_running_stats) self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) def forward(self, x): """ Parameters --- x: torch.Tensor input tensor """ if self.preprocess: x = self.preprocess(x) return self.op(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'C_in': 4, 'C_out': 4, 'stride': 1}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + x4), tmp10 & xmask, other=0.0) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + x4), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + x4), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + x4), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x4, tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + x4), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + x4), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + x4), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (0 * (0 >= - 1 + x1) + (-1 + x1) * (-1 + x1 > 0)) + (4 * (4 <= 2 + x0) + (2 + x0 ) * (2 + x0 < 4)) * (4 * (4 <= 2 + x1) + (2 + x1) * (2 + x1 < 4) ) + -1 * (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (4 * (4 <= 2 + x1) + (2 + x1) * (2 + x1 < 4)) + -1 * (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) * (4 * (4 <= 2 + x0) + (2 + x0) * (2 + x0 < 4)) tmp53 = tmp51 / tmp52 tl.store(out_ptr0 + x4, tmp53, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 return buf0, class ReLUConvBN(nn.Module): """ Parameters --- C_in: int the number of input channels C_out: int the number of output channels stride: int stride of the convolution padding: int zero-padding added to both sides of the input dilation: int spacing between kernel elements bn_affine: bool If set to ``True``, ``torch.nn.BatchNorm2d`` will have learnable affine parameters. Default: True bn_momentun: float the value used for the running_mean and running_var computation. Default: 0.1 bn_track_running_stats: bool When set to ``True``, ``torch.nn.BatchNorm2d`` tracks the running mean and variance. Default: True """ def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, bn_affine=True, bn_momentum=0.1, bn_track_running_stats=True): super(ReLUConvBN, self).__init__() self.op = nn.Sequential(nn.ReLU(inplace=False), nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation= dilation, bias=False), nn.BatchNorm2d(C_out, affine=bn_affine, momentum=bn_momentum, track_running_stats=bn_track_running_stats)) def forward(self, x): """ Parameters --- x: torch.Tensor input tensor """ return self.op(x) class PoolingNew(nn.Module): """ Parameters --- C_in: int the number of input channels C_out: int the number of output channels stride: int stride of the convolution bn_affine: bool If set to ``True``, ``torch.nn.BatchNorm2d`` will have learnable affine parameters. Default: True bn_momentun: float the value used for the running_mean and running_var computation. Default: 0.1 bn_track_running_stats: bool When set to ``True``, ``torch.nn.BatchNorm2d`` tracks the running mean and variance. Default: True """ def __init__(self, C_in, C_out, stride, bn_affine=True, bn_momentum=0.1, bn_track_running_stats=True): super(PoolingNew, self).__init__() if C_in == C_out: self.preprocess = None else: self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, 0, bn_affine, bn_momentum, bn_track_running_stats) self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
savan77/nni
Pooling
false
4,271
[ "MIT" ]
0
510213393d9cae58c5a8cccd21f322f7bba4e0cf
https://github.com/savan77/nni/tree/510213393d9cae58c5a8cccd21f322f7bba4e0cf
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class ReLUConvBN(nn.Module): """ Parameters --- C_in: int the number of input channels C_out: int the number of output channels stride: int stride of the convolution padding: int zero-padding added to both sides of the input dilation: int spacing between kernel elements bn_affine: bool If set to ``True``, ``torch.nn.BatchNorm2d`` will have learnable affine parameters. Default: True bn_momentun: float the value used for the running_mean and running_var computation. Default: 0.1 bn_track_running_stats: bool When set to ``True``, ``torch.nn.BatchNorm2d`` tracks the running mean and variance. Default: True """ def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, bn_affine=True, bn_momentum=0.1, bn_track_running_stats=True): super().__init__() self.op = nn.Sequential(nn.ReLU(inplace=False), nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation= dilation, bias=False), nn.BatchNorm2d(C_out, affine=bn_affine, momentum=bn_momentum, track_running_stats=bn_track_running_stats)) def forward(self, x): """ Parameters --- x: torch.Tensor input tensor """ return self.op(x) class Model(nn.Module): """ Parameters --- C_in: int the number of input channels C_out: int the number of output channels stride: int stride of the convolution bn_affine: bool If set to ``True``, ``torch.nn.BatchNorm2d`` will have learnable affine parameters. Default: True bn_momentun: float the value used for the running_mean and running_var computation. Default: 0.1 bn_track_running_stats: bool When set to ``True``, ``torch.nn.BatchNorm2d`` tracks the running mean and variance. Default: True """ def __init__(self, C_in, C_out, stride, bn_affine=True, bn_momentum=0.1, bn_track_running_stats=True): super().__init__() if C_in == C_out: self.preprocess = None else: self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, 0, bn_affine, bn_momentum, bn_track_running_stats) self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) def forward(self, x): """ Parameters --- x: torch.Tensor input tensor """ if self.preprocess: x = self.preprocess(x) return self.op(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 1]
BackboneModel1
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/vg/cvgzll7advxze7fwtfxuvvxp6awpd565f4oliajayj6ukdru5c2v.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 16384, grid=grid(16384), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class BackboneModel1(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 1, 1, 1) def forward(self, x): return self.conv1(x) def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16384)](buf1, primals_2, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, primals_3 class BackboneModel1New(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 1, 1, 1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
savan77/nni
BackboneModel1
false
4,272
[ "MIT" ]
0
510213393d9cae58c5a8cccd21f322f7bba4e0cf
https://github.com/savan77/nni/tree/510213393d9cae58c5a8cccd21f322f7bba4e0cf
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 1, 1, 1) def forward(self, x): return self.conv1(x) def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return []
InteractiveKLLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/mc/cmc44gqwlbgitm3uqkuiwz6fe3jirwculg7zmyndeuqzyyqzyok7.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => exp_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 4), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.25 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xg/cxg6geasclvgycjnyaybokxud5rdp2fe6eropfaplher4ysvlw4g.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1), kwargs = {}) # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_1, [1], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %amax_default_1), kwargs = {}) # %div_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, 4), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.25 tmp16 = tmp14 * tmp15 tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/25/c252yxkeoy2jzoudseyd3vkmxj6p5ehtiqnttglx2n27knsfiyad.py # Topologically Sorted Source Nodes: [softmax, kl_div, log_softmax], Original ATen: [aten._softmax, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.mean] # Source node to ATen node mapping: # kl_div => eq, full_default, full_default_1, isnan, log_1, mean, mul, mul_1, sub_3, where, where_1 # log_softmax => exp, log, sub_1, sum_1 # softmax => div_2, sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %div_2 : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%div_2,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%div_2, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div_2,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %log_1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_tensor_1, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %sub_1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_3,), kwargs = {}) triton_per_fused__log_softmax__softmax_mean_mul_sub_xlogy_2 = async_compile.triton('triton_per_fused__log_softmax__softmax_mean_mul_sub_xlogy_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax__softmax_mean_mul_sub_xlogy_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 10, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax__softmax_mean_mul_sub_xlogy_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (r3), None) tmp18 = tl.load(in_ptr1 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = libdevice.isnan(tmp8).to(tl.int1) tmp10 = 0.0 tmp11 = tmp8 == tmp10 tmp12 = tl_math.log(tmp8) tmp13 = tmp8 * tmp12 tmp14 = tl.where(tmp11, tmp10, tmp13) tmp15 = float("nan") tmp16 = tl.where(tmp9, tmp15, tmp14) tmp19 = tl_math.exp(tmp18) tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp27 = tl_math.exp(tmp26) tmp28 = tmp25 + tmp27 tmp29 = tl_math.log(tmp28) tmp30 = tmp17 - tmp29 tmp31 = tmp8 * tmp30 tmp32 = tmp16 - tmp31 tmp33 = tl.broadcast_to(tmp32, [RBLOCK]) tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0)) tmp36 = 256.0 tmp37 = tmp35 / tmp36 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp37, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(arg0_1, buf2, 256, grid=grid(256), stream=stream0) del arg0_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [softmax, kl_div, log_softmax], Original ATen: [aten._softmax, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.mean] triton_per_fused__log_softmax__softmax_mean_mul_sub_xlogy_2.run(buf4, buf0, buf2, 1, 256, grid=grid(1), stream=stream0) del buf0 del buf2 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.nn.functional as F class InteractiveKLLoss(nn.Module): def __init__(self, temperature): super().__init__() self.temperature = temperature self.kl_loss = nn.KLDivLoss() def forward(self, student, teacher): return self.kl_loss(F.log_softmax(student / self.temperature, dim=1 ), F.softmax(teacher / self.temperature, dim=1)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'temperature': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.25 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x3, tmp17, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.25 tmp16 = tmp14 * tmp15 tl.store(out_ptr0 + x3, tmp16, xmask) @triton.jit def triton_per_fused__log_softmax__softmax_mean_mul_sub_xlogy_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp17 = tl.load(in_ptr1 + r3, None) tmp18 = tl.load(in_ptr1 + (r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr1 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr1 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp26 = tl.load(in_ptr1 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = libdevice.isnan(tmp8).to(tl.int1) tmp10 = 0.0 tmp11 = tmp8 == tmp10 tmp12 = tl_math.log(tmp8) tmp13 = tmp8 * tmp12 tmp14 = tl.where(tmp11, tmp10, tmp13) tmp15 = float('nan') tmp16 = tl.where(tmp9, tmp15, tmp14) tmp19 = tl_math.exp(tmp18) tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp27 = tl_math.exp(tmp26) tmp28 = tmp25 + tmp27 tmp29 = tl_math.log(tmp28) tmp30 = tmp17 - tmp29 tmp31 = tmp8 * tmp30 tmp32 = tmp16 - tmp31 tmp33 = tl.broadcast_to(tmp32, [RBLOCK]) tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0)) tmp36 = 256.0 tmp37 = tmp35 / tmp36 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp37, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_1[grid(256)](arg0_1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3 del buf3 triton_per_fused__log_softmax__softmax_mean_mul_sub_xlogy_2[grid(1)]( buf4, buf0, buf2, 1, 256, num_warps=2, num_stages=1) del buf0 del buf2 return buf4, class InteractiveKLLossNew(nn.Module): def __init__(self, temperature): super().__init__() self.temperature = temperature self.kl_loss = nn.KLDivLoss() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
savan77/nni
InteractiveKLLoss
false
4,273
[ "MIT" ]
0
510213393d9cae58c5a8cccd21f322f7bba4e0cf
https://github.com/savan77/nni/tree/510213393d9cae58c5a8cccd21f322f7bba4e0cf
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.nn.functional as F class Model(nn.Module): def __init__(self, temperature): super().__init__() self.temperature = temperature self.kl_loss = nn.KLDivLoss() def forward(self, student, teacher): return self.kl_loss(F.log_softmax(student / self.temperature, dim=1 ), F.softmax(teacher / self.temperature, dim=1)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
GAT
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/rn/crnvqrppxb3ocltksxzamskmx3mpvscqlqbanvhmgkmj5b53kfuf.py # Topologically Sorted Source Nodes: [add, e], Original ATen: [aten.add, aten.leaky_relu] # Source node to ATen node mapping: # add => add # e => gt # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %permute), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 0), kwargs = {}) triton_poi_fused_add_leaky_relu_0 = async_compile.triton('triton_poi_fused_add_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/k2/ck2qvrsga6qzh3n4zrcqhgn3gcw55gg5hx55rqebdhhoptcty66e.py # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] # Source node to ATen node mapping: # gt => gt_1 # Graph fragment: # %gt_1 : [num_users=6] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_5, 0), kwargs = {}) triton_poi_fused_gt_1 = async_compile.triton('triton_poi_fused_gt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gt_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7p/c7pzocdj4z66742c4x73l2mmqga3yo74menkparuudjxrge7crrh.py # Topologically Sorted Source Nodes: [add, e, zero_vec, attention, attention_1, add_1, e_1, attention_3, attention_4, add_2, e_2, attention_6, attention_7, add_3, e_3, attention_9, attention_10], Original ATen: [aten.add, aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # attention => where_1 # attention_1 => amax # attention_10 => amax_3 # attention_3 => where_4 # attention_4 => amax_1 # attention_6 => where_7 # attention_7 => amax_2 # attention_9 => where_10 # e => mul, where # e_1 => mul_5, where_3 # e_2 => mul_10, where_6 # e_3 => mul_15, where_9 # zero_vec => full_default # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %permute), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add, %mul), kwargs = {}) # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_1, [1], True), kwargs = {}) # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_5, %permute_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 4), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %add_1, %mul_5), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_3, %full_default), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_4, [1], True), kwargs = {}) # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_9, %permute_2), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %add_2, %mul_10), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_7, [1], True), kwargs = {}) # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_13, %permute_3), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, 4), kwargs = {}) # %where_9 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %add_3, %mul_15), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_9, %full_default), kwargs = {}) # %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_10, [1], True), kwargs = {}) triton_poi_fused__softmax_add_leaky_relu_mul_where_2 = async_compile.triton('triton_poi_fused__softmax_add_leaky_relu_mul_where_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*fp32', 6: '*fp32', 7: '*i1', 8: '*fp32', 9: '*fp32', 10: '*i1', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_leaky_relu_mul_where_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 40, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_leaky_relu_mul_where_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (x0), xmask) tmp3 = tl.load(in_ptr3 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp11 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp12 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp13 = tl.load(in_ptr3 + (1)) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp20 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp22 = tl.load(in_ptr3 + (2)) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp29 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp31 = tl.load(in_ptr3 + (3)) tmp32 = tl.broadcast_to(tmp31, [XBLOCK]) tmp38 = tl.load(in_ptr4 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr5 + (x0), xmask) tmp40 = tl.load(in_ptr6 + (0)) tmp41 = tl.broadcast_to(tmp40, [XBLOCK]) tmp46 = tl.load(in_ptr4 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp47 = tl.load(in_ptr6 + (1)) tmp48 = tl.broadcast_to(tmp47, [XBLOCK]) tmp54 = tl.load(in_ptr4 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp55 = tl.load(in_ptr6 + (2)) tmp56 = tl.broadcast_to(tmp55, [XBLOCK]) tmp62 = tl.load(in_ptr4 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp63 = tl.load(in_ptr6 + (3)) tmp64 = tl.broadcast_to(tmp63, [XBLOCK]) tmp70 = tl.load(in_ptr7 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp71 = tl.load(in_ptr8 + (x0), xmask) tmp72 = tl.load(in_ptr9 + (0)) tmp73 = tl.broadcast_to(tmp72, [XBLOCK]) tmp78 = tl.load(in_ptr7 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp79 = tl.load(in_ptr9 + (1)) tmp80 = tl.broadcast_to(tmp79, [XBLOCK]) tmp86 = tl.load(in_ptr7 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp87 = tl.load(in_ptr9 + (2)) tmp88 = tl.broadcast_to(tmp87, [XBLOCK]) tmp94 = tl.load(in_ptr7 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp95 = tl.load(in_ptr9 + (3)) tmp96 = tl.broadcast_to(tmp95, [XBLOCK]) tmp102 = tl.load(in_ptr10 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp103 = tl.load(in_ptr11 + (x0), xmask) tmp104 = tl.load(in_ptr12 + (0)) tmp105 = tl.broadcast_to(tmp104, [XBLOCK]) tmp110 = tl.load(in_ptr10 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp111 = tl.load(in_ptr12 + (1)) tmp112 = tl.broadcast_to(tmp111, [XBLOCK]) tmp118 = tl.load(in_ptr10 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp119 = tl.load(in_ptr12 + (2)) tmp120 = tl.broadcast_to(tmp119, [XBLOCK]) tmp126 = tl.load(in_ptr10 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp127 = tl.load(in_ptr12 + (3)) tmp128 = tl.broadcast_to(tmp127, [XBLOCK]) tmp5 = tmp2 + tmp4 tmp6 = 4.0 tmp7 = tmp5 * tmp6 tmp8 = tl.where(tmp1, tmp5, tmp7) tmp9 = -8999999815811072.0 tmp10 = tl.where(tmp0, tmp8, tmp9) tmp15 = tmp2 + tmp14 tmp16 = tmp15 * tmp6 tmp17 = tl.where(tmp12, tmp15, tmp16) tmp18 = tl.where(tmp11, tmp17, tmp9) tmp19 = triton_helpers.maximum(tmp10, tmp18) tmp24 = tmp2 + tmp23 tmp25 = tmp24 * tmp6 tmp26 = tl.where(tmp21, tmp24, tmp25) tmp27 = tl.where(tmp20, tmp26, tmp9) tmp28 = triton_helpers.maximum(tmp19, tmp27) tmp33 = tmp2 + tmp32 tmp34 = tmp33 * tmp6 tmp35 = tl.where(tmp30, tmp33, tmp34) tmp36 = tl.where(tmp29, tmp35, tmp9) tmp37 = triton_helpers.maximum(tmp28, tmp36) tmp42 = tmp39 + tmp41 tmp43 = tmp42 * tmp6 tmp44 = tl.where(tmp38, tmp42, tmp43) tmp45 = tl.where(tmp0, tmp44, tmp9) tmp49 = tmp39 + tmp48 tmp50 = tmp49 * tmp6 tmp51 = tl.where(tmp46, tmp49, tmp50) tmp52 = tl.where(tmp11, tmp51, tmp9) tmp53 = triton_helpers.maximum(tmp45, tmp52) tmp57 = tmp39 + tmp56 tmp58 = tmp57 * tmp6 tmp59 = tl.where(tmp54, tmp57, tmp58) tmp60 = tl.where(tmp20, tmp59, tmp9) tmp61 = triton_helpers.maximum(tmp53, tmp60) tmp65 = tmp39 + tmp64 tmp66 = tmp65 * tmp6 tmp67 = tl.where(tmp62, tmp65, tmp66) tmp68 = tl.where(tmp29, tmp67, tmp9) tmp69 = triton_helpers.maximum(tmp61, tmp68) tmp74 = tmp71 + tmp73 tmp75 = tmp74 * tmp6 tmp76 = tl.where(tmp70, tmp74, tmp75) tmp77 = tl.where(tmp0, tmp76, tmp9) tmp81 = tmp71 + tmp80 tmp82 = tmp81 * tmp6 tmp83 = tl.where(tmp78, tmp81, tmp82) tmp84 = tl.where(tmp11, tmp83, tmp9) tmp85 = triton_helpers.maximum(tmp77, tmp84) tmp89 = tmp71 + tmp88 tmp90 = tmp89 * tmp6 tmp91 = tl.where(tmp86, tmp89, tmp90) tmp92 = tl.where(tmp20, tmp91, tmp9) tmp93 = triton_helpers.maximum(tmp85, tmp92) tmp97 = tmp71 + tmp96 tmp98 = tmp97 * tmp6 tmp99 = tl.where(tmp94, tmp97, tmp98) tmp100 = tl.where(tmp29, tmp99, tmp9) tmp101 = triton_helpers.maximum(tmp93, tmp100) tmp106 = tmp103 + tmp105 tmp107 = tmp106 * tmp6 tmp108 = tl.where(tmp102, tmp106, tmp107) tmp109 = tl.where(tmp0, tmp108, tmp9) tmp113 = tmp103 + tmp112 tmp114 = tmp113 * tmp6 tmp115 = tl.where(tmp110, tmp113, tmp114) tmp116 = tl.where(tmp11, tmp115, tmp9) tmp117 = triton_helpers.maximum(tmp109, tmp116) tmp121 = tmp103 + tmp120 tmp122 = tmp121 * tmp6 tmp123 = tl.where(tmp118, tmp121, tmp122) tmp124 = tl.where(tmp20, tmp123, tmp9) tmp125 = triton_helpers.maximum(tmp117, tmp124) tmp129 = tmp103 + tmp128 tmp130 = tmp129 * tmp6 tmp131 = tl.where(tmp126, tmp129, tmp130) tmp132 = tl.where(tmp29, tmp131, tmp9) tmp133 = triton_helpers.maximum(tmp125, tmp132) tl.store(out_ptr0 + (x0), tmp37, xmask) tl.store(out_ptr1 + (x0), tmp69, xmask) tl.store(out_ptr2 + (x0), tmp101, xmask) tl.store(out_ptr3 + (x0), tmp133, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/si/csiextwu44e63m7askimz3girudboqtyp45f2wu2wmll5iovqchv.py # Topologically Sorted Source Nodes: [add, e, zero_vec, attention, attention_1, add_1, e_1, attention_3, attention_4, add_2, e_2, attention_6, attention_7, add_3, e_3, attention_9, attention_10], Original ATen: [aten.add, aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # attention => where_1 # attention_1 => exp, sub # attention_10 => exp_3, sub_3 # attention_3 => where_4 # attention_4 => exp_1, sub_1 # attention_6 => where_7 # attention_7 => exp_2, sub_2 # attention_9 => where_10 # e => mul, where # e_1 => mul_5, where_3 # e_2 => mul_10, where_6 # e_3 => mul_15, where_9 # zero_vec => full_default # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %permute), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add, %mul), kwargs = {}) # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_5, %permute_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 4), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %add_1, %mul_5), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_3, %full_default), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_4, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_9, %permute_2), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %add_2, %mul_10), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_7, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_13, %permute_3), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, 4), kwargs = {}) # %where_9 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %add_3, %mul_15), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_9, %full_default), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_10, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) triton_poi_fused__softmax_add_leaky_relu_mul_where_3 = async_compile.triton('triton_poi_fused__softmax_add_leaky_relu_mul_where_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*i1', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*i1', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_leaky_relu_mul_where_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_leaky_relu_mul_where_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x2), xmask).to(tl.int1) tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr5 + (x2), xmask).to(tl.int1) tmp14 = tl.load(in_ptr6 + (x1), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr7 + (x0), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr8 + (x1), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr9 + (x2), xmask).to(tl.int1) tmp24 = tl.load(in_ptr10 + (x1), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr11 + (x0), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr12 + (x1), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr13 + (x2), xmask).to(tl.int1) tmp34 = tl.load(in_ptr14 + (x1), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr15 + (x0), xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr16 + (x1), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp5 = 4.0 tmp6 = tmp4 * tmp5 tmp7 = tl.where(tmp1, tmp4, tmp6) tmp8 = -8999999815811072.0 tmp9 = tl.where(tmp0, tmp7, tmp8) tmp11 = tmp9 - tmp10 tmp12 = tl_math.exp(tmp11) tmp16 = tmp14 + tmp15 tmp17 = tmp16 * tmp5 tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tl.where(tmp0, tmp18, tmp8) tmp21 = tmp19 - tmp20 tmp22 = tl_math.exp(tmp21) tmp26 = tmp24 + tmp25 tmp27 = tmp26 * tmp5 tmp28 = tl.where(tmp23, tmp26, tmp27) tmp29 = tl.where(tmp0, tmp28, tmp8) tmp31 = tmp29 - tmp30 tmp32 = tl_math.exp(tmp31) tmp36 = tmp34 + tmp35 tmp37 = tmp36 * tmp5 tmp38 = tl.where(tmp33, tmp36, tmp37) tmp39 = tl.where(tmp0, tmp38, tmp8) tmp41 = tmp39 - tmp40 tmp42 = tl_math.exp(tmp41) tl.store(out_ptr0 + (x2), tmp12, xmask) tl.store(out_ptr1 + (x2), tmp22, xmask) tl.store(out_ptr2 + (x2), tmp32, xmask) tl.store(out_ptr3 + (x2), tmp42, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rr/crrmj7r54x5uk325xkhuskxp4m5prz3fpx53yc2st4o5pwbhq32p.py # Topologically Sorted Source Nodes: [attention_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xp/cxpnlviefwxbdj7cbio4oqhkzb74qnjn5guhdplnmdcsr7cnbsyp.