entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
pytorch_code
stringlengths
200
4.05k
GraphResConvolution
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/hc/chc4ldrqcjtfxtm7z6bcimhl6kcxp5cg7bbybuqxykn7v4rbyrzr.py # Topologically Sorted Source Nodes: [output_1, output_1_relu], Original ATen: [aten.add, aten.relu] # Source node to ATen node mapping: # output_1 => add # output_1_relu => relu # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = triton_helpers.maximum(tmp7, tmp6) tl.store(in_out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jq/cjq2rka4eijqd5dhapwvei2kcb4mrciaxxt424vl3fene2a2d3mf.py # Topologically Sorted Source Nodes: [output_2, output_2_res, output], Original ATen: [aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # output => relu_1 # output_2 => add_1 # output_2_res => add_2 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %view_7), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %primals_3), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_2,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_add_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_threshold_backward_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = 0.0 tmp12 = tmp10 <= tmp11 tl.store(in_out_ptr0 + (x2), tmp10, xmask) tl.store(out_ptr0 + (x2), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(primals_4, primals_3, out=buf1) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [output_1, output_1_relu], Original ATen: [aten.add, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_add_relu_0.run(buf3, primals_2, buf2, primals_6, 64, grid=grid(64), stream=stream0) del primals_2 del primals_6 buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm] extern_kernels.bmm(primals_4, buf3, out=buf5) buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf6) buf7 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0); del buf4 # reuse buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [output_2, output_2_res, output], Original ATen: [aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_relu_threshold_backward_1.run(buf7, primals_8, buf6, primals_10, primals_3, buf8, 64, grid=grid(64), stream=stream0) del buf6 del primals_10 del primals_8 return (buf7, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(buf1, (16, 4), (4, 1), 0), buf3, reinterpret_tensor(buf5, (16, 4), (4, 1), 0), buf8, primals_9, reinterpret_tensor(primals_4, (4, 4, 4), (16, 1, 4), 0), primals_7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.autograd from torch.nn.modules.module import Module class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907. """ def __init__(self, state_dim, name='', out_state_dim=None): super(GraphConvolution, self).__init__() self.state_dim = state_dim if out_state_dim is None: self.out_state_dim = state_dim else: self.out_state_dim = out_state_dim self.fc1 = nn.Linear(in_features=self.state_dim, out_features=self. out_state_dim) self.fc2 = nn.Linear(in_features=self.state_dim, out_features=self. out_state_dim) self.name = name def forward(self, input, adj): state_in = self.fc1(input) forward_input = self.fc2(torch.bmm(adj, input)) return state_in + forward_input class GraphResConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907. """ def __init__(self, state_dim, name=''): super(GraphResConvolution, self).__init__() self.state_dim = state_dim self.gcn_1 = GraphConvolution(state_dim, f'{name}_1') self.gcn_2 = GraphConvolution(state_dim, f'{name}_2') self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() self.name = name def forward(self, input, adj): output_1 = self.gcn_1(input, adj) output_1_relu = self.relu1(output_1) output_2 = self.gcn_2(output_1_relu, adj) output_2_res = output_2 + input output = self.relu2(output_2_res) return output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module from torch import nn import torch.autograd from torch.nn.modules.module import Module assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = triton_helpers.maximum(tmp7, tmp6) tl.store(in_out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_add_relu_threshold_backward_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = 0.0 tmp12 = tmp10 <= tmp11 tl.store(in_out_ptr0 + x2, tmp10, xmask) tl.store(out_ptr0 + x2, tmp12, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_4, primals_3, out=buf1) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_relu_0[grid(64)](buf3, primals_2, buf2, primals_6, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 del primals_6 buf4 = buf2 del buf2 extern_kernels.mm(reinterpret_tensor(buf3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_4, buf3, out=buf5) buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf6) buf7 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0) del buf4 buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_add_relu_threshold_backward_1[grid(64)](buf7, primals_8, buf6, primals_10, primals_3, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf6 del primals_10 del primals_8 return buf7, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (16, 4), (4, 1), 0 ), buf3, reinterpret_tensor(buf5, (16, 4), (4, 1), 0 ), buf8, primals_9, reinterpret_tensor(primals_4, (4, 4, 4), (16, 1, 4), 0), primals_7 class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907. """ def __init__(self, state_dim, name='', out_state_dim=None): super(GraphConvolution, self).__init__() self.state_dim = state_dim if out_state_dim is None: self.out_state_dim = state_dim else: self.out_state_dim = out_state_dim self.fc1 = nn.Linear(in_features=self.state_dim, out_features=self. out_state_dim) self.fc2 = nn.Linear(in_features=self.state_dim, out_features=self. out_state_dim) self.name = name def forward(self, input, adj): state_in = self.fc1(input) forward_input = self.fc2(torch.bmm(adj, input)) return state_in + forward_input class GraphResConvolutionNew(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907. """ def __init__(self, state_dim, name=''): super(GraphResConvolutionNew, self).__init__() self.state_dim = state_dim self.gcn_1 = GraphConvolution(state_dim, f'{name}_1') self.gcn_2 = GraphConvolution(state_dim, f'{name}_2') self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() self.name = name def forward(self, input_0, input_1): primals_1 = self.gcn_1.fc1.weight primals_2 = self.gcn_1.fc1.bias primals_5 = self.gcn_1.fc2.weight primals_6 = self.gcn_1.fc2.bias primals_7 = self.gcn_2.fc1.weight primals_8 = self.gcn_2.fc1.bias primals_9 = self.gcn_2.fc2.weight primals_10 = self.gcn_2.fc2.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
sumanmichael/Palmira_pb
GraphResConvolution
false
4,398
[ "MIT" ]
0
8ca9f370ccd9bba694317be648ce5e4f4c55d0e7
https://github.com/sumanmichael/Palmira_pb/tree/8ca9f370ccd9bba694317be648ce5e4f4c55d0e7
from torch.nn import Module import torch from torch import nn import torch.autograd from torch.nn.modules.module import Module class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907. """ def __init__(self, state_dim, name='', out_state_dim=None): super().__init__() self.state_dim = state_dim if out_state_dim is None: self.out_state_dim = state_dim else: self.out_state_dim = out_state_dim self.fc1 = nn.Linear(in_features=self.state_dim, out_features=self. out_state_dim) self.fc2 = nn.Linear(in_features=self.state_dim, out_features=self. out_state_dim) self.name = name def forward(self, input, adj): state_in = self.fc1(input) forward_input = self.fc2(torch.bmm(adj, input)) return state_in + forward_input class Model(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907. """ def __init__(self, state_dim, name=''): super().__init__() self.state_dim = state_dim self.gcn_1 = GraphConvolution(state_dim, f'{name}_1') self.gcn_2 = GraphConvolution(state_dim, f'{name}_2') self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() self.name = name def forward(self, input, adj): output_1 = self.gcn_1(input, adj) output_1_relu = self.relu1(output_1) output_2 = self.gcn_2(output_1_relu, adj) output_2_res = output_2 + input output = self.relu2(output_2_res) return output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
CosineActivation
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/or/cor4fuxy2klxxvr4lht2yolddamwx3ojkehcrtcqdcjksfhxkosb.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%cos, %add_1], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl_math.cos(tmp7) tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 8, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-4) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.load(in_ptr3 + ((-4) + x0), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp11, tmp16, tmp17) tmp19 = tl.where(tmp4, tmp10, tmp18) tl.store(out_ptr0 + (x2), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, primals_2, buf1, primals_4, buf2, 512, grid=grid(512), stream=stream0) del buf1 del primals_4 return (buf2, primals_2, buf0, reinterpret_tensor(primals_5, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def t2v(tau, f, weight_linear, bias_linear, weight_periodic, bias_periodic, arg=None): if arg: v1 = f(torch.matmul(tau, weight_linear) + bias_linear, arg) else: v1 = f(torch.matmul(tau, weight_linear) + bias_linear) v2 = torch.matmul(tau, weight_periodic) + bias_periodic return torch.cat([v1, v2], -1) class CosineActivation(nn.Module): def __init__(self, in_features, output_features): super(CosineActivation, self).__init__() self.output_features = output_features self.weight_linear = nn.parameter.Parameter(torch.randn(in_features, output_features)) self.bias_linear = nn.parameter.Parameter(torch.randn(output_features)) self.weight_periodic = nn.parameter.Parameter(torch.randn( in_features, output_features)) self.bias_periodic = nn.parameter.Parameter(torch.randn( output_features)) self.f = torch.cos def forward(self, tau): return t2v(tau, self.f, self.weight_linear, self.bias_linear, self. weight_periodic, self.bias_periodic) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'output_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl_math.cos(tmp7) tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-4 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.load(in_ptr3 + (-4 + x0), tmp11 & xmask, eviction_policy= 'evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp11, tmp16, tmp17) tmp19 = tl.where(tmp4, tmp10, tmp18) tl.store(out_ptr0 + x2, tmp19, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](buf0, primals_2, buf1, primals_4, buf2, 512, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del primals_4 return buf2, primals_2, buf0, reinterpret_tensor(primals_5, (4, 64), (1, 4), 0) def t2v(tau, f, weight_linear, bias_linear, weight_periodic, bias_periodic, arg=None): if arg: v1 = f(torch.matmul(tau, weight_linear) + bias_linear, arg) else: v1 = f(torch.matmul(tau, weight_linear) + bias_linear) v2 = torch.matmul(tau, weight_periodic) + bias_periodic return torch.cat([v1, v2], -1) class CosineActivationNew(nn.Module): def __init__(self, in_features, output_features): super(CosineActivationNew, self).__init__() self.output_features = output_features self.weight_linear = nn.parameter.Parameter(torch.randn(in_features, output_features)) self.bias_linear = nn.parameter.Parameter(torch.randn(output_features)) self.weight_periodic = nn.parameter.Parameter(torch.randn( in_features, output_features)) self.bias_periodic = nn.parameter.Parameter(torch.randn( output_features)) self.f = torch.cos def forward(self, input_0): primals_1 = self.weight_linear primals_2 = self.bias_linear primals_3 = self.weight_periodic primals_4 = self.bias_periodic primals_5 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
sungreong/PyTimeSeries
CosineActivation
false
4,399
[ "MIT" ]
0
d5321c1226fc7fb6a45fec7009843894be417594
https://github.com/sungreong/PyTimeSeries/tree/d5321c1226fc7fb6a45fec7009843894be417594
import torch import torch.nn as nn def t2v(tau, f, weight_linear, bias_linear, weight_periodic, bias_periodic, arg=None): if arg: v1 = f(torch.matmul(tau, weight_linear) + bias_linear, arg) else: v1 = f(torch.matmul(tau, weight_linear) + bias_linear) v2 = torch.matmul(tau, weight_periodic) + bias_periodic return torch.cat([v1, v2], -1) class Model(nn.Module): def __init__(self, in_features, output_features): super().__init__() self.output_features = output_features self.weight_linear = nn.parameter.Parameter(torch.randn(in_features, output_features)) self.bias_linear = nn.parameter.Parameter(torch.randn(output_features)) self.weight_periodic = nn.parameter.Parameter(torch.randn( in_features, output_features)) self.bias_periodic = nn.parameter.Parameter(torch.randn( output_features)) self.f = torch.cos def forward(self, tau): return t2v(tau, self.f, self.weight_linear, self.bias_linear, self. weight_periodic, self.bias_periodic) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
GlobalAvgPool2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/h3/ch3l34kqqlue6keu2k5zyuitwqh5ph3eypbf57e4juzyb5tqpeva.py # Topologically Sorted Source Nodes: [mean, mean_1], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # mean_1 => mean_1 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1]), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean, [-1]), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp15 / tmp7 tmp17 = tmp8 + tmp16 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp24 / tmp7 tmp26 = tmp17 + tmp25 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp33 = tmp31 + tmp32 tmp34 = tmp33 / tmp7 tmp35 = tmp26 + tmp34 tmp36 = tmp35 / tmp7 tl.store(out_ptr0 + (x0), tmp36, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, mean_1], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GlobalAvgPool2d(nn.Module): def forward(self, inputs): return inputs.mean(-1).mean(-1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp32 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp15 / tmp7 tmp17 = tmp8 + tmp16 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp24 / tmp7 tmp26 = tmp17 + tmp25 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp33 = tmp31 + tmp32 tmp34 = tmp33 / tmp7 tmp35 = tmp26 + tmp34 tmp36 = tmp35 / tmp7 tl.store(out_ptr0 + x0, tmp36, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 return buf0, class GlobalAvgPool2dNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
synxlin/mini-torchpack
GlobalAvgPool2d
false
4,400
[ "MIT" ]
0
3ea5bca75992941e4346102d99e789a88417d7c1
https://github.com/synxlin/mini-torchpack/tree/3ea5bca75992941e4346102d99e789a88417d7c1
import torch import torch.nn as nn class Model(nn.Module): def forward(self, inputs): return inputs.mean(-1).mean(-1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CharbonnierLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/4o/c4oqy72fdaliouj3mb6dz74zmds2djttl7pvwrhlac4244bp4hf7.py # Topologically Sorted Source Nodes: [diff, mul, add, sqrt, loss], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.sum] # Source node to ATen node mapping: # add => add # diff => sub # loss => sum_1 # mul => mul # sqrt => sqrt # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1e-06), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sqrt,), kwargs = {}) triton_per_fused_add_mul_sqrt_sub_sum_0 = async_compile.triton('triton_per_fused_add_mul_sqrt_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_sqrt_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mul_sqrt_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 1e-06 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp9, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [diff, mul, add, sqrt, loss], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_add_mul_sqrt_sub_sum_0.run(arg0_1, arg1_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class CharbonnierLoss(nn.Module): """Charbonnier Loss (L1)""" def __init__(self, eps=1e-06): super(CharbonnierLoss, self).__init__() self.eps = eps def forward(self, x, y): diff = x - y loss = torch.sum(torch.sqrt(diff * diff + self.eps)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mul_sqrt_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 1e-06 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp9, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_add_mul_sqrt_sub_sum_0[grid(1)](arg0_1, arg1_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class CharbonnierLossNew(nn.Module): """Charbonnier Loss (L1)""" def __init__(self, eps=1e-06): super(CharbonnierLossNew, self).__init__() self.eps = eps def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
sutkarsh/EDVR
CharbonnierLoss
false
4,401
[ "Apache-2.0" ]
0
cd9f2d46edbb00333d8ffb31aebc52cfbda4b6e3
https://github.com/sutkarsh/EDVR/tree/cd9f2d46edbb00333d8ffb31aebc52cfbda4b6e3