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_1 => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_2, %where_5, %where_8, %where_11], 1), kwargs = {}) triton_poi_fused_cat_5 = async_compile.triton('triton_poi_fused_cat_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 > tmp6 tmp21 = tmp19 * tmp8 tmp22 = libdevice.expm1(tmp21) tmp23 = tmp22 * tmp8 tmp24 = tl.where(tmp20, tmp21, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp18, tmp24, tmp25) tmp27 = tmp0 >= tmp16 tmp28 = tl.full([1], 12, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 > tmp6 tmp33 = tmp31 * tmp8 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp8 tmp36 = tl.where(tmp32, tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp30, tmp36, tmp37) tmp39 = tmp0 >= tmp28 tmp40 = tl.full([1], 16, tl.int64) tmp41 = tmp0 < tmp40 tmp42 = tl.load(in_ptr3 + ((4*x1) + ((-12) + x0)), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp42 > tmp6 tmp44 = tmp42 * tmp8 tmp45 = libdevice.expm1(tmp44) tmp46 = tmp45 * tmp8 tmp47 = tl.where(tmp43, tmp44, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp39, tmp47, tmp48) tmp50 = tl.where(tmp30, tmp38, tmp49) tmp51 = tl.where(tmp18, tmp26, tmp50) tmp52 = tl.where(tmp4, tmp14, tmp51) tl.store(out_ptr0 + (x2), tmp52, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/g2/cg2m5jpgsmsheozlj7op7zoco4x7nplswmyzh66rmfnns22uywtb.py # Topologically Sorted Source Nodes: [zero_vec, add_4, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.where, aten._softmax] # Source node to ATen node mapping: # add_4 => add_4 # attention_12 => where_13 # attention_13 => amax_4 # e_4 => mul_20, where_12 # zero_vec => full_default # Graph fragment: # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %add_4 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_17, %permute_4), kwargs = {}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_4, 4), kwargs = {}) # %where_12 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_12, %add_4, %mul_20), kwargs = {}) # %where_13 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_12, %full_default), kwargs = {}) # %amax_4 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_13, [1], True), kwargs = {}) triton_poi_fused__softmax_add_leaky_relu_mul_where_6 = async_compile.triton('triton_poi_fused__softmax_add_leaky_relu_mul_where_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_leaky_relu_mul_where_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 13, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_leaky_relu_mul_where_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (x0), xmask) tmp3 = tl.load(in_ptr3 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp11 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp12 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp13 = tl.load(in_ptr3 + (1)) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp20 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp22 = tl.load(in_ptr3 + (2)) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp29 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp31 = tl.load(in_ptr3 + (3)) tmp32 = tl.broadcast_to(tmp31, [XBLOCK]) tmp5 = tmp2 + tmp4 tmp6 = 4.0 tmp7 = tmp5 * tmp6 tmp8 = tl.where(tmp1, tmp5, tmp7) tmp9 = -8999999815811072.0 tmp10 = tl.where(tmp0, tmp8, tmp9) tmp15 = tmp2 + tmp14 tmp16 = tmp15 * tmp6 tmp17 = tl.where(tmp12, tmp15, tmp16) tmp18 = tl.where(tmp11, tmp17, tmp9) tmp19 = triton_helpers.maximum(tmp10, tmp18) tmp24 = tmp2 + tmp23 tmp25 = tmp24 * tmp6 tmp26 = tl.where(tmp21, tmp24, tmp25) tmp27 = tl.where(tmp20, tmp26, tmp9) tmp28 = triton_helpers.maximum(tmp19, tmp27) tmp33 = tmp2 + tmp32 tmp34 = tmp33 * tmp6 tmp35 = tl.where(tmp30, tmp33, tmp34) tmp36 = tl.where(tmp29, tmp35, tmp9) tmp37 = triton_helpers.maximum(tmp28, tmp36) tl.store(out_ptr0 + (x0), tmp37, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3p/c3pw4zgk6qf2aose2yqbculke53py2ghtcozhat76besgjeo2j6h.py # Topologically Sorted Source Nodes: [zero_vec, add_4, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.where, aten._softmax] # Source node to ATen node mapping: # add_4 => add_4 # attention_12 => where_13 # attention_13 => exp_4, sub_4 # e_4 => mul_20, where_12 # zero_vec => full_default # Graph fragment: # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %add_4 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_17, %permute_4), kwargs = {}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_4, 4), kwargs = {}) # %where_12 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_12, %add_4, %mul_20), kwargs = {}) # %where_13 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_12, %full_default), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_13, %amax_4), kwargs = {}) # %exp_4 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {}) triton_poi_fused__softmax_add_leaky_relu_mul_where_7 = async_compile.triton('triton_poi_fused__softmax_add_leaky_relu_mul_where_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_leaky_relu_mul_where_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_leaky_relu_mul_where_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x2), xmask).to(tl.int1) tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp5 = 4.0 tmp6 = tmp4 * tmp5 tmp7 = tl.where(tmp1, tmp4, tmp6) tmp8 = -8999999815811072.0 tmp9 = tl.where(tmp0, tmp7, tmp8) tmp11 = tmp9 - tmp10 tmp12 = tl_math.exp(tmp11) tl.store(out_ptr0 + (x2), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vn/cvnlzux2xi3qwahaidfxslw62nvrvjgyqouwnuxx7bn6vc4gb2jx.py # Topologically Sorted Source Nodes: [x_3, log_softmax], Original ATen: [aten.elu, aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax_5, sub_5 # x_3 => expm1_4, gt_14, mul_22, mul_24, where_14 # Graph fragment: # %gt_14 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mm_19, 0), kwargs = {}) # %mul_22 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm_19, 1.0), kwargs = {}) # %expm1_4 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_22,), kwargs = {}) # %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_4, 1.0), kwargs = {}) # %where_14 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_14, %mul_22, %mul_24), kwargs = {}) # %amax_5 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_14, [1], True), kwargs = {}) # %sub_5 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_14, %amax_5), kwargs = {}) triton_poi_fused__log_softmax_elu_8 = async_compile.triton('triton_poi_fused__log_softmax_elu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_elu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_elu_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp8 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tmp9 = tmp8 > tmp1 tmp10 = tmp8 * tmp3 tmp11 = libdevice.expm1(tmp10) tmp12 = tmp11 * tmp3 tmp13 = tl.where(tmp9, tmp10, tmp12) tmp15 = tmp14 > tmp1 tmp16 = tmp14 * tmp3 tmp17 = libdevice.expm1(tmp16) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp15, tmp16, tmp18) tmp20 = triton_helpers.maximum(tmp13, tmp19) tmp22 = tmp21 > tmp1 tmp23 = tmp21 * tmp3 tmp24 = libdevice.expm1(tmp23) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp22, tmp23, tmp25) tmp27 = triton_helpers.maximum(tmp20, tmp26) tmp29 = tmp28 > tmp1 tmp30 = tmp28 * tmp3 tmp31 = libdevice.expm1(tmp30) tmp32 = tmp31 * tmp3 tmp33 = tl.where(tmp29, tmp30, tmp32) tmp34 = triton_helpers.maximum(tmp27, tmp33) tmp35 = tmp7 - tmp34 tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uv/cuvhhdiycantl2koymc5p6rharsyggopa6l4kqtmxc7kcvu52m2v.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp_5, log, sub_6, sum_6 # Graph fragment: # %exp_5 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_5,), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_5, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_6,), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_5, %log), kwargs = {}) triton_poi_fused__log_softmax_9 = async_compile.triton('triton_poi_fused__log_softmax_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 1), (1, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 1), (1, 1)) assert_size_stride(primals_8, (4, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, 1), (1, 1)) assert_size_stride(primals_11, (4, 1), (1, 1)) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, 1), (1, 1)) assert_size_stride(primals_14, (4, 1), (1, 1)) assert_size_stride(primals_15, (16, 4), (4, 1)) assert_size_stride(primals_16, (4, 1), (1, 1)) assert_size_stride(primals_17, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_1], Original ATen: [aten.mm] extern_kernels.mm(buf0, primals_3, out=buf1) buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_2], Original ATen: [aten.mm] extern_kernels.mm(buf0, primals_4, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [add, e], Original ATen: [aten.add, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_add_leaky_relu_0.run(buf1, buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] triton_poi_fused_gt_1.run(primals_5, buf4, 16, grid=grid(16), stream=stream0) del primals_5 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_6, out=buf9) del primals_6 buf10 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_3], Original ATen: [aten.mm] extern_kernels.mm(buf9, primals_7, out=buf10) buf11 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_4], Original ATen: [aten.mm] extern_kernels.mm(buf9, primals_8, out=buf11) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [add_1, e_1], Original ATen: [aten.add, aten.leaky_relu] triton_poi_fused_add_leaky_relu_0.run(buf10, buf11, buf12, 16, grid=grid(16), stream=stream0) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_9, out=buf17) del primals_9 buf18 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_5], Original ATen: [aten.mm] extern_kernels.mm(buf17, primals_10, out=buf18) buf19 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_6], Original ATen: [aten.mm] extern_kernels.mm(buf17, primals_11, out=buf19) buf20 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [add_2, e_2], Original ATen: [aten.add, aten.leaky_relu] triton_poi_fused_add_leaky_relu_0.run(buf18, buf19, buf20, 16, grid=grid(16), stream=stream0) buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_12, out=buf25) del primals_12 buf26 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_7], Original ATen: [aten.mm] extern_kernels.mm(buf25, primals_13, out=buf26) buf27 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_8], Original ATen: [aten.mm] extern_kernels.mm(buf25, primals_14, out=buf27) buf28 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [add_3, e_3], Original ATen: [aten.add, aten.leaky_relu] triton_poi_fused_add_leaky_relu_0.run(buf26, buf27, buf28, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf13 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf21 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf29 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [add, e, zero_vec, attention, attention_1, add_1, e_1, attention_3, attention_4, add_2, e_2, attention_6, attention_7, add_3, e_3, attention_9, attention_10], Original ATen: [aten.add, aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_add_leaky_relu_mul_where_2.run(buf4, buf3, buf1, buf2, buf12, buf10, buf11, buf20, buf18, buf19, buf28, buf26, buf27, buf5, buf13, buf21, buf29, 4, grid=grid(4), stream=stream0) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf22 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf30 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, e, zero_vec, attention, attention_1, add_1, e_1, attention_3, attention_4, add_2, e_2, attention_6, attention_7, add_3, e_3, attention_9, attention_10], Original ATen: [aten.add, aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_add_leaky_relu_mul_where_3.run(buf4, buf3, buf1, buf2, buf5, buf12, buf10, buf11, buf13, buf20, buf18, buf19, buf21, buf28, buf26, buf27, buf29, buf6, buf14, buf22, buf30, 16, grid=grid(16), stream=stream0) del buf1 del buf10 del buf11 del buf13 del buf18 del buf19 del buf2 del buf21 del buf26 buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf6, buf7, 16, grid=grid(16), stream=stream0) buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [h_prime], Original ATen: [aten.mm] extern_kernels.mm(buf7, buf0, out=buf8) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_4], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf14, buf15, 16, grid=grid(16), stream=stream0) buf16 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [h_prime_1], Original ATen: [aten.mm] extern_kernels.mm(buf15, buf9, out=buf16) buf23 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_7], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf22, buf23, 16, grid=grid(16), stream=stream0) buf24 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [h_prime_2], Original ATen: [aten.mm] extern_kernels.mm(buf23, buf17, out=buf24) buf31 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_10], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf30, buf31, 16, grid=grid(16), stream=stream0) buf32 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [h_prime_3], Original ATen: [aten.mm] extern_kernels.mm(buf31, buf25, out=buf32) buf33 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] triton_poi_fused_cat_5.run(buf8, buf16, buf24, buf32, buf33, 64, grid=grid(64), stream=stream0) buf34 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_4], Original ATen: [aten.mm] extern_kernels.mm(buf33, primals_15, out=buf34) buf35 = reinterpret_tensor(buf5, (4, 1), (1, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [f_9], Original ATen: [aten.mm] extern_kernels.mm(buf34, primals_16, out=buf35) buf36 = reinterpret_tensor(buf29, (4, 1), (1, 1), 0); del buf29 # reuse # Topologically Sorted Source Nodes: [f_10], Original ATen: [aten.mm] extern_kernels.mm(buf34, primals_17, out=buf36) buf37 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [add_4, e_4], Original ATen: [aten.add, aten.leaky_relu] triton_poi_fused_add_leaky_relu_0.run(buf35, buf36, buf37, 16, grid=grid(16), stream=stream0) buf38 = reinterpret_tensor(buf27, (4, 1), (1, 4), 0); del buf27 # reuse # Topologically Sorted Source Nodes: [zero_vec, add_4, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.where, aten._softmax] triton_poi_fused__softmax_add_leaky_relu_mul_where_6.run(buf4, buf37, buf35, buf36, buf38, 4, grid=grid(4), stream=stream0) buf39 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [zero_vec, add_4, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.where, aten._softmax] triton_poi_fused__softmax_add_leaky_relu_mul_where_7.run(buf4, buf37, buf35, buf36, buf38, buf39, 16, grid=grid(16), stream=stream0) del buf35 del buf36 del buf38 buf40 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_13], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf39, buf40, 16, grid=grid(16), stream=stream0) buf41 = buf39; del buf39 # reuse # Topologically Sorted Source Nodes: [h_prime_4], Original ATen: [aten.mm] extern_kernels.mm(buf40, buf34, out=buf41) buf42 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3, log_softmax], Original ATen: [aten.elu, aten._log_softmax] triton_poi_fused__log_softmax_elu_8.run(buf41, buf42, 16, grid=grid(16), stream=stream0) buf43 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_9.run(buf42, buf43, 16, grid=grid(16), stream=stream0) del buf42 return (buf43, buf3, buf4, buf7, buf8, buf12, buf15, buf16, buf20, buf23, buf24, buf28, buf31, buf32, buf37, buf40, buf41, buf43, reinterpret_tensor(buf34, (4, 4), (1, 4), 0), reinterpret_tensor(primals_17, (1, 4), (1, 1), 0), reinterpret_tensor(primals_16, (1, 4), (1, 1), 0), reinterpret_tensor(buf33, (16, 4), (1, 16), 0), reinterpret_tensor(primals_15, (4, 16), (1, 4), 0), reinterpret_tensor(buf25, (4, 4), (1, 4), 0), reinterpret_tensor(primals_14, (1, 4), (1, 1), 0), reinterpret_tensor(primals_13, (1, 4), (1, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(buf17, (4, 4), (1, 4), 0), reinterpret_tensor(primals_11, (1, 4), (1, 1), 0), reinterpret_tensor(primals_10, (1, 4), (1, 1), 0), reinterpret_tensor(buf9, (4, 4), (1, 4), 0), reinterpret_tensor(primals_8, (1, 4), (1, 1), 0), reinterpret_tensor(primals_7, (1, 4), (1, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), reinterpret_tensor(primals_3, (1, 4), (1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F class GraphAttention(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttention, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat if torch.cuda.is_available(): param_type = torch.FloatTensor else: param_type = torch.FloatTensor self.W = nn.Parameter(nn.init.xavier_normal_(torch.Tensor( in_features, out_features).type(param_type), gain=np.sqrt(2.0)), requires_grad=True) self.a1 = nn.Parameter(nn.init.xavier_normal_(torch.Tensor( out_features, 1).type(param_type), gain=np.sqrt(2.0)), requires_grad=True) self.a2 = nn.Parameter(nn.init.xavier_normal_(torch.Tensor( out_features, 1).type(param_type), gain=np.sqrt(2.0)), requires_grad=True) self.leaky_relu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.mm(input, self.W) h.size()[0] f_1 = torch.mm(h, self.a1) f_2 = torch.mm(h, self.a2) e = self.leaky_relu(f_1 + f_2.transpose(0, 1)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GAT(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads): super(GAT, self).__init__() self.dropout = dropout self.attentions = [GraphAttention(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) self.out_att = GraphAttention(nhid * nheads, nclass, dropout= dropout, alpha=alpha, concat=False) def forward(self, x, adj): x = F.dropout(x, self.dropout, training=self.training) x = torch.cat([att(x, adj) for att in self.attentions], dim=1) x = F.dropout(x, self.dropout, training=self.training) x = F.elu(self.out_att(x, adj)) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'nfeat': 4, 'nhid': 4, 'nclass': 4, 'dropout': 0.5, 'alpha': 4, 'nheads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import numpy as np import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_gt_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_add_leaky_relu_mul_where_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + x0, xmask) tmp3 = tl.load(in_ptr3 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp11 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp12 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp13 = tl.load(in_ptr3 + 1) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp20 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp21 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp22 = tl.load(in_ptr3 + 2) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp29 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp30 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp31 = tl.load(in_ptr3 + 3) tmp32 = tl.broadcast_to(tmp31, [XBLOCK]) tmp38 = tl.load(in_ptr4 + 4 * x0, xmask, eviction_policy='evict_last').to( tl.int1) tmp39 = tl.load(in_ptr5 + x0, xmask) tmp40 = tl.load(in_ptr6 + 0) tmp41 = tl.broadcast_to(tmp40, [XBLOCK]) tmp46 = tl.load(in_ptr4 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp47 = tl.load(in_ptr6 + 1) tmp48 = tl.broadcast_to(tmp47, [XBLOCK]) tmp54 = tl.load(in_ptr4 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp55 = tl.load(in_ptr6 + 2) tmp56 = tl.broadcast_to(tmp55, [XBLOCK]) tmp62 = tl.load(in_ptr4 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp63 = tl.load(in_ptr6 + 3) tmp64 = tl.broadcast_to(tmp63, [XBLOCK]) tmp70 = tl.load(in_ptr7 + 4 * x0, xmask, eviction_policy='evict_last').to( tl.int1) tmp71 = tl.load(in_ptr8 + x0, xmask) tmp72 = tl.load(in_ptr9 + 0) tmp73 = tl.broadcast_to(tmp72, [XBLOCK]) tmp78 = tl.load(in_ptr7 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp79 = tl.load(in_ptr9 + 1) tmp80 = tl.broadcast_to(tmp79, [XBLOCK]) tmp86 = tl.load(in_ptr7 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp87 = tl.load(in_ptr9 + 2) tmp88 = tl.broadcast_to(tmp87, [XBLOCK]) tmp94 = tl.load(in_ptr7 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp95 = tl.load(in_ptr9 + 3) tmp96 = tl.broadcast_to(tmp95, [XBLOCK]) tmp102 = tl.load(in_ptr10 + 4 * x0, xmask, eviction_policy='evict_last' ).to(tl.int1) tmp103 = tl.load(in_ptr11 + x0, xmask) tmp104 = tl.load(in_ptr12 + 0) tmp105 = tl.broadcast_to(tmp104, [XBLOCK]) tmp110 = tl.load(in_ptr10 + (1 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp111 = tl.load(in_ptr12 + 1) tmp112 = tl.broadcast_to(tmp111, [XBLOCK]) tmp118 = tl.load(in_ptr10 + (2 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp119 = tl.load(in_ptr12 + 2) tmp120 = tl.broadcast_to(tmp119, [XBLOCK]) tmp126 = tl.load(in_ptr10 + (3 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp127 = tl.load(in_ptr12 + 3) tmp128 = tl.broadcast_to(tmp127, [XBLOCK]) tmp5 = tmp2 + tmp4 tmp6 = 4.0 tmp7 = tmp5 * tmp6 tmp8 = tl.where(tmp1, tmp5, tmp7) tmp9 = -8999999815811072.0 tmp10 = tl.where(tmp0, tmp8, tmp9) tmp15 = tmp2 + tmp14 tmp16 = tmp15 * tmp6 tmp17 = tl.where(tmp12, tmp15, tmp16) tmp18 = tl.where(tmp11, tmp17, tmp9) tmp19 = triton_helpers.maximum(tmp10, tmp18) tmp24 = tmp2 + tmp23 tmp25 = tmp24 * tmp6 tmp26 = tl.where(tmp21, tmp24, tmp25) tmp27 = tl.where(tmp20, tmp26, tmp9) tmp28 = triton_helpers.maximum(tmp19, tmp27) tmp33 = tmp2 + tmp32 tmp34 = tmp33 * tmp6 tmp35 = tl.where(tmp30, tmp33, tmp34) tmp36 = tl.where(tmp29, tmp35, tmp9) tmp37 = triton_helpers.maximum(tmp28, tmp36) tmp42 = tmp39 + tmp41 tmp43 = tmp42 * tmp6 tmp44 = tl.where(tmp38, tmp42, tmp43) tmp45 = tl.where(tmp0, tmp44, tmp9) tmp49 = tmp39 + tmp48 tmp50 = tmp49 * tmp6 tmp51 = tl.where(tmp46, tmp49, tmp50) tmp52 = tl.where(tmp11, tmp51, tmp9) tmp53 = triton_helpers.maximum(tmp45, tmp52) tmp57 = tmp39 + tmp56 tmp58 = tmp57 * tmp6 tmp59 = tl.where(tmp54, tmp57, tmp58) tmp60 = tl.where(tmp20, tmp59, tmp9) tmp61 = triton_helpers.maximum(tmp53, tmp60) tmp65 = tmp39 + tmp64 tmp66 = tmp65 * tmp6 tmp67 = tl.where(tmp62, tmp65, tmp66) tmp68 = tl.where(tmp29, tmp67, tmp9) tmp69 = triton_helpers.maximum(tmp61, tmp68) tmp74 = tmp71 + tmp73 tmp75 = tmp74 * tmp6 tmp76 = tl.where(tmp70, tmp74, tmp75) tmp77 = tl.where(tmp0, tmp76, tmp9) tmp81 = tmp71 + tmp80 tmp82 = tmp81 * tmp6 tmp83 = tl.where(tmp78, tmp81, tmp82) tmp84 = tl.where(tmp11, tmp83, tmp9) tmp85 = triton_helpers.maximum(tmp77, tmp84) tmp89 = tmp71 + tmp88 tmp90 = tmp89 * tmp6 tmp91 = tl.where(tmp86, tmp89, tmp90) tmp92 = tl.where(tmp20, tmp91, tmp9) tmp93 = triton_helpers.maximum(tmp85, tmp92) tmp97 = tmp71 + tmp96 tmp98 = tmp97 * tmp6 tmp99 = tl.where(tmp94, tmp97, tmp98) tmp100 = tl.where(tmp29, tmp99, tmp9) tmp101 = triton_helpers.maximum(tmp93, tmp100) tmp106 = tmp103 + tmp105 tmp107 = tmp106 * tmp6 tmp108 = tl.where(tmp102, tmp106, tmp107) tmp109 = tl.where(tmp0, tmp108, tmp9) tmp113 = tmp103 + tmp112 tmp114 = tmp113 * tmp6 tmp115 = tl.where(tmp110, tmp113, tmp114) tmp116 = tl.where(tmp11, tmp115, tmp9) tmp117 = triton_helpers.maximum(tmp109, tmp116) tmp121 = tmp103 + tmp120 tmp122 = tmp121 * tmp6 tmp123 = tl.where(tmp118, tmp121, tmp122) tmp124 = tl.where(tmp20, tmp123, tmp9) tmp125 = triton_helpers.maximum(tmp117, tmp124) tmp129 = tmp103 + tmp128 tmp130 = tmp129 * tmp6 tmp131 = tl.where(tmp126, tmp129, tmp130) tmp132 = tl.where(tmp29, tmp131, tmp9) tmp133 = triton_helpers.maximum(tmp125, tmp132) tl.store(out_ptr0 + x0, tmp37, xmask) tl.store(out_ptr1 + x0, tmp69, xmask) tl.store(out_ptr2 + x0, tmp101, xmask) tl.store(out_ptr3 + x0, tmp133, xmask) @triton.jit def triton_poi_fused__softmax_add_leaky_relu_mul_where_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x2, xmask).to(tl.int1) tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr5 + x2, xmask).to(tl.int1) tmp14 = tl.load(in_ptr6 + x1, xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr7 + x0, xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr8 + x1, xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr9 + x2, xmask).to(tl.int1) tmp24 = tl.load(in_ptr10 + x1, xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr11 + x0, xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr12 + x1, xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr13 + x2, xmask).to(tl.int1) tmp34 = tl.load(in_ptr14 + x1, xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr15 + x0, xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr16 + x1, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp5 = 4.0 tmp6 = tmp4 * tmp5 tmp7 = tl.where(tmp1, tmp4, tmp6) tmp8 = -8999999815811072.0 tmp9 = tl.where(tmp0, tmp7, tmp8) tmp11 = tmp9 - tmp10 tmp12 = tl_math.exp(tmp11) tmp16 = tmp14 + tmp15 tmp17 = tmp16 * tmp5 tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tl.where(tmp0, tmp18, tmp8) tmp21 = tmp19 - tmp20 tmp22 = tl_math.exp(tmp21) tmp26 = tmp24 + tmp25 tmp27 = tmp26 * tmp5 tmp28 = tl.where(tmp23, tmp26, tmp27) tmp29 = tl.where(tmp0, tmp28, tmp8) tmp31 = tmp29 - tmp30 tmp32 = tl_math.exp(tmp31) tmp36 = tmp34 + tmp35 tmp37 = tmp36 * tmp5 tmp38 = tl.where(tmp33, tmp36, tmp37) tmp39 = tl.where(tmp0, tmp38, tmp8) tmp41 = tmp39 - tmp40 tmp42 = tl_math.exp(tmp41) tl.store(out_ptr0 + x2, tmp12, xmask) tl.store(out_ptr1 + x2, tmp22, xmask) tl.store(out_ptr2 + x2, tmp32, xmask) tl.store(out_ptr3 + x2, tmp42, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 > tmp6 tmp21 = tmp19 * tmp8 tmp22 = libdevice.expm1(tmp21) tmp23 = tmp22 * tmp8 tmp24 = tl.where(tmp20, tmp21, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp18, tmp24, tmp25) tmp27 = tmp0 >= tmp16 tmp28 = tl.full([1], 12, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 > tmp6 tmp33 = tmp31 * tmp8 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp8 tmp36 = tl.where(tmp32, tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp30, tmp36, tmp37) tmp39 = tmp0 >= tmp28 tl.full([1], 16, tl.int64) tmp42 = tl.load(in_ptr3 + (4 * x1 + (-12 + x0)), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp42 > tmp6 tmp44 = tmp42 * tmp8 tmp45 = libdevice.expm1(tmp44) tmp46 = tmp45 * tmp8 tmp47 = tl.where(tmp43, tmp44, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp39, tmp47, tmp48) tmp50 = tl.where(tmp30, tmp38, tmp49) tmp51 = tl.where(tmp18, tmp26, tmp50) tmp52 = tl.where(tmp4, tmp14, tmp51) tl.store(out_ptr0 + x2, tmp52, xmask) @triton.jit def triton_poi_fused__softmax_add_leaky_relu_mul_where_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + x0, xmask) tmp3 = tl.load(in_ptr3 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp11 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp12 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp13 = tl.load(in_ptr3 + 1) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp20 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp21 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp22 = tl.load(in_ptr3 + 2) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp29 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp30 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp31 = tl.load(in_ptr3 + 3) tmp32 = tl.broadcast_to(tmp31, [XBLOCK]) tmp5 = tmp2 + tmp4 tmp6 = 4.0 tmp7 = tmp5 * tmp6 tmp8 = tl.where(tmp1, tmp5, tmp7) tmp9 = -8999999815811072.0 tmp10 = tl.where(tmp0, tmp8, tmp9) tmp15 = tmp2 + tmp14 tmp16 = tmp15 * tmp6 tmp17 = tl.where(tmp12, tmp15, tmp16) tmp18 = tl.where(tmp11, tmp17, tmp9) tmp19 = triton_helpers.maximum(tmp10, tmp18) tmp24 = tmp2 + tmp23 tmp25 = tmp24 * tmp6 tmp26 = tl.where(tmp21, tmp24, tmp25) tmp27 = tl.where(tmp20, tmp26, tmp9) tmp28 = triton_helpers.maximum(tmp19, tmp27) tmp33 = tmp2 + tmp32 tmp34 = tmp33 * tmp6 tmp35 = tl.where(tmp30, tmp33, tmp34) tmp36 = tl.where(tmp29, tmp35, tmp9) tmp37 = triton_helpers.maximum(tmp28, tmp36) tl.store(out_ptr0 + x0, tmp37, xmask) @triton.jit def triton_poi_fused__softmax_add_leaky_relu_mul_where_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x2, xmask).to(tl.int1) tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp5 = 4.0 tmp6 = tmp4 * tmp5 tmp7 = tl.where(tmp1, tmp4, tmp6) tmp8 = -8999999815811072.0 tmp9 = tl.where(tmp0, tmp7, tmp8) tmp11 = tmp9 - tmp10 tmp12 = tl_math.exp(tmp11) tl.store(out_ptr0 + x2, tmp12, xmask) @triton.jit def triton_poi_fused__log_softmax_elu_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp8 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp21 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp28 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tmp9 = tmp8 > tmp1 tmp10 = tmp8 * tmp3 tmp11 = libdevice.expm1(tmp10) tmp12 = tmp11 * tmp3 tmp13 = tl.where(tmp9, tmp10, tmp12) tmp15 = tmp14 > tmp1 tmp16 = tmp14 * tmp3 tmp17 = libdevice.expm1(tmp16) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp15, tmp16, tmp18) tmp20 = triton_helpers.maximum(tmp13, tmp19) tmp22 = tmp21 > tmp1 tmp23 = tmp21 * tmp3 tmp24 = libdevice.expm1(tmp23) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp22, tmp23, tmp25) tmp27 = triton_helpers.maximum(tmp20, tmp26) tmp29 = tmp28 > tmp1 tmp30 = tmp28 * tmp3 tmp31 = libdevice.expm1(tmp30) tmp32 = tmp31 * tmp3 tmp33 = tl.where(tmp29, tmp30, tmp32) tmp34 = triton_helpers.maximum(tmp27, tmp33) tmp35 = tmp7 - tmp34 tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused__log_softmax_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 1), (1, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 1), (1, 1)) assert_size_stride(primals_8, (4, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, 1), (1, 1)) assert_size_stride(primals_11, (4, 1), (1, 1)) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, 1), (1, 1)) assert_size_stride(primals_14, (4, 1), (1, 1)) assert_size_stride(primals_15, (16, 4), (4, 1)) assert_size_stride(primals_16, (4, 1), (1, 1)) assert_size_stride(primals_17, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf0, primals_3, out=buf1) buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf0, primals_4, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_add_leaky_relu_0[grid(16)](buf1, buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_gt_1[grid(16)](primals_5, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_6, out=buf9) del primals_6 buf10 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf9, primals_7, out=buf10) buf11 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf9, primals_8, out=buf11) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_add_leaky_relu_0[grid(16)](buf10, buf11, buf12, 16, XBLOCK=16, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_9, out=buf17) del primals_9 buf18 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf17, primals_10, out=buf18) buf19 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf17, primals_11, out=buf19) buf20 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_add_leaky_relu_0[grid(16)](buf18, buf19, buf20, 16, XBLOCK=16, num_warps=1, num_stages=1) buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_12, out=buf25) del primals_12 buf26 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf25, primals_13, out=buf26) buf27 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf25, primals_14, out=buf27) buf28 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_add_leaky_relu_0[grid(16)](buf26, buf27, buf28, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf13 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf21 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf29 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused__softmax_add_leaky_relu_mul_where_2[grid(4)](buf4, buf3, buf1, buf2, buf12, buf10, buf11, buf20, buf18, buf19, buf28, buf26, buf27, buf5, buf13, buf21, buf29, 4, XBLOCK=4, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf22 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf30 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_add_leaky_relu_mul_where_3[grid(16)](buf4, buf3, buf1, buf2, buf5, buf12, buf10, buf11, buf13, buf20, buf18, buf19, buf21, buf28, buf26, buf27, buf29, buf6, buf14, buf22, buf30, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf1 del buf10 del buf11 del buf13 del buf18 del buf19 del buf2 del buf21 del buf26 buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_4[grid(16)](buf6, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) buf8 = buf6 del buf6 extern_kernels.mm(buf7, buf0, out=buf8) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_4[grid(16)](buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = buf14 del buf14 extern_kernels.mm(buf15, buf9, out=buf16) buf23 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_4[grid(16)](buf22, buf23, 16, XBLOCK=16, num_warps=1, num_stages=1) buf24 = buf22 del buf22 extern_kernels.mm(buf23, buf17, out=buf24) buf31 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_4[grid(16)](buf30, buf31, 16, XBLOCK=16, num_warps=1, num_stages=1) buf32 = buf30 del buf30 extern_kernels.mm(buf31, buf25, out=buf32) buf33 = empty_strided_cuda((4, 16), (16, 1), torch.float32) triton_poi_fused_cat_5[grid(64)](buf8, buf16, buf24, buf32, buf33, 64, XBLOCK=64, num_warps=1, num_stages=1) buf34 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf33, primals_15, out=buf34) buf35 = reinterpret_tensor(buf5, (4, 1), (1, 1), 0) del buf5 extern_kernels.mm(buf34, primals_16, out=buf35) buf36 = reinterpret_tensor(buf29, (4, 1), (1, 1), 0) del buf29 extern_kernels.mm(buf34, primals_17, out=buf36) buf37 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_add_leaky_relu_0[grid(16)](buf35, buf36, buf37, 16, XBLOCK=16, num_warps=1, num_stages=1) buf38 = reinterpret_tensor(buf27, (4, 1), (1, 4), 0) del buf27 triton_poi_fused__softmax_add_leaky_relu_mul_where_6[grid(4)](buf4, buf37, buf35, buf36, buf38, 4, XBLOCK=4, num_warps=1, num_stages=1) buf39 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_add_leaky_relu_mul_where_7[grid(16)](buf4, buf37, buf35, buf36, buf38, buf39, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf35 del buf36 del buf38 buf40 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_4[grid(16)](buf39, buf40, 16, XBLOCK=16, num_warps=1, num_stages=1) buf41 = buf39 del buf39 extern_kernels.mm(buf40, buf34, out=buf41) buf42 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__log_softmax_elu_8[grid(16)](buf41, buf42, 16, XBLOCK=16, num_warps=1, num_stages=1) buf43 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__log_softmax_9[grid(16)](buf42, buf43, 16, XBLOCK= 16, num_warps=1, num_stages=1) del buf42 return (buf43, buf3, buf4, buf7, buf8, buf12, buf15, buf16, buf20, buf23, buf24, buf28, buf31, buf32, buf37, buf40, buf41, buf43, reinterpret_tensor(buf34, (4, 4), (1, 4), 0), reinterpret_tensor( primals_17, (1, 4), (1, 1), 0), reinterpret_tensor(primals_16, (1, 4), (1, 1), 0), reinterpret_tensor(buf33, (16, 4), (1, 16), 0), reinterpret_tensor(primals_15, (4, 16), (1, 4), 0), reinterpret_tensor(buf25, (4, 4), (1, 4), 0), reinterpret_tensor( primals_14, (1, 4), (1, 1), 0), reinterpret_tensor(primals_13, (1, 4), (1, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(buf17, (4, 4), (1, 4), 0), reinterpret_tensor( primals_11, (1, 4), (1, 1), 0), reinterpret_tensor(primals_10, (1, 4), (1, 1), 0), reinterpret_tensor(buf9, (4, 4), (1, 4), 0), reinterpret_tensor(primals_8, (1, 4), (1, 1), 0), reinterpret_tensor(primals_7, (1, 4), (1, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor( primals_4, (1, 4), (1, 1), 0), reinterpret_tensor(primals_3, (1, 4), (1, 1), 0)) class GraphAttention(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttention, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat if torch.cuda.is_available(): param_type = torch.FloatTensor else: param_type = torch.FloatTensor self.W = nn.Parameter(nn.init.xavier_normal_(torch.Tensor( in_features, out_features).type(param_type), gain=np.sqrt(2.0)), requires_grad=True) self.a1 = nn.Parameter(nn.init.xavier_normal_(torch.Tensor( out_features, 1).type(param_type), gain=np.sqrt(2.0)), requires_grad=True) self.a2 = nn.Parameter(nn.init.xavier_normal_(torch.Tensor( out_features, 1).type(param_type), gain=np.sqrt(2.0)), requires_grad=True) self.leaky_relu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.mm(input, self.W) h.size()[0] f_1 = torch.mm(h, self.a1) f_2 = torch.mm(h, self.a2) e = self.leaky_relu(f_1 + f_2.transpose(0, 1)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GATNew(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads): super(GATNew, self).__init__() self.dropout = dropout self.attentions = [GraphAttention(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) self.out_att = GraphAttention(nhid * nheads, nclass, dropout= dropout, alpha=alpha, concat=False) def forward(self, input_0, input_1): primals_1 = self.attention_0.W primals_3 = self.attention_0.a1 primals_4 = self.attention_0.a2 primals_2 = self.attention_1.W primals_7 = self.attention_1.a1 primals_8 = self.attention_1.a2 primals_5 = self.attention_2.W primals_10 = self.attention_2.a1 primals_11 = self.attention_2.a2 primals_6 = self.attention_3.W primals_13 = self.attention_3.a1 primals_14 = self.attention_3.a2 primals_15 = self.out_att.W primals_16 = self.out_att.a1 primals_17 = self.out_att.a2 primals_9 = input_0 primals_12 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
NightmareNyx/pygcn
GAT
false
4,274
[ "MIT" ]
0
3972f167ce7fcc41cb21284d75816dfd9a15f7ef
https://github.com/NightmareNyx/pygcn/tree/3972f167ce7fcc41cb21284d75816dfd9a15f7ef
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F class GraphAttention(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super().__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat if torch.cuda.is_available(): param_type = torch.FloatTensor else: param_type = torch.FloatTensor self.W = nn.Parameter(nn.init.xavier_normal_(torch.Tensor( in_features, out_features).type(param_type), gain=np.sqrt(2.0)), requires_grad=True) self.a1 = nn.Parameter(nn.init.xavier_normal_(torch.Tensor( out_features, 1).type(param_type), gain=np.sqrt(2.0)), requires_grad=True) self.a2 = nn.Parameter(nn.init.xavier_normal_(torch.Tensor( out_features, 1).type(param_type), gain=np.sqrt(2.0)), requires_grad=True) self.leaky_relu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.mm(input, self.W) h.size()[0] f_1 = torch.mm(h, self.a1) f_2 = torch.mm(h, self.a2) e = self.leaky_relu(f_1 + f_2.transpose(0, 1)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class Model(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads): super().__init__() self.dropout = dropout self.attentions = [GraphAttention(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) self.out_att = GraphAttention(nhid * nheads, nclass, dropout= dropout, alpha=alpha, concat=False) def forward(self, x, adj): x = F.dropout(x, self.dropout, training=self.training) x = torch.cat([att(x, adj) for att in self.attentions], dim=1) x = F.dropout(x, self.dropout, training=self.training) x = F.elu(self.out_att(x, adj)) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'nfeat': 4, 'nhid': 4, 'nclass': 4, 'dropout': 0.5, 'alpha': 4, 'nheads': 4}]
Auto_Encoder_Model
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ej/cejfrwnzxinkchwn6symdb72fdtj7gix5hy2vuswodhbeh45mrae.py # Topologically Sorted Source Nodes: [conv2d, output], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # output => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7z/c7zuih2ysjtir5rh5seep5ijnhokjlgkyjw2edhf257ahvz4iipr.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # output_1 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/j6/cj6faeofhfnxsh5iuwazughjlau4igyajnmvjequyelq7apzs4qm.py # Topologically Sorted Source Nodes: [conv2d_1, output_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # output_2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6y/c6yx6oq7oo2cwoaop3iwu5iqfdckg6lycdtu4jjuiv3wdcf2o6p7.py # Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # output_3 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/c3/cc37wvituo2asffgdbn2cnuhsr4nuj5pzt75pvxxxx4t7tdtdkqj.py # Topologically Sorted Source Nodes: [conv2d_2, output_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # output_4 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/t7/ct7cf34m4g63ojfteengkc3tcdxkjvs4wde47kna4a7bol6sdtyb.py # Topologically Sorted Source Nodes: [conv2d_4, output_8], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # conv2d_4 => convolution_6 # output_8 => sigmoid # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_6,), kwargs = {}) triton_poi_fused_convolution_sigmoid_5 = async_compile.triton('triton_poi_fused_convolution_sigmoid_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (64, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (16, ), (1, )) assert_size_stride(primals_8, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (32, ), (1, )) assert_size_stride(primals_10, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_11, (32, ), (1, )) assert_size_stride(primals_12, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_13, (64, ), (1, )) assert_size_stride(primals_14, (1, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_15, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, output], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) buf3 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.int8) # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, output_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 131072, grid=grid(131072), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32) buf7 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.int8) # Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 16, 16), (4096, 256, 16, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [conv2d_2, output_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf9, primals_7, 16384, grid=grid(16384), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_8, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf10, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d, output_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf11, primals_9, 131072, grid=grid(131072), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [conv2d_3, output_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf13, primals_11, 131072, grid=grid(131072), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_12, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf14, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d_1, output_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf15, primals_13, 1048576, grid=grid(1048576), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [conv2d_4, output_8], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_5.run(buf17, primals_15, 16384, grid=grid(16384), stream=stream0) del primals_15 return (buf17, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf11, buf13, buf15, buf17, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((1, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Auto_Encoder_Model(nn.Module): def __init__(self): super(Auto_Encoder_Model, self).__init__() self.conv1 = nn.Conv2d(1, 64, padding=1, kernel_size=3) self.max_pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(64, 32, padding=1, kernel_size=3) self.max_pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(32, 16, padding=1, kernel_size=3) self.tran_conv1 = nn.ConvTranspose2d(16, 32, kernel_size=3, stride= 2, padding=1, output_padding=1) self.conv4 = nn.Conv2d(32, 32, kernel_size=3, padding=1) self.tran_conv2 = nn.ConvTranspose2d(32, 64, kernel_size=3, stride= 2, padding=1, output_padding=1) self.conv5 = nn.Conv2d(64, 1, kernel_size=3, padding=1) def forward_pass(self, x): output = F.relu(self.conv1(x)) output = self.max_pool1(output) output = F.relu(self.conv2(output)) output = self.max_pool2(output) output = F.relu(self.conv3(output)) return output def reconstruct_pass(self, x): output = F.relu(self.tran_conv1(x)) output = F.relu(self.conv4(output)) output = F.relu(self.tran_conv2(output)) output = torch.sigmoid(self.conv5(output)) return output def forward(self, x): output = self.forward_pass(x) output = self.reconstruct_pass(output) return output def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 16 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_sigmoid_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (64, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (16,), (1,)) assert_size_stride(primals_8, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (32,), (1,)) assert_size_stride(primals_10, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_11, (32,), (1,)) assert_size_stride(primals_12, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_13, (64,), (1,)) assert_size_stride(primals_14, (1, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_15, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(1048576)](buf1, primals_2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) buf3 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(262144)](buf1, buf2, buf3, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(131072)](buf5, primals_5, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32) buf7 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(32768)](buf5, buf6, buf7, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 16, 16), (4096, 256, 16, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_4[grid(16384)](buf9, primals_7, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf10 = extern_kernels.convolution(buf9, primals_8, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf10, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_2[grid(131072)](buf11, primals_9, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_9 buf12 = extern_kernels.convolution(buf11, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_2[grid(131072)](buf13, primals_11, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_11 buf14 = extern_kernels.convolution(buf13, primals_12, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None) assert_size_stride(buf14, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_0[grid(1048576)](buf15, primals_13, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_13 buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf17 = buf16 del buf16 triton_poi_fused_convolution_sigmoid_5[grid(16384)](buf17, primals_15, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 return (buf17, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf11, buf13, buf15, buf17) class Auto_Encoder_ModelNew(nn.Module): def __init__(self): super(Auto_Encoder_ModelNew, self).__init__() self.conv1 = nn.Conv2d(1, 64, padding=1, kernel_size=3) self.max_pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(64, 32, padding=1, kernel_size=3) self.max_pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(32, 16, padding=1, kernel_size=3) self.tran_conv1 = nn.ConvTranspose2d(16, 32, kernel_size=3, stride= 2, padding=1, output_padding=1) self.conv4 = nn.Conv2d(32, 32, kernel_size=3, padding=1) self.tran_conv2 = nn.ConvTranspose2d(32, 64, kernel_size=3, stride= 2, padding=1, output_padding=1) self.conv5 = nn.Conv2d(64, 1, kernel_size=3, padding=1) def forward_pass(self, x): output = F.relu(self.conv1(x)) output = self.max_pool1(output) output = F.relu(self.conv2(output)) output = self.max_pool2(output) output = F.relu(self.conv3(output)) return output def reconstruct_pass(self, x): output = F.relu(self.tran_conv1(x)) output = F.relu(self.conv4(output)) output = F.relu(self.tran_conv2(output)) output = torch.sigmoid(self.conv5(output)) return output def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.tran_conv1.weight primals_9 = self.tran_conv1.bias primals_10 = self.conv4.weight primals_11 = self.conv4.bias primals_12 = self.tran_conv2.weight primals_13 = self.tran_conv2.bias primals_14 = self.conv5.weight primals_15 = self.conv5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
sarahESL/MICCAI19-MedVQA
Auto_Encoder_Model
false
4,275
[ "MIT" ]
0
aa751cb905f79cd356ad5746f8a0640f1d81b5d2
https://github.com/sarahESL/MICCAI19-MedVQA/tree/aa751cb905f79cd356ad5746f8a0640f1d81b5d2