import torch import torch.utils.data import torch.nn as nn class Model(nn.Module): """Charbonnier Loss (L1)""" def __init__(self, eps=1e-06): super().__init__() self.eps = eps def forward(self, x, y): diff = x - y loss = torch.sum(torch.sqrt(diff * diff + self.eps)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ConvLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/4z/c4z2pzq3lsrzow5vs7cjekzn2ekbosokmllvu2kdaggxwyxu2icb.py # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv3d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_1, %primals_2, [1, 1, 1], [4, 4, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 324) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(4, 4, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 9, 9, 4), (1296, 324, 36, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 1296, grid=grid(1296), stream=stream0) del primals_2 return (reinterpret_tensor(buf1, (4, 9, 9, 4), (324, 36, 4, 1), 0), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn import torch.nn.functional as f class ConvLayer(nn.Conv3d): def __init__(self, network_config, config, name, in_shape, groups=1): self.name = name self.layer_config = config self.network_config = network_config self.type = config['type'] in_features = config['in_channels'] out_features = config['out_channels'] kernel_size = config['kernel_size'] if 'padding' in config: padding = config['padding'] else: padding = 0 if 'stride' in config: stride = config['stride'] else: stride = 1 if 'dilation' in config: dilation = config['dilation'] else: dilation = 1 if 'weight_scale' in config: weight_scale = config['weight_scale'] else: weight_scale = 1 if type(kernel_size) == int: kernel = kernel_size, kernel_size, 1 elif len(kernel_size) == 2: kernel = kernel_size[0], kernel_size[1], 1 else: raise Exception( 'kernelSize can only be of 1 or 2 dimension. It was: {}'. format(kernel_size.shape)) if type(stride) == int: stride = stride, stride, 1 elif len(stride) == 2: stride = stride[0], stride[1], 1 else: raise Exception( 'stride can be either int or tuple of size 2. It was: {}'. format(stride.shape)) if type(padding) == int: padding = padding, padding, 0 elif len(padding) == 2: padding = padding[0], padding[1], 0 else: raise Exception( 'padding can be either int or tuple of size 2. It was: {}'. format(padding.shape)) if type(dilation) == int: dilation = dilation, dilation, 1 elif len(dilation) == 2: dilation = dilation[0], dilation[1], 1 else: raise Exception( 'dilation can be either int or tuple of size 2. It was: {}' .format(dilation.shape)) super(ConvLayer, self).__init__(in_features, out_features, kernel, stride, padding, dilation, groups, bias=True) nn.init.normal_(self.weight) nn.init.zeros_(self.bias) self.weight = torch.nn.Parameter(weight_scale * self.weight, requires_grad=True) self.bias = torch.nn.Parameter(weight_scale * self.bias, requires_grad=True) self.in_shape = in_shape self.out_shape = [out_features, int((in_shape[1] + 2 * padding[0] - kernel[0]) / stride[0] + 1), int((in_shape[2] + 2 * padding[1] - kernel[1]) / stride[1] + 1)] None None None None None def forward(self, x): return f.conv3d(x, self.weight, self.bias, self.stride, self. padding, self.dilation, self.groups) def get_parameters(self): return [self.weight, self.bias] def forward_pass(self, x, epoch): y = self.forward(x) shape = x.shape if shape[4] > shape[0] * 10: y = TSSLBP.PSP_spike_long_time.apply(y, self.network_config, self.layer_config, self.name) else: y = TSSLBP.PSP_spike_large_batch.apply(y, self.network_config, self.layer_config, self.name) return y def weight_clipper(self): w = self.weight.data b = self.bias.data w = w.clamp(-4, 4) b = b.clamp(-4, 4) self.weight.data = w self.bias.data = b def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'network_config': _mock_config(), 'config': _mock_config( type=4, in_channels=4, out_channels=4, kernel_size=4, padding=4, stride=1, dilation=1, weight_scale=1.0), 'name': 4, 'in_shape': [4, 4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 324 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(4, 4, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 9, 9, 4), (1296, 324, 36, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(1296)](buf1, primals_2, 1296, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return reinterpret_tensor(buf1, (4, 9, 9, 4), (324, 36, 4, 1), 0 ), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0) class ConvLayerNew(nn.Conv3d): def __init__(self, network_config, config, name, in_shape, groups=1): self.name = name self.layer_config = config self.network_config = network_config self.type = config['type'] in_features = config['in_channels'] out_features = config['out_channels'] kernel_size = config['kernel_size'] if 'padding' in config: padding = config['padding'] else: padding = 0 if 'stride' in config: stride = config['stride'] else: stride = 1 if 'dilation' in config: dilation = config['dilation'] else: dilation = 1 if 'weight_scale' in config: weight_scale = config['weight_scale'] else: weight_scale = 1 if type(kernel_size) == int: kernel = kernel_size, kernel_size, 1 elif len(kernel_size) == 2: kernel = kernel_size[0], kernel_size[1], 1 else: raise Exception( 'kernelSize can only be of 1 or 2 dimension. It was: {}'. format(kernel_size.shape)) if type(stride) == int: stride = stride, stride, 1 elif len(stride) == 2: stride = stride[0], stride[1], 1 else: raise Exception( 'stride can be either int or tuple of size 2. It was: {}'. format(stride.shape)) if type(padding) == int: padding = padding, padding, 0 elif len(padding) == 2: padding = padding[0], padding[1], 0 else: raise Exception( 'padding can be either int or tuple of size 2. It was: {}'. format(padding.shape)) if type(dilation) == int: dilation = dilation, dilation, 1 elif len(dilation) == 2: dilation = dilation[0], dilation[1], 1 else: raise Exception( 'dilation can be either int or tuple of size 2. It was: {}' .format(dilation.shape)) super(ConvLayerNew, self).__init__(in_features, out_features, kernel, stride, padding, dilation, groups, bias=True) nn.init.normal_(self.weight) nn.init.zeros_(self.bias) self.weight = torch.nn.Parameter(weight_scale * self.weight, requires_grad=True) self.bias = torch.nn.Parameter(weight_scale * self.bias, requires_grad=True) self.in_shape = in_shape self.out_shape = [out_features, int((in_shape[1] + 2 * padding[0] - kernel[0]) / stride[0] + 1), int((in_shape[2] + 2 * padding[1] - kernel[1]) / stride[1] + 1)] None None None None None def get_parameters(self): return [self.weight, self.bias] def forward_pass(self, x, epoch): y = self.forward(x) shape = x.shape if shape[4] > shape[0] * 10: y = TSSLBP.PSP_spike_long_time.apply(y, self.network_config, self.layer_config, self.name) else: y = TSSLBP.PSP_spike_large_batch.apply(y, self.network_config, self.layer_config, self.name) return y def weight_clipper(self): w = self.weight.data b = self.bias.data w = w.clamp(-4, 4) b = b.clamp(-4, 4) self.weight.data = w self.bias.data = b def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
superrrpotato/Spike-Train-Predict
ConvLayer
false
4,402
[ "MIT" ]
0
0a924e5af11c2fc58cf9049a73fff00970a3c967
https://github.com/superrrpotato/Spike-Train-Predict/tree/0a924e5af11c2fc58cf9049a73fff00970a3c967
from _paritybench_helpers import _mock_config import torch import torch.nn as nn import torch.nn.functional as f class Model(nn.Conv3d): def __init__(self, network_config, config, name, in_shape, groups=1): self.name = name self.layer_config = config self.network_config = network_config self.type = config['type'] in_features = config['in_channels'] out_features = config['out_channels'] kernel_size = config['kernel_size'] if 'padding' in config: padding = config['padding'] else: padding = 0 if 'stride' in config: stride = config['stride'] else: stride = 1 if 'dilation' in config: dilation = config['dilation'] else: dilation = 1 if 'weight_scale' in config: weight_scale = config['weight_scale'] else: weight_scale = 1 if type(kernel_size) == int: kernel = kernel_size, kernel_size, 1 elif len(kernel_size) == 2: kernel = kernel_size[0], kernel_size[1], 1 else: raise Exception( 'kernelSize can only be of 1 or 2 dimension. It was: {}'. format(kernel_size.shape)) if type(stride) == int: stride = stride, stride, 1 elif len(stride) == 2: stride = stride[0], stride[1], 1 else: raise Exception( 'stride can be either int or tuple of size 2. It was: {}'. format(stride.shape)) if type(padding) == int: padding = padding, padding, 0 elif len(padding) == 2: padding = padding[0], padding[1], 0 else: raise Exception( 'padding can be either int or tuple of size 2. It was: {}'. format(padding.shape)) if type(dilation) == int: dilation = dilation, dilation, 1 elif len(dilation) == 2: dilation = dilation[0], dilation[1], 1 else: raise Exception( 'dilation can be either int or tuple of size 2. It was: {}' .format(dilation.shape)) super().__init__(in_features, out_features, kernel, stride, padding, dilation, groups, bias=True) nn.init.normal_(self.weight) nn.init.zeros_(self.bias) self.weight = torch.nn.Parameter(weight_scale * self.weight, requires_grad=True) self.bias = torch.nn.Parameter(weight_scale * self.bias, requires_grad=True) self.in_shape = in_shape self.out_shape = [out_features, int((in_shape[1] + 2 * padding[0] - kernel[0]) / stride[0] + 1), int((in_shape[2] + 2 * padding[1] - kernel[1]) / stride[1] + 1)] None None None None None def forward(self, x): return f.conv3d(x, self.weight, self.bias, self.stride, self. padding, self.dilation, self.groups) def get_parameters(self): return [self.weight, self.bias] def forward_pass(self, x, epoch): y = self.forward(x) shape = x.shape if shape[4] > shape[0] * 10: y = TSSLBP.PSP_spike_long_time.apply(y, self.network_config, self.layer_config, self.name) else: y = TSSLBP.PSP_spike_large_batch.apply(y, self.network_config, self.layer_config, self.name) return y def weight_clipper(self): w = self.weight.data b = self.bias.data w = w.clamp(-4, 4) b = b.clamp(-4, 4) self.weight.data = w self.bias.data = b def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'network_config': _mock_config(), 'config': _mock_config( type=4, in_channels=4, out_channels=4, kernel_size=4, padding=4, stride=1, dilation=1, weight_scale=1.0), 'nam # ... truncated (>4000 chars) for memory efficiency
Policy
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/a2/ca2wr2cvkya5clovpxidv7ia56pdcyp7uq4omtpg5m2nr7ya3ryn.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/53/c5336tes3fejn37nhb2iijuur7spy3qcasflywbbqklxwgjxpcvr.py # Topologically Sorted Source Nodes: [action_std], Original ATen: [aten.exp] # Source node to ATen node mapping: # action_std => exp # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%expand,), kwargs = {}) triton_poi_fused_exp_1 = async_compile.triton('triton_poi_fused_exp_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_exp_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl_math.exp(tmp0) tl.store(out_ptr0 + (x2), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 64), (64, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 4096, grid=grid(4096), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf3, primals_5, 4096, grid=grid(4096), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [action_mean], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [action_std], Original ATen: [aten.exp] triton_poi_fused_exp_1.run(primals_8, buf5, 256, grid=grid(256), stream=stream0) return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_8, (4, 4, 4, 4), (0, 0, 0, 1), 0), buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Policy(nn.Module): def __init__(self, num_inputs, num_outputs): super(Policy, self).__init__() self.affine1 = nn.Linear(num_inputs, 64) self.affine2 = nn.Linear(64, 64) self.action_mean = nn.Linear(64, num_outputs) self.action_mean.weight.data.mul_(0.1) self.action_mean.bias.data.mul_(0.0) self.action_log_std = nn.Parameter(torch.zeros(1, num_outputs)) self.saved_actions = [] self.rewards = [] self.final_value = 0 self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self def forward(self, x): x = torch.tanh(self.affine1(x)) x = torch.tanh(self.affine2(x)) action_mean = self.action_mean(x) action_log_std = self.action_log_std.expand_as(action_mean) action_std = torch.exp(action_log_std) return action_mean, action_log_std, action_std def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_inputs': 4, 'num_outputs': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, None) @triton.jit def triton_poi_fused_exp_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl_math.exp(tmp0) tl.store(out_ptr0 + x2, tmp1, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 64), (64, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(4096)](buf1, primals_2, 4096, XBLOCK= 256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf2 triton_poi_fused_tanh_0[grid(4096)](buf3, primals_5, 4096, XBLOCK= 256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_exp_1[grid(256)](primals_8, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_8, (4, 4, 4, 4), (0, 0, 0, 1), 0 ), buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, buf5, primals_6, primals_4 class PolicyNew(nn.Module): def __init__(self, num_inputs, num_outputs): super(PolicyNew, self).__init__() self.affine1 = nn.Linear(num_inputs, 64) self.affine2 = nn.Linear(64, 64) self.action_mean = nn.Linear(64, num_outputs) self.action_mean.weight.data.mul_(0.1) self.action_mean.bias.data.mul_(0.0) self.action_log_std = nn.Parameter(torch.zeros(1, num_outputs)) self.saved_actions = [] self.rewards = [] self.final_value = 0 self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self def forward(self, input_0): primals_8 = self.action_log_std primals_1 = self.affine1.weight primals_2 = self.affine1.bias primals_4 = self.affine2.weight primals_5 = self.affine2.bias primals_6 = self.action_mean.weight primals_7 = self.action_mean.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0], output[1], output[2]
SaminYeasar/pytorch-trpo
Policy
false
4,403
[ "MIT" ]
0
653a3357cf0461c175fb741604c0cd4ad1f4b841
https://github.com/SaminYeasar/pytorch-trpo/tree/653a3357cf0461c175fb741604c0cd4ad1f4b841
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, num_inputs, num_outputs): super().__init__() self.affine1 = nn.Linear(num_inputs, 64) self.affine2 = nn.Linear(64, 64) self.action_mean = nn.Linear(64, num_outputs) self.action_mean.weight.data.mul_(0.1) self.action_mean.bias.data.mul_(0.0) self.action_log_std = nn.Parameter(torch.zeros(1, num_outputs)) self.saved_actions = [] self.rewards = [] self.final_value = 0 self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self def forward(self, x): x = torch.tanh(self.affine1(x)) x = torch.tanh(self.affine2(x)) action_mean = self.action_mean(x) action_log_std = self.action_log_std.expand_as(action_mean) action_std = torch.exp(action_log_std) return action_mean, action_log_std, action_std def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Gate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6v/c6vzcw3gyn5uqhyxbbwmpum2zzhvhs66tjq2oznzcap5zo7izpvb.py # Topologically Sorted Source Nodes: [result_1, mul], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # mul => mul # result_1 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_2), kwargs = {}) triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [result], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [result_1, mul], Original ATen: [aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_sigmoid_0.run(buf0, primals_2, buf1, 256, grid=grid(256), stream=stream0) return (buf1, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Gate(nn.Module): def __init__(self, input_size, dropout=0.2): """ To determine the importance of passage parts and attend to the ones relevant to the question, this Gate was added to the input of RNNCell in both Gated Attention-based Recurrent Network and Self-Matching Attention. Args: input_size(int): size of input vectors dropout (float, optional): dropout probability Input: - **input** of shape `(batch, input_size)`: a float tensor containing concatenated passage representation and attention vector both calculated for each word in the passage Output: - **output** of shape `(batch, input_size)`: a float tensor containing gated input """ super(Gate, self).__init__() self.dropout = nn.Dropout(dropout) self.W = nn.Linear(input_size, input_size, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, input): result = self.W(input) self.dropout(result) result = self.sigmoid(result) return result * input def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_0[grid(256)](buf0, primals_2, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf1, primals_2, buf0 class GateNew(nn.Module): def __init__(self, input_size, dropout=0.2): """ To determine the importance of passage parts and attend to the ones relevant to the question, this Gate was added to the input of RNNCell in both Gated Attention-based Recurrent Network and Self-Matching Attention. Args: input_size(int): size of input vectors dropout (float, optional): dropout probability Input: - **input** of shape `(batch, input_size)`: a float tensor containing concatenated passage representation and attention vector both calculated for each word in the passage Output: - **output** of shape `(batch, input_size)`: a float tensor containing gated input """ super(GateNew, self).__init__() self.dropout = nn.Dropout(dropout) self.W = nn.Linear(input_size, input_size, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_1 = self.W.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
tailerr/R-NET-pytorch
Gate
false
4,404
[ "MIT" ]
0
a6ed4a02b0cf68bade9e9a43a93ec290a3b6fabd
https://github.com/tailerr/R-NET-pytorch/tree/a6ed4a02b0cf68bade9e9a43a93ec290a3b6fabd
import torch from torch import nn class Model(nn.Module): def __init__(self, input_size, dropout=0.2): """ To determine the importance of passage parts and attend to the ones relevant to the question, this Gate was added to the input of RNNCell in both Gated Attention-based Recurrent Network and Self-Matching Attention. Args: input_size(int): size of input vectors dropout (float, optional): dropout probability Input: - **input** of shape `(batch, input_size)`: a float tensor containing concatenated passage representation and attention vector both calculated for each word in the passage Output: - **output** of shape `(batch, input_size)`: a float tensor containing gated input """ super().__init__() self.dropout = nn.Dropout(dropout) self.W = nn.Linear(input_size, input_size, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, input): result = self.W(input) self.dropout(result) result = self.sigmoid(result) return result * input def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
DAInsHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/az/cazao7d5hdb3kcfc76acvd3yerra6cq3h4spci3xujm27v6xwinj.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uz/cuzynlw3rqyhtjzanxh5n6rrvt5xnujlodvvmja4tfix74lwqban.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_2 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (1024, 4), (4, 1)) assert_size_stride(primals_2, (1024, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1024, 1024), (1024, 1)) assert_size_stride(primals_5, (1024, ), (1, )) assert_size_stride(primals_6, (1, 1024), (1024, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 65536, grid=grid(65536), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_4, (1024, 1024), (1, 1024), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_5, 65536, grid=grid(65536), stream=stream0) del primals_5 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_6, (1024, 1), (1, 1024), 0), alpha=1, beta=1, out=buf5) del primals_7 return (reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), buf3, primals_6, primals_4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1024, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data from torchvision.transforms import functional as F from torch.nn import functional as F class DAInsHead(nn.Module): """ Adds a simple Instance-level Domain Classifier head """ def __init__(self, in_channels): """ Arguments: in_channels (int): number of channels of the input feature """ super(DAInsHead, self).__init__() self.fc1_da = nn.Linear(in_channels, 1024) self.fc2_da = nn.Linear(1024, 1024) self.fc3_da = nn.Linear(1024, 1) for l in [self.fc1_da, self.fc2_da]: nn.init.normal_(l.weight, std=0.01) nn.init.constant_(l.bias, 0) nn.init.normal_(self.fc3_da.weight, std=0.05) nn.init.constant_(self.fc3_da.bias, 0) def forward(self, x): x = F.relu(self.fc1_da(x)) x = F.dropout(x, p=0.5, training=self.training) x = F.relu(self.fc2_da(x)) x = F.dropout(x, p=0.5, training=self.training) x1 = self.fc3_da(x) return x1, x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (1024, 4), (4, 1)) assert_size_stride(primals_2, (1024,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1024, 1024), (1024, 1)) assert_size_stride(primals_5, (1024,), (1,)) assert_size_stride(primals_6, (1, 1024), (1024, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(65536)](buf1, primals_2, buf6, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0 ), reinterpret_tensor(primals_4, (1024, 1024), (1, 1024), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0) del buf2 triton_poi_fused_relu_1[grid(65536)](buf3, primals_5, 65536, XBLOCK =256, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_6, (1024, 1), (1, 1024), 0), alpha=1, beta=1, out=buf5) del primals_7 return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0 ), buf3, primals_6, primals_4, buf6 class DAInsHeadNew(nn.Module): """ Adds a simple Instance-level Domain Classifier head """ def __init__(self, in_channels): """ Arguments: in_channels (int): number of channels of the input feature """ super(DAInsHeadNew, self).__init__() self.fc1_da = nn.Linear(in_channels, 1024) self.fc2_da = nn.Linear(1024, 1024) self.fc3_da = nn.Linear(1024, 1) for l in [self.fc1_da, self.fc2_da]: nn.init.normal_(l.weight, std=0.01) nn.init.constant_(l.bias, 0) nn.init.normal_(self.fc3_da.weight, std=0.05) nn.init.constant_(self.fc3_da.bias, 0) def forward(self, input_0): primals_1 = self.fc1_da.weight primals_2 = self.fc1_da.bias primals_4 = self.fc2_da.weight primals_5 = self.fc2_da.bias primals_6 = self.fc3_da.weight primals_7 = self.fc3_da.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0], output[1]
shreyasrajesh/DA-Object-Detection
DAInsHead
false
4,405
[ "MIT" ]
0
b1919fdf49a9f1589c48c63e0a3122852e5557ce
https://github.com/shreyasrajesh/DA-Object-Detection/tree/b1919fdf49a9f1589c48c63e0a3122852e5557ce
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data from torchvision.transforms import functional as F from torch.nn import functional as F class Model(nn.Module): """ Adds a simple Instance-level Domain Classifier head """ def __init__(self, in_channels): """ Arguments: in_channels (int): number of channels of the input feature """ super().__init__() self.fc1_da = nn.Linear(in_channels, 1024) self.fc2_da = nn.Linear(1024, 1024) self.fc3_da = nn.Linear(1024, 1) for l in [self.fc1_da, self.fc2_da]: nn.init.normal_(l.weight, std=0.01) nn.init.constant_(l.bias, 0) nn.init.normal_(self.fc3_da.weight, std=0.05) nn.init.constant_(self.fc3_da.bias, 0) def forward(self, x): x = F.relu(self.fc1_da(x)) x = F.dropout(x, p=0.5, training=self.training) x = F.relu(self.fc2_da(x)) x = F.dropout(x, p=0.5, training=self.training) x1 = self.fc3_da(x) return x1, x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
StyleResidual
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nj/cnjqvzdxcui5ygocv2a5nlfxiqfekt6jgipfoplz34gwfzo2zd5f.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %squeeze), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4), (16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_4, primals_2, 16, grid=grid(16), stream=stream0) del primals_2 del primals_4 return (buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data import torch.optim class StyleResidual(nn.Module): """Styling.""" def __init__(self, d_channel: 'int', d_style: 'int', kernel_size: 'int'=1): super().__init__() self.rs = nn.Conv1d(in_channels=d_style, out_channels=d_channel, kernel_size=kernel_size, stride=1, padding=kernel_size // 2) def forward(self, x: 'torch.Tensor', s: 'torch.Tensor') ->torch.Tensor: """`x`: [B,C,T], `s`: [B,S,T] => [B,C,T].""" return x + self.rs(s) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'d_channel': 4, 'd_style': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.utils.data import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4), (16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(16)](buf1, primals_4, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 del primals_4 return buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0) class StyleResidualNew(nn.Module): """Styling.""" def __init__(self, d_channel: 'int', d_style: 'int', kernel_size: 'int'=1): super().__init__() self.rs = nn.Conv1d(in_channels=d_style, out_channels=d_channel, kernel_size=kernel_size, stride=1, padding=kernel_size // 2) def forward(self, input_0, input_1): primals_1 = self.rs.weight primals_2 = self.rs.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
taufique74/nemotest
StyleResidual
false
4,406
[ "Apache-2.0" ]
0
812f201913cb9922bedc1b225dff844ffc765bf1
https://github.com/taufique74/nemotest/tree/812f201913cb9922bedc1b225dff844ffc765bf1
import torch from torch import nn import torch.utils.data import torch.optim class Model(nn.Module): """Styling.""" def __init__(self, d_channel: 'int', d_style: 'int', kernel_size: 'int'=1): super().__init__() self.rs = nn.Conv1d(in_channels=d_style, out_channels=d_channel, kernel_size=kernel_size, stride=1, padding=kernel_size // 2) def forward(self, x: 'torch.Tensor', s: 'torch.Tensor') ->torch.Tensor: """`x`: [B,C,T], `s`: [B,S,T] => [B,C,T].""" return x + self.rs(s) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
TorchGloVeLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/y7/cy7gqwutukf5q5msgwulnsgibmyyknkt5fgsww6kf7wgozbuidtn.py # Topologically Sorted Source Nodes: [pow_1, mul, mul_1, sum_1], Original ATen: [aten.pow, aten.mul, aten.sum] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # pow_1 => pow_1 # sum_1 => sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %pow_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 0.5), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {}) triton_per_fused_mul_pow_sum_0 = async_compile.triton('triton_per_fused_mul_pow_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_pow_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_pow_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp1 * tmp1 tmp3 = tmp0 * tmp2 tmp4 = 0.5 tmp5 = tmp3 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [pow_1, mul, mul_1, sum_1], Original ATen: [aten.pow, aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_mul_pow_sum_0.run(arg1_1, arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class TorchGloVeLoss(nn.Module): def __init__(self): super().__init__() self.reduction = 'sum' def forward(self, diffs, weights): return torch.sum(0.5 * torch.mul(weights, diffs ** 2)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mul_pow_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp1 * tmp1 tmp3 = tmp0 * tmp2 tmp4 = 0.5 tmp5 = tmp3 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp8, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_mul_pow_sum_0[grid(1)](arg1_1, arg0_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class TorchGloVeLossNew(nn.Module): def __init__(self): super().__init__() self.reduction = 'sum' def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
tayfuntuna/cs224u
TorchGloVeLoss
false
4,407
[ "Apache-2.0" ]
0
4368090c679d869f21ed2393b9ca0ef217b5c404
https://github.com/tayfuntuna/cs224u/tree/4368090c679d869f21ed2393b9ca0ef217b5c404
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self): super().__init__() self.reduction = 'sum' def forward(self, diffs, weights): return torch.sum(0.5 * torch.mul(weights, diffs ** 2)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
TorchGloVeModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ys/cys6fbrc4ncrm6vnp4nursuec7gsli6t4pfg3v4fvdqv5fn6sq6g.py # Topologically Sorted Source Nodes: [getitem], Original ATen: [aten.index] # Source node to ATen node mapping: # getitem => index # Graph fragment: # %index : [num_users=2] = call_function[target=torch.ops.aten.index.Tensor](args = (%primals_1, [%primals_2]), kwargs = {}) triton_poi_fused_index_0 = async_compile.triton('triton_poi_fused_index_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (x0 + (4*tmp4)), xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/lm/clmamyiyiy5hkvjs2tannkdyyjwt4urzvqw3vxavtdj2pm7d2pgv.py # Topologically Sorted Source Nodes: [getitem_1, add, preds, diffs], Original ATen: [aten.index, aten.add, aten.sub] # Source node to ATen node mapping: # add => add # diffs => sub # getitem_1 => index_1 # preds => add_1 # Graph fragment: # %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%primals_4, [%primals_2]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm, %index_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %permute_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %primals_6), kwargs = {}) triton_poi_fused_add_index_sub_1 = async_compile.triton('triton_poi_fused_add_index_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_index_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_index_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 16 x1 = (xindex // 4) % 4 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x4), xmask) tmp2 = tl.full([XBLOCK], 4, tl.int32) tmp3 = tmp1 + tmp2 tmp4 = tmp1 < 0 tmp5 = tl.where(tmp4, tmp3, tmp1) tl.device_assert(((0 <= tmp5) & (tmp5 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp5 < 4") tmp7 = tl.load(in_ptr2 + (tmp5), xmask, eviction_policy='evict_last') tmp8 = tmp0 + tmp7 tmp10 = tmp8 + tmp9 tmp12 = tmp10 - tmp11 tl.store(out_ptr0 + (x4), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [getitem], Original ATen: [aten.index] stream0 = get_raw_stream(0) triton_poi_fused_index_0.run(primals_2, primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [getitem_1, add, preds, diffs], Original ATen: [aten.index, aten.add, aten.sub] triton_poi_fused_add_index_sub_1.run(buf1, primals_2, primals_4, primals_5, primals_6, buf2, 256, grid=grid(256), stream=stream0) del buf1 del primals_4 del primals_5 del primals_6 return (buf2, primals_2, buf0, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data from torch.nn.init import xavier_uniform_ class TorchGloVeModel(nn.Module): def __init__(self, n_words, embed_dim): super().__init__() self.n_words = n_words self.embed_dim = embed_dim self.W = self._init_weights(self.n_words, self.embed_dim) self.C = self._init_weights(self.n_words, self.embed_dim) self.bw = self._init_weights(self.n_words, 1) self.bc = self._init_weights(self.n_words, 1) def _init_weights(self, m, n): return nn.Parameter(xavier_uniform_(torch.empty(m, n))) def forward(self, X_log, idx): """ Parameters ---------- X_log : torch.FloatTensor, shape `(batch_size, n_vocab)`. idx : torch.LongTensor, shape `(batch_size, )` Indices of the vocab items in the current batch. Returns ------- torch.FloatTensor, shape `(n_vocab, n_vocab)`. """ preds = self.W[idx].matmul(self.C.T) + self.bw[idx] + self.bc.T diffs = preds - X_log return diffs def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [[], {'n_words': 4, 'embed_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data from torch.nn.init import xavier_uniform_ assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_index_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (x0 + 4 * tmp4), xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_index_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 16 x1 = xindex // 4 % 4 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x4, xmask) tmp2 = tl.full([XBLOCK], 4, tl.int32) tmp3 = tmp1 + tmp2 tmp4 = tmp1 < 0 tmp5 = tl.where(tmp4, tmp3, tmp1) tl.device_assert((0 <= tmp5) & (tmp5 < 4) | ~xmask, 'index out of bounds: 0 <= tmp5 < 4') tmp7 = tl.load(in_ptr2 + tmp5, xmask, eviction_policy='evict_last') tmp8 = tmp0 + tmp7 tmp10 = tmp8 + tmp9 tmp12 = tmp10 - tmp11 tl.store(out_ptr0 + x4, tmp12, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_index_0[grid(16)](primals_2, primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (4, 4), (1, 4 ), 0), out=buf1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_index_sub_1[grid(256)](buf1, primals_2, primals_4, primals_5, primals_6, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del primals_4 del primals_5 del primals_6 return buf2, primals_2, buf0, primals_3 class TorchGloVeModelNew(nn.Module): def __init__(self, n_words, embed_dim): super().__init__() self.n_words = n_words self.embed_dim = embed_dim self.W = self._init_weights(self.n_words, self.embed_dim) self.C = self._init_weights(self.n_words, self.embed_dim) self.bw = self._init_weights(self.n_words, 1) self.bc = self._init_weights(self.n_words, 1) def _init_weights(self, m, n): return nn.Parameter(xavier_uniform_(torch.empty(m, n))) def forward(self, input_0, input_1): primals_1 = self.W primals_3 = self.C primals_4 = self.bw primals_5 = self.bc primals_6 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
tayfuntuna/cs224u
TorchGloVeModel
false
4,408
[ "Apache-2.0" ]
0
4368090c679d869f21ed2393b9ca0ef217b5c404
https://github.com/tayfuntuna/cs224u/tree/4368090c679d869f21ed2393b9ca0ef217b5c404
import torch import torch.nn as nn import torch.utils.data from torch.nn.init import xavier_uniform_ class Model(nn.Module): def __init__(self, n_words, embed_dim): super().__init__() self.n_words = n_words self.embed_dim = embed_dim self.W = self._init_weights(self.n_words, self.embed_dim) self.C = self._init_weights(self.n_words, self.embed_dim) self.bw = self._init_weights(self.n_words, 1) self.bc = self._init_weights(self.n_words, 1) def _init_weights(self, m, n): return nn.Parameter(xavier_uniform_(torch.empty(m, n))) def forward(self, X_log, idx): """ Parameters ---------- X_log : torch.FloatTensor, shape `(batch_size, n_vocab)`. idx : torch.LongTensor, shape `(batch_size, )` Indices of the vocab items in the current batch. Returns ------- torch.FloatTensor, shape `(n_vocab, n_vocab)`. """ preds = self.W[idx].matmul(self.C.T) + self.bw[idx] + self.bc.T diffs = preds - X_log return diffs def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [4, 4]
PoswiseFeedForwardNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ra/craakqvyalqrlofntsbxdzl27qiaxg5dww5x34xbt3jypyc5o3px.py # Topologically Sorted Source Nodes: [conv1d, output], Original ATen: [aten.convolution, aten.gelu] # Source node to ATen node mapping: # conv1d => convolution # output => add, erf, mul, mul_1, mul_2 # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) triton_poi_fused_convolution_gelu_1 = async_compile.triton('triton_poi_fused_convolution_gelu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_gelu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_gelu_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/lf/clf7hs52i4bd5d3e73uio27ntyjfqmszkbsw6dta3r6rzgeftva3.py # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_2, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1; del buf1 # reuse buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv1d, output], Original ATen: [aten.convolution, aten.gelu] triton_poi_fused_convolution_gelu_1.run(buf2, primals_3, buf3, 64, grid=grid(64), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4), (16, 4, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 return (reinterpret_tensor(buf5, (4, 4, 4), (16, 1, 4), 0), primals_2, primals_4, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), buf2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn import torch.nn.functional as F class PoswiseFeedForwardNet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.conv1 = nn.Conv1d(in_channels=self.config.d_hidn, out_channels =self.config.d_ff, kernel_size=1) self.conv2 = nn.Conv1d(in_channels=self.config.d_ff, out_channels= self.config.d_hidn, kernel_size=1) self.active = F.gelu self.dropout = nn.Dropout(config.dropout) def forward(self, inputs): output = self.active(self.conv1(inputs.transpose(1, 2))) output = self.conv2(output).transpose(1, 2) output = self.dropout(output) return output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(d_hidn=4, d_ff=4, dropout=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_gelu_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 buf3 = buf0 del buf0 triton_poi_fused_convolution_gelu_1[grid(64)](buf2, primals_3, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4), (16, 4, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(64)](buf5, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 return reinterpret_tensor(buf5, (4, 4, 4), (16, 1, 4), 0 ), primals_2, primals_4, reinterpret_tensor(primals_1, (4, 4, 4), ( 16, 1, 4), 0), buf2, buf3 class PoswiseFeedForwardNetNew(nn.Module): def __init__(self, config): super().__init__() self.config = config self.conv1 = nn.Conv1d(in_channels=self.config.d_hidn, out_channels =self.config.d_ff, kernel_size=1) self.conv2 = nn.Conv1d(in_channels=self.config.d_ff, out_channels= self.config.d_hidn, kernel_size=1) self.active = F.gelu self.dropout = nn.Dropout(config.dropout) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
star14ms/transformer-evolution
PoswiseFeedForwardNet
false
4,409
[ "Apache-2.0" ]
0
95b57485f59a0cee4528af62e5010002e6a3448a
https://github.com/star14ms/transformer-evolution/tree/95b57485f59a0cee4528af62e5010002e6a3448a
from _paritybench_helpers import _mock_config import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, config): super().__init__() self.config = config self.conv1 = nn.Conv1d(in_channels=self.config.d_hidn, out_channels =self.config.d_ff, kernel_size=1) self.conv2 = nn.Conv1d(in_channels=self.config.d_ff, out_channels= self.config.d_hidn, kernel_size=1) self.active = F.gelu self.dropout = nn.Dropout(config.dropout) def forward(self, inputs): output = self.active(self.conv1(inputs.transpose(1, 2))) output = self.conv2(output).transpose(1, 2) output = self.dropout(output) return output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return []
WL1Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xl/cxl6onjtnxjrziq4rgatyr2ccyrr7numztealqfiigowncfc7ffu.py # Topologically Sorted Source Nodes: [sub, abs_1, mul, mean], Original ATen: [aten.sub, aten.abs, aten.mul, aten.mean] # Source node to ATen node mapping: # abs_1 => abs_1 # mean => mean # mul => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %abs_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {}) triton_per_fused_abs_mean_mul_sub_0 = async_compile.triton('triton_per_fused_abs_mean_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tl.load(in_ptr2 + (r0), None) tmp3 = tmp1 - tmp2 tmp4 = tl_math.abs(tmp3) tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = 256.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, abs_1, mul, mean], Original ATen: [aten.sub, aten.abs, aten.mul, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_mean_mul_sub_0.run(buf1, arg2_1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class WL1Loss(nn.Module): def __init__(self): super(WL1Loss, self).__init__() def forward(self, pred, target, weight): return torch.mean(weight * torch.abs(pred - target)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_mean_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tl.load(in_ptr2 + r0, None) tmp3 = tmp1 - tmp2 tmp4 = tl_math.abs(tmp3) tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = 256.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_mean_mul_sub_0[grid(1)](buf1, arg2_1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf1, class WL1LossNew(nn.Module): def __init__(self): super(WL1LossNew, self).__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