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 64, padding=1, kernel_size=3) self.max_pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(64, 32, padding=1, kernel_size=3) self.max_pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(32, 16, padding=1, kernel_size=3) self.tran_conv1 = nn.ConvTranspose2d(16, 32, kernel_size=3, stride= 2, padding=1, output_padding=1) self.conv4 = nn.Conv2d(32, 32, kernel_size=3, padding=1) self.tran_conv2 = nn.ConvTranspose2d(32, 64, kernel_size=3, stride= 2, padding=1, output_padding=1) self.conv5 = nn.Conv2d(64, 1, kernel_size=3, padding=1) def forward_pass(self, x): output = F.relu(self.conv1(x)) output = self.max_pool1(output) output = F.relu(self.conv2(output)) output = self.max_pool2(output) output = F.relu(self.conv3(output)) return output def reconstruct_pass(self, x): output = F.relu(self.tran_conv1(x)) output = F.relu(self.conv4(output)) output = F.relu(self.tran_conv2(output)) output = torch.sigmoid(self.conv5(output)) return output def forward(self, x): output = self.forward_pass(x) output = self.reconstruct_pass(output) return output def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return []
ZeroLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/zi/cziatn4srpsymxab7n67k7jt34egxdol3kpyktgeck2cxwbklbyh.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class ZeroLayer(nn.Module): def __init__(self, stride): super(ZeroLayer, self).__init__() self.stride = stride def forward(self, x): """n, c, h, w = x.size() h //= self.stride w //= self.stride device = x.get_device() if x.is_cuda else torch.device('cpu') # noinspection PyUnresolvedReferences padding = torch.zeros(n, c, h, w, device=device, requires_grad=False) return padding""" return x * 0 @staticmethod def is_zero_layer(): return True def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'stride': 1}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class ZeroLayerNew(nn.Module): def __init__(self, stride): super(ZeroLayerNew, self).__init__() self.stride = stride @staticmethod def is_zero_layer(): return True def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
savan77/nni
ZeroLayer
false
4,276
[ "MIT" ]
0
510213393d9cae58c5a8cccd21f322f7bba4e0cf
https://github.com/savan77/nni/tree/510213393d9cae58c5a8cccd21f322f7bba4e0cf
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class Model(nn.Module): def __init__(self, stride): super().__init__() self.stride = stride def forward(self, x): """n, c, h, w = x.size() h //= self.stride w //= self.stride device = x.get_device() if x.is_cuda else torch.device('cpu') # noinspection PyUnresolvedReferences padding = torch.zeros(n, c, h, w, device=device, requires_grad=False) return padding""" return x * 0 @staticmethod def is_zero_layer(): return True def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [1]
FCNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/bm/cbmd63mrouqmm2pha5x6evse3dkbpy5o4xnk5v7quflfkqfdvwck.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # output_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 5 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (5, 4), (4, 1)) assert_size_stride(primals_2, (5, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 5), (5, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 5), (5, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 5), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 5), (80, 20, 5, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.bool) # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf3, 320, grid=grid(320), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 5), (5, 1), 0), reinterpret_tensor(primals_4, (5, 4), (1, 5), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (256, ), (1, ), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 5), (5, 1), 0), primals_4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((5, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 5), (5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class FCNet(nn.Module): def __init__(self, input_size, output_size): super().__init__() self.l1 = nn.Linear(input_size, 5) self.relu = nn.ReLU() self.l2 = nn.Linear(5, output_size) def forward(self, x): output = self.l1(x) output = self.relu(output) output = self.l2(output) return output.view(-1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 5 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (5, 4), (4, 1)) assert_size_stride(primals_2, (5,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 5), (5, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 5), (5, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 5), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 5), (80, 20, 5, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(320)](buf1, primals_2, buf3, 320, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 5), ( 5, 1), 0), reinterpret_tensor(primals_4, (5, 4), (1, 5), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (256,), (1,), 0), reinterpret_tensor( primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 5), ( 5, 1), 0), primals_4, buf3 class FCNetNew(nn.Module): def __init__(self, input_size, output_size): super().__init__() self.l1 = nn.Linear(input_size, 5) self.relu = nn.ReLU() self.l2 = nn.Linear(5, output_size) def forward(self, input_0): primals_1 = self.l1.weight primals_2 = self.l1.bias primals_4 = self.l2.weight primals_5 = self.l2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
savan77/nni
FCNet
false
4,277
[ "MIT" ]
0
510213393d9cae58c5a8cccd21f322f7bba4e0cf
https://github.com/savan77/nni/tree/510213393d9cae58c5a8cccd21f322f7bba4e0cf
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class Model(nn.Module): def __init__(self, input_size, output_size): super().__init__() self.l1 = nn.Linear(input_size, 5) self.relu = nn.ReLU() self.l2 = nn.Linear(5, output_size) def forward(self, x): output = self.l1(x) output = self.relu(output) output = self.l2(output) return output.view(-1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
LinearCombine
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/hu/chuao3goscfvc5gm5ggoerju3pembwo7thvhuzz6h7r3gyxruobd.py # Topologically Sorted Source Nodes: [nw, seq, seq_1], Original ATen: [aten._softmax, aten.mul, aten.sum] # Source node to ATen node mapping: # nw => amax, div, exp, sub, sum_1 # seq => mul # seq_1 => sum_2 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%primals_1, [0], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [0]), kwargs = {}) triton_poi_fused__softmax_mul_sum_0 = async_compile.triton('triton_poi_fused__softmax_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp7 = tl.load(in_ptr0 + (64 + x0), xmask) tmp10 = tl.load(in_ptr0 + (128 + x0), xmask) tmp13 = tl.load(in_ptr0 + (192 + x0), xmask) tmp3 = tmp2 - tmp2 tmp4 = tl_math.exp(tmp3) tmp5 = tmp4 / tmp4 tmp6 = tmp0 * tmp5 tmp8 = tmp7 * tmp5 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp5 tmp12 = tmp9 + tmp11 tmp14 = tmp13 * tmp5 tmp15 = tmp12 + tmp14 tl.store(out_ptr0 + (x0), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [nw, seq, seq_1], Original ATen: [aten._softmax, aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused__softmax_mul_sum_0.run(primals_2, primals_1, buf0, 64, grid=grid(64), stream=stream0) return (buf0, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.nn.functional as F class LinearCombine(nn.Module): def __init__(self, layers_num, trainable=True, input_aware=False, word_level=False): super(LinearCombine, self).__init__() self.input_aware = input_aware self.word_level = word_level if input_aware: raise NotImplementedError('Input aware is not supported.') self.w = nn.Parameter(torch.full((layers_num, 1, 1, 1), 1.0 / layers_num), requires_grad=trainable) def forward(self, seq): nw = F.softmax(self.w, dim=0) seq = torch.mul(seq, nw) seq = torch.sum(seq, dim=0) return seq def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'layers_num': 1}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__softmax_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp7 = tl.load(in_ptr0 + (64 + x0), xmask) tmp10 = tl.load(in_ptr0 + (128 + x0), xmask) tmp13 = tl.load(in_ptr0 + (192 + x0), xmask) tmp3 = tmp2 - tmp2 tmp4 = tl_math.exp(tmp3) tmp5 = tmp4 / tmp4 tmp6 = tmp0 * tmp5 tmp8 = tmp7 * tmp5 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp5 tmp12 = tmp9 + tmp11 tmp14 = tmp13 * tmp5 tmp15 = tmp12 + tmp14 tl.store(out_ptr0 + x0, tmp15, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_mul_sum_0[grid(64)](primals_2, primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf0, primals_1, primals_2 class LinearCombineNew(nn.Module): def __init__(self, layers_num, trainable=True, input_aware=False, word_level=False): super(LinearCombineNew, self).__init__() self.input_aware = input_aware self.word_level = word_level if input_aware: raise NotImplementedError('Input aware is not supported.') self.w = nn.Parameter(torch.full((layers_num, 1, 1, 1), 1.0 / layers_num), requires_grad=trainable) def forward(self, input_0): primals_1 = self.w primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
savan77/nni
LinearCombine
false
4,278
[ "MIT" ]
0
510213393d9cae58c5a8cccd21f322f7bba4e0cf
https://github.com/savan77/nni/tree/510213393d9cae58c5a8cccd21f322f7bba4e0cf
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.nn.functional as F class Model(nn.Module): def __init__(self, layers_num, trainable=True, input_aware=False, word_level=False): super().__init__() self.input_aware = input_aware self.word_level = word_level if input_aware: raise NotImplementedError('Input aware is not supported.') self.w = nn.Parameter(torch.full((layers_num, 1, 1, 1), 1.0 / layers_num), requires_grad=trainable) def forward(self, seq): nw = F.softmax(self.w, dim=0) seq = torch.mul(seq, nw) seq = torch.sum(seq, dim=0) return seq def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [1]
TorchAdd
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/gx/cgxrigsvtx4nc75mpdz7qivonc3wkrexg4c7zrh6gk2vmbwc4atl.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%select, %select_1), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class TorchAdd(nn.Module): """ TorchAdd Module. """ def forward(self, input_list): return input_list[0] + input_list[1] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class TorchAddNew(nn.Module): """ TorchAdd Module. """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
savan77/nni
TorchAdd
false
4,279
[ "MIT" ]
0
510213393d9cae58c5a8cccd21f322f7bba4e0cf
https://github.com/savan77/nni/tree/510213393d9cae58c5a8cccd21f322f7bba4e0cf
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class Model(nn.Module): """ TorchAdd Module. """ def forward(self, input_list): return input_list[0] + input_list[1] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ActorCritic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py # Topologically Sorted Source Nodes: [policy_dist], Original ATen: [aten._softmax] # Source node to ATen node mapping: # policy_dist => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py # Topologically Sorted Source Nodes: [policy_dist], Original ATen: [aten._softmax] # Source node to ATen node mapping: # policy_dist => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4), (4, 1)) assert_size_stride(primals_5, (1, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 256, grid=grid(256), stream=stream0) del primals_2 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [value], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [policy_dist], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [policy_dist], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 return (reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0), buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf6, primals_6, primals_4, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.nn.functional as F class ActorCritic(nn.Module): def __init__(self, num_states, num_actions, hidden_size): super(ActorCritic, self).__init__() self.num_actions = num_actions self.fc = nn.Linear(num_states, hidden_size) self.critic_linear2 = nn.Linear(hidden_size, 1) self.actor_linear2 = nn.Linear(hidden_size, num_actions) def forward(self, state): x = F.relu(self.fc(state)) value = self.critic_linear2(x) policy_dist = F.softmax(self.actor_linear2(x)) return value, policy_dist def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_states': 4, 'num_actions': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4), (4, 1)) assert_size_stride(primals_5, (1,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 return reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0 ), buf6, primals_6, primals_4, buf7 class ActorCriticNew(nn.Module): def __init__(self, num_states, num_actions, hidden_size): super(ActorCriticNew, self).__init__() self.num_actions = num_actions self.fc = nn.Linear(num_states, hidden_size) self.critic_linear2 = nn.Linear(hidden_size, 1) self.actor_linear2 = nn.Linear(hidden_size, num_actions) def forward(self, input_0): primals_1 = self.fc.weight primals_2 = self.fc.bias primals_4 = self.critic_linear2.weight primals_5 = self.critic_linear2.bias primals_6 = self.actor_linear2.weight primals_7 = self.actor_linear2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0], output[1]
savan77/nni
ActorCritic
false
4,280
[ "MIT" ]
0
510213393d9cae58c5a8cccd21f322f7bba4e0cf
https://github.com/savan77/nni/tree/510213393d9cae58c5a8cccd21f322f7bba4e0cf
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.nn.functional as F class Model(nn.Module): def __init__(self, num_states, num_actions, hidden_size): super().__init__() self.num_actions = num_actions self.fc = nn.Linear(num_states, hidden_size) self.critic_linear2 = nn.Linear(hidden_size, 1) self.actor_linear2 = nn.Linear(hidden_size, num_actions) def forward(self, state): x = F.relu(self.fc(state)) value = self.critic_linear2(x) policy_dist = F.softmax(self.actor_linear2(x)) return value, policy_dist def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
LipschitzCube
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/fh/cfhy3agarxy4nw2x57myddkk4vpnhtk5yjzrljts6cbbw3pyiwgb.py # Topologically Sorted Source Nodes: [ge, sub, mul, le, add, mul_1, add_1, gt, lt, mul_2, pow_1, mul_3, truediv, add_2], Original ATen: [aten.ge, aten.sub, aten.mul, aten.le, aten.add, aten.gt, aten.lt, aten.pow, aten.div] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # ge => ge # gt => gt # le => le # lt => lt # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # pow_1 => pow_1 # sub => sub # truediv => div # Graph fragment: # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%arg0_1, 1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 0.6666666666666666), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%ge, %sub), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%arg0_1, -1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 0.6666666666666666), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%le, %add), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, -1), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%arg0_1, 1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%gt, %lt), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 3), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %pow_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_3, 3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %div), kwargs = {}) triton_poi_fused_add_div_ge_gt_le_lt_mul_pow_sub_0 = async_compile.triton('triton_poi_fused_add_div_ge_gt_le_lt_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_ge_gt_le_lt_mul_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_ge_gt_le_lt_mul_pow_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 >= tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = 0.6666666666666666 tmp5 = tmp0 - tmp4 tmp6 = tmp3 * tmp5 tmp7 = -1.0 tmp8 = tmp0 <= tmp7 tmp9 = tmp8.to(tl.float32) tmp10 = tmp0 + tmp4 tmp11 = tmp9 * tmp10 tmp12 = tmp6 + tmp11 tmp13 = tmp0 > tmp7 tmp14 = tmp0 < tmp1 tmp15 = tmp13 & tmp14 tmp16 = tmp15.to(tl.float32) tmp17 = tmp0 * tmp0 tmp18 = tmp17 * tmp0 tmp19 = tmp16 * tmp18 tmp20 = 0.3333333333333333 tmp21 = tmp19 * tmp20 tmp22 = tmp12 + tmp21 tl.store(out_ptr0 + (x0), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [ge, sub, mul, le, add, mul_1, add_1, gt, lt, mul_2, pow_1, mul_3, truediv, add_2], Original ATen: [aten.ge, aten.sub, aten.mul, aten.le, aten.add, aten.gt, aten.lt, aten.pow, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_ge_gt_le_lt_mul_pow_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data.distributed class LipschitzCube(nn.Module): def forward(self, x): return (x >= 1) * (x - 2 / 3) + (x <= -1) * (x + 2 / 3) + (x > -1) * (x < 1) * x ** 3 / 3 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_ge_gt_le_lt_mul_pow_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 >= tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = 0.6666666666666666 tmp5 = tmp0 - tmp4 tmp6 = tmp3 * tmp5 tmp7 = -1.0 tmp8 = tmp0 <= tmp7 tmp9 = tmp8.to(tl.float32) tmp10 = tmp0 + tmp4 tmp11 = tmp9 * tmp10 tmp12 = tmp6 + tmp11 tmp13 = tmp0 > tmp7 tmp14 = tmp0 < tmp1 tmp15 = tmp13 & tmp14 tmp16 = tmp15.to(tl.float32) tmp17 = tmp0 * tmp0 tmp18 = tmp17 * tmp0 tmp19 = tmp16 * tmp18 tmp20 = 0.3333333333333333 tmp21 = tmp19 * tmp20 tmp22 = tmp12 + tmp21 tl.store(out_ptr0 + x0, tmp22, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_ge_gt_le_lt_mul_pow_sub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class LipschitzCubeNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
rh-ia/color-information
LipschitzCube
false
4,281
[ "MIT" ]
0
e912a1667e4fffb339dbc574c85020ec6cf78b02
https://github.com/rh-ia/color-information/tree/e912a1667e4fffb339dbc574c85020ec6cf78b02
import torch from torch import nn import torch.utils.data.distributed class Model(nn.Module): def forward(self, x): return (x >= 1) * (x - 2 / 3) + (x <= -1) * (x + 2 / 3) + (x > -1) * (x < 1) * x ** 3 / 3 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ExtendedModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ai/caitnpldotnv4k4oj67wyecd2ig4qcjrnmr35rmx6o2vxx245xs3.py # Topologically Sorted Source Nodes: [h_relu], Original ATen: [aten.clamp, aten.ge] # Source node to ATen node mapping: # h_relu => clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%view_1, 0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%view_1, 0), kwargs = {}) triton_poi_fused_clamp_ge_0 = async_compile.triton('triton_poi_fused_clamp_ge_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_ge_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tmp2 >= tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/w3/cw3e5u4uwg7zpc5lz2eloe3l5how3uzo3r6hois7qr3hg5trjibq.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, 0.0), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [h_relu], Original ATen: [aten.clamp, aten.ge] stream0 = get_raw_stream(0) triton_poi_fused_clamp_ge_0.run(buf0, primals_2, buf1, buf4, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ExtendedModel(nn.Module): def __init__(self, D_in, H, D_out): """ In the constructor we instantiate two nn.Linear modules and assign them as member variables. """ super(ExtendedModel, self).__init__() self.linear1 = nn.Linear(D_in, H) self.linear2 = nn.Linear(H, D_out) def forward(self, x, bias=0.0): """ In the forward function we accept a Tensor of input data and an optional bias """ h_relu = self.linear1(x).clamp(min=0) y_pred = self.linear2(h_relu) return y_pred + bias def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'D_in': 4, 'H': 4, 'D_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clamp_ge_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tmp2 >= tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp5, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_clamp_ge_0[grid(256)](buf0, primals_2, buf1, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_add_1[grid(256)](buf3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf4 class ExtendedModelNew(nn.Module): def __init__(self, D_in, H, D_out): """ In the constructor we instantiate two nn.Linear modules and assign them as member variables. """ super(ExtendedModelNew, self).__init__() self.linear1 = nn.Linear(D_in, H) self.linear2 = nn.Linear(H, D_out) def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
sauyon/BentoML
ExtendedModel
false
4,282
[ "Apache-2.0" ]
0
ff702f1fc1ee7cc4cf7aab2e67d1e27512858fe4
https://github.com/sauyon/BentoML/tree/ff702f1fc1ee7cc4cf7aab2e67d1e27512858fe4
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, D_in, H, D_out): """ In the constructor we instantiate two nn.Linear modules and assign them as member variables. """ super().__init__() self.linear1 = nn.Linear(D_in, H) self.linear2 = nn.Linear(H, D_out) def forward(self, x, bias=0.0): """ In the forward function we accept a Tensor of input data and an optional bias """ h_relu = self.linear1(x).clamp(min=0) y_pred = self.linear2(h_relu) return y_pred + bias def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
FullSort
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/zu/czuykkrx3bycxkuqvpdouv5j3rcauet5ovtjh3346eg2mc7xjxpx.py # Topologically Sorted Source Nodes: [sort], Original ATen: [aten.sort] # Source node to ATen node mapping: # sort => sort # Graph fragment: # %sort : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%arg0_1, 1), kwargs = {}) triton_per_fused_sort_0 = async_compile.triton('triton_per_fused_sort_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sort_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_sort_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 16 x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (64*x1)), xmask, other=0.0) tmp1 = r2 tmp2 = tmp1.to(tl.int16) tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp4 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5, tmp6, = triton_helpers.sort_with_index(tmp3, tmp4, None, 1, stable=False, descending=False) tl.store(out_ptr0 + (x0 + (16*r2) + (64*x1)), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sort], Original ATen: [aten.sort] stream0 = get_raw_stream(0) triton_per_fused_sort_0.run(arg0_1, buf0, 64, 4, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data.distributed class FullSort(nn.Module): def forward(self, x): return torch.sort(x, 1)[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_sort_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr): xnumel = 64 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 64 * x1), xmask, other=0.0) tmp1 = r2 tmp2 = tmp1.to(tl.int16) tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp4 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5, _tmp6 = triton_helpers.sort_with_index(tmp3, tmp4, None, 1, stable=False, descending=False) tl.store(out_ptr0 + (x0 + 16 * r2 + 64 * x1), tmp5, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_sort_0[grid(64)](arg0_1, buf0, 64, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf0, class FullSortNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
rh-ia/color-information
FullSort
false
4,283
[ "MIT" ]
0
e912a1667e4fffb339dbc574c85020ec6cf78b02
https://github.com/rh-ia/color-information/tree/e912a1667e4fffb339dbc574c85020ec6cf78b02
import torch from torch import nn import torch.utils.data.distributed class Model(nn.Module): def forward(self, x): return torch.sort(x, 1)[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Clamp
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/lt/cltgqtfsflyt6yb6tdfryeqzjuvjc6f5yyrsp5cvrn536kh76u7p.py # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] # Source node to ATen node mapping: # clamp => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, -3), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 3), kwargs = {}) triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = -3.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 3.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] stream0 = get_raw_stream(0) triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data class Clamp(nn.Module): def __init__(self, min_out=-3, max_out=3): super().__init__() self.min_out = min_out self.max_out = max_out def forward(self, input): return input.clamp(self.min_out, self.max_out) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = -3.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 3.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class ClampNew(nn.Module): def __init__(self, min_out=-3, max_out=3): super().__init__() self.min_out = min_out self.max_out = max_out def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
sbuschjaeger/Pysembles
Clamp
false
4,284
[ "MIT" ]
0
7e69b0975a7d4373242c7026ade6c5fdbad4fe67
https://github.com/sbuschjaeger/Pysembles/tree/7e69b0975a7d4373242c7026ade6c5fdbad4fe67