tccoin/UM-545-Machine-Learning
WL1Loss
false
4,410
[ "MIT" ]
0
0854d7ad7e546c009edeb4a4d3e507ce95b99cf8
https://github.com/tccoin/UM-545-Machine-Learning/tree/0854d7ad7e546c009edeb4a4d3e507ce95b99cf8
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, pred, target, weight): return torch.mean(weight * torch.abs(pred - target)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/n5/cn5ihbr7hyt2dxukfqr27vl7atwnwccevwjijotxny5mi3asb4jf.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 80 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 5 y1 = (yindex // 5) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (5*x2) + (45*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ht/chtmbgf6b7ptt7rqj5vjjhvstukolwrlihyaxypt727qskie7rzo.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 20 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 5 y1 = (yindex // 5) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (5*x2) + (20480*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/33/c33h7oa7bwaolrz6x7pou267xerujig6qx2chnlgozpghlackaon.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 256 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = (yindex // 16) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (16*x2) + (144*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7v/c7vkuh3vgeafo6rqr2fstktnfpdnlk6u5m3tfup4tnbid26ionkm.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = (yindex // 16) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (16*x2) + (144*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/a6/ca673na7vq3mgudtku5svyuyh2rc2snm32rmycazpcdwelcsirpm.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oe/coefioksk274ahsx5xw4xk5oiijr3n6skxyyxw4lbgqaf443a276.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/fq/cfqqokaqc6in5vvglkxliqy52newlyeztcdbiq6tloce2xqcjt2j.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_6 = async_compile.triton('triton_poi_fused_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (256*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yd/cydqyi3yfiwrbnrg7nrcodsva6zsemaymgjrqi4aailyyotyxcw2.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_7 = async_compile.triton('triton_poi_fused_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (256*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/22/c22j6a6dnynl6jertdfz7ci2ntsqkzk3qbvwfjyx5wuaizrcdt5w.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nn/cnnrha2fherbxf4u4ol3reswxwrhd2on7n4ktcvs6jj5lim7f4hb.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/w7/cw7dnjyhnkjxcocockmfeyrvpfho55riiy774j436rl7rxxzpszn.py # Topologically Sorted Source Nodes: [conv2d_5, x_5], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_5 => convolution_5 # x_5 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_12, %primals_13, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 57600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tv/ctvgh7xmtvqkyzfxxmw5do6felldwomgroa3covpuni256w4uf7g.py # Topologically Sorted Source Nodes: [conv2d_6, x_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # x_6 => relu_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) triton_poi_fused_convolution_relu_11 = async_compile.triton('triton_poi_fused_convolution_relu_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7r/c7ra2zy2fyuprdpyfrgqv6xytdz4ftt72qzqprrs3ws6b64zu4jn.py # Topologically Sorted Source Nodes: [conv2d_7, x_7], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # x_7 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_6, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) triton_poi_fused_convolution_relu_12 = async_compile.triton('triton_poi_fused_convolution_relu_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 73984 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/za/cza246hp3d4a4z5szskt364isrffbvnufdwmsjo6vmunmevlftwa.py # Topologically Sorted Source Nodes: [conv2d_8, x_8], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_8 => convolution_8 # x_8 => relu_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_7, %primals_18, %primals_19, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) triton_poi_fused_convolution_relu_13 = async_compile.triton('triton_poi_fused_convolution_relu_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5y/c5yor5momrltl7zyqthobyuonhj6wwvwbms5ool624cwv4if4m7j.py # Topologically Sorted Source Nodes: [conv2d_11, x_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_11 => convolution_11 # x_11 => relu_11 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_10, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_11 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_11, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_14 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 64], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_14(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 128 y1 = (yindex // 128) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (128*x2) + (8192*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (64*y3)), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + (128*x2) + (8192*y1)), tmp6, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/al/calzyyikft3iztavfaye4byheoulhcsb7ceni2j2xwv44qsedsbt.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_27), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_tanh_15 = async_compile.triton('triton_poi_fused_tanh_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = libdevice.tanh(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27 = args args.clear() assert_size_stride(primals_1, (16, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 5, 64, 64), (20480, 4096, 64, 1)) assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (32, ), (1, )) assert_size_stride(primals_8, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (32, ), (1, )) assert_size_stride(primals_10, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_11, (32, ), (1, )) assert_size_stride(primals_12, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (64, ), (1, )) assert_size_stride(primals_14, (64, 64, 2, 2), (256, 4, 2, 1)) assert_size_stride(primals_15, (64, ), (1, )) assert_size_stride(primals_16, (64, 64, 2, 2), (256, 4, 2, 1)) assert_size_stride(primals_17, (64, ), (1, )) assert_size_stride(primals_18, (128, 64, 2, 2), (256, 4, 2, 1)) assert_size_stride(primals_19, (128, ), (1, )) assert_size_stride(primals_20, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_21, (128, ), (1, )) assert_size_stride(primals_22, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_23, (128, ), (1, )) assert_size_stride(primals_24, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_25, (128, ), (1, )) assert_size_stride(primals_26, (1, 128), (128, 1)) assert_size_stride(primals_27, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 5, 3, 3), (45, 1, 15, 5), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 80, 9, grid=grid(80, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 5, 64, 64), (20480, 1, 320, 5), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 20, 4096, grid=grid(20, 4096), stream=stream0) del primals_3 buf2 = empty_strided_cuda((16, 16, 3, 3), (144, 1, 48, 16), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 256, 9, grid=grid(256, 9), stream=stream0) del primals_4 buf3 = empty_strided_cuda((32, 16, 3, 3), (144, 1, 48, 16), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_6, buf3, 512, 9, grid=grid(512, 9), stream=stream0) del primals_6 buf4 = empty_strided_cuda((32, 32, 3, 3), (288, 1, 96, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_8, buf4, 1024, 9, grid=grid(1024, 9), stream=stream0) del primals_8 buf5 = empty_strided_cuda((32, 32, 3, 3), (288, 1, 96, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_10, buf5, 1024, 9, grid=grid(1024, 9), stream=stream0) del primals_10 buf6 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_12, buf6, 2048, 9, grid=grid(2048, 9), stream=stream0) del primals_12 buf7 = empty_strided_cuda((64, 64, 2, 2), (256, 1, 128, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(primals_14, buf7, 4096, 4, grid=grid(4096, 4), stream=stream0) del primals_14 buf8 = empty_strided_cuda((64, 64, 2, 2), (256, 1, 128, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(primals_16, buf8, 4096, 4, grid=grid(4096, 4), stream=stream0) del primals_16 buf9 = empty_strided_cuda((128, 64, 2, 2), (256, 1, 128, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_7.run(primals_18, buf9, 8192, 4, grid=grid(8192, 4), stream=stream0) del primals_18 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 64, 64), (65536, 1, 1024, 16)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf11, primals_2, 262144, grid=grid(262144), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 16, 64, 64), (65536, 1, 1024, 16)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf13, primals_5, 262144, grid=grid(262144), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 32, 31, 31), (30752, 1, 992, 32)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf15, primals_7, 123008, grid=grid(123008), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 32, 31, 31), (30752, 1, 992, 32)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf17, primals_9, 123008, grid=grid(123008), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 32, 31, 31), (30752, 1, 992, 32)) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [conv2d_4, x_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf19, primals_11, 123008, grid=grid(123008), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf19, buf6, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 64, 15, 15), (14400, 1, 960, 64)) buf21 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [conv2d_5, x_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_10.run(buf21, primals_13, 57600, grid=grid(57600), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 64, 16, 16), (16384, 1, 1024, 64)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [conv2d_6, x_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_11.run(buf23, primals_15, 65536, grid=grid(65536), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 64, 17, 17), (18496, 1, 1088, 64)) buf25 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [conv2d_7, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_12.run(buf25, primals_17, 73984, grid=grid(73984), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf25, buf9, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf27 = buf26; del buf26 # reuse # Topologically Sorted Source Nodes: [conv2d_8, x_8], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_13.run(buf27, primals_19, 32768, grid=grid(32768), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf29 = buf28; del buf28 # reuse # Topologically Sorted Source Nodes: [conv2d_9, x_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_13.run(buf29, primals_21, 32768, grid=grid(32768), stream=stream0) del primals_21 # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf30 = extern_kernels.convolution(buf29, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf31 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [conv2d_10, x_10], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_13.run(buf31, primals_23, 32768, grid=grid(32768), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf32 = extern_kernels.convolution(buf31, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf32, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf33 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.float32) buf36 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_11, x_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_14.run(buf32, primals_25, buf33, buf36, 512, 64, grid=grid(512, 64), stream=stream0) del buf32 del primals_25 buf34 = empty_strided_cuda((256, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf33, (256, 128), (128, 1), 0), reinterpret_tensor(primals_26, (128, 1), (1, 128), 0), out=buf34) buf35 = buf34; del buf34 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] triton_poi_fused_tanh_15.run(buf35, primals_27, 256, grid=grid(256), stream=stream0) del primals_27 return (buf35, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, primals_20, primals_22, primals_24, buf11, buf13, buf15, buf17, buf19, buf21, buf23, buf25, buf27, buf29, buf31, reinterpret_tensor(buf33, (256, 128), (128, 1), 0), buf35, primals_26, buf36, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 5, 3, 3), (45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 5, 64, 64), (20480, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 64, 2, 2), (256, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((64, 64, 2, 2), (256, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((128, 64, 2, 2), (256, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((128, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch import tanh class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.a1 = nn.Conv2d(5, 16, kernel_size=3, padding=1) self.a2 = nn.Conv2d(16, 16, kernel_size=3, padding=1) self.a3 = nn.Conv2d(16, 32, kernel_size=3, stride=2) self.b1 = nn.Conv2d(32, 32, kernel_size=3, padding=1) self.b2 = nn.Conv2d(32, 32, kernel_size=3, padding=1) self.b3 = nn.Conv2d(32, 64, kernel_size=3, stride=2) self.c1 = nn.Conv2d(64, 64, kernel_size=2, padding=1) self.c2 = nn.Conv2d(64, 64, kernel_size=2, padding=1) self.c3 = nn.Conv2d(64, 128, kernel_size=2, stride=2) self.d1 = nn.Conv2d(128, 128, kernel_size=1) self.d2 = nn.Conv2d(128, 128, kernel_size=1) self.d3 = nn.Conv2d(128, 128, kernel_size=1) self.last = nn.Linear(128, 1) def forward(self, x): x = F.relu(self.a1(x)) x = F.relu(self.a2(x)) x = F.relu(self.a3(x)) x = F.relu(self.b1(x)) x = F.relu(self.b2(x)) x = F.relu(self.b3(x)) x = F.relu(self.c1(x)) x = F.relu(self.c2(x)) x = F.relu(self.c3(x)) x = F.relu(self.d1(x)) x = F.relu(self.d2(x)) x = F.relu(self.d3(x)) x = x.view(-1, 128) x = self.last(x) return tanh(x) def get_inputs(): return [torch.rand([4, 5, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 80 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 5 y1 = yindex // 5 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 5 * x2 + 45 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 20 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 5 y1 = yindex // 5 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 5 * x2 + 20480 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 256 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 16 * x2 + 144 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 512 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 16 * x2 + 144 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 256 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 256 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 57600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 73984 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_14(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 512 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 128 y1 = yindex // 128 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 128 * x2 + 8192 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 64 * y3), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + 128 * x2 + 8192 * y1), tmp6, xmask & ymask) @triton.jit def triton_poi_fused_tanh_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = libdevice.tanh(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27) = args args.clear() assert_size_stride(primals_1, (16, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 5, 64, 64), (20480, 4096, 64, 1)) assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (32,), (1,)) assert_size_stride(primals_10, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_11, (32,), (1,)) assert_size_stride(primals_12, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (64,), (1,)) assert_size_stride(primals_14, (64, 64, 2, 2), (256, 4, 2, 1)) assert_size_stride(primals_15, (64,), (1,)) assert_size_stride(primals_16, (64, 64, 2, 2), (256, 4, 2, 1)) assert_size_stride(primals_17, (64,), (1,)) assert_size_stride(primals_18, (128, 64, 2, 2), (256, 4, 2, 1)) assert_size_stride(primals_19, (128,), (1,)) assert_size_stride(primals_20, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_21, (128,), (1,)) assert_size_stride(primals_22, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_23, (128,), (1,)) assert_size_stride(primals_24, (128, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_25, (128,), (1,)) assert_size_stride(primals_26, (1, 128), (128, 1)) assert_size_stride(primals_27, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 5, 3, 3), (45, 1, 15, 5), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(80, 9)](primals_1, buf0, 80, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 5, 64, 64), (20480, 1, 320, 5), torch .float32) triton_poi_fused_1[grid(20, 4096)](primals_3, buf1, 20, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((16, 16, 3, 3), (144, 1, 48, 16), torch. float32) triton_poi_fused_2[grid(256, 9)](primals_4, buf2, 256, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((32, 16, 3, 3), (144, 1, 48, 16), torch. float32) triton_poi_fused_3[grid(512, 9)](primals_6, buf3, 512, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((32, 32, 3, 3), (288, 1, 96, 32), torch. float32) triton_poi_fused_4[grid(1024, 9)](primals_8, buf4, 1024, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf5 = empty_strided_cuda((32, 32, 3, 3), (288, 1, 96, 32), torch. float32) triton_poi_fused_4[grid(1024, 9)](primals_10, buf5, 1024, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf6 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch. float32) triton_poi_fused_5[grid(2048, 9)](primals_12, buf6, 2048, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_12 buf7 = empty_strided_cuda((64, 64, 2, 2), (256, 1, 128, 64), torch. float32) triton_poi_fused_6[grid(4096, 4)](primals_14, buf7, 4096, 4, XBLOCK =4, YBLOCK=256, num_warps=4, num_stages=1) del primals_14 buf8 = empty_strided_cuda((64, 64, 2, 2), (256, 1, 128, 64), torch. float32) triton_poi_fused_6[grid(4096, 4)](primals_16, buf8, 4096, 4, XBLOCK =4, YBLOCK=256, num_warps=4, num_stages=1) del primals_16 buf9 = empty_strided_cuda((128, 64, 2, 2), (256, 1, 128, 64), torch .float32) triton_poi_fused_7[grid(8192, 4)](primals_18, buf9, 8192, 4, XBLOCK =4, YBLOCK=256, num_warps=4, num_stages=1) del primals_18 buf10 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 64, 64), (65536, 1, 1024, 16)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_8[grid(262144)](buf11, primals_2, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf12 = extern_kernels.convolution(buf11, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 16, 64, 64), (65536, 1, 1024, 16)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_8[grid(262144)](buf13, primals_5, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf14 = extern_kernels.convolution(buf13, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 32, 31, 31), (30752, 1, 992, 32)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_9[grid(123008)](buf15, primals_7, 123008, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf16 = extern_kernels.convolution(buf15, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 32, 31, 31), (30752, 1, 992, 32)) buf17 = buf16 del buf16 triton_poi_fused_convolution_relu_9[grid(123008)](buf17, primals_9, 123008, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf18 = extern_kernels.convolution(buf17, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 32, 31, 31), (30752, 1, 992, 32)) buf19 = buf18 del buf18 triton_poi_fused_convolution_relu_9[grid(123008)](buf19, primals_11, 123008, XBLOCK=1024, num_warps=4, num_stages=1) del primals_11 buf20 = extern_kernels.convolution(buf19, buf6, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 64, 15, 15), (14400, 1, 960, 64)) buf21 = buf20 del buf20 triton_poi_fused_convolution_relu_10[grid(57600)](buf21, primals_13, 57600, XBLOCK=512, num_warps=4, num_stages=1) del primals_13 buf22 = extern_kernels.convolution(buf21, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 64, 16, 16), (16384, 1, 1024, 64)) buf23 = buf22 del buf22 triton_poi_fused_convolution_relu_11[grid(65536)](buf23, primals_15, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_15 buf24 = extern_kernels.convolution(buf23, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 64, 17, 17), (18496, 1, 1088, 64)) buf25 = buf24 del buf24 triton_poi_fused_convolution_relu_12[grid(73984)](buf25, primals_17, 73984, XBLOCK=1024, num_warps=4, num_stages=1) del primals_17 buf26 = extern_kernels.convolution(buf25, buf9, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf27 = buf26 del buf26 triton_poi_fused_convolution_relu_13[grid(32768)](buf27, primals_19, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_19 buf28 = extern_kernels.convolution(buf27, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf29 = buf28 del buf28 triton_poi_fused_convolution_relu_13[grid(32768)](buf29, primals_21, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_21 buf30 = extern_kernels.convolution(buf29, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf31 = buf30 del buf30 triton_poi_fused_convolution_relu_13[grid(32768)](buf31, primals_23, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 buf32 = extern_kernels.convolution(buf31, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf32, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf33 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch. float32) buf36 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_14[grid(512, 64)]( buf32, primals_25, buf33, buf36, 512, 64, XBLOCK=64, YBLOCK=64, num_warps=8, num_stages=1) del buf32 del primals_25 buf34 = empty_strided_cuda((256, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf33, (256, 128), (128, 1), 0 ), reinterpret_tensor(primals_26, (128, 1), (1, 128), 0), out=buf34 ) buf35 = buf34 del buf34 triton_poi_fused_tanh_15[grid(256)](buf35, primals_27, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_27 return (buf35, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, primals_20, primals_22, primals_24, buf11, buf13, buf15, buf17, buf19, buf21, buf23, buf25, buf27, buf29, buf31, reinterpret_tensor(buf33, (256, 128), (128, 1), 0), buf35, primals_26, buf36) class NetNew(nn.Module): def __init__(self): super(NetNew, self).__init__() self.a1 = nn.Conv2d(5, 16, kernel_size=3, padding=1) self.a2 = nn.Conv2d(16, 16, kernel_size=3, padding=1) self.a3 = nn.Conv2d(16, 32, kernel_size=3, stride=2) self.b1 = nn.Conv2d(32, 32, kernel_size=3, padding=1) self.b2 = nn.Conv2d(32, 32, kernel_size=3, padding=1) self.b3 = nn.Conv2d(32, 64, kernel_size=3, stride=2) self.c1 = nn.Conv2d(64, 64, kernel_size=2, padding=1) self.c2 = nn.Conv2d(64, 64, kernel_size=2, padding=1) self.c3 = nn.Conv2d(64, 128, kernel_size=2, stride=2) self.d1 = nn.Conv2d(128, 128, kernel_size=1) self.d2 = nn.Conv2d(128, 128, kernel_size=1) self.d3 = nn.Conv2d(128, 128, kernel_size=1) self.last = nn.Linear(128, 1) def forward(self, input_0): primals_1 = self.a1.weight primals_2 = self.a1.bias primals_4 = self.a2.weight primals_5 = self.a2.bias primals_6 = self.a3.weight primals_7 = self.a3.bias primals_8 = self.b1.weight primals_9 = self.b1.bias primals_10 = self.b2.weight primals_11 = self.b2.bias primals_12 = self.b3.weight primals_13 = self.b3.bias primals_14 = self.c1.weight primals_15 = self.c1.bias primals_16 = self.c2.weight primals_17 = self.c2.bias primals_18 = self.c3.weight primals_19 = self.c3.bias primals_20 = self.d1.weight primals_21 = self.d1.bias primals_22 = self.d2.weight primals_23 = self.d2.bias primals_24 = self.d3.weight primals_25 = self.d3.bias primals_26 = self.last.weight primals_27 = self.last.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return output[0]
srivarshan-s/Neural-Chess-2D
Net
false
4,411
[ "MIT" ]
0
81ec7eb9b4c3c82dc7f6ba5bd4313bd6ede9994e
https://github.com/srivarshan-s/Neural-Chess-2D/tree/81ec7eb9b4c3c82dc7f6ba5bd4313bd6ede9994e
import torch import torch.nn as nn import torch.nn.functional as F from torch import tanh class Model(nn.Module): def __init__(self): super().__init__() self.a1 = nn.Conv2d(5, 16, kernel_size=3, padding=1) self.a2 = nn.Conv2d(16, 16, kernel_size=3, padding=1) self.a3 = nn.Conv2d(16, 32, kernel_size=3, stride=2) self.b1 = nn.Conv2d(32, 32, kernel_size=3, padding=1) self.b2 = nn.Conv2d(32, 32, kernel_size=3, padding=1) self.b3 = nn.Conv2d(32, 64, kernel_size=3, stride=2) self.c1 = nn.Conv2d(64, 64, kernel_size=2, padding=1) self.c2 = nn.Conv2d(64, 64, kernel_size=2, padding=1) self.c3 = nn.Conv2d(64, 128, kernel_size=2, stride=2) self.d1 = nn.Conv2d(128, 128, kernel_size=1) self.d2 = nn.Conv2d(128, 128, kernel_size=1) self.d3 = nn.Conv2d(128, 128, kernel_size=1) self.last = nn.Linear(128, 1) def forward(self, x): x = F.relu(self.a1(x)) x = F.relu(self.a2(x)) x = F.relu(self.a3(x)) x = F.relu(self.b1(x)) x = F.relu(self.b2(x)) x = F.relu(self.b3(x)) x = F.relu(self.c1(x)) x = F.relu(self.c2(x)) x = F.relu(self.c3(x)) x = F.relu(self.d1(x)) x = F.relu(self.d2(x)) x = F.relu(self.d3(x)) x = x.view(-1, 128) x = self.last(x) return tanh(x) def get_inputs(): return [torch.rand([4, 5, 64, 64])] def get_init_inputs(): return []
PointerNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/fr/cfryngohucewjbkub6qgrmqwak65abop4zucnelbxhy7x7dopyip.py # Topologically Sorted Source Nodes: [s], Original ATen: [aten.tanh] # Source node to ATen node mapping: # s => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%mm,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 300 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tw/ctw3oqmighlvetwoxxvzlxibyermfeatljle5hkwpo2n5r4vgkeu.py # Topologically Sorted Source Nodes: [a, r, h_a], Original ATen: [aten._softmax, aten.mul, aten.sum] # Source node to ATen node mapping: # a => amax, div, exp, sub, sum_1 # h_a => sum_2 # r => mul # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm, [0], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [0]), kwargs = {}) triton_per_fused__softmax_mul_sum_1 = async_compile.triton('triton_per_fused__softmax_mul_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_mul_sum_1(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr0 + (0)) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr1 + (r0), None) tmp16 = tl.load(in_ptr0 + (1)) tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp21 = tl.load(in_ptr1 + (4 + r0), None) tmp24 = tl.load(in_ptr0 + (2)) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp29 = tl.load(in_ptr1 + (8 + r0), None) tmp32 = tl.load(in_ptr0 + (3)) tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK]) tmp37 = tl.load(in_ptr1 + (12 + r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = triton_helpers.max2(tmp1, 1)[:, None] tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp11 = tmp10 - tmp3 tmp12 = tl_math.exp(tmp11) tmp13 = tmp12 / tmp8 tmp15 = tmp13 * tmp14 tmp18 = tmp17 - tmp3 tmp19 = tl_math.exp(tmp18) tmp20 = tmp19 / tmp8 tmp22 = tmp20 * tmp21 tmp23 = tmp15 + tmp22 tmp26 = tmp25 - tmp3 tmp27 = tl_math.exp(tmp26) tmp28 = tmp27 / tmp8 tmp30 = tmp28 * tmp29 tmp31 = tmp23 + tmp30 tmp34 = tmp33 - tmp3 tmp35 = tl_math.exp(tmp34) tmp36 = tmp35 / tmp8 tmp38 = tmp36 * tmp37 tmp39 = tmp31 + tmp38 tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp39, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/v6/cv6u3y45nticyr5vgeia7u5ckjnwjp2amwy3vb6o7ou6m63yblsb.py # Topologically Sorted Source Nodes: [add, s_2], Original ATen: [aten.add, aten.tanh] # Source node to ATen node mapping: # add => add # s_2 => tanh_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %squeeze), kwargs = {}) # %tanh_1 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_tanh_2 = async_compile.triton('triton_poi_fused_add_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 300 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 75 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2p/c2phlbypf366ejw6z4vj5gdbcfplryoknputlis3spzfojz6brwg.py # Topologically Sorted Source Nodes: [p1, log_softmax, mul_1, c], Original ATen: [aten._softmax, aten._log_softmax, aten.mul, aten.sum, aten._log_softmax_backward_data] # Source node to ATen node mapping: # c => sum_5 # log_softmax => log, sub_3 # mul_1 => mul_1 # p1 => amax_1, div_1, exp_1, sub_1, sum_3 # Graph fragment: # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mm_3, [0], True), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mm_3, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_3 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [0], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_3), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_3,), kwargs = {}) # %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, %log), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %primals_6), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [0]), kwargs = {}) # %exp_5 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) triton_per_fused__log_softmax__log_softmax_backward_data__softmax_mul_sum_3 = async_compile.triton('triton_per_fused__log_softmax__log_softmax_backward_data__softmax_mul_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax__log_softmax_backward_data__softmax_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax__log_softmax_backward_data__softmax_mul_sum_3(in_ptr0, in_ptr1, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr0 + (0)) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr1 + (r0), None) tmp16 = tl.load(in_ptr0 + (1)) tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp21 = tl.load(in_ptr1 + (4 + r0), None) tmp24 = tl.load(in_ptr0 + (2)) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp29 = tl.load(in_ptr1 + (8 + r0), None) tmp32 = tl.load(in_ptr0 + (3)) tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK]) tmp37 = tl.load(in_ptr1 + (12 + r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = triton_helpers.max2(tmp1, 1)[:, None] tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp11 = tmp10 - tmp3 tmp12 = tl_math.exp(tmp11) tmp13 = tmp12 / tmp8 tmp15 = tmp13 * tmp14 tmp18 = tmp17 - tmp3 tmp19 = tl_math.exp(tmp18) tmp20 = tmp19 / tmp8 tmp22 = tmp20 * tmp21 tmp23 = tmp15 + tmp22 tmp26 = tmp25 - tmp3 tmp27 = tl_math.exp(tmp26) tmp28 = tmp27 / tmp8 tmp30 = tmp28 * tmp29 tmp31 = tmp23 + tmp30 tmp34 = tmp33 - tmp3 tmp35 = tl_math.exp(tmp34) tmp36 = tmp35 / tmp8 tmp38 = tmp36 * tmp37 tmp39 = tmp31 + tmp38 tmp40 = tl_math.log(tmp8) tmp41 = tmp4 - tmp40 tmp42 = tl_math.exp(tmp41) tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp39, None) tl.store(out_ptr3 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp41, None) tl.store(out_ptr4 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp42, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/25/c25zffbsanrum4z3rffpnrg2h4k3lxiwob3mvghw5knox2fnslnf.py # Topologically Sorted Source Nodes: [add_1, s_4], Original ATen: [aten.add, aten.tanh] # Source node to ATen node mapping: # add_1 => add_1 # s_4 => tanh_2 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %squeeze_2), kwargs = {}) # %tanh_2 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_1,), kwargs = {}) triton_poi_fused_add_tanh_4 = async_compile.triton('triton_poi_fused_add_tanh_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 300 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 75 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bu/cbupf3zlbcvl3wmwwd4cqliwgdsvdey4ojkgjbd7xumln5g3xarf.py # Topologically Sorted Source Nodes: [log_softmax_1], Original ATen: [aten._log_softmax, aten._log_softmax_backward_data] # Source node to ATen node mapping: # log_softmax_1 => amax_3, exp_3, log_1, sub_4, sub_5, sum_6 # Graph fragment: # %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mm_7, [0], True), kwargs = {}) # %sub_4 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mm_7, %amax_3), kwargs = {}) # %exp_3 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_3, [0], True), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_6,), kwargs = {}) # %sub_5 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_4, %log_1), kwargs = {}) # %exp_4 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_5,), kwargs = {}) triton_per_fused__log_softmax__log_softmax_backward_data_5 = async_compile.triton('triton_per_fused__log_softmax__log_softmax_backward_data_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax__log_softmax_backward_data_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax__log_softmax_backward_data_5(in_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = triton_helpers.max2(tmp1, 1)[:, None] tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp9 = tl_math.log(tmp8) tmp10 = tmp4 - tmp9 tmp11 = tl_math.exp(tmp10) tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp10, None) tl.store(out_ptr3 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp11, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (75, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (1, 75), (75, 1)) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (75, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (75, 4), (4, 1)) assert_size_stride(primals_8, (1, 75), (75, 1)) assert_size_stride(primals_9, (12, 4), (4, 1)) assert_size_stride(primals_10, (12, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 75), (75, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(primals_2, reinterpret_tensor(primals_1, (4, 75), (1, 4), 0), out=buf0) del primals_1 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [s], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, 300, grid=grid(300), stream=stream0) buf3 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [s_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf1, reinterpret_tensor(primals_3, (75, 1), (1, 75), 0), alpha=1, beta=1, out=buf3) del primals_4 buf6 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [a, r, h_a], Original ATen: [aten._softmax, aten.mul, aten.sum] triton_per_fused__softmax_mul_sum_1.run(buf3, primals_2, buf6, 1, 4, grid=grid(1), stream=stream0) buf7 = empty_strided_cuda((4, 75), (75, 1), torch.float32) # Topologically Sorted Source Nodes: [Wh], Original ATen: [aten.mm] extern_kernels.mm(primals_6, reinterpret_tensor(primals_5, (4, 75), (1, 4), 0), out=buf7) del primals_5 buf8 = empty_strided_cuda((1, 75), (75, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf6, (1, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 75), (1, 4), 0), out=buf8) buf9 = empty_strided_cuda((4, 75), (75, 1), torch.float32) # Topologically Sorted Source Nodes: [add, s_2], Original ATen: [aten.add, aten.tanh] triton_poi_fused_add_tanh_2.run(buf7, buf8, buf9, 300, grid=grid(300), stream=stream0) buf10 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [s_3], Original ATen: [aten.mm] extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (75, 1), (1, 75), 0), out=buf10) buf13 = empty_strided_cuda((4, ), (1, ), torch.float32) buf24 = empty_strided_cuda((4, 1), (1, 1), torch.float32) buf27 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [p1, log_softmax, mul_1, c], Original ATen: [aten._softmax, aten._log_softmax, aten.mul, aten.sum, aten._log_softmax_backward_data] triton_per_fused__log_softmax__log_softmax_backward_data__softmax_mul_sum_3.run(buf10, primals_6, buf13, buf24, buf27, 1, 4, grid=grid(1), stream=stream0) buf14 = empty_strided_cuda((1, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [ret], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf13, (1, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 12), (1, 4), 0), out=buf14) buf15 = empty_strided_cuda((1, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [ret], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf6, (1, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 12), (1, 4), 0), out=buf15) # Topologically Sorted Source Nodes: [ret], Original ATen: [aten._thnn_fused_gru_cell] buf16 = torch.ops.aten._thnn_fused_gru_cell.default(buf14, buf15, reinterpret_tensor(buf6, (1, 4), (4, 1), 0)) del buf14 del buf15 buf17 = buf16[0] buf18 = buf16[1] del buf16 buf19 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [linear_5], Original ATen: [aten.mm] extern_kernels.mm(buf17, reinterpret_tensor(primals_7, (4, 75), (1, 4), 0), out=buf19) buf20 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [add_1, s_4], Original ATen: [aten.add, aten.tanh] triton_poi_fused_add_tanh_4.run(buf20, buf19, 300, grid=grid(300), stream=stream0) del buf19 buf21 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [s_5], Original ATen: [aten.mm] extern_kernels.mm(buf20, reinterpret_tensor(primals_8, (75, 1), (1, 75), 0), out=buf21) buf25 = empty_strided_cuda((4, 1), (1, 1), torch.float32) buf26 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax_1], Original ATen: [aten._log_softmax, aten._log_softmax_backward_data] triton_per_fused__log_softmax__log_softmax_backward_data_5.run(buf21, buf25, buf26, 1, 4, grid=grid(1), stream=stream0) del buf21 return (reinterpret_tensor(buf24, (4, ), (1, ), 0), reinterpret_tensor(buf25, (4, ), (1, ), 0), primals_2, primals_6, buf1, buf3, reinterpret_tensor(buf6, (1, 4), (4, 1), 0), buf9, buf10, reinterpret_tensor(buf13, (1, 4), (4, 1), 0), buf18, buf17, buf20, buf26, primals_8, primals_7, primals_10, primals_9, buf27, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((75, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 75), (75, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((75, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((75, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 75), (75, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class PointerNetwork(nn.Module): def __init__(self, input_size, model_dim, attn_size=75, dropout=0.2): """ Pointer Network Args: input_size(int): size of input Input: - **H** of shape `(passage_legth, batch, input_size)`: a float tensor in which we determine the importance of information in the passage regarding a question - **question** of shape `(question_length, batch, input_size)`: a float tensor containing question representation Output: - start(torch.tensor of shape (batch_size, passage_length, 1)): start position of the answer - end(torch.tensor of shape (batch_size, passage_length, 1)): end position of the answer """ super(PointerNetwork, self).