import torch from torch import nn import torch.utils.data class Model(nn.Module): def __init__(self, min_out=-3, max_out=3): super().__init__() self.min_out = min_out self.max_out = max_out def forward(self, input): return input.clamp(self.min_out, self.max_out) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SpatialAttentionGate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/qv/cqvpm4tidhpw42vquodkna5kubx3c46djnnb2jim63auds7wtadt.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/go/cgofqcgduqrtcjakfd7uk3wkcrpwsqxispluihwsstry6ekodk2u.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # x_2 => convolution_1 # x_3 => sigmoid # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_sigmoid_1 = async_compile.triton('triton_poi_fused_convolution_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_5, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 1024, grid=grid(1024), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 4, 4), (16, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_1.run(buf3, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.nn.functional as F class SpatialAttentionGate(nn.Module): def __init__(self, channel, reduction=16): super(SpatialAttentionGate, self).__init__() self.fc1 = nn.Conv2d(channel, reduction, kernel_size=1, padding=0) self.fc2 = nn.Conv2d(reduction, 1, kernel_size=1, padding=0) def forward(self, x): x = self.fc1(x) x = F.relu(x, inplace=True) x = self.fc2(x) x = torch.sigmoid(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_5, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(1024)](buf1, primals_2, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 4, 4), (16, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_sigmoid_1[grid(64)](buf3, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 return buf3, primals_1, primals_3, primals_4, buf1, buf3 class SpatialAttentionGateNew(nn.Module): def __init__(self, channel, reduction=16): super(SpatialAttentionGateNew, self).__init__() self.fc1 = nn.Conv2d(channel, reduction, kernel_size=1, padding=0) self.fc2 = nn.Conv2d(reduction, 1, kernel_size=1, padding=0) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
savan77/nni
SpatialAttentionGate
false
4,285
[ "MIT" ]
0
510213393d9cae58c5a8cccd21f322f7bba4e0cf
https://github.com/savan77/nni/tree/510213393d9cae58c5a8cccd21f322f7bba4e0cf
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.nn.functional as F class Model(nn.Module): def __init__(self, channel, reduction=16): super().__init__() self.fc1 = nn.Conv2d(channel, reduction, kernel_size=1, padding=0) self.fc2 = nn.Conv2d(reduction, 1, kernel_size=1, padding=0) def forward(self, x): x = self.fc1(x) x = F.relu(x, inplace=True) x = self.fc2(x) x = torch.sigmoid(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
FlexibleDropout
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yl/cylp6sds3y5rpwqc43muaio5wwmfwwsccgosjr3putgu5c5grjy6.py # Topologically Sorted Source Nodes: [sub, mul], Original ATen: [aten.rsub, aten.mul] # Source node to ATen node mapping: # mul => mul # sub => sub # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg1_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %sub), kwargs = {}) triton_poi_fused_mul_rsub_0 = async_compile.triton('triton_poi_fused_mul_rsub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_rsub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 * tmp2 tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, mul], Original ATen: [aten.rsub, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_rsub_0.run(arg1_1, arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf1, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.distributions import Bernoulli class FlexibleDropout(nn.Module): """FlexibleDropout disconnects the sampling step from the masking step of dropout. There are two important differences between FlexibleDropout and nn.Dropout. First, FlexibleDropout exposes a sample_mask and apply_mask function, that allows for the same mask to be used repeatedly. Second, FlexibleDropout scales the input at test time with p, as opposed to scaling with 1/p at training time. This is convenient when Dropout is used for uncertainty estimation. """ def __init__(self): super().__init__() def forward(self, input, p, shape=None): """Similar to F.dropout, a mask is sampled and directly applied to the input.""" if shape is None: self.sample_mask(p, input.shape) else: self.sample_mask(p, shape) return self.apply_mask(input) def apply_mask(self, input): """Applies the sampled mask to the input.""" return input * self._mask def sample_mask(self, p, shape): """Samples a dropout mask from a Bernoulli distribution. Args: p(float): the dropout probability [0, 1]. shape(torch.Size): shape of the mask to be sampled. """ if self.training: self._mask = Bernoulli(1.0 - p).sample(shape) else: self._mask = 1.0 - p def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.distributions import Bernoulli assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 * tmp2 tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp4, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_rsub_0[grid(256)](arg1_1, arg0_1, buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf1, buf0 class FlexibleDropoutNew(nn.Module): """FlexibleDropout disconnects the sampling step from the masking step of dropout. There are two important differences between FlexibleDropout and nn.Dropout. First, FlexibleDropout exposes a sample_mask and apply_mask function, that allows for the same mask to be used repeatedly. Second, FlexibleDropout scales the input at test time with p, as opposed to scaling with 1/p at training time. This is convenient when Dropout is used for uncertainty estimation. """ def __init__(self): super().__init__() def apply_mask(self, input): """Applies the sampled mask to the input.""" return input * self._mask def sample_mask(self, p, shape): """Samples a dropout mask from a Bernoulli distribution. Args: p(float): the dropout probability [0, 1]. shape(torch.Size): shape of the mask to be sampled. """ if self.training: self._mask = Bernoulli(1.0 - p).sample(shape) else: self._mask = 1.0 - p def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
scfrank/deep-generative-lm
FlexibleDropout
false
4,286
[ "MIT" ]
0
70067fcda82aa035bba805ce6c2709097166a7a4
https://github.com/scfrank/deep-generative-lm/tree/70067fcda82aa035bba805ce6c2709097166a7a4
import torch import torch.nn as nn from torch.distributions import Bernoulli class Model(nn.Module): """FlexibleDropout disconnects the sampling step from the masking step of dropout. There are two important differences between FlexibleDropout and nn.Dropout. First, FlexibleDropout exposes a sample_mask and apply_mask function, that allows for the same mask to be used repeatedly. Second, FlexibleDropout scales the input at test time with p, as opposed to scaling with 1/p at training time. This is convenient when Dropout is used for uncertainty estimation. """ def __init__(self): super().__init__() def forward(self, input, p, shape=None): """Similar to F.dropout, a mask is sampled and directly applied to the input.""" if shape is None: self.sample_mask(p, input.shape) else: self.sample_mask(p, shape) return self.apply_mask(input) def apply_mask(self, input): """Applies the sampled mask to the input.""" return input * self._mask def sample_mask(self, p, shape): """Samples a dropout mask from a Bernoulli distribution. Args: p(float): the dropout probability [0, 1]. shape(torch.Size): shape of the mask to be sampled. """ if self.training: self._mask = Bernoulli(1.0 - p).sample(shape) else: self._mask = 1.0 - p def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
BertImagePooler
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yy/cyya3js6wt64vdji3sfisvrqyfvqxwkwqq5mzg5bqjl2crzjs4t3.py # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone] # Source node to ATen node mapping: # pooled_output => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xk/cxkfjvxcrwrocrik25vel4gb2spp4jrbijo33ra4mgkw3hn2qgah.py # Topologically Sorted Source Nodes: [pooled_output, pooled_output_1], Original ATen: [aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # pooled_output => add # pooled_output_1 => relu # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_add_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [pooled_output, pooled_output_1], Original ATen: [aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_relu_threshold_backward_1.run(buf2, primals_3, buf3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn import torch.multiprocessing class BertImagePooler(nn.Module): def __init__(self, config): super(BertImagePooler, self).__init__() self.dense = nn.Linear(config.v_hidden_size, config.bi_hidden_size) self.activation = nn.ReLU() def forward(self, hidden_states): first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(v_hidden_size=4, bi_hidden_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.multiprocessing assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_add_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_add_relu_threshold_backward_1[grid(64)](buf2, primals_3, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf3 class BertImagePoolerNew(nn.Module): def __init__(self, config): super(BertImagePoolerNew, self).__init__() self.dense = nn.Linear(config.v_hidden_size, config.bi_hidden_size) self.activation = nn.ReLU() def forward(self, input_0): primals_2 = self.dense.weight primals_3 = self.dense.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
ayushjain1144/vilbert-multi-task
BertImagePooler
false
4,287
[ "MIT" ]
0
cf30feee9617dd92bb030f380f8b59388b7054f6
https://github.com/ayushjain1144/vilbert-multi-task/tree/cf30feee9617dd92bb030f380f8b59388b7054f6
from _paritybench_helpers import _mock_config import torch import torch.nn as nn import torch.multiprocessing class Model(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.v_hidden_size, config.bi_hidden_size) self.activation = nn.ReLU() def forward(self, hidden_states): first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
LipNormConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/in/cinvfeqy6ry6tu24qtajhlnsldmnir4gax6ikx6vnnqb4avr5ien.py # Topologically Sorted Source Nodes: [w_scale, truediv, sigmoid, weight], Original ATen: [aten.norm, aten.div, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # sigmoid => sigmoid # truediv => div # w_scale => abs_1, pow_2, sum_1 # weight => mul # Graph fragment: # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%view,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%abs_1, [1]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 1.0), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %view_1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_2,), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sigmoid), kwargs = {}) triton_per_fused_div_mul_norm_sigmoid_0 = async_compile.triton('triton_per_fused_div_mul_norm_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_norm_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mul_norm_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp7 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl_math.abs(tmp0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = tmp0 / tmp5 tmp8 = tl.sigmoid(tmp7) tmp9 = tmp6 * tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr0 + (r1 + (64*x0)), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2i/c2ia6clymej2axaxwh5dhlf5hhex6emmkbazo7542zo3gcyaffyw.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_4, %mul, %primals_3, [1, 1], [4, 4], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 81) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.float32) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [w_scale, truediv, sigmoid, weight], Original ATen: [aten.norm, aten.div, aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_div_mul_norm_sigmoid_0.run(buf1, primals_1, primals_2, buf2, 4, 64, grid=grid(4), stream=stream0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(primals_4, buf2, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 9, 9), (324, 81, 9, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf4, primals_3, 1296, grid=grid(1296), stream=stream0) del primals_3 return (buf4, primals_1, primals_2, primals_4, reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F import torch.utils.data.distributed def _max_except_dim(input, dim): maxed = input for axis in range(input.ndimension() - 1, dim, -1): maxed, _ = maxed.max(axis, keepdim=True) for axis in range(dim - 1, -1, -1): maxed, _ = maxed.max(axis, keepdim=True) return maxed def _norm_except_dim(w, norm_type, dim): if norm_type == 1 or norm_type == 2: return torch.norm_except_dim(w, norm_type, dim) elif norm_type == float('inf'): return _max_except_dim(w, dim) def operator_norm_settings(domain, codomain): if domain == 1 and codomain == 1: max_across_input_dims = True norm_type = 1 elif domain == 1 and codomain == 2: max_across_input_dims = True norm_type = 2 elif domain == 1 and codomain == float('inf'): max_across_input_dims = True norm_type = float('inf') elif domain == 2 and codomain == float('inf'): max_across_input_dims = False norm_type = 2 elif domain == float('inf') and codomain == float('inf'): max_across_input_dims = False norm_type = 1 else: raise ValueError('Unknown combination of domain "{}" and codomain "{}"' .format(domain, codomain)) return max_across_input_dims, norm_type def _logit(p): p = torch.max(torch.ones(1) * 0.1, torch.min(torch.ones(1) * 0.9, p)) return torch.log(p + 1e-10) + torch.log(1 - p + 1e-10) class LipNormConv2d(nn.Conv2d): """Lipschitz constant defined using operator norms.""" def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias=True, coeff=0.97, domain=float('inf'), codomain=float ('inf'), local_constraint=True, **unused_kwargs): del unused_kwargs super(LipNormConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, bias) self.coeff = coeff self.domain = domain self.codomain = codomain self.local_constraint = local_constraint max_across_input_dims, self.norm_type = operator_norm_settings(self .domain, self.codomain) self.max_across_dim = 1 if max_across_input_dims else 0 with torch.no_grad(): w_scale = _norm_except_dim(self.weight, self.norm_type, dim= self.max_across_dim) if not self.local_constraint: w_scale = w_scale.max() self.scale = nn.Parameter(_logit(w_scale / self.coeff)) def compute_weight(self): w_scale = _norm_except_dim(self.weight, self.norm_type, dim=self. max_across_dim) if not self.local_constraint: w_scale = w_scale.max() return self.weight / w_scale * torch.sigmoid(self.scale) def forward(self, input): weight = self.compute_weight() return F.conv2d(input, weight, self.bias, self.stride, self.padding, 1, 1) def extra_repr(self): s = super(LipNormConv2d, self).extra_repr() return s + ', coeff={}, domain={}, codomain={}, local={}'.format(self .coeff, self.domain, self.codomain, self.local_constraint) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4, 'stride': 1, 'padding': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_div_mul_norm_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp1 = tl_math.abs(tmp0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = tmp0 / tmp5 tmp8 = tl.sigmoid(tmp7) tmp9 = tmp6 * tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr0 + (r1 + 64 * x0), tmp9, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 81 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_div_mul_norm_sigmoid_0[grid(4)](buf1, primals_1, primals_2, buf2, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf3 = extern_kernels.convolution(primals_4, buf2, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 9, 9), (324, 81, 9, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_1[grid(1296)](buf4, primals_3, 1296, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return buf4, primals_1, primals_2, primals_4, reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0), buf2 def _max_except_dim(input, dim): maxed = input for axis in range(input.ndimension() - 1, dim, -1): maxed, _ = maxed.max(axis, keepdim=True) for axis in range(dim - 1, -1, -1): maxed, _ = maxed.max(axis, keepdim=True) return maxed def _norm_except_dim(w, norm_type, dim): if norm_type == 1 or norm_type == 2: return torch.norm_except_dim(w, norm_type, dim) elif norm_type == float('inf'): return _max_except_dim(w, dim) def operator_norm_settings(domain, codomain): if domain == 1 and codomain == 1: max_across_input_dims = True norm_type = 1 elif domain == 1 and codomain == 2: max_across_input_dims = True norm_type = 2 elif domain == 1 and codomain == float('inf'): max_across_input_dims = True norm_type = float('inf') elif domain == 2 and codomain == float('inf'): max_across_input_dims = False norm_type = 2 elif domain == float('inf') and codomain == float('inf'): max_across_input_dims = False norm_type = 1 else: raise ValueError('Unknown combination of domain "{}" and codomain "{}"' .format(domain, codomain)) return max_across_input_dims, norm_type def _logit(p): p = torch.max(torch.ones(1) * 0.1, torch.min(torch.ones(1) * 0.9, p)) return torch.log(p + 1e-10) + torch.log(1 - p + 1e-10) class LipNormConv2dNew(nn.Conv2d): """Lipschitz constant defined using operator norms.""" def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias=True, coeff=0.97, domain=float('inf'), codomain=float ('inf'), local_constraint=True, **unused_kwargs): del unused_kwargs super(LipNormConv2dNew, self).__init__(in_channels, out_channels, kernel_size, stride, padding, bias) self.coeff = coeff self.domain = domain self.codomain = codomain self.local_constraint = local_constraint max_across_input_dims, self.norm_type = operator_norm_settings(self .domain, self.codomain) self.max_across_dim = 1 if max_across_input_dims else 0 with torch.no_grad(): w_scale = _norm_except_dim(self.weight, self.norm_type, dim= self.max_across_dim) if not self.local_constraint: w_scale = w_scale.max() self.scale = nn.Parameter(_logit(w_scale / self.coeff)) def compute_weight(self): w_scale = _norm_except_dim(self.weight, self.norm_type, dim=self. max_across_dim) if not self.local_constraint: w_scale = w_scale.max() return self.weight / w_scale * torch.sigmoid(self.scale) def extra_repr(self): s = super(LipNormConv2dNew, self).extra_repr() return s + ', coeff={}, domain={}, codomain={}, local={}'.format(self .coeff, self.domain, self.codomain, self.local_constraint) def forward(self, input_0): primals_1 = self.weight primals_3 = self.bias primals_2 = self.scale primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
rh-ia/color-information
LipNormConv2d
false
4,288
[ "MIT" ]
0
e912a1667e4fffb339dbc574c85020ec6cf78b02
https://github.com/rh-ia/color-information/tree/e912a1667e4fffb339dbc574c85020ec6cf78b02
import torch from torch import nn import torch.nn.functional as F import torch.utils.data.distributed def _max_except_dim(input, dim): maxed = input for axis in range(input.ndimension() - 1, dim, -1): maxed, _ = maxed.max(axis, keepdim=True) for axis in range(dim - 1, -1, -1): maxed, _ = maxed.max(axis, keepdim=True) return maxed def _norm_except_dim(w, norm_type, dim): if norm_type == 1 or norm_type == 2: return torch.norm_except_dim(w, norm_type, dim) elif norm_type == float('inf'): return _max_except_dim(w, dim) def operator_norm_settings(domain, codomain): if domain == 1 and codomain == 1: max_across_input_dims = True norm_type = 1 elif domain == 1 and codomain == 2: max_across_input_dims = True norm_type = 2 elif domain == 1 and codomain == float('inf'): max_across_input_dims = True norm_type = float('inf') elif domain == 2 and codomain == float('inf'): max_across_input_dims = False norm_type = 2 elif domain == float('inf') and codomain == float('inf'): max_across_input_dims = False norm_type = 1 else: raise ValueError('Unknown combination of domain "{}" and codomain "{}"' .format(domain, codomain)) return max_across_input_dims, norm_type def _logit(p): p = torch.max(torch.ones(1) * 0.1, torch.min(torch.ones(1) * 0.9, p)) return torch.log(p + 1e-10) + torch.log(1 - p + 1e-10) class Model(nn.Conv2d): """Lipschitz constant defined using operator norms.""" def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias=True, coeff=0.97, domain=float('inf'), codomain=float ('inf'), local_constraint=True, **unused_kwargs): del unused_kwargs super().__init__(in_channels, out_channels, kernel_size, stride, padding, bias) self.coeff = coeff self.domain = domain self.codomain = codomain self.local_constraint = local_constraint max_across_input_dims, self.norm_type = operator_norm_settings(self .domain, self.codomain) self.max_across_dim = 1 if max_across_input_dims else 0 with torch.no_grad(): w_scale = _norm_except_dim(self.weight, self.norm_type, dim= self.max_across_dim) if not self.local_constraint: w_scale = w_scale.max() self.scale = nn.Parameter(_logit(w_scale / self.coeff)) def compute_weight(self): w_scale = _norm_except_dim(self.weight, self.norm_type, dim=self. max_across_dim) if not self.local_constraint: w_scale = w_scale.max() return self.weight / w_scale * torch.sigmoid(self.scale) def forward(self, input): weight = self.compute_weight() return F.conv2d(input, weight, self.bias, self.stride, self.padding, 1, 1) def extra_repr(self): s = super(LipNormConv2d, self).extra_repr() return s + ', coeff={}, domain={}, codomain={}, local={}'.format(self .coeff, self.domain, self.codomain, self.local_constraint) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4, 'stride': 1, 'padding': 4}]
RelevanceVector
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/fu/cfua5hj4rr7lkakrjc25n3iarq6qizang3sfgcx4u6k2fufmtysu.py # Topologically Sorted Source Nodes: [rv], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # rv => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [rv], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(primals_1, buf0, 4, grid=grid(4), stream=stream0) del primals_1 return (buf0, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class RelevanceVector(nn.Module): def __init__(self, z_dim): super(RelevanceVector, self).__init__() self.rvlogit = nn.Parameter(0.001 * torch.randn(z_dim)) def forward(self): rv = torch.sigmoid(self.rvlogit) return self.rvlogit, rv def get_inputs(): return [] def get_init_inputs(): return [[], {'z_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, = args args.clear() assert_size_stride(primals_1, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(4)](primals_1, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_1 return buf0, buf0 class RelevanceVectorNew(nn.Module): def __init__(self, z_dim): super(RelevanceVectorNew, self).__init__() self.rvlogit = nn.Parameter(0.001 * torch.randn(z_dim)) def forward(self): primals_1 = self.rvlogit output = call([primals_1]) return output[0], output[1]
seqam-lab/rfvae
RelevanceVector
false
4,289
[ "MIT" ]
0
07089e2cca6d51f305731750c2c67b83a42df12a
https://github.com/seqam-lab/rfvae/tree/07089e2cca6d51f305731750c2c67b83a42df12a
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, z_dim): super().__init__() self.rvlogit = nn.Parameter(0.001 * torch.randn(z_dim)) def forward(self): rv = torch.sigmoid(self.rvlogit) return self.rvlogit, rv def get_inputs(): return [] def get_init_inputs(): return [4]
QNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nq/cnqjufcqn3ur3s7xvlb2i747nyf24md4zaiatlwgkasynplfjstu.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dh/cdhj4aozvvzkw7stzrqoauyoij3petwtvi4g4weydesiaurrughd.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 64), (64, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (4, 128), (128, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 4096, grid=grid(4096), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 128), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf5, 8192, grid=grid(8192), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf4) del primals_7 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(buf3, (64, 128), (128, 1), 0), primals_6, buf5, primals_4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class QNetwork(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc1_units=64, fc2=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in first hidden layer fc2 (int): Number of nodes in the hidden layers """ super(QNetwork, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc1_units) self.fc2 = nn.Linear(fc1_units, fc2) self.fc3 = nn.Linear(fc2, action_size) def forward(self, state): """Build a network that maps state -> action values.""" x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) return self.fc3(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 64), (64, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (4, 128), (128, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool ) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf1, primals_2, buf6, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 128), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf2 buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf3, primals_5, buf5, 8192, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf4) del primals_7 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor( buf3, (64, 128), (128, 1), 0), primals_6, buf5, primals_4, buf6 class QNetworkNew(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc1_units=64, fc2=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in first hidden layer fc2 (int): Number of nodes in the hidden layers """ super(QNetworkNew, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc1_units) self.fc2 = nn.Linear(fc1_units, fc2) self.fc3 = nn.Linear(fc2, action_size) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