__init__() self.Whp = nn.Linear(input_size, attn_size, bias=False) self.Wha1 = nn.Linear(model_dim, attn_size, bias=False) self.v = nn.Linear(attn_size, 1, bias=False) self.cell = nn.GRUCell(input_size, model_dim, False) self.Wuq = nn.Linear(model_dim, attn_size, bias=False) self.v1 = nn.Linear(attn_size, 1) def get_initial_state(self, question): s = torch.tanh(self.Wuq(question)) s = self.v1(s) a = nn.functional.softmax(s, 0) r = a * question return r.sum(0) def forward(self, h, question): h_a = self.get_initial_state(question) Wh = self.Whp(h) s = torch.tanh(Wh + self.Wha1(h_a)) s = self.v(s) p1 = nn.functional.softmax(s, 0) start = nn.functional.log_softmax(s, 0).transpose(0, 1) c = (p1 * h).sum(0) h_a = self.cell(c, h_a) s = torch.tanh(Wh + self.Wha1(h_a)) s = self.v(s) end = nn.functional.log_softmax(s, 0).transpose(0, 1) return start.squeeze(), end.squeeze() def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'model_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 300 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_per_fused__softmax_mul_sum_1(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr0 + 0) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr1 + r0, None) tmp16 = tl.load(in_ptr0 + 1) tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp21 = tl.load(in_ptr1 + (4 + r0), None) tmp24 = tl.load(in_ptr0 + 2) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp29 = tl.load(in_ptr1 + (8 + r0), None) tmp32 = tl.load(in_ptr0 + 3) tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK]) tmp37 = tl.load(in_ptr1 + (12 + r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = triton_helpers.max2(tmp1, 1)[:, None] tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp11 = tmp10 - tmp3 tmp12 = tl_math.exp(tmp11) tmp13 = tmp12 / tmp8 tmp15 = tmp13 * tmp14 tmp18 = tmp17 - tmp3 tmp19 = tl_math.exp(tmp18) tmp20 = tmp19 / tmp8 tmp22 = tmp20 * tmp21 tmp23 = tmp15 + tmp22 tmp26 = tmp25 - tmp3 tmp27 = tl_math.exp(tmp26) tmp28 = tmp27 / tmp8 tmp30 = tmp28 * tmp29 tmp31 = tmp23 + tmp30 tmp34 = tmp33 - tmp3 tmp35 = tl_math.exp(tmp34) tmp36 = tmp35 / tmp8 tmp38 = tmp36 * tmp37 tmp39 = tmp31 + tmp38 tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp39, None) @triton.jit def triton_poi_fused_add_tanh_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 300 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 75 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_per_fused__log_softmax__log_softmax_backward_data__softmax_mul_sum_3( in_ptr0, in_ptr1, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr0 + 0) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr1 + r0, None) tmp16 = tl.load(in_ptr0 + 1) tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp21 = tl.load(in_ptr1 + (4 + r0), None) tmp24 = tl.load(in_ptr0 + 2) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp29 = tl.load(in_ptr1 + (8 + r0), None) tmp32 = tl.load(in_ptr0 + 3) tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK]) tmp37 = tl.load(in_ptr1 + (12 + r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = triton_helpers.max2(tmp1, 1)[:, None] tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp11 = tmp10 - tmp3 tmp12 = tl_math.exp(tmp11) tmp13 = tmp12 / tmp8 tmp15 = tmp13 * tmp14 tmp18 = tmp17 - tmp3 tmp19 = tl_math.exp(tmp18) tmp20 = tmp19 / tmp8 tmp22 = tmp20 * tmp21 tmp23 = tmp15 + tmp22 tmp26 = tmp25 - tmp3 tmp27 = tl_math.exp(tmp26) tmp28 = tmp27 / tmp8 tmp30 = tmp28 * tmp29 tmp31 = tmp23 + tmp30 tmp34 = tmp33 - tmp3 tmp35 = tl_math.exp(tmp34) tmp36 = tmp35 / tmp8 tmp38 = tmp36 * tmp37 tmp39 = tmp31 + tmp38 tmp40 = tl_math.log(tmp8) tmp41 = tmp4 - tmp40 tmp42 = tl_math.exp(tmp41) tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp39, None) tl.store(out_ptr3 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp41, None) tl.store(out_ptr4 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp42, None) @triton.jit def triton_poi_fused_add_tanh_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 300 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 75 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_per_fused__log_softmax__log_softmax_backward_data_5(in_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = triton_helpers.max2(tmp1, 1)[:, None] tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp9 = tl_math.log(tmp8) tmp10 = tmp4 - tmp9 tmp11 = tl_math.exp(tmp10) tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp10, None) tl.store(out_ptr3 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp11, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (75, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (1, 75), (75, 1)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (75, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (75, 4), (4, 1)) assert_size_stride(primals_8, (1, 75), (75, 1)) assert_size_stride(primals_9, (12, 4), (4, 1)) assert_size_stride(primals_10, (12, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 75), (75, 1), torch.float32) extern_kernels.mm(primals_2, reinterpret_tensor(primals_1, (4, 75), (1, 4), 0), out=buf0) del primals_1 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(300)](buf1, 300, XBLOCK=128, num_warps =4, num_stages=1) buf3 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_4, buf1, reinterpret_tensor(primals_3, (75, 1), (1, 75), 0), alpha=1, beta=1, out=buf3) del primals_4 buf6 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused__softmax_mul_sum_1[grid(1)](buf3, primals_2, buf6, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf7 = empty_strided_cuda((4, 75), (75, 1), torch.float32) extern_kernels.mm(primals_6, reinterpret_tensor(primals_5, (4, 75), (1, 4), 0), out=buf7) del primals_5 buf8 = empty_strided_cuda((1, 75), (75, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (1, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 75), (1, 4), 0), out=buf8) buf9 = empty_strided_cuda((4, 75), (75, 1), torch.float32) triton_poi_fused_add_tanh_2[grid(300)](buf7, buf8, buf9, 300, XBLOCK=128, num_warps=4, num_stages=1) buf10 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (75, 1), (1, 75), 0), out=buf10) buf13 = empty_strided_cuda((4,), (1,), torch.float32) buf24 = empty_strided_cuda((4, 1), (1, 1), torch.float32) buf27 = empty_strided_cuda((4, 1), (1, 1), torch.float32) triton_per_fused__log_softmax__log_softmax_backward_data__softmax_mul_sum_3[ grid(1)](buf10, primals_6, buf13, buf24, buf27, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf14 = empty_strided_cuda((1, 12), (12, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf13, (1, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 12), (1, 4), 0), out=buf14) buf15 = empty_strided_cuda((1, 12), (12, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (1, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 12), (1, 4), 0), out=buf15) buf16 = torch.ops.aten._thnn_fused_gru_cell.default(buf14, buf15, reinterpret_tensor(buf6, (1, 4), (4, 1), 0)) del buf14 del buf15 buf17 = buf16[0] buf18 = buf16[1] del buf16 buf19 = buf8 del buf8 extern_kernels.mm(buf17, reinterpret_tensor(primals_7, (4, 75), (1, 4), 0), out=buf19) buf20 = buf7 del buf7 triton_poi_fused_add_tanh_4[grid(300)](buf20, buf19, 300, XBLOCK= 128, num_warps=4, num_stages=1) del buf19 buf21 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf20, reinterpret_tensor(primals_8, (75, 1), (1, 75), 0), out=buf21) buf25 = empty_strided_cuda((4, 1), (1, 1), torch.float32) buf26 = empty_strided_cuda((4, 1), (1, 1), torch.float32) triton_per_fused__log_softmax__log_softmax_backward_data_5[grid(1)]( buf21, buf25, buf26, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf21 return (reinterpret_tensor(buf24, (4,), (1,), 0), reinterpret_tensor( buf25, (4,), (1,), 0), primals_2, primals_6, buf1, buf3, reinterpret_tensor(buf6, (1, 4), (4, 1), 0), buf9, buf10, reinterpret_tensor(buf13, (1, 4), (4, 1), 0), buf18, buf17, buf20, buf26, primals_8, primals_7, primals_10, primals_9, buf27, primals_3) class PointerNetworkNew(nn.Module): def __init__(self, input_size, model_dim, attn_size=75, dropout=0.2): """ Pointer Network Args: input_size(int): size of input Input: - **H** of shape `(passage_legth, batch, input_size)`: a float tensor in which we determine the importance of information in the passage regarding a question - **question** of shape `(question_length, batch, input_size)`: a float tensor containing question representation Output: - start(torch.tensor of shape (batch_size, passage_length, 1)): start position of the answer - end(torch.tensor of shape (batch_size, passage_length, 1)): end position of the answer """ super(PointerNetworkNew, self).__init__() self.Whp = nn.Linear(input_size, attn_size, bias=False) self.Wha1 = nn.Linear(model_dim, attn_size, bias=False) self.v = nn.Linear(attn_size, 1, bias=False) self.cell = nn.GRUCell(input_size, model_dim, False) self.Wuq = nn.Linear(model_dim, attn_size, bias=False) self.v1 = nn.Linear(attn_size, 1) def get_initial_state(self, question): s = torch.tanh(self.Wuq(question)) s = self.v1(s) a = nn.functional.softmax(s, 0) r = a * question return r.sum(0) def forward(self, input_0, input_1): primals_1 = self.Whp.weight primals_5 = self.Wha1.weight primals_3 = self.v.weight primals_9 = self.cell.weight_ih primals_10 = self.cell.weight_hh primals_7 = self.Wuq.weight primals_8 = self.v1.weight primals_4 = self.v1.bias primals_2 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0], output[1]
tailerr/R-NET-pytorch
PointerNetwork
false
4,412
[ "MIT" ]
0
a6ed4a02b0cf68bade9e9a43a93ec290a3b6fabd
https://github.com/tailerr/R-NET-pytorch/tree/a6ed4a02b0cf68bade9e9a43a93ec290a3b6fabd
import torch from torch import nn class Model(nn.Module): def __init__(self, input_size, model_dim, attn_size=75, dropout=0.2): """ Pointer Network Args: input_size(int): size of input Input: - **H** of shape `(passage_legth, batch, input_size)`: a float tensor in which we determine the importance of information in the passage regarding a question - **question** of shape `(question_length, batch, input_size)`: a float tensor containing question representation Output: - start(torch.tensor of shape (batch_size, passage_length, 1)): start position of the answer - end(torch.tensor of shape (batch_size, passage_length, 1)): end position of the answer """ super().__init__() self.Whp = nn.Linear(input_size, attn_size, bias=False) self.Wha1 = nn.Linear(model_dim, attn_size, bias=False) self.v = nn.Linear(attn_size, 1, bias=False) self.cell = nn.GRUCell(input_size, model_dim, False) self.Wuq = nn.Linear(model_dim, attn_size, bias=False) self.v1 = nn.Linear(attn_size, 1) def get_initial_state(self, question): s = torch.tanh(self.Wuq(question)) s = self.v1(s) a = nn.functional.softmax(s, 0) r = a * question return r.sum(0) def forward(self, h, question): h_a = self.get_initial_state(question) Wh = self.Whp(h) s = torch.tanh(Wh + self.Wha1(h_a)) s = self.v(s) p1 = nn.functional.softmax(s, 0) start = nn.functional.log_softmax(s, 0).transpose(0, 1) c = (p1 * h).sum(0) h_a = self.cell(c, h_a) s = torch.tanh(Wh + self.Wha1(h_a)) s = self.v(s) end = nn.functional.log_softmax(s, 0).transpose(0, 1) return start.squeeze(), end.squeeze() def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/y7/cy7463cf27qpra2f6ndigmu6ve4q6o3cbvgetgqehejtevv6yfa5.py # Topologically Sorted Source Nodes: [pi1], Original ATen: [aten.hardtanh, aten.hardtanh_backward] # Source node to ATen node mapping: # pi1 => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%view_1, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_1, 0), kwargs = {}) # %ge_1 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%view_1, 6), kwargs = {}) # %bitwise_or_1 : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le_1, %ge_1), kwargs = {}) triton_poi_fused_hardtanh_hardtanh_backward_0 = async_compile.triton('triton_poi_fused_hardtanh_hardtanh_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_hardtanh_hardtanh_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_hardtanh_hardtanh_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 200 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 <= tmp3 tmp8 = tmp2 >= tmp5 tmp9 = tmp7 | tmp8 tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3h/c3hkfz2cekpaaeiqcpxcl3mxsxlmofvggknydsueowa7yt644s4y.py # Topologically Sorted Source Nodes: [v1], Original ATen: [aten.hardtanh, aten.hardtanh_backward] # Source node to ATen node mapping: # v1 => clamp_max_1, clamp_min_1 # Graph fragment: # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%view_5, 0), kwargs = {}) # %clamp_max_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 6), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_5, 0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%view_5, 6), kwargs = {}) # %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le, %ge), kwargs = {}) triton_poi_fused_hardtanh_hardtanh_backward_1 = async_compile.triton('triton_poi_fused_hardtanh_hardtanh_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_hardtanh_hardtanh_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_hardtanh_hardtanh_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 100 x3 = (xindex // 1600) x5 = xindex % 1600 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 <= tmp3 tmp8 = tmp2 >= tmp5 tmp9 = tmp7 | tmp8 tl.store(out_ptr0 + (x4), tmp6, xmask) tl.store(out_ptr1 + (x5 + (1664*x3)), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (200, 4), (4, 1)) assert_size_stride(primals_2, (200, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 200), (200, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (100, 4), (4, 1)) assert_size_stride(primals_7, (100, ), (1, )) assert_size_stride(primals_8, (1, 100), (100, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool) # Topologically Sorted Source Nodes: [pi1], Original ATen: [aten.hardtanh, aten.hardtanh_backward] stream0 = get_raw_stream(0) triton_poi_fused_hardtanh_hardtanh_backward_0.run(buf0, primals_2, buf1, buf8, 12800, grid=grid(12800), stream=stream0) del buf0 del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 200), (200, 1), 0), reinterpret_tensor(primals_4, (200, 4), (1, 200), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((64, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 100), (1, 4), 0), out=buf3) del primals_6 buf4 = empty_strided_cuda((4, 4, 4, 100), (1600, 400, 100, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool) # Topologically Sorted Source Nodes: [v1], Original ATen: [aten.hardtanh, aten.hardtanh_backward] triton_poi_fused_hardtanh_hardtanh_backward_1.run(buf3, primals_7, buf4, buf7, 6400, grid=grid(6400), stream=stream0) del buf3 del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [values], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf4, (64, 100), (100, 1), 0), reinterpret_tensor(primals_8, (100, 1), (1, 100), 0), alpha=1, beta=1, out=buf6) del primals_9 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 200), (200, 1), 0), reinterpret_tensor(buf4, (64, 100), (100, 1), 0), primals_8, buf7, primals_4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((200, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 200), (200, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((100, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def set_init(layers): for layer in layers: nn.init.normal_(layer.weight, mean=0.0, std=0.1) nn.init.constant_(layer.bias, 0.0) class Net(nn.Module): def __init__(self, s_dim, a_dim): super(Net, self).__init__() self.s_dim = s_dim self.a_dim = a_dim self.pi1 = nn.Linear(s_dim, 200) self.pi2 = nn.Linear(200, a_dim) self.v1 = nn.Linear(s_dim, 100) self.v2 = nn.Linear(100, 1) set_init([self.pi1, self.pi2, self.v1, self.v2]) self.distribution = torch.distributions.Categorical def forward(self, x): pi1 = F.relu6(self.pi1(x)) logits = self.pi2(pi1) v1 = F.relu6(self.v1(x)) values = self.v2(v1) return logits, values def choose_action(self, s): self.eval() logits, _ = self.forward(s) prob = F.softmax(logits, dim=1).data m = self.distribution(prob) return m.sample().numpy()[0] def loss_func(self, s, a, v_t): self.train() logits, values = self.forward(s) td = v_t - values c_loss = td.pow(2) probs = F.softmax(logits, dim=1) m = self.distribution(probs) exp_v = m.log_prob(a) * td.detach().squeeze() a_loss = -exp_v total_loss = (c_loss + a_loss).mean() return total_loss def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'s_dim': 4, 'a_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_hardtanh_hardtanh_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 200 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 <= tmp3 tmp8 = tmp2 >= tmp5 tmp9 = tmp7 | tmp8 tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_hardtanh_hardtanh_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 100 x3 = xindex // 1600 x5 = xindex % 1600 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 <= tmp3 tmp8 = tmp2 >= tmp5 tmp9 = tmp7 | tmp8 tl.store(out_ptr0 + x4, tmp6, xmask) tl.store(out_ptr1 + (x5 + 1664 * x3), tmp9, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (200, 4), (4, 1)) assert_size_stride(primals_2, (200,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 200), (200, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (100, 4), (4, 1)) assert_size_stride(primals_7, (100,), (1,)) assert_size_stride(primals_8, (1, 100), (100, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool) get_raw_stream(0) triton_poi_fused_hardtanh_hardtanh_backward_0[grid(12800)](buf0, primals_2, buf1, buf8, 12800, XBLOCK=128, num_warps=4, num_stages=1 ) del buf0 del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 200), (200, 1), 0), reinterpret_tensor(primals_4, (200, 4), (1, 200), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((64, 100), (100, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 100), (1, 4), 0), out=buf3) del primals_6 buf4 = empty_strided_cuda((4, 4, 4, 100), (1600, 400, 100, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool) triton_poi_fused_hardtanh_hardtanh_backward_1[grid(6400)](buf3, primals_7, buf4, buf7, 6400, XBLOCK=256, num_warps=4, num_stages=1) del buf3 del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf4, (64, 100), (100, 1), 0), reinterpret_tensor(primals_8, (100, 1), (1, 100), 0), alpha=1, beta=1, out=buf6) del primals_9 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 200), (200, 1), 0 ), reinterpret_tensor(buf4, (64, 100), (100, 1), 0 ), primals_8, buf7, primals_4, buf8 def set_init(layers): for layer in layers: nn.init.normal_(layer.weight, mean=0.0, std=0.1) nn.init.constant_(layer.bias, 0.0) class NetNew(nn.Module): def __init__(self, s_dim, a_dim): super(NetNew, self).__init__() self.s_dim = s_dim self.a_dim = a_dim self.pi1 = nn.Linear(s_dim, 200) self.pi2 = nn.Linear(200, a_dim) self.v1 = nn.Linear(s_dim, 100) self.v2 = nn.Linear(100, 1) set_init([self.pi1, self.pi2, self.v1, self.v2]) self.distribution = torch.distributions.Categorical def choose_action(self, s): self.eval() logits, _ = self.forward(s) prob = F.softmax(logits, dim=1).data m = self.distribution(prob) return m.sample().numpy()[0] def loss_func(self, s, a, v_t): self.train() logits, values = self.forward(s) td = v_t - values c_loss = td.pow(2) probs = F.softmax(logits, dim=1) m = self.distribution(probs) exp_v = m.log_prob(a) * td.detach().squeeze() a_loss = -exp_v total_loss = (c_loss + a_loss).mean() return total_loss def forward(self, input_0): primals_1 = self.pi1.weight primals_2 = self.pi1.bias primals_4 = self.pi2.weight primals_5 = self.pi2.bias primals_6 = self.v1.weight primals_7 = self.v1.bias primals_8 = self.v2.weight primals_9 = self.v2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
taomo/pytorch-A3C-1
Net
false
4,413
[ "MIT" ]
0
8e26720c75ca8b7e987b267e5e0e652d0c5d23cf
https://github.com/taomo/pytorch-A3C-1/tree/8e26720c75ca8b7e987b267e5e0e652d0c5d23cf
import torch import torch.nn as nn import torch.nn.functional as F def set_init(layers): for layer in layers: nn.init.normal_(layer.weight, mean=0.0, std=0.1) nn.init.constant_(layer.bias, 0.0) class Model(nn.Module): def __init__(self, s_dim, a_dim): super().__init__() self.s_dim = s_dim self.a_dim = a_dim self.pi1 = nn.Linear(s_dim, 200) self.pi2 = nn.Linear(200, a_dim) self.v1 = nn.Linear(s_dim, 100) self.v2 = nn.Linear(100, 1) set_init([self.pi1, self.pi2, self.v1, self.v2]) self.distribution = torch.distributions.Categorical def forward(self, x): pi1 = F.relu6(self.pi1(x)) logits = self.pi2(pi1) v1 = F.relu6(self.v1(x)) values = self.v2(v1) return logits, values def choose_action(self, s): self.eval() logits, _ = self.forward(s) prob = F.softmax(logits, dim=1).data m = self.distribution(prob) return m.sample().numpy()[0] def loss_func(self, s, a, v_t): self.train() logits, values = self.forward(s) td = v_t - values c_loss = td.pow(2) probs = F.softmax(logits, dim=1) m = self.distribution(probs) exp_v = m.log_prob(a) * td.detach().squeeze() a_loss = -exp_v total_loss = (c_loss + a_loss).mean() return total_loss def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
GlobalWeightedAvgPool2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/jz/cjzoc6xisenudem73wv6jtmndx35ok7u4hfkm7ipl6rjq5za2ecw.py # Topologically Sorted Source Nodes: [m, sigmoid, m_1, sum_1], Original ATen: [aten.convolution, aten.sigmoid, aten.exp, aten.sum] # Source node to ATen node mapping: # m => convolution # m_1 => exp # sigmoid => sigmoid # sum_1 => sum_1 # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sigmoid,), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2, 3], True), kwargs = {}) triton_per_fused_convolution_exp_sigmoid_sum_0 = async_compile.triton('triton_per_fused_convolution_exp_sigmoid_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_exp_sigmoid_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_convolution_exp_sigmoid_sum_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_out_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tl.store(in_out_ptr0 + (r1 + (16*x0)), tmp3, xmask) tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/u7/cu7tuonvj2l2bybmuzk4zjpmuntxy47o26ta565v5zj47gq5o2pu.py # Topologically Sorted Source Nodes: [sigmoid, m_1, x, x_1, x_2], Original ATen: [aten.sigmoid, aten.exp, aten.div, aten.mul, aten.sum] # Source node to ATen node mapping: # m_1 => exp # sigmoid => sigmoid # x => div # x_1 => mul # x_2 => sum_2 # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sigmoid,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2, 3], True), kwargs = {}) triton_per_fused_div_exp_mul_sigmoid_sum_1 = async_compile.triton('triton_per_fused_div_exp_mul_sigmoid_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_exp_mul_sigmoid_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_exp_mul_sigmoid_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x1 = (xindex // 4) x3 = xindex tmp0 = tl.load(in_ptr0 + (r2 + (16*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.sigmoid(tmp0) tmp2 = tl_math.exp(tmp1) tmp4 = tmp2 / tmp3 tmp6 = tmp4 * tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [m], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [m, sigmoid, m_1, sum_1], Original ATen: [aten.convolution, aten.sigmoid, aten.exp, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_convolution_exp_sigmoid_sum_0.run(buf1, primals_3, buf2, 4, 16, grid=grid(4), stream=stream0) del primals_3 buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, m_1, x, x_1, x_2], Original ATen: [aten.sigmoid, aten.exp, aten.div, aten.mul, aten.sum] triton_per_fused_div_exp_mul_sigmoid_sum_1.run(buf1, buf2, primals_1, buf3, 16, 16, grid=grid(16), stream=stream0) return (buf3, primals_1, primals_2, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class GlobalWeightedAvgPool2d(nn.Module): """ Global Weighted Average Pooling from paper "Global Weighted Average Pooling Bridges Pixel-level Localization and Image-level Classification" """ def __init__(self, features: 'int', flatten=False): super().__init__() self.conv = nn.Conv2d(features, 1, kernel_size=1, bias=True) self.flatten = flatten def fscore(self, x): m = self.conv(x) m = m.sigmoid().exp() return m def norm(self, x: 'torch.Tensor'): return x / x.sum(dim=[2, 3], keepdim=True) def forward(self, x): input_x = x x = self.fscore(x) x = self.norm(x) x = x * input_x x = x.sum(dim=[2, 3], keepdim=not self.flatten) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_convolution_exp_sigmoid_sum_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_out_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tl.store(in_out_ptr0 + (r1 + 16 * x0), tmp3, xmask) tl.store(out_ptr0 + x0, tmp9, xmask) @triton.jit def triton_per_fused_div_exp_mul_sigmoid_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x1 = xindex // 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (r2 + 16 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.sigmoid(tmp0) tmp2 = tl_math.exp(tmp1) tmp4 = tmp2 / tmp3 tmp6 = tmp4 * tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + x3, tmp10, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32) get_raw_stream(0) triton_per_fused_convolution_exp_sigmoid_sum_0[grid(4)](buf1, primals_3, buf2, 4, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_3 buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_per_fused_div_exp_mul_sigmoid_sum_1[grid(16)](buf1, buf2, primals_1, buf3, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) return buf3, primals_1, primals_2, buf1, buf2 class GlobalWeightedAvgPool2dNew(nn.Module): """ Global Weighted Average Pooling from paper "Global Weighted Average Pooling Bridges Pixel-level Localization and Image-level Classification" """ def __init__(self, features: 'int', flatten=False): super().__init__() self.conv = nn.Conv2d(features, 1, kernel_size=1, bias=True) self.flatten = flatten def fscore(self, x): m = self.conv(x) m = m.sigmoid().exp() return m def norm(self, x: 'torch.Tensor'): return x / x.sum(dim=[2, 3], keepdim=True) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
theNero93/dfdc_deepfake_challenge
GlobalWeightedAvgPool2d
false
4,414
[ "MIT" ]
0
ef275206efc6f1b0b7984b370a14bd8db61d1ec1
https://github.com/theNero93/dfdc_deepfake_challenge/tree/ef275206efc6f1b0b7984b370a14bd8db61d1ec1
import torch from torch import nn class Model(nn.Module): """ Global Weighted Average Pooling from paper "Global Weighted Average Pooling Bridges Pixel-level Localization and Image-level Classification" """ def __init__(self, features: 'int', flatten=False): super().__init__() self.conv = nn.Conv2d(features, 1, kernel_size=1, bias=True) self.flatten = flatten def fscore(self, x): m = self.conv(x) m = m.sigmoid().exp() return m def norm(self, x: 'torch.Tensor'): return x / x.sum(dim=[2, 3], keepdim=True) def forward(self, x): input_x = x x = self.fscore(x) x = self.norm(x) x = x * input_x x = x.sum(dim=[2, 3], keepdim=not self.flatten) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
My_SmoothL1Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/7c/c7cg7qyjcxewpoxhfeoekzx665jbj2uw4lvujpxnw5sogyun5lpt.py # Topologically Sorted Source Nodes: [sub, abs_1, lt, mse_mask, mse, pow_1, mul_2, mul_3, mean, total_loss, abs_2, ge, l1_mask, l1, abs_3, sub_1, mul_4, mul_5, mean_1, total_loss_1], Original ATen: [aten.sub, aten.abs, aten.lt, aten._to_copy, aten.mul, aten.pow, aten.mean, aten.add, aten.ge] # Source node to ATen node mapping: # abs_1 => abs_1 # abs_2 => abs_2 # abs_3 => abs_3 # ge => ge # l1 => mul_1 # l1_mask => convert_element_type_1 # lt => lt # mean => mean # mean_1 => mean_1 # mse => mul # mse_mask => convert_element_type # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # pow_1 => pow_1 # sub => sub # sub_1 => sub_1 # total_loss => add # total_loss_1 => add_1 # Graph fragment: # %sub : [num_users=4] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 0.01), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.float32), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, %sub), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul, 2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %convert_element_type), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_3,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 0), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%abs_2, 0.01), kwargs = {}) # %convert_element_type_1 : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ge, torch.float32), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, %sub), kwargs = {}) # %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%mul_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_3, 0.005), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 0.01), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %convert_element_type_1), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_5,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mean_1), kwargs = {}) triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 0.01 tmp5 = tmp3 < tmp4 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7 * tmp7 tmp9 = 0.5 tmp10 = tmp8 * tmp9 tmp11 = tmp10 * tmp6 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = tmp3 >= tmp4 tmp16 = tmp15.to(tl.float32) tmp17 = tmp16 * tmp2 tmp18 = tl_math.abs(tmp17) tmp19 = 0.005 tmp20 = tmp18 - tmp19 tmp21 = tmp20 * tmp4 tmp22 = tmp21 * tmp16 tmp23 = tl.broadcast_to(tmp22, [RBLOCK]) tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0)) tmp26 = 256.0 tmp27 = tmp14 / tmp26 tmp28 = 0.0 tmp29 = tmp27 + tmp28 tmp30 = tmp25 / tmp26 tmp31 = tmp29 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp31, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, abs_1, lt, mse_mask, mse, pow_1, mul_2, mul_3, mean, total_loss, abs_2, ge, l1_mask, l1, abs_3, sub_1, mul_4, mul_5, mean_1, total_loss_1], Original ATen: [aten.sub, aten.abs, aten.lt, aten._to_copy, aten.mul, aten.pow, aten.mean, aten.add, aten.ge] stream0 = get_raw_stream(0) triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class My_SmoothL1Loss(torch.nn.Module): def __init__(self): super(My_SmoothL1Loss, self).__init__() def forward(self, x, y): total_loss = 0 assert x.shape == y.shape z = (x - y).float() mse_mask = (torch.abs(z) < 0.01).float() l1_mask = (torch.abs(z) >= 0.01).float() mse = mse_mask * z l1 = l1_mask * z total_loss += torch.mean(self._calculate_MSE(mse) * mse_mask) total_loss += torch.mean(self._calculate_L1(l1) * l1_mask) return total_loss def _calculate_MSE(self, z): return 0.5 * torch.pow(z, 2) def _calculate_L1(self, z): return 0.01 * (torch.abs(z) - 0.005) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 0.01 tmp5 = tmp3 < tmp4 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7 * tmp7 tmp9 = 0.5 tmp10 = tmp8 * tmp9 tmp11 = tmp10 * tmp6 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = tmp3 >= tmp4 tmp16 = tmp15.to(tl.float32) tmp17 = tmp16 * tmp2 tmp18 = tl_math.abs(tmp17) tmp19 = 0.005 tmp20 = tmp18 - tmp19 tmp21 = tmp20 * tmp4 tmp22 = tmp21 * tmp16 tmp23 = tl.broadcast_to(tmp22, [RBLOCK]) tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0)) tmp26 = 256.0 tmp27 = tmp14 / tmp26 tmp28 = 0.0 tmp29 = tmp27 + tmp28 tmp30 = tmp25 / tmp26 tmp31 = tmp29 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp31, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0[grid(1)]( buf2, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class My_SmoothL1LossNew(torch.nn.Module): def __init__(self): super(My_SmoothL1LossNew, self).__init__() def _calculate_MSE(self, z): return 0.5 * torch.pow(z, 2) def _calculate_L1(self, z): return 0.01 * (torch.abs(z) - 0.005) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
theleokul/AWR-Adaptive-Weighting-Regression
My_SmoothL1Loss
false
4,415
[ "MIT" ]
0
a6c224302bab474db8b774a2d009c9497e32f6bd
https://github.com/theleokul/AWR-Adaptive-Weighting-Regression/tree/a6c224302bab474db8b774a2d009c9497e32f6bd
import torch class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): total_loss = 0 assert x.shape == y.shape z = (x - y).float() mse_mask = (torch.abs(z) < 0.01).float() l1_mask = (torch.abs(z) >= 0.01).float() mse = mse_mask * z l1 = l1_mask * z total_loss += torch.mean(self._calculate_MSE(mse) * mse_mask) total_loss += torch.mean(self._calculate_L1(l1) * l1_mask) return total_loss def _calculate_MSE(self, z): return 0.5 * torch.pow(z, 2) def _calculate_L1(self, z): return 0.01 * (torch.abs(z) - 0.005) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CategoricalDQN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/pr/cprthrqz6iotcmrjfcrj7taqntzxisdcjtr54gsuz2ck2kf6kbsr.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mp/cmpdsbnpgfsr7uwb7env74mojrq3nlzieqot6rnnkfpbzkkensbi.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/d4/cd432jugyi4ssarhot7h6csa752vfkvgs6yoqdcnthsxxlmc5wk4.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_6, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_6, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + ((4*x0) % 16), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + ((1 + (4*x0)) % 16), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + ((2 + (4*x0)) % 16), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + ((3 + (4*x0)) % 16), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp7 = tmp5 + tmp6 tmp8 = triton_helpers.maximum(tmp3, tmp7) tmp9 = triton_helpers.maximum(tmp4, tmp8) tmp12 = tmp10 + tmp11 tmp13 = triton_helpers.maximum(tmp3, tmp12) tmp14 = triton_helpers.maximum(tmp9, tmp13) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp3, tmp17) tmp19 = triton_helpers.maximum(tmp14, tmp18) tmp20 = tmp4 - tmp19 tmp21 = tl_math.exp(tmp20) tmp22 = tmp8 - tmp19 tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp19 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tmp18 - tmp19 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tl.store(out_ptr0 + (x0), tmp19, xmask) tl.store(out_ptr1 + (x0), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nj/cnj3sc5sqh53qv3ve6jdrvn2ieksonjrw2xwfaef4ffuhqxauz6u.py # Topologically Sorted Source Nodes: [x_2, softmax], Original ATen: [aten.relu, aten._softmax, aten.threshold_backward] # Source node to ATen node mapping: # softmax => amax, div, exp, sub # x_2 => relu_2 # Graph fragment: # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_6, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_6, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused__softmax_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused__softmax_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_relu_threshold_backward_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x1 = (xindex // 4) x2 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr1 + (x4 % 16), xmask) tmp5 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tmp11 = tmp0 + tmp10 tmp12 = triton_helpers.maximum(tmp3, tmp11) tmp13 = 0.0 tmp14 = tmp12 <= tmp13 tl.store(out_ptr0 + (x4), tmp9, xmask) tl.store(out_ptr1 + (x4), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (16, 4), (4, 1)) assert_size_stride(primals_7, (16, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf10, 64, grid=grid(64), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 1), (1, 0), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf9, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf4) buf5 = empty_strided_cuda((256, 1), (1, 256), torch.float32) buf6 = empty_strided_cuda((256, 1), (1, 256), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf4, primals_7, buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((256, 4), (4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2, softmax], Original ATen: [aten.relu, aten._softmax, aten.threshold_backward] triton_poi_fused__softmax_relu_threshold_backward_3.run(buf4, primals_7, buf5, buf6, buf7, buf8, 1024, grid=grid(1024), stream=stream0) del buf4 del buf5 del buf6 del primals_7 return (reinterpret_tensor(buf7, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 1), (1, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf7, buf8, primals_6, buf9, primals_4, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn import torch.nn.functional as F class CategoricalDQN(nn.Module): def __init__(self, num_inputs, num_actions, args): super(CategoricalDQN, self).