schottkey7/deep-reinforcement-learning
QNetwork
false
4,290
[ "MIT" ]
0
92c97fadbb5b95caa3fd3813a0757debc2c2747a
https://github.com/schottkey7/deep-reinforcement-learning/tree/92c97fadbb5b95caa3fd3813a0757debc2c2747a
import torch import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc1_units=64, fc2=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in first hidden layer fc2 (int): Number of nodes in the hidden layers """ super().__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc1_units) self.fc2 = nn.Linear(fc1_units, fc2) self.fc3 = nn.Linear(fc2, action_size) def forward(self, state): """Build a network that maps state -> action values.""" x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) return self.fc3(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
LipNormLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/cs/ccs52a7zexgfgg42ljzuxkjmhqfue6bfcp5dftqxbw4sww5mifsx.py # Topologically Sorted Source Nodes: [truediv, sigmoid, mul, weight], Original ATen: [aten.div, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # mul => mul # sigmoid => sigmoid # truediv => div # weight => mul_1 # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %view_1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 0.97), kwargs = {}) triton_poi_fused_div_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_div_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.abs(tmp1) tmp4 = tl_math.abs(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.abs(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.abs(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tmp0 / tmp11 tmp14 = tl.sigmoid(tmp13) tmp15 = tmp12 * tmp14 tmp16 = 0.97 tmp17 = tmp15 * tmp16 tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv, sigmoid, mul, weight], Original ATen: [aten.div, aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_div_mul_sigmoid_0.run(primals_1, primals_2, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del buf0 del primals_3 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, primals_2, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F import torch.utils.data.distributed def _max_except_dim(input, dim): maxed = input for axis in range(input.ndimension() - 1, dim, -1): maxed, _ = maxed.max(axis, keepdim=True) for axis in range(dim - 1, -1, -1): maxed, _ = maxed.max(axis, keepdim=True) return maxed def _norm_except_dim(w, norm_type, dim): if norm_type == 1 or norm_type == 2: return torch.norm_except_dim(w, norm_type, dim) elif norm_type == float('inf'): return _max_except_dim(w, dim) def operator_norm_settings(domain, codomain): if domain == 1 and codomain == 1: max_across_input_dims = True norm_type = 1 elif domain == 1 and codomain == 2: max_across_input_dims = True norm_type = 2 elif domain == 1 and codomain == float('inf'): max_across_input_dims = True norm_type = float('inf') elif domain == 2 and codomain == float('inf'): max_across_input_dims = False norm_type = 2 elif domain == float('inf') and codomain == float('inf'): max_across_input_dims = False norm_type = 1 else: raise ValueError('Unknown combination of domain "{}" and codomain "{}"' .format(domain, codomain)) return max_across_input_dims, norm_type def _logit(p): p = torch.max(torch.ones(1) * 0.1, torch.min(torch.ones(1) * 0.9, p)) return torch.log(p + 1e-10) + torch.log(1 - p + 1e-10) class LipNormLinear(nn.Linear): """Lipschitz constant defined using operator norms.""" def __init__(self, in_features, out_features, bias=True, coeff=0.97, domain=float('inf'), codomain=float('inf'), local_constraint=True, **unused_kwargs): del unused_kwargs super(LipNormLinear, self).__init__(in_features, out_features, bias) self.coeff = coeff self.domain = domain self.codomain = codomain self.local_constraint = local_constraint max_across_input_dims, self.norm_type = operator_norm_settings(self .domain, self.codomain) self.max_across_dim = 1 if max_across_input_dims else 0 with torch.no_grad(): w_scale = _norm_except_dim(self.weight, self.norm_type, dim= self.max_across_dim) if not self.local_constraint: w_scale = w_scale.max() self.scale = nn.Parameter(_logit(w_scale / self.coeff)) def compute_weight(self): w_scale = _norm_except_dim(self.weight, self.norm_type, dim=self. max_across_dim) if not self.local_constraint: w_scale = w_scale.max() return self.weight / w_scale * torch.sigmoid(self.scale) * self.coeff def forward(self, input): weight = self.compute_weight() return F.linear(input, weight, self.bias) def extra_repr(self): s = super(LipNormLinear, self).extra_repr() return s + ', coeff={}, domain={}, codomain={}, local={}'.format(self .coeff, self.domain, self.codomain, self.local_constraint) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl_math.abs(tmp1) tmp4 = tl_math.abs(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.abs(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.abs(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tmp0 / tmp11 tmp14 = tl.sigmoid(tmp13) tmp15 = tmp12 * tmp14 tmp16 = 0.97 tmp17 = tmp15 * tmp16 tl.store(out_ptr0 + x2, tmp17, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_mul_sigmoid_0[grid(16)](primals_1, primals_2, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del buf0 del primals_3 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, primals_2, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0) def _max_except_dim(input, dim): maxed = input for axis in range(input.ndimension() - 1, dim, -1): maxed, _ = maxed.max(axis, keepdim=True) for axis in range(dim - 1, -1, -1): maxed, _ = maxed.max(axis, keepdim=True) return maxed def _norm_except_dim(w, norm_type, dim): if norm_type == 1 or norm_type == 2: return torch.norm_except_dim(w, norm_type, dim) elif norm_type == float('inf'): return _max_except_dim(w, dim) def operator_norm_settings(domain, codomain): if domain == 1 and codomain == 1: max_across_input_dims = True norm_type = 1 elif domain == 1 and codomain == 2: max_across_input_dims = True norm_type = 2 elif domain == 1 and codomain == float('inf'): max_across_input_dims = True norm_type = float('inf') elif domain == 2 and codomain == float('inf'): max_across_input_dims = False norm_type = 2 elif domain == float('inf') and codomain == float('inf'): max_across_input_dims = False norm_type = 1 else: raise ValueError('Unknown combination of domain "{}" and codomain "{}"' .format(domain, codomain)) return max_across_input_dims, norm_type def _logit(p): p = torch.max(torch.ones(1) * 0.1, torch.min(torch.ones(1) * 0.9, p)) return torch.log(p + 1e-10) + torch.log(1 - p + 1e-10) class LipNormLinearNew(nn.Linear): """Lipschitz constant defined using operator norms.""" def __init__(self, in_features, out_features, bias=True, coeff=0.97, domain=float('inf'), codomain=float('inf'), local_constraint=True, **unused_kwargs): del unused_kwargs super(LipNormLinearNew, self).__init__(in_features, out_features, bias) self.coeff = coeff self.domain = domain self.codomain = codomain self.local_constraint = local_constraint max_across_input_dims, self.norm_type = operator_norm_settings(self .domain, self.codomain) self.max_across_dim = 1 if max_across_input_dims else 0 with torch.no_grad(): w_scale = _norm_except_dim(self.weight, self.norm_type, dim= self.max_across_dim) if not self.local_constraint: w_scale = w_scale.max() self.scale = nn.Parameter(_logit(w_scale / self.coeff)) def compute_weight(self): w_scale = _norm_except_dim(self.weight, self.norm_type, dim=self. max_across_dim) if not self.local_constraint: w_scale = w_scale.max() return self.weight / w_scale * torch.sigmoid(self.scale) * self.coeff def extra_repr(self): s = super(LipNormLinearNew, self).extra_repr() return s + ', coeff={}, domain={}, codomain={}, local={}'.format(self .coeff, self.domain, self.codomain, self.local_constraint) def forward(self, input_0): primals_1 = self.weight primals_3 = self.bias primals_2 = self.scale primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
rh-ia/color-information
LipNormLinear
false
4,291
[ "MIT" ]
0
e912a1667e4fffb339dbc574c85020ec6cf78b02
https://github.com/rh-ia/color-information/tree/e912a1667e4fffb339dbc574c85020ec6cf78b02
import torch from torch import nn import torch.nn.functional as F import torch.utils.data.distributed def _max_except_dim(input, dim): maxed = input for axis in range(input.ndimension() - 1, dim, -1): maxed, _ = maxed.max(axis, keepdim=True) for axis in range(dim - 1, -1, -1): maxed, _ = maxed.max(axis, keepdim=True) return maxed def _norm_except_dim(w, norm_type, dim): if norm_type == 1 or norm_type == 2: return torch.norm_except_dim(w, norm_type, dim) elif norm_type == float('inf'): return _max_except_dim(w, dim) def operator_norm_settings(domain, codomain): if domain == 1 and codomain == 1: max_across_input_dims = True norm_type = 1 elif domain == 1 and codomain == 2: max_across_input_dims = True norm_type = 2 elif domain == 1 and codomain == float('inf'): max_across_input_dims = True norm_type = float('inf') elif domain == 2 and codomain == float('inf'): max_across_input_dims = False norm_type = 2 elif domain == float('inf') and codomain == float('inf'): max_across_input_dims = False norm_type = 1 else: raise ValueError('Unknown combination of domain "{}" and codomain "{}"' .format(domain, codomain)) return max_across_input_dims, norm_type def _logit(p): p = torch.max(torch.ones(1) * 0.1, torch.min(torch.ones(1) * 0.9, p)) return torch.log(p + 1e-10) + torch.log(1 - p + 1e-10) class Model(nn.Linear): """Lipschitz constant defined using operator norms.""" def __init__(self, in_features, out_features, bias=True, coeff=0.97, domain=float('inf'), codomain=float('inf'), local_constraint=True, **unused_kwargs): del unused_kwargs super().__init__(in_features, out_features, bias) self.coeff = coeff self.domain = domain self.codomain = codomain self.local_constraint = local_constraint max_across_input_dims, self.norm_type = operator_norm_settings(self .domain, self.codomain) self.max_across_dim = 1 if max_across_input_dims else 0 with torch.no_grad(): w_scale = _norm_except_dim(self.weight, self.norm_type, dim= self.max_across_dim) if not self.local_constraint: w_scale = w_scale.max() self.scale = nn.Parameter(_logit(w_scale / self.coeff)) def compute_weight(self): w_scale = _norm_except_dim(self.weight, self.norm_type, dim=self. max_across_dim) if not self.local_constraint: w_scale = w_scale.max() return self.weight / w_scale * torch.sigmoid(self.scale) * self.coeff def forward(self, input): weight = self.compute_weight() return F.linear(input, weight, self.bias) def extra_repr(self): s = super(LipNormLinear, self).extra_repr() return s + ', coeff={}, domain={}, codomain={}, local={}'.format(self .coeff, self.domain, self.codomain, self.local_constraint) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Net1
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/lg/clgnkdclmu24adiu7cbx7ybrhsind74uypy3cvuihzwv4hxzyjlf.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 492032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3844) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/s6/cs6oowloxihsa2iqf677aggor4dgxx3q4fq7upsksc3m7rf4j6xb.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_2 => convolution_1 # x_3 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 921600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 3600) % 64 x0 = xindex % 3600 x4 = (xindex // 3600) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + (3616*x4)), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6v/c6votzbefolf4fzzmnc4okxekuuh37ajyccnmrjo4ze3cvigljbw.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_4 => _low_memory_max_pool2d_with_offsets, getitem_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_2 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 30 x1 = (xindex // 30) % 30 x2 = (xindex // 900) x3 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (60 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (61 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x3), tmp15, xmask) tl.store(out_ptr1 + (x3), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (32, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 62, 62), (123008, 3844, 62, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 492032, grid=grid(492032), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 60, 60), (230400, 3600, 60, 1)) buf3 = empty_strided_cuda((4, 64, 60, 60), (231424, 3616, 60, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_5, buf3, 921600, grid=grid(921600), stream=stream0) del buf2 del primals_5 buf4 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.int8) buf5 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_2.run(buf3, buf4, buf5, 230400, grid=grid(230400), stream=stream0) return (reinterpret_tensor(buf5, (4, 57600), (57600, 1), 0), primals_1, primals_3, primals_4, buf1, buf3, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.nn.functional as F class Net1(nn.Module): def __init__(self): super(Net1, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = torch.flatten(x, 1) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 492032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3844 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 3600 % 64 x0 = xindex % 3600 x4 = xindex // 3600 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + 3616 * x4), tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 30 x1 = xindex // 30 % 30 x2 = xindex // 900 x3 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (60 + 2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (61 + 2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x3, tmp15, xmask) tl.store(out_ptr1 + x3, tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (32, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 62, 62), (123008, 3844, 62, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(492032)](buf1, primals_2, 492032, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 60, 60), (230400, 3600, 60, 1)) buf3 = empty_strided_cuda((4, 64, 60, 60), (231424, 3616, 60, 1), torch.float32) triton_poi_fused_convolution_relu_1[grid(921600)](buf2, primals_5, buf3, 921600, XBLOCK=1024, num_warps=4, num_stages=1) del buf2 del primals_5 buf4 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.int8) buf5 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_2[grid(230400)](buf3, buf4, buf5, 230400, XBLOCK=512, num_warps=8, num_stages=1) return reinterpret_tensor(buf5, (4, 57600), (57600, 1), 0 ), primals_1, primals_3, primals_4, buf1, buf3, buf4 class Net1New(nn.Module): def __init__(self): super(Net1New, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
sermolin/amazon-sagemaker-examples
Net1
false
4,292
[ "Apache-2.0" ]
0
3e6083d1b53cb718893a04c46513a9482a17bd6b
https://github.com/sermolin/amazon-sagemaker-examples/tree/3e6083d1b53cb718893a04c46513a9482a17bd6b
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = torch.flatten(x, 1) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return []
DemodulatedConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/75/c753nmnallr7352v6kci326ipcp72djogbwitjnsojsxpzcw7rbv.py # Topologically Sorted Source Nodes: [pow_1, sum_1, add, demod], Original ATen: [aten.pow, aten.sum, aten.add, aten.rsqrt] # Source node to ATen node mapping: # add => add # demod => rsqrt # pow_1 => pow_1 # sum_1 => sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_per_fused_add_pow_rsqrt_sum_0 = async_compile.triton('triton_per_fused_add_pow_rsqrt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_pow_rsqrt_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_pow_rsqrt_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 36 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (36*x0)), rmask & xmask, other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(rmask & xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = 1e-08 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qb/cqbmllyzpe2nhtr4xblvy4f2byhtbttctscjpfu4ltq23mz3g6al.py # Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat] # Source node to ATen node mapping: # repeat => repeat # Graph fragment: # %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%rsqrt, [4, 1]), kwargs = {}) triton_poi_fused_repeat_1 = async_compile.triton('triton_poi_fused_repeat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/o2/co2fztvn5bb5kaf22skkom7wt43kzeptwatzi2mwgb65eoysciue.py # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # weight => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %view), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 144 x4 = (xindex // 36) x5 = xindex tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x5), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 4, 3, 3), (144, 36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4), (4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [pow_1, sum_1, add, demod], Original ATen: [aten.pow, aten.sum, aten.add, aten.rsqrt] stream0 = get_raw_stream(0) triton_per_fused_add_pow_rsqrt_sum_0.run(buf1, primals_2, 4, 36, grid=grid(4), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat] triton_poi_fused_repeat_1.run(buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(primals_2, buf2, buf3, 576, grid=grid(576), stream=stream0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf4, (1, 16, 2, 2), (64, 4, 2, 1)) return (reinterpret_tensor(buf4, (4, 4, 2, 2), (16, 4, 2, 1), 0), primals_2, buf1, buf2, reinterpret_tensor(buf3, (16, 4, 3, 3), (36, 9, 3, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 4, 3, 3), (144, 36, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch from torchvision.transforms import functional as F import torch.nn as nn from torch.nn import functional as F class DemodulatedConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size=3, stride=1, padding=0, bias=False, dilation=1): super().__init__() self.eps = 1e-08 self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)) self.bias = None if bias: self.bias = nn.Parameter(torch.randn(out_channel)) self.stride = stride self.padding = padding self.dilation = dilation def forward(self, input): batch, in_channel, height, width = input.shape demod = torch.rsqrt(self.weight.pow(2).sum([2, 3, 4]) + 1e-08) weight = self.weight * demod.repeat([batch, 1]).view(batch, self. out_channel, 1, 1, 1) weight = weight.view(batch * self.out_channel, in_channel, self. kernel_size, self.kernel_size) input = input.view(1, batch * in_channel, height, width) if self.bias is None: out = F.conv2d(input, weight, padding=self.padding, groups= batch, dilation=self.dilation, stride=self.stride) else: out = F.conv2d(input, weight, bias=self.bias, padding=self. padding, groups=batch, dilation=self.dilation, stride=self. stride) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channel': 4, 'out_channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_pow_rsqrt_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 rnumel = 36 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 36 * x0), rmask & xmask, other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(rmask & xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = 1e-08 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_repeat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 144 x4 = xindex // 36 x5 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x5, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 4, 3, 3), (144, 36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_pow_rsqrt_sum_0[grid(4)](buf1, primals_2, 4, 36, XBLOCK=1, num_warps=2, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_repeat_1[grid(16)](buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32) triton_poi_fused_mul_2[grid(576)](primals_2, buf2, buf3, 576, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf4, (1, 16, 2, 2), (64, 4, 2, 1)) return reinterpret_tensor(buf4, (4, 4, 2, 2), (16, 4, 2, 1), 0 ), primals_2, buf1, buf2, reinterpret_tensor(buf3, (16, 4, 3, 3), ( 36, 9, 3, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0) class DemodulatedConv2dNew(nn.Module): def __init__(self, in_channel, out_channel, kernel_size=3, stride=1, padding=0, bias=False, dilation=1): super().__init__() self.eps = 1e-08 self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)) self.bias = None if bias: self.bias = nn.Parameter(torch.randn(out_channel)) self.stride = stride self.padding = padding self.dilation = dilation def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
seawee1/ForkGAN-pytorch
DemodulatedConv2d
false
4,293
[ "BSD-3-Clause" ]
0
02d721875d47e4a1e96a14cc4770edcb6b68a5d0
https://github.com/seawee1/ForkGAN-pytorch/tree/02d721875d47e4a1e96a14cc4770edcb6b68a5d0
import torch import torch.utils.data import torch from torchvision.transforms import functional as F import torch.nn as nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, in_channel, out_channel, kernel_size=3, stride=1, padding=0, bias=False, dilation=1): super().__init__() self.eps = 1e-08 self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)) self.bias = None if bias: self.bias = nn.Parameter(torch.randn(out_channel)) self.stride = stride self.padding = padding self.dilation = dilation def forward(self, input): batch, in_channel, height, width = input.shape demod = torch.rsqrt(self.weight.pow(2).sum([2, 3, 4]) + 1e-08) weight = self.weight * demod.repeat([batch, 1]).view(batch, self. out_channel, 1, 1, 1) weight = weight.view(batch * self.out_channel, in_channel, self. kernel_size, self.kernel_size) input = input.view(1, batch * in_channel, height, width) if self.bias is None: out = F.conv2d(input, weight, padding=self.padding, groups= batch, dilation=self.dilation, stride=self.stride) else: out = F.conv2d(input, weight, bias=self.bias, padding=self. padding, groups=batch, dilation=self.dilation, stride=self. stride) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ATLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ft/cftz5ja4wgrkcx5pv7d7j6lunvnnmz6djadit33a2463r447sayy.py # Topologically Sorted Source Nodes: [setitem_1], Original ATen: [aten.lift_fresh, aten.fill] # Source node to ATen node mapping: # setitem_1 => copy_1, full_default_2 # Graph fragment: # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_1 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_2, %full_default_2), kwargs = {}) # %copy__default : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%select_int, %copy_1), kwargs = {}) triton_poi_fused_fill_lift_fresh_0 = async_compile.triton('triton_poi_fused_fill_lift_fresh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_0', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_lift_fresh_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) tmp0 = 0.0 tl.store(out_ptr0 + (x0 + (64*x1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/cn/ccnjm2dqpzcrnbuww2omqd3latcfln56427nk6wxia5xlnc6b5c5.py # Topologically Sorted Source Nodes: [th_label, setitem, p_mask, sub_1, mul, logit1, log_softmax, n_mask, sub_3, mul_2, logit2, log_softmax_1], Original ATen: [aten.zeros_like, aten.lift_fresh, aten.fill, aten.add, aten.rsub, aten.mul, aten.sub, aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, exp, sub_3, sum_1 # log_softmax_1 => amax_1, exp_1, sub_7, sum_3 # logit1 => sub_2 # logit2 => sub_6 # mul => mul # mul_2 => mul_2 # n_mask => sub # p_mask => add # setitem => copy, full_default_1 # sub_1 => sub_1 # sub_3 => sub_5 # th_label => full_default # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select, %full_default_1), kwargs = {}) # %select_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default, %copy, 1, 0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %select_scatter_default), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 1e+30), kwargs = {}) # %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %mul), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sub_2, [-1], True), kwargs = {}) # %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_2, %amax), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sub), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, 1e+30), kwargs = {}) # %sub_6 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %mul_2), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sub_6, [-1], True), kwargs = {}) # %sub_7 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_6, %amax_1), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_7,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {}) triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1 = async_compile.triton('triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (4*x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x3), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (1 + (4*x3)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (1 + (4*x3)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (2 + (4*x3)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (2 + (4*x3)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (3 + (4*x3)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (3 + (4*x3)), xmask, eviction_policy='evict_last') tmp2 = x1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp2 == tmp3 tmp5 = 1.0 tmp6 = 0.0 tmp7 = tl.where(tmp4, tmp5, tmp6) tmp8 = tmp1 + tmp7 tmp9 = tmp5 - tmp8 tmp10 = 1e+30 tmp11 = tmp9 * tmp10 tmp12 = tmp0 - tmp11 tmp15 = tmp14 + tmp7 tmp16 = tmp5 - tmp15 tmp17 = tmp16 * tmp10 tmp18 = tmp13 - tmp17 tmp19 = triton_helpers.maximum(tmp12, tmp18) tmp22 = tmp21 + tmp7 tmp23 = tmp5 - tmp22 tmp24 = tmp23 * tmp10 tmp25 = tmp20 - tmp24 tmp26 = triton_helpers.maximum(tmp19, tmp25) tmp29 = tmp28 + tmp7 tmp30 = tmp5 - tmp29 tmp31 = tmp30 * tmp10 tmp32 = tmp27 - tmp31 tmp33 = triton_helpers.maximum(tmp26, tmp32) tmp34 = tmp12 - tmp33 tmp35 = tl_math.exp(tmp34) tmp36 = tmp18 - tmp33 tmp37 = tl_math.exp(tmp36) tmp38 = tmp35 + tmp37 tmp39 = tmp25 - tmp33 tmp40 = tl_math.exp(tmp39) tmp41 = tmp38 + tmp40 tmp42 = tmp32 - tmp33 tmp43 = tl_math.exp(tmp42) tmp44 = tmp41 + tmp43 tmp45 = tmp5 - tmp1 tmp46 = tmp5 - tmp45 tmp47 = tmp46 * tmp10 tmp48 = tmp0 - tmp47 tmp49 = tmp5 - tmp14 tmp50 = tmp5 - tmp49 tmp51 = tmp50 * tmp10 tmp52 = tmp13 - tmp51 tmp53 = triton_helpers.maximum(tmp48, tmp52) tmp54 = tmp5 - tmp21 tmp55 = tmp5 - tmp54 tmp56 = tmp55 * tmp10 tmp57 = tmp20 - tmp56 tmp58 = triton_helpers.maximum(tmp53, tmp57) tmp59 = tmp5 - tmp28 tmp60 = tmp5 - tmp59 tmp61 = tmp60 * tmp10 tmp62 = tmp27 - tmp61 tmp63 = triton_helpers.maximum(tmp58, tmp62) tmp64 = tmp48 - tmp63 tmp65 = tl_math.exp(tmp64) tmp66 = tmp52 - tmp63 tmp67 = tl_math.exp(tmp66) tmp68 = tmp65 + tmp67 tmp69 = tmp57 - tmp63 tmp70 = tl_math.exp(tmp69) tmp71 = tmp68 + tmp70 tmp72 = tmp62 - tmp63 tmp73 = tl_math.exp(tmp72) tmp74 = tmp71 + tmp73 tl.store(out_ptr0 + (x3), tmp33, xmask) tl.store(out_ptr1 + (x3), tmp44, xmask) tl.store(out_ptr2 + (x3), tmp63, xmask) tl.store(out_ptr3 + (x3), tmp74, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uj/cuj4drsaoeeafppqq56jc2dqbimn76sbovf5a42dyfiev4rt56n7.py # Topologically Sorted Source Nodes: [th_label, setitem, p_mask, sub_1, mul, logit1, log_softmax, mul_1, sum_1, loss1, n_mask, sub_3, mul_2, logit2, log_softmax_1, mul_3, sum_2, loss2, loss, loss_1], Original ATen: [aten.zeros_like, aten.lift_fresh, aten.fill, aten.add, aten.rsub, aten.mul, aten.sub, aten._log_softmax, aten.sum, aten.neg, aten.mean] # Source node to ATen node mapping: # log_softmax => log, sub_3, sub_4 # log_softmax_1 => amax_1, log_1, sub_7, sub_8 # logit1 => sub_2 # logit2 => sub_6 # loss => add_1 # loss1 => neg # loss2 => neg_1 # loss_1 => mean # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # n_mask => sub # p_mask => add # setitem => copy, full_default_1 # sub_1 => sub_1 # sub_3 => sub_5 # sum_1 => sum_2 # sum_2 => sum_4 # th_label => full_default # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select, %full_default_1), kwargs = {}) # %select_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default, %copy, 1, 0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %select_scatter_default), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 1e+30), kwargs = {}) # %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %mul), kwargs = {}) # %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_2, %amax), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_3, %log), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %arg0_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sub), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, 1e+30), kwargs = {}) # %sub_6 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %mul_2), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sub_6, [-1], True), kwargs = {}) # %sub_7 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_6, %amax_1), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_3,), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_7, %log_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_8, %select_scatter_default), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_4,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %neg_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_1,), kwargs = {}) triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2 = async_compile.triton('triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {7: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=(7,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 24, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = (rindex // 16) r4 = rindex % 16 r1 = (rindex // 4) % 4 r3 = rindex tmp0 = tl.load(in_ptr0 + (r4 + (64*r2)), None) tmp1 = tl.load(in_ptr1 + (r4 + (64*r2)), None) tmp12 = tl.load(in_ptr2 + (r1 + (16*r2)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr3 + (r1 + (16*r2)), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (16 + r4 + (64*r2)), None) tmp19 = tl.load(in_ptr1 + (16 + r4 + (64*r2)), None) tmp27 = tl.load(in_ptr2 + (4 + r1 + (16*r2)), None, eviction_policy='evict_last') tmp29 = tl.load(in_ptr3 + (4 + r1 + (16*r2)), None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr0 + (32 + r4 + (64*r2)), None) tmp35 = tl.load(in_ptr1 + (32 + r4 + (64*r2)), None) tmp43 = tl.load(in_ptr2 + (8 + r1 + (16*r2)), None, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (8 + r1 + (16*r2)), None, eviction_policy='evict_last') tmp50 = tl.load(in_ptr0 + (48 + r4 + (64*r2)), None) tmp51 = tl.load(in_ptr1 + (48 + r4 + (64*r2)), None) tmp59 = tl.load(in_ptr2 + (12 + r1 + (16*r2)), None, eviction_policy='evict_last') tmp61 = tl.load(in_ptr3 + (12 + r1 + (16*r2)), None, eviction_policy='evict_last') tmp70 = tl.load(in_ptr4 + (r1 + (16*r2)), None, eviction_policy='evict_last') tmp72 = tl.load(in_ptr5 + (r1 + (16*r2)), None, eviction_policy='evict_last') tmp80 = tl.load(in_ptr4 + (4 + r1 + (16*r2)), None, eviction_policy='evict_last') tmp82 = tl.load(in_ptr5 + (4 + r1 + (16*r2)), None, eviction_policy='evict_last') tmp91 = tl.load(in_ptr4 + (8 + r1 + (16*r2)), None, eviction_policy='evict_last') tmp93 = tl.load(in_ptr5 + (8 + r1 + (16*r2)), None, eviction_policy='evict_last') tmp102 = tl.load(in_ptr4 + (12 + r1 + (16*r2)), None, eviction_policy='evict_last') tmp104 = tl.load(in_ptr5 + (12 + r1 + (16*r2)), None, eviction_policy='evict_last') tmp2 = tl.full([1, 1], 0, tl.int32) tmp3 = tmp2 == tmp2 tmp4 = 1.0 tmp5 = 0.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp1 + tmp6 tmp8 = tmp4 - tmp7 tmp9 = 1e+30 tmp10 = tmp8 * tmp9 tmp11 = tmp0 - tmp10 tmp13 = tmp11 - tmp12 tmp15 = tl_math.log(tmp14) tmp16 = tmp13 - tmp15 tmp17 = tmp16 * tmp1 tmp20 = tl.full([1, 1], 1, tl.int32) tmp21 = tmp20 == tmp2 tmp22 = tl.where(tmp21, tmp4, tmp5) tmp23 = tmp19 + tmp22 tmp24 = tmp4 - tmp23 tmp25 = tmp24 * tmp9 tmp26 = tmp18 - tmp25 tmp28 = tmp26 - tmp27 tmp30 = tl_math.log(tmp29) tmp31 = tmp28 - tmp30 tmp32 = tmp31 * tmp19 tmp33 = tmp17 + tmp32 tmp36 = tl.full([1, 1], 2, tl.int32) tmp37 = tmp36 == tmp2 tmp38 = tl.where(tmp37, tmp4, tmp5) tmp39 = tmp35 + tmp38 tmp40 = tmp4 - tmp39 tmp41 = tmp40 * tmp9 tmp42 = tmp34 - tmp41 tmp44 = tmp42 - tmp43 tmp46 = tl_math.log(tmp45) tmp47 = tmp44 - tmp46 tmp48 = tmp47 * tmp35 tmp49 = tmp33 + tmp48 tmp52 = tl.full([1, 1], 3, tl.int32) tmp53 = tmp52 == tmp2 tmp54 = tl.where(tmp53, tmp4, tmp5) tmp55 = tmp51 + tmp54 tmp56 = tmp4 - tmp55 tmp57 = tmp56 * tmp9 tmp58 = tmp50 - tmp57 tmp60 = tmp58 - tmp59 tmp62 = tl_math.log(tmp61) tmp63 = tmp60 - tmp62 tmp64 = tmp63 * tmp51 tmp65 = tmp49 + tmp64 tmp66 = tmp4 - tmp1 tmp67 = tmp4 - tmp66 tmp68 = tmp67 * tmp9 tmp69 = tmp0 - tmp68 tmp71 = tmp69 - tmp70 tmp73 = tl_math.log(tmp72) tmp74 = tmp71 - tmp73 tmp75 = tmp74 * tmp6 tmp76 = tmp4 - tmp19 tmp77 = tmp4 - tmp76 tmp78 = tmp77 * tmp9 tmp79 = tmp18 - tmp78 tmp81 = tmp79 - tmp80 tmp83 = tl_math.log(tmp82) tmp84 = tmp81 - tmp83 tmp85 = tmp84 * tmp22 tmp86 = tmp75 + tmp85 tmp87 = tmp4 - tmp35 tmp88 = tmp4 - tmp87 tmp89 = tmp88 * tmp9 tmp90 = tmp34 - tmp89 tmp92 = tmp90 - tmp91 tmp94 = tl_math.log(tmp93) tmp95 = tmp92 - tmp94 tmp96 = tmp95 * tmp38 tmp97 = tmp86 + tmp96 tmp98 = tmp4 - tmp51 tmp99 = tmp4 - tmp98 tmp100 = tmp99 * tmp9 tmp101 = tmp50 - tmp100 tmp103 = tmp101 - tmp102 tmp105 = tl_math.log(tmp104) tmp106 = tmp103 - tmp105 tmp107 = tmp106 * tmp54 tmp108 = tmp97 + tmp107 tmp109 = -tmp65 tmp110 = -tmp108 tmp111 = tmp109 + tmp110 tmp112 = tl.broadcast_to(tmp111, [XBLOCK, RBLOCK]) tmp114 = tl.sum(tmp112, 1)[:, None] tmp115 = 64.0 tmp116 = tmp114 / tmp115 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp116, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [setitem_1], Original ATen: [aten.lift_fresh, aten.fill] stream0 = get_raw_stream(0) triton_poi_fused_fill_lift_fresh_0.run(arg0_1, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [th_label, setitem, p_mask, sub_1, mul, logit1, log_softmax, n_mask, sub_3, mul_2, logit2, log_softmax_1], Original ATen: [aten.zeros_like, aten.lift_fresh, aten.fill, aten.add, aten.rsub, aten.mul, aten.sub, aten._log_softmax] triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1.run(arg1_1, arg0_1, buf1, buf2, buf4, buf5, 64, grid=grid(64), stream=stream0) buf7 = empty_strided_cuda((), (), torch.float32) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [th_label, setitem, p_mask, sub_1, mul, logit1, log_softmax, mul_1, sum_1, loss1, n_mask, sub_3, mul_2, logit2, log_softmax_1, mul_3, sum_2, loss2, loss, loss_1], Original ATen: [aten.zeros_like, aten.lift_fresh, aten.fill, aten.add, aten.rsub, aten.mul, aten.sub, aten._log_softmax, aten.sum, aten.neg, aten.mean] triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2.run(buf8, arg1_1, arg0_1, buf1, buf2, buf4, buf5, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del buf1 del buf2 del buf4 del buf5 return (buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ATLoss(nn.Module): def __init__(self): super().__init__() def forward(self, logits, labels): th_label = torch.zeros_like(labels, dtype=torch.float) th_label[:, 0] = 1.0 labels[:, 0] = 0.0 p_mask = labels + th_label n_mask = 1 - labels logit1 = logits - (1 - p_mask) * 1e+30 loss1 = -(F.log_softmax(logit1, dim=-1) * labels).sum(1) logit2 = logits - (1 - n_mask) * 1e+30 loss2 = -(F.log_softmax(logit2, dim=-1) * th_label).sum(1) loss = loss1 + loss2 loss = loss.mean() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_fill_lift_fresh_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 tmp0 = 0.0 tl.store(out_ptr0 + (x0 + 64 * x1), tmp0, xmask) @triton.jit def triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1( in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_ptr0 + 4 * x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x3, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (1 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr1 + (1 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr0 + (2 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp21 = tl.load(in_ptr1 + (2 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp27 = tl.load(in_ptr0 + (3 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp28 = tl.load(in_ptr1 + (3 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp2 = x1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp2 == tmp3 tmp5 = 1.0 tmp6 = 0.0 tmp7 = tl.where(tmp4, tmp5, tmp6) tmp8 = tmp1 + tmp7 tmp9 = tmp5 - tmp8 tmp10 = 1e+30 tmp11 = tmp9 * tmp10 tmp12 = tmp0 - tmp11 tmp15 = tmp14 + tmp7 tmp16 = tmp5 - tmp15 tmp17 = tmp16 * tmp10 tmp18 = tmp13 - tmp17 tmp19 = triton_helpers.maximum(tmp12, tmp18) tmp22 = tmp21 + tmp7 tmp23 = tmp5 - tmp22 tmp24 = tmp23 * tmp10 tmp25 = tmp20 - tmp24 tmp26 = triton_helpers.maximum(tmp19, tmp25) tmp29 = tmp28 + tmp7 tmp30 = tmp5 - tmp29 tmp31 = tmp30 * tmp10 tmp32 = tmp27 - tmp31 tmp33 = triton_helpers.maximum(tmp26, tmp32) tmp34 = tmp12 - tmp33 tmp35 = tl_math.exp(tmp34) tmp36 = tmp18 - tmp33 tmp37 = tl_math.exp(tmp36) tmp38 = tmp35 + tmp37 tmp39 = tmp25 - tmp33 tmp40 = tl_math.exp(tmp39) tmp41 = tmp38 + tmp40 tmp42 = tmp32 - tmp33 tmp43 = tl_math.exp(tmp42) tmp44 = tmp41 + tmp43 tmp45 = tmp5 - tmp1 tmp46 = tmp5 - tmp45 tmp47 = tmp46 * tmp10 tmp48 = tmp0 - tmp47 tmp49 = tmp5 - tmp14 tmp50 = tmp5 - tmp49 tmp51 = tmp50 * tmp10 tmp52 = tmp13 - tmp51 tmp53 = triton_helpers.maximum(tmp48, tmp52) tmp54 = tmp5 - tmp21 tmp55 = tmp5 - tmp54 tmp56 = tmp55 * tmp10 tmp57 = tmp20 - tmp56 tmp58 = triton_helpers.maximum(tmp53, tmp57) tmp59 = tmp5 - tmp28 tmp60 = tmp5 - tmp59 tmp61 = tmp60 * tmp10 tmp62 = tmp27 - tmp61 tmp63 = triton_helpers.maximum(tmp58, tmp62) tmp64 = tmp48 - tmp63 tmp65 = tl_math.exp(tmp64) tmp66 = tmp52 - tmp63 tmp67 = tl_math.exp(tmp66) tmp68 = tmp65 + tmp67 tmp69 = tmp57 - tmp63 tmp70 = tl_math.exp(tmp69) tmp71 = tmp68 + tmp70 tmp72 = tmp62 - tmp63 tmp73 = tl_math.exp(tmp72) tmp74 = tmp71 + tmp73 tl.store(out_ptr0 + x3, tmp33, xmask) tl.store(out_ptr1 + x3, tmp44, xmask) tl.store(out_ptr2 + x3, tmp63, xmask) tl.store(out_ptr3 + x3, tmp74, xmask) @triton.jit def triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex // 16 r4 = rindex % 16 r1 = rindex // 4 % 4 tmp0 = tl.load(in_ptr0 + (r4 + 64 * r2), None) tmp1 = tl.load(in_ptr1 + (r4 + 64 * r2), None) tmp12 = tl.load(in_ptr2 + (r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr3 + (r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr0 + (16 + r4 + 64 * r2), None) tmp19 = tl.load(in_ptr1 + (16 + r4 + 64 * r2), None) tmp27 = tl.load(in_ptr2 + (4 + r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr3 + (4 + r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp34 = tl.load(in_ptr0 + (32 + r4 + 64 * r2), None) tmp35 = tl.load(in_ptr1 + (32 + r4 + 64 * r2), None) tmp43 = tl.load(in_ptr2 + (8 + r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp45 = tl.load(in_ptr3 + (8 + r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp50 = tl.load(in_ptr0 + (48 + r4 + 64 * r2), None) tmp51 = tl.load(in_ptr1 + (48 + r4 + 64 * r2), None) tmp59 = tl.load(in_ptr2 + (12 + r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp61 = tl.load(in_ptr3 + (12 + r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp70 = tl.load(in_ptr4 + (r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp72 = tl.load(in_ptr5 + (r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp80 = tl.load(in_ptr4 + (4 + r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp82 = tl.load(in_ptr5 + (4 + r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp91 = tl.load(in_ptr4 + (8 + r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp93 = tl.load(in_ptr5 + (8 + r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp102 = tl.load(in_ptr4 + (12 + r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp104 = tl.load(in_ptr5 + (12 + r1 + 16 * r2), None, eviction_policy= 'evict_last') tmp2 = tl.full([1, 1], 0, tl.int32) tmp3 = tmp2 == tmp2 tmp4 = 1.0 tmp5 = 0.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp1 + tmp6 tmp8 = tmp4 - tmp7 tmp9 = 1e+30 tmp10 = tmp8 * tmp9 tmp11 = tmp0 - tmp10 tmp13 = tmp11 - tmp12 tmp15 = tl_math.log(tmp14) tmp16 = tmp13 - tmp15 tmp17 = tmp16 * tmp1 tmp20 = tl.full([1, 1], 1, tl.int32) tmp21 = tmp20 == tmp2 tmp22 = tl.where(tmp21, tmp4, tmp5) tmp23 = tmp19 + tmp22 tmp24 = tmp4 - tmp23 tmp25 = tmp24 * tmp9 tmp26 = tmp18 - tmp25 tmp28 = tmp26 - tmp27 tmp30 = tl_math.log(tmp29) tmp31 = tmp28 - tmp30 tmp32 = tmp31 * tmp19 tmp33 = tmp17 + tmp32 tmp36 = tl.full([1, 1], 2, tl.int32) tmp37 = tmp36 == tmp2 tmp38 = tl.where(tmp37, tmp4, tmp5) tmp39 = tmp35 + tmp38 tmp40 = tmp4 - tmp39 tmp41 = tmp40 * tmp9 tmp42 = tmp34 - tmp41 tmp44 = tmp42 - tmp43 tmp46 = tl_math.log(tmp45) tmp47 = tmp44 - tmp46 tmp48 = tmp47 * tmp35 tmp49 = tmp33 + tmp48 tmp52 = tl.full([1, 1], 3, tl.int32) tmp53 = tmp52 == tmp2 tmp54 = tl.where(tmp53, tmp4, tmp5) tmp55 = tmp51 + tmp54 tmp56 = tmp4 - tmp55 tmp57 = tmp56 * tmp9 tmp58 = tmp50 - tmp57 tmp60 = tmp58 - tmp59 tmp62 = tl_math.log(tmp61) tmp63 = tmp60 - tmp62 tmp64 = tmp63 * tmp51 tmp65 = tmp49 + tmp64 tmp66 = tmp4 - tmp1 tmp67 = tmp4 - tmp66 tmp68 = tmp67 * tmp9 tmp69 = tmp0 - tmp68 tmp71 = tmp69 - tmp70 tmp73 = tl_math.log(tmp72) tmp74 = tmp71 - tmp73 tmp75 = tmp74 * tmp6 tmp76 = tmp4 - tmp19 tmp77 = tmp4 - tmp76 tmp78 = tmp77 * tmp9 tmp79 = tmp18 - tmp78 tmp81 = tmp79 - tmp80 tmp83 = tl_math.log(tmp82) tmp84 = tmp81 - tmp83 tmp85 = tmp84 * tmp22 tmp86 = tmp75 + tmp85 tmp87 = tmp4 - tmp35 tmp88 = tmp4 - tmp87 tmp89 = tmp88 * tmp9 tmp90 = tmp34 - tmp89 tmp92 = tmp90 - tmp91 tmp94 = tl_math.log(tmp93) tmp95 = tmp92 - tmp94 tmp96 = tmp95 * tmp38 tmp97 = tmp86 + tmp96 tmp98 = tmp4 - tmp51 tmp99 = tmp4 - tmp98 tmp100 = tmp99 * tmp9 tmp101 = tmp50 - tmp100 tmp103 = tmp101 - tmp102 tmp105 = tl_math.log(tmp104) tmp106 = tmp103 - tmp105 tmp107 = tmp106 * tmp54 tmp108 = tmp97 + tmp107 tmp109 = -tmp65 tmp110 = -tmp108 tmp111 = tmp109 + tmp110 tmp112 = tl.broadcast_to(tmp111, [XBLOCK, RBLOCK]) tmp114 = tl.sum(tmp112, 1)[:, None] tmp115 = 64.0 tmp116 = tmp114 / tmp115 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp116, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) get_raw_stream(0) triton_poi_fused_fill_lift_fresh_0[grid(64)](arg0_1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused__log_softmax_add_fill_lift_fresh_mul_rsub_sub_zeros_like_1[ grid(64)](arg1_1, arg0_1, buf1, buf2, buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((), (), torch.float32) buf8 = buf7 del buf7 triton_per_fused__log_softmax_add_fill_lift_fresh_mean_mul_neg_rsub_sub_sum_zeros_like_2[ grid(1)](buf8, arg1_1, arg0_1, buf1, buf2, buf4, buf5, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del buf1 del buf2 del buf4 del buf5 return buf8, class ATLossNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
seanswyi/R-BERT
ATLoss
false
4,294
[ "Apache-2.0" ]
0
4a4aeab3a9314307ce4458bd2b943d94aaf4a706
https://github.com/seanswyi/R-BERT/tree/4a4aeab3a9314307ce4458bd2b943d94aaf4a706
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() def forward(self, logits, labels): th_label = torch.zeros_like(labels, dtype=torch.float) th_label[:, 0] = 1.0 labels[:, 0] = 0.0 p_mask = labels + th_label n_mask = 1 - labels logit1 = logits - (1 - p_mask) * 1e+30 loss1 = -(F.log_softmax(logit1, dim=-1) * labels).sum(1) logit2 = logits - (1 - n_mask) * 1e+30 loss2 = -(F.log_softmax(logit2, dim=-1) * th_label).sum(1) loss = loss1 + loss2 loss = loss.mean() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Planar
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/j6/cj6hneuwtxuqku4ka6k6f2vxucocdiv6p3b2c4kfrcb5qwbmb6sg.py # Topologically Sorted Source Nodes: [pow_1, w_norm_sq], Original ATen: [aten.pow, aten.sum] # Source node to ATen node mapping: # pow_1 => pow_1 # w_norm_sq => sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_1, 2), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2], True), kwargs = {}) triton_poi_fused_pow_sum_0 = async_compile.triton('triton_poi_fused_pow_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vr/cvryswlc7olf6iscoyyxog3zotceoyz6z6tn3m7r27lzurpsbsjs.py # Topologically Sorted Source Nodes: [wzb, tanh], Original ATen: [aten.add, aten.tanh] # Source node to ATen node mapping: # tanh => tanh # wzb => add_2 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%bmm_1, %select_2), kwargs = {}) # %tanh : [num_users=3] = call_function[target=torch.ops.aten.tanh.default](args = (%add_2,), kwargs = {}) triton_poi_fused_add_tanh_1 = async_compile.triton('triton_poi_fused_add_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_out_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp4 = tmp1 + tmp3 tmp5 = tmp0 + tmp4 tmp6 = libdevice.tanh(tmp5) tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5z/c5zxdmoivium33w2qam24kojs7lyxgbfb6lulnqtriq4xzdmkzgp.py # Topologically Sorted Source Nodes: [softplus, m_uw, sub, mul, truediv, u_hat, mul_1, z, pow_2, sub_1, psi], Original ATen: [aten.softplus, aten.add, aten.sub, aten.mul, aten.div, aten.pow, aten.rsub] # Source node to ATen node mapping: # m_uw => add # mul => mul_1 # mul_1 => mul_2 # pow_2 => pow_2 # psi => mul_3 # softplus => div, exp, gt, log1p, mul, where # sub => sub # sub_1 => sub_1 # truediv => div_1 # u_hat => add_1 # z => add_3 # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1.0), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%log1p, 1.0), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 20.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %bmm, %div), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, -1.0), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %bmm), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %permute_3), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %sum_1), kwargs = {}) # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%select, %div_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %tanh), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze, %mul_2), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%tanh, 2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %pow_2), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %sub_1), kwargs = {}) triton_poi_fused_add_div_mul_pow_rsub_softplus_sub_2 = async_compile.triton('triton_poi_fused_add_div_mul_pow_rsub_softplus_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_rsub_softplus_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_pow_rsub_softplus_sub_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (x2), xmask) tmp15 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr4 + (x2), xmask) tmp19 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = 20.0 tmp5 = tmp3 > tmp4 tmp6 = tl_math.exp(tmp3) tmp7 = libdevice.log1p(tmp6) tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp5, tmp1, tmp8) tmp10 = -1.0 tmp11 = tmp9 + tmp10 tmp12 = tmp11 - tmp1 tmp14 = tmp12 * tmp13 tmp16 = tmp14 / tmp15 tmp17 = tmp0 + tmp16 tmp20 = tmp17 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp19 * tmp19 tmp23 = tmp2 - tmp22 tmp24 = tmp13 * tmp23 tl.store(out_ptr0 + (x2), tmp17, xmask) tl.store(out_ptr1 + (x2), tmp21, xmask) tl.store(out_ptr2 + (x2), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/as/casa25kbsjcsboxppwpjigmfgz4dqo5yacivs4ovqvekprlytwt6.py # Topologically Sorted Source Nodes: [logdet_2], Original ATen: [aten.add] # Source node to ATen node mapping: # logdet_2 => add_5 # Graph fragment: # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%squeeze_2, 0.0), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl_math.log(tmp3) tmp5 = 0.0 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, primals_3, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [uw], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0), out=buf3) buf4 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, w_norm_sq], Original ATen: [aten.pow, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_pow_sum_0.run(buf1, buf4, 4, grid=grid(4), stream=stream0) buf6 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(primals_8, (4, 4, 1), (4, 1, 1), 0), out=buf6) buf7 = reinterpret_tensor(buf2, (4, 1, 1), (1, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [wzb, tanh], Original ATen: [aten.add, aten.tanh] triton_poi_fused_add_tanh_1.run(buf7, buf6, primals_7, 4, grid=grid(4), stream=stream0) del primals_7 buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) buf9 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [softplus, m_uw, sub, mul, truediv, u_hat, mul_1, z, pow_2, sub_1, psi], Original ATen: [aten.softplus, aten.add, aten.sub, aten.mul, aten.div, aten.pow, aten.rsub] triton_poi_fused_add_div_mul_pow_rsub_softplus_sub_2.run(buf0, buf3, buf1, buf4, primals_8, buf7, buf5, buf8, buf9, 16, grid=grid(16), stream=stream0) buf10 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [bmm_2], Original ATen: [aten.bmm] extern_kernels.bmm(buf9, buf5, out=buf10) buf11 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [logdet_2], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf10, buf11, 4, grid=grid(4), stream=stream0) return (reinterpret_tensor(buf8, (4, 4), (4, 1), 0), buf11, primals_3, reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0), buf3, buf4, buf5, buf7, buf10, reinterpret_tensor(buf9, (4, 4, 1), (4, 1, 4), 0), reinterpret_tensor(primals_8, (4, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf0, (4, 1, 4), (4, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class PlanarStep(nn.Module): def __init__(self): super(PlanarStep, self).__init__() self.h = nn.Tanh() self.softplus = nn.Softplus() def _der_h(self, x): """Derivative of activation function h.""" return self._der_tanh(x) def _der_tanh(self, x): """Derivative of the Tanh function.""" return 1 - self.h(x) ** 2 def forward(self, zk, u, w, b): """ Forward pass. Assumes amortized u, w and b. Conditions on diagonals of u and w for invertibility will be be satisfied inside this function. Computes the following transformation: z' = z + u h( w^T z + b) or actually z'^T = z^T + h(z^T w + b)u^T Assumes the following input shapes: shape u = (batch_size, z_dim, 1) shape w = (batch_size, 1, z_dim) shape b = (batch_size, 1, 1) shape z = (batch_size, z_dim). """ zk = zk.unsqueeze(2) uw = torch.bmm(w, u) m_uw = -1.0 + self.softplus(uw) w_norm_sq = torch.sum(w ** 2, dim=2, keepdim=True) u_hat = u + (m_uw - uw) * w.transpose(2, 1) / w_norm_sq wzb = torch.bmm(w, zk) + b z = zk + u_hat * self.h(wzb) z = z.squeeze(2) psi = w * self._der_h(wzb) logdet = torch.log(torch.abs(1 + torch.bmm(psi, u_hat))) logdet = logdet.squeeze(2).squeeze(1) return z, logdet class Error(Exception): """Base error class, from which all other errors derive.""" pass class InvalidArgumentError(Error): """This error will be shown when a given argument has an invalid value.""" pass class NormalizingFlow(nn.Module): """Base class for normalizing flows.""" def __init__(self, h_dim, z_dim, flow_depth, hidden_depth): super(NormalizingFlow, self).__init__() self.h_dim = h_dim self.z_dim = z_dim self.flow_depth = flow_depth self.hidden_depth = hidden_depth @property def flow_depth(self): return self._flow_depth @flow_depth.setter def flow_depth(self, value): if not isinstance(value, int): raise InvalidArgumentError('flow_depth should be an integer.') elif value < 1: raise InvalidArgumentError( 'flow_depth should be strictly positive.') else: self._flow_depth = value @property def hidden_depth(self): return self._hidden_depth @hidden_depth.setter def hidden_depth(self, value): if not isinstance(value, int): raise InvalidArgumentError('hidden_depth should be an integer.') elif value < 0: raise InvalidArgumentError('hidden_depth should be positive.') else: self._hidden_depth = value class Planar(NormalizingFlow): """Planar Normalizing flow with single unit bottleneck.""" def __init__(self, h_dim, z_dim, flow_depth): super(Planar, self).__init__(h_dim, z_dim, flow_depth, 0) self.flow = PlanarStep() self.h_to_u = nn.Linear(self.h_dim, self.flow_depth * self.z_dim) self.h_to_w = nn.Linear(self.h_dim, self.flow_depth * self.z_dim) self.h_to_b = nn.Linear(self.h_dim, self.flow_depth) def forward(self, z, h): u = self.h_to_u(h).view(-1, self.flow_depth, self.z_dim, 1) w = self.h_to_w(h).view(-1, self.flow_depth, 1, self.z_dim) b = self.h_to_b(h).view(-1, self.flow_depth, 1, 1) z_k = z logdet = 0.0 for k in range(self.flow_depth): z_k, ldj = self.flow(z_k, u[:, k, :, :], w[:, k, :, :], b[:, k, :, :]) logdet += ldj return z_k, logdet def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'h_dim': 4, 'z_dim': 4, 'flow_depth': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_pow_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_out_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp4 = tmp1 + tmp3 tmp5 = tmp0 + tmp4 tmp6 = libdevice.tanh(tmp5) tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_div_mul_pow_rsub_softplus_sub_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + x2, xmask) tmp15 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr4 + x2, xmask) tmp19 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = 20.0 tmp5 = tmp3 > tmp4 tmp6 = tl_math.exp(tmp3) tmp7 = libdevice.log1p(tmp6) tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp5, tmp1, tmp8) tmp10 = -1.0 tmp11 = tmp9 + tmp10 tmp12 = tmp11 - tmp1 tmp14 = tmp12 * tmp13 tmp16 = tmp14 / tmp15 tmp17 = tmp0 + tmp16 tmp20 = tmp17 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp19 * tmp19 tmp23 = tmp2 - tmp22 tmp24 = tmp13 * tmp23 tl.store(out_ptr0 + x2, tmp17, xmask) tl.store(out_ptr1 + x2, tmp21, xmask) tl.store(out_ptr2 + x2, tmp24, xmask) @triton.jit def triton_poi_fused_add_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl_math.log(tmp3) tmp5 = 0.0 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor( primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, primals_3, reinterpret_tensor( primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0 ), reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0), out=buf3) buf4 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_sum_0[grid(4)](buf1, buf4, 4, XBLOCK=4, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0 ), reinterpret_tensor(primals_8, (4, 4, 1), (4, 1, 1), 0), out=buf6 ) buf7 = reinterpret_tensor(buf2, (4, 1, 1), (1, 1, 1), 0) del buf2 triton_poi_fused_add_tanh_1[grid(4)](buf7, buf6, primals_7, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_7 buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) buf9 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) triton_poi_fused_add_div_mul_pow_rsub_softplus_sub_2[grid(16)](buf0, buf3, buf1, buf4, primals_8, buf7, buf5, buf8, buf9, 16, XBLOCK =16, num_warps=1, num_stages=1) buf10 = buf6 del buf6 extern_kernels.bmm(buf9, buf5, out=buf10) buf11 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_add_3[grid(4)](buf10, buf11, 4, XBLOCK=4, num_warps=1, num_stages=1) return reinterpret_tensor(buf8, (4, 4), (4, 1), 0 ), buf11, primals_3, reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0 ), buf3, buf4, buf5, buf7, buf10, reinterpret_tensor(buf9, (4, 4, 1 ), (4, 1, 4), 0), reinterpret_tensor(primals_8, (4, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf0, (4, 1, 4), (4, 1, 1), 0) class PlanarStep(nn.Module): def __init__(self): super(PlanarStep, self).__init__() self.h = nn.Tanh() self.softplus = nn.Softplus() def _der_h(self, x): """Derivative of activation function h.""" return self._der_tanh(x) def _der_tanh(self, x): """Derivative of the Tanh function.""" return 1 - self.h(x) ** 2 def forward(self, zk, u, w, b): """ Forward pass. Assumes amortized u, w and b. Conditions on diagonals of u and w for invertibility will be be satisfied inside this function. Computes the following transformation: z' = z + u h( w^T z + b) or actually z'^T = z^T + h(z^T w + b)u^T Assumes the following input shapes: shape u = (batch_size, z_dim, 1) shape w = (batch_size, 1, z_dim) shape b = (batch_size, 1, 1) shape z = (batch_size, z_dim). """ zk = zk.unsqueeze(2) uw = torch.bmm(w, u) m_uw = -1.0 + self.softplus(uw) w_norm_sq = torch.sum(w ** 2, dim=2, keepdim=True) u_hat = u + (m_uw - uw) * w.transpose(2, 1) / w_norm_sq wzb = torch.bmm(w, zk) + b z = zk + u_hat * self.h(wzb) z = z.squeeze(2) psi = w * self._der_h(wzb) logdet = torch.log(torch.abs(1 + torch.bmm(psi, u_hat))) logdet = logdet.squeeze(2).squeeze(1) return z, logdet class Error(Exception): """Base error class, from which all other errors derive.""" pass class InvalidArgumentError(Error): """This error will be shown when a given argument has an invalid value.""" pass class NormalizingFlow(nn.Module): """Base class for normalizing flows.""" def __init__(self, h_dim, z_dim, flow_depth, hidden_depth): super(NormalizingFlow, self).__init__() self.h_dim = h_dim self.z_dim = z_dim self.flow_depth = flow_depth self.hidden_depth = hidden_depth @property def flow_depth(self): return self._flow_depth @flow_depth.setter def flow_depth(self, value): if not isinstance(value, int): raise InvalidArgumentError('flow_depth should be an integer.') elif value < 1: raise InvalidArgumentError( 'flow_depth should be strictly positive.') else: self._flow_depth = value @property def hidden_depth(self): return self._hidden_depth @hidden_depth.setter def hidden_depth(self, value): if not isinstance(value, int): raise InvalidArgumentError('hidden_depth should be an integer.') elif value < 0: raise InvalidArgumentError('hidden_depth should be positive.') else: self._hidden_depth = value class PlanarNew(NormalizingFlow): """Planar Normalizing flow with single unit bottleneck.""" def __init__(self, h_dim, z_dim, flow_depth): super(PlanarNew, self).__init__(h_dim, z_dim, flow_depth, 0) self.flow = PlanarStep() self.h_to_u = nn.Linear(self.h_dim, self.flow_depth * self.z_dim) self.h_to_w = nn.Linear(self.h_dim, self.flow_depth * self.z_dim) self.h_to_b = nn.Linear(self.h_dim, self.flow_depth) def forward(self, input_0, input_1): primals_1 = self.h_to_u.weight primals_2 = self.h_to_u.bias primals_3 = self.h_to_w.weight primals_5 = self.h_to_w.bias primals_6 = self.h_to_b.weight primals_7 = self.h_to_b.bias primals_4 = input_0 primals_8 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0], output[1]
scfrank/deep-generative-lm
Planar
false
4,295
[ "MIT" ]
0
70067fcda82aa035bba805ce6c2709097166a7a4
https://github.com/scfrank/deep-generative-lm/tree/70067fcda82aa035bba805ce6c2709097166a7a4
import torch import torch.nn as nn class PlanarStep(nn.Module): def __init__(self): super().__init__() self.h = nn.Tanh() self.softplus = nn.Softplus() def _der_h(self, x): """Derivative of activation function h.""" return self._der_tanh(x) def _der_tanh(self, x): """Derivative of the Tanh function.""" return 1 - self.h(x) ** 2 def forward(self, zk, u, w, b): """ Forward pass. Assumes amortized u, w and b. Conditions on diagonals of u and w for invertibility will be be satisfied inside this function. Computes the following transformation: z' = z + u h( w^T z + b) or actually z'^T = z^T + h(z^T w + b)u^T Assumes the following input shapes: shape u = (batch_size, z_dim, 1) shape w = (batch_size, 1, z_dim) shape b = (batch_size, 1, 1) shape z = (batch_size, z_dim). """ zk = zk.unsqueeze(2) uw = torch.bmm(w, u) m_uw = -1.0 + self.softplus(uw) w_norm_sq = torch.sum(w ** 2, dim=2, keepdim=True) u_hat = u + (m_uw - uw) * w.transpose(2, 1) / w_norm_sq wzb = torch.bmm(w, zk) + b z = zk + u_hat * self.h(wzb) z = z.squeeze(2) psi = w * self._der_h(wzb) logdet = torch.log(torch.abs(1 + torch.bmm(psi, u_hat))) logdet = logdet.squeeze(2).squeeze(1) return z, logdet class Error(Exception): """Base error class, from which all other errors derive.""" pass class InvalidArgumentError(Error): """This error will be shown when a given argument has an invalid value.""" pass class NormalizingFlow(nn.Module): """Base class for normalizing flows.""" def __init__(self, h_dim, z_dim, flow_depth, hidden_depth): super().__init__() self.h_dim = h_dim self.z_dim = z_dim self.flow_depth = flow_depth self.hidden_depth = hidden_depth @property def flow_depth(self): return self._flow_depth @flow_depth.setter def flow_depth(self, value): if not isinstance(value, int): raise InvalidArgumentError('flow_depth should be an integer.') elif value < 1: raise InvalidArgumentError( 'flow_depth should be strictly positive.') else: self._flow_depth = value @property def hidden_depth(self): return self._hidden_depth @hidden_depth.setter def hidden_depth(self, value): if not isinstance(value, int): raise InvalidArgumentError('hidden_depth should be an integer.') elif value < 0: raise InvalidArgumentError('hidden_depth should be positive.') else: self._hidden_depth = value class Model(NormalizingFlow): """Planar Normalizing flow with single unit bottleneck.""" def __init__(self, h_dim, z_dim, flow_depth): super().__init__(h_dim, z_dim, flow_depth, 0) self.flow = PlanarStep() self.h_to_u = nn.Linear(self.h_dim, self.flow_depth * self.z_dim) self.h_to_w = nn.Linear(self.h_dim, self.flow_depth * self.z_dim) self.h_to_b = nn.Linear(self.h_dim, self.flow_depth) def forward(self, z, h): u = self.h_to_u(h).view(-1, self.flow_depth, self.z_dim, 1) w = self.h_to_w(h).view(-1, self.flow_depth, 1, self.z_dim) b = self.h_to_b(h).view(-1, self.flow_depth, 1, 1) z_k = z logdet = 0.0 for k in range(self.flow_depth): z_k, ldj = self.flow(z_k, u[:, k, :, :], w[:, k, :, :], b[:, k, :, :]) logdet += ldj return z_k, logdet def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 1]
Decoder_h
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/e7/ce7o5lvrzmyyeuisijxjne3lbkm23muivsnshxghpa4un3wa5g4d.py # Topologically Sorted Source Nodes: [v, v_1, mul, add], Original ATen: [aten.index, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # v => index # v_1 => index_1 # Graph fragment: # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%primals_1, [%primals_2]), kwargs = {}) # %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%primals_3, [%primals_2]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%normal_functional, %index_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%index, %mul), kwargs = {}) triton_poi_fused_add_index_mul_0 = async_compile.triton('triton_poi_fused_add_index_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_index_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_index_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + (x2), xmask) tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (x0 + (4*tmp4)), xmask) tmp8 = tl.load(in_ptr3 + (x0 + (4*tmp4)), xmask) tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [eps], Original ATen: [aten.normal_functional] buf1 = torch.ops.aten.normal_functional.default(buf0) buf2 = buf1 del buf1 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [v, v_1, mul, add], Original ATen: [aten.index, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_index_mul_0.run(primals_2, primals_1, buf2, primals_3, buf3, 16, grid=grid(16), stream=stream0) del primals_1 del primals_3 return (buf3, primals_2, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.distributions as dist import torch.nn as nn class Decoder_h(nn.Module): def __init__(self, B, H_dim): super().__init__() self.B = B self.H_dim = H_dim self.make_parameters() def make_parameters(self): self.mu = nn.Linear(self.H_dim, self.B, bias=False) self.sigma = nn.Linear(self.H_dim, self.B, bias=False) torch.nn.init.uniform_(self.sigma.weight, a=1.0, b=2.0) def _log_likelihood(self, h): """ h: shape=(BS,N,H_dim) """ BS, S, H_dim = h.shape return dist.Normal(self.mu.weight.view(1, 1, self.B, H_dim), self. sigma.weight.view(1, 1, self.B, self.H_dim)).log_prob(h.view(BS, S, 1, H_dim)) def forward(self, z): """ z: shape = (BS,N) or (BS,) or (1,) """ h_dist = dist.Normal(self.mu.weight[z], self.sigma.weight[z]) return h_dist.rsample() def get_inputs(): return [torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [[], {'B': 4, 'H_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.distributions as dist import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_index_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + x2, xmask) tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (x0 + 4 * tmp4), xmask) tmp8 = tl.load(in_ptr3 + (x0 + 4 * tmp4), xmask) tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = torch.ops.aten.normal_functional.default(buf0) buf2 = buf1 del buf1 buf3 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_index_mul_0[grid(16)](primals_2, primals_1, buf2, primals_3, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 del primals_3 return buf3, primals_2, buf2 class Decoder_hNew(nn.Module): def __init__(self, B, H_dim): super().__init__() self.B = B self.H_dim = H_dim self.make_parameters() def make_parameters(self): self.mu = nn.Linear(self.H_dim, self.B, bias=False) self.sigma = nn.Linear(self.H_dim, self.B, bias=False) torch.nn.init.uniform_(self.sigma.weight, a=1.0, b=2.0) def _log_likelihood(self, h): """ h: shape=(BS,N,H_dim) """ BS, S, H_dim = h.shape return dist.Normal(self.mu.weight.view(1, 1, self.B, H_dim), self. sigma.weight.view(1, 1, self.B, self.H_dim)).log_prob(h.view(BS, S, 1, H_dim)) def forward(self, input_0): primals_1 = self.mu.weight primals_3 = self.sigma.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
shaabhishek/pp_lvm
Decoder_h
false
4,296
[ "Apache-2.0" ]
0
0fcceb7f004ab01da7c5508b576983b9d4af36c8
https://github.com/shaabhishek/pp_lvm/tree/0fcceb7f004ab01da7c5508b576983b9d4af36c8
import torch import torch.distributions as dist import torch.nn as nn class Model(nn.Module): def __init__(self, B, H_dim): super().__init__() self.B = B self.H_dim = H_dim self.make_parameters() def make_parameters(self): self.mu = nn.Linear(self.H_dim, self.B, bias=False) self.sigma = nn.Linear(self.H_dim, self.B, bias=False) torch.nn.init.uniform_(self.sigma.weight, a=1.0, b=2.0) def _log_likelihood(self, h): """ h: shape=(BS,N,H_dim) """ BS, S, H_dim = h.shape return dist.Normal(self.mu.weight.view(1, 1, self.B, H_dim), self. sigma.weight.view(1, 1, self.B, self.H_dim)).log_prob(h.view(BS, S, 1, H_dim)) def forward(self, z): """ z: shape = (BS,N) or (BS,) or (1,) """ h_dist = dist.Normal(self.mu.weight[z], self.sigma.weight[z]) return h_dist.rsample() def get_inputs(): return [torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [4, 4]
VDB
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten.tanh] # Source node to ATen node mapping: # h => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/id/cid2gh4po4iynry6fjv4xkpr2m27rgu7cpf347kfyghfq4xzksz5.py # Topologically Sorted Source Nodes: [truediv, std, mul, z], Original ATen: [aten.div, aten.exp, aten.mul, aten.add] # Source node to ATen node mapping: # mul => mul # std => exp # truediv => div # z => add # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_5, 2), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %randn), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %mul), kwargs = {}) triton_poi_fused_add_div_exp_mul_1 = async_compile.triton('triton_poi_fused_add_div_exp_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_exp_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp5 = tl.load(in_ptr2 + (x0), xmask) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tl_math.exp(tmp3) tmp6 = tmp4 * tmp5 tmp7 = tmp0 + tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xr/cxrxf4nkydknjv7xhdecpyrprhviagsqwicrk4lpp64qv2hkzaxp.py # Topologically Sorted Source Nodes: [prob], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # prob => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_9,), kwargs = {}) triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (1, 4), (4, 1)) assert_size_stride(primals_11, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [h], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [logvar], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_7 # Topologically Sorted Source Nodes: [eps], Original ATen: [aten.randn_like] buf4 = torch.ops.aten.randn.default([4, 4, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv, std, mul, z], Original ATen: [aten.div, aten.exp, aten.mul, aten.add] triton_poi_fused_add_div_exp_mul_1.run(buf2, buf3, buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf8, primals_9, 256, grid=grid(256), stream=stream0) del primals_9 buf9 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf8, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 1), (1, 4), 0), out=buf9) buf10 = reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [prob], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_2.run(buf10, primals_11, 64, grid=grid(64), stream=stream0) del primals_11 return (buf10, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf5, reinterpret_tensor(buf6, (64, 4), (4, 1), 0), buf8, buf10, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class VDB(nn.Module): def __init__(self, num_inputs, args): super(VDB, self).__init__() self.fc1 = nn.Linear(num_inputs, args.hidden_size) self.fc2 = nn.Linear(args.hidden_size, args.z_size) self.fc3 = nn.Linear(args.hidden_size, args.z_size) self.fc4 = nn.Linear(args.z_size, args.hidden_size) self.fc5 = nn.Linear(args.hidden_size, 1) self.fc5.weight.data.mul_(0.1) self.fc5.bias.data.mul_(0.0) def encoder(self, x): h = torch.tanh(self.fc1(x)) return self.fc2(h), self.fc3(h) def reparameterize(self, mu, logvar): std = torch.exp(logvar / 2) eps = torch.randn_like(std) return mu + std * eps def discriminator(self, z): h = torch.tanh(self.fc4(z)) return torch.sigmoid(self.fc5(h)) def forward(self, x): mu, logvar = self.encoder(x) z = self.reparameterize(mu, logvar) prob = self.discriminator(z) return prob, mu, logvar def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_inputs': 4, 'args': _mock_config(hidden_size=4, z_size=4)}]
import torch from torch import device from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_add_div_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp5 = tl.load(in_ptr2 + x0, xmask) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tl_math.exp(tmp3) tmp6 = tmp4 * tmp5 tmp7 = tmp0 + tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (1, 4), (4, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_7 buf4 = torch.ops.aten.randn.default([4, 4, 4, 4], dtype=torch. float32, device=device(type='cuda', index=0), pin_memory=False) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_exp_mul_1[grid(256)](buf2, buf3, buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf7 triton_poi_fused_tanh_0[grid(256)](buf8, primals_9, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf9 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 1), (1, 4), 0), out=buf9) buf10 = reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf9 triton_poi_fused_sigmoid_2[grid(64)](buf10, primals_11, 64, XBLOCK= 64, num_warps=1, num_stages=1) del primals_11 return buf10, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf5, reinterpret_tensor(buf6, (64, 4), (4, 1), 0 ), buf8, buf10, primals_10, primals_8, primals_6, primals_4 class VDBNew(nn.Module): def __init__(self, num_inputs, args): super(VDBNew, self).__init__() self.fc1 = nn.Linear(num_inputs, args.hidden_size) self.fc2 = nn.Linear(args.hidden_size, args.z_size) self.fc3 = nn.Linear(args.hidden_size, args.z_size) self.fc4 = nn.Linear(args.z_size, args.hidden_size) self.fc5 = nn.Linear(args.hidden_size, 1) self.fc5.weight.data.mul_(0.1) self.fc5.bias.data.mul_(0.0) def encoder(self, x): h = torch.tanh(self.fc1(x)) return self.fc2(h), self.fc3(h) def reparameterize(self, mu, logvar): std = torch.exp(logvar / 2) eps = torch.randn_like(std) return mu + std * eps def discriminator(self, z): h = torch.tanh(self.fc4(z)) return torch.sigmoid(self.fc5(h)) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_10 = self.fc5.weight primals_11 = self.fc5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0], output[1], output[2]
sgrimbly/lets-do-irl
VDB
false
4,297
[ "MIT" ]
0
4233e238342394feef6a7bd495cc6b700d435b00
https://github.com/sgrimbly/lets-do-irl/tree/4233e238342394feef6a7bd495cc6b700d435b00
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class Model(nn.Module): def __init__(self, num_inputs, args): super().__init__() self.fc1 = nn.Linear(num_inputs, args.hidden_size) self.fc2 = nn.Linear(args.hidden_size, args.z_size) self.fc3 = nn.Linear(args.hidden_size, args.z_size) self.fc4 = nn.Linear(args.z_size, args.hidden_size) self.fc5 = nn.Linear(args.hidden_size, 1) self.fc5.weight.data.mul_(0.1) self.fc5.bias.data.mul_(0.0) def encoder(self, x): h = torch.tanh(self.fc1(x)) return self.fc2(h), self.fc3(h) def reparameterize(self, mu, logvar): std = torch.exp(logvar / 2) eps = torch.randn_like(std) return mu + std * eps def discriminator(self, z): h = torch.tanh(self.fc4(z)) return torch.sigmoid(self.fc5(h)) def forward(self, x): mu, logvar = self.encoder(x) z = self.reparameterize(mu, logvar) prob = self.discriminator(z) return prob, mu, logvar def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_inputs': 4, 'args': _mock_config(hidden_size=4, z_size=4)}]