__init__() self.num_inputs = num_inputs self.num_actions = num_actions self.num_atoms = args.atom self.vmax = args.vmax self.vmin = args.vmin self.linear1 = nn.Linear(num_inputs, args.hidden_size // 4) self.linear2 = nn.Linear(args.hidden_size // 4, args.hidden_size) self.linear3 = nn.Linear(args.hidden_size, num_actions * args.atom) def forward(self, input): x = F.relu(self.linear1(input)) x = F.relu(self.linear2(x)) x = F.relu(self.linear3(x)) x = F.softmax(x.view(-1, self.num_atoms)).view(-1, self.num_actions, self.num_atoms) return x def act(self, state): with torch.no_grad(): state = torch.tensor(state, dtype=torch.float).unsqueeze(0) dist = self.forward(state).data.cpu() dist = dist * torch.linspace(self.vmin, self.vmax, self.num_atoms) action = dist.sum(2).max(1)[1].numpy()[0] return action def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_inputs': 4, 'num_actions': 4, 'args': _mock_config( atom=4, vmax=4, vmin=4, hidden_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0 % 16, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (1 + 4 * x0) % 16, xmask, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp11 = tl.load(in_ptr1 + (2 + 4 * x0) % 16, xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr1 + (3 + 4 * x0) % 16, xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp7 = tmp5 + tmp6 tmp8 = triton_helpers.maximum(tmp3, tmp7) tmp9 = triton_helpers.maximum(tmp4, tmp8) tmp12 = tmp10 + tmp11 tmp13 = triton_helpers.maximum(tmp3, tmp12) tmp14 = triton_helpers.maximum(tmp9, tmp13) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp3, tmp17) tmp19 = triton_helpers.maximum(tmp14, tmp18) tmp20 = tmp4 - tmp19 tmp21 = tl_math.exp(tmp20) tmp22 = tmp8 - tmp19 tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp19 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tmp18 - tmp19 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tl.store(out_ptr0 + x0, tmp19, xmask) tl.store(out_ptr1 + x0, tmp30, xmask) @triton.jit def triton_poi_fused__softmax_relu_threshold_backward_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x1 = xindex // 4 x2 = xindex % 16 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr1 + x4 % 16, xmask) tmp5 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tmp11 = tmp0 + tmp10 tmp12 = triton_helpers.maximum(tmp3, tmp11) tmp13 = 0.0 tmp14 = tmp12 <= tmp13 tl.store(out_ptr0 + x4, tmp9, xmask) tl.store(out_ptr1 + x4, tmp14, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (16, 4), (4, 1)) assert_size_stride(primals_7, (16,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf0 buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(64)](buf1, primals_2, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 1), (1, 0), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(256)](buf3, primals_5, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf4) buf5 = empty_strided_cuda((256, 1), (1, 256), torch.float32) buf6 = empty_strided_cuda((256, 1), (1, 256), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf4, primals_7, buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((256, 4), (4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) triton_poi_fused__softmax_relu_threshold_backward_3[grid(1024)](buf4, primals_7, buf5, buf6, buf7, buf8, 1024, XBLOCK=256, num_warps= 4, num_stages=1) del buf4 del buf5 del buf6 del primals_7 return reinterpret_tensor(buf7, (64, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 1), (1, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0 ), buf7, buf8, primals_6, buf9, primals_4, buf10 class CategoricalDQNNew(nn.Module): def __init__(self, num_inputs, num_actions, args): super(CategoricalDQNNew, self).__init__() self.num_inputs = num_inputs self.num_actions = num_actions self.num_atoms = args.atom self.vmax = args.vmax self.vmin = args.vmin self.linear1 = nn.Linear(num_inputs, args.hidden_size // 4) self.linear2 = nn.Linear(args.hidden_size // 4, args.hidden_size) self.linear3 = nn.Linear(args.hidden_size, num_actions * args.atom) def act(self, state): with torch.no_grad(): state = torch.tensor(state, dtype=torch.float).unsqueeze(0) dist = self.forward(state).data.cpu() dist = dist * torch.linspace(self.vmin, self.vmax, self.num_atoms) action = dist.sum(2).max(1)[1].numpy()[0] return action def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_6 = self.linear3.weight primals_7 = self.linear3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
tegg89/categorical_dqn
CategoricalDQN
false
4,416
[ "MIT" ]
0
647c24ee4734450551fc446d3225f57dadd82d48
https://github.com/tegg89/categorical_dqn/tree/647c24ee4734450551fc446d3225f57dadd82d48
from _paritybench_helpers import _mock_config import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, num_inputs, num_actions, args): super().__init__() self.num_inputs = num_inputs self.num_actions = num_actions self.num_atoms = args.atom self.vmax = args.vmax self.vmin = args.vmin self.linear1 = nn.Linear(num_inputs, args.hidden_size // 4) self.linear2 = nn.Linear(args.hidden_size // 4, args.hidden_size) self.linear3 = nn.Linear(args.hidden_size, num_actions * args.atom) def forward(self, input): x = F.relu(self.linear1(input)) x = F.relu(self.linear2(x)) x = F.relu(self.linear3(x)) x = F.softmax(x.view(-1, self.num_atoms)).view(-1, self.num_actions, self.num_atoms) return x def act(self, state): with torch.no_grad(): state = torch.tensor(state, dtype=torch.float).unsqueeze(0) dist = self.forward(state).data.cpu() dist = dist * torch.linspace(self.vmin, self.vmax, self.num_atoms) action = dist.sum(2).max(1)[1].numpy()[0] return action def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_inputs': 4, 'num_actions': 4, 'args': _mock_config( atom=4, vmax=4, vmin=4, hidden_size=4)}]
UNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/jo/cjolh7wy3losq75bea7heuxra52smjn2phczl4xzt2smarbxy3nj.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # x => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.1), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/o4/co4xz3bhphdn2kq3lke3433wpdtqt6r3irqbdr7hp46ou2slvxop.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x_1 => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_1, [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/b2/cb2heynzbbb2idhib26qs23x62rr3vu36ahp3tksyhjfahippc67.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => gt_2, mul_2, where_2 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_6, %primals_7, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.1), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xj/cxjbrfzbed7bo2iy4m5zuii5z5cssze6tfcgrk2jehpphz5b77jh.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x_4 => avg_pool2d_1 # Graph fragment: # %avg_pool2d_1 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_3, [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_3 = async_compile.triton('triton_poi_fused_avg_pool2d_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/le/cleento7jh4h7b7b25wgw4ax6qfmthojxlfqfgkaohjqgn6pqwco.py # Topologically Sorted Source Nodes: [conv2d_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # x_5 => gt_4, mul_4, where_4 # Graph fragment: # %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d_1, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_4 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.1), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_4, %mul_4), kwargs = {}) triton_poi_fused_convolution_leaky_relu_4 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/s5/cs5zukgmdewmnpcrozw2m273bpclzrkypvc2xaub2gmoc5saabvv.py # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x_7 => avg_pool2d_2 # Graph fragment: # %avg_pool2d_2 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_5, [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_5 = async_compile.triton('triton_poi_fused_avg_pool2d_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/4u/c4urfqsk2wuyrkcnwy7b2uiwmecrugesubdiuadavwqtcisyhwz4.py # Topologically Sorted Source Nodes: [conv2d_6, x_8], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # x_8 => gt_6, mul_6, where_6 # Graph fragment: # %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d_2, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_6 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_6, 0), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.1), kwargs = {}) # %where_6 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %convolution_6, %mul_6), kwargs = {}) triton_poi_fused_convolution_leaky_relu_6 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3z/c3zje6b5ccaz3n4winpmxo6y4niaoldocb7ilvkg5sorj2nqvjfa.py # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x_10 => avg_pool2d_3 # Graph fragment: # %avg_pool2d_3 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_7, [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_7 = async_compile.triton('triton_poi_fused_avg_pool2d_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (16*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (16*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (8 + (2*x0) + (16*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (9 + (2*x0) + (16*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oy/coyjgpdjbipe737iasihk5ensjtmspgnzblyyy7mrlypqho5vuyg.py # Topologically Sorted Source Nodes: [conv2d_8, x_11], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_8 => convolution_8 # x_11 => gt_8, mul_8, where_8 # Graph fragment: # %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d_3, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_8 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 0.1), kwargs = {}) # %where_8 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_8, %convolution_8, %mul_8), kwargs = {}) triton_poi_fused_convolution_leaky_relu_8 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/j6/cj6wkwoaluxhwqnux44qht6o5xye6n3bfqi54esxnpytd6m2qyjn.py # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x_13 => avg_pool2d_4 # Graph fragment: # %avg_pool2d_4 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_9, [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_9 = async_compile.triton('triton_poi_fused_avg_pool2d_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/i6/ci6sgepehwucwp2knnf7ujr55xjh7bis2i3kdyon6flrsjhhdhyi.py # Topologically Sorted Source Nodes: [conv2d_10, x_14], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_10 => convolution_10 # x_14 => gt_10, mul_10, where_10 # Graph fragment: # %convolution_10 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d_4, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_10 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_10, 0), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_10, 0.1), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_10, %convolution_10, %mul_10), kwargs = {}) triton_poi_fused_convolution_leaky_relu_10 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ep/cepxp5elnxw6qvzcibzdejr6ov2i7hn664ixt6w4vzlrorsdstiq.py # Topologically Sorted Source Nodes: [conv2d_11, x_15], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_11 => convolution_11 # x_15 => gt_11 # Graph fragment: # %convolution_11 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_10, %primals_24, %primals_25, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_11 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_11, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_11 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_11(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/r4/cr4hpkpezpllmtrycjdjyfyalsg3igxkpp5ddup6ueansg3uhioj.py # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_16 => convert_element_type_1 # Graph fragment: # %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) triton_poi_fused__to_copy_12 = async_compile.triton('triton_poi_fused__to_copy_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/it/citeiab2byvsltguyuzd2s2joq6e6z355s7h7bam6hgio5s5cret.py # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_16 => add_1, clamp_max # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {}) # %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_1, 1), kwargs = {}) triton_poi_fused_add_clamp_13 = async_compile.triton('triton_poi_fused_add_clamp_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = triton_helpers.minimum(tmp10, tmp9) tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tq/ctqegi24pxetbae63246pykqjalfftx6xr5vt4fhudr7ehpmpbyv.py # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x_16 => add, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul_12, sub, sub_2 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_12, 0.5), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ar/carrwnezxoitom5qyzrwvxxe2xsarer32dfybfdk3w4gttj5i277.py # Topologically Sorted Source Nodes: [conv2d_11, x_15, x_16], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # conv2d_11 => convolution_11 # x_15 => mul_11, where_11 # x_16 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_4, add_5, add_6, mul_14, mul_15, mul_16, sub_3, sub_4, sub_6 # Graph fragment: # %convolution_11 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_10, %primals_24, %primals_25, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_11, 0.1), kwargs = {}) # %where_11 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_11, %convolution_11, %mul_11), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_14), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_15), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {}) # %add_6 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_16), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4) % 4 x0 = xindex % 4 x6 = (xindex // 16) x2 = (xindex // 16) % 512 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 2, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + (2*tmp19) + (4*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + (2*tmp19) + (4*x6)), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + (2*tmp19) + (4*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + (2*tmp19) + (4*x6)), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + (x4), tmp49, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vm/cvmoqavquuan3erpml2tllmmlw2pfct5mokbplbbjboljuyvw7db.py # Topologically Sorted Source Nodes: [conv2d_12, x_17], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_12 => convolution_12 # x_17 => gt_12 # Graph fragment: # %convolution_12 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_6, %primals_26, %primals_27, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_12 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_12, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_16 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zq/czqy62awvhrtl5r6fvvk4ufd5wffutbs7uz3a6rvpxyaj5tosmne.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_12, %where_9], 1), kwargs = {}) triton_poi_fused_cat_17 = async_compile.triton('triton_poi_fused_cat_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_17(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 16) % 1024 x0 = xindex % 16 x2 = (xindex // 16384) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 512, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (8192*x2)), tmp4, other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + (16*x1) + (8192*x2)), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 1024, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + (x0 + (16*((-512) + x1)) + (8192*x2)), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x3), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6w/c6wr4loz4rxs56x2er2z7yyokvbxpzsmffbuifvku2xqaerh75p3.py # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_19 => convert_element_type_5 # Graph fragment: # %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {}) triton_poi_fused__to_copy_18 = async_compile.triton('triton_poi_fused__to_copy_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_18(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oq/coq7wg2jvtpm4oc4zm4dvbkwpc5jinzscvm4jrouu3hlob5nd7rs.py # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_19 => add_8, clamp_max_4 # Graph fragment: # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {}) # %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_8, 3), kwargs = {}) triton_poi_fused_add_clamp_19 = async_compile.triton('triton_poi_fused_add_clamp_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_19(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 3, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rh/crhh5ib7z3hkisro2vncldz577bevkgu7k3u5nnclrqmgo3wnuzx.py # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x_19 => add_7, clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, iota_2, mul_19, sub_7, sub_9 # Graph fragment: # %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_2, torch.float32), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.5), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_7, 0.5), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_19, 0.5), kwargs = {}) # %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_7, 0.0), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {}) # %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_9, 0.0), kwargs = {}) # %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_20 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_20(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qk/cqkzmxtnx34qktmz7vfilm2bzsfk2r5cxo3wx6pwurql3crkpejs.py # Topologically Sorted Source Nodes: [conv2d_13, x_18, x_19], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # conv2d_13 => convolution_13 # x_18 => mul_18, where_13 # x_19 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_11, add_12, add_13, mul_21, mul_22, mul_23, sub_10, sub_11, sub_13 # Graph fragment: # %convolution_13 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_28, %primals_29, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_13, 0.1), kwargs = {}) # %where_13 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_13, %convolution_13, %mul_18), kwargs = {}) # %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {}) # %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {}) # %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {}) # %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {}) # %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %clamp_max_6), kwargs = {}) # %add_11 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_21), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {}) # %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_6), kwargs = {}) # %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_22), kwargs = {}) # %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_12, %add_11), kwargs = {}) # %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %clamp_max_7), kwargs = {}) # %add_13 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %mul_23), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 8) % 8 x0 = xindex % 8 x6 = (xindex // 64) x2 = (xindex // 64) % 512 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (4*tmp4) + (16*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + (4*tmp4) + (16*x6)), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + (4*tmp19) + (16*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + (4*tmp19) + (16*x6)), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + (4*tmp19) + (16*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + (4*tmp19) + (16*x6)), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + (4*tmp4) + (16*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + (4*tmp4) + (16*x6)), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + (x4), tmp49, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vn/cvntemv5weoouv65lvun2muyb6apyj7dkrnebouaithxvdyd4hl4.py # Topologically Sorted Source Nodes: [conv2d_14, x_20], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_14 => convolution_14 # x_20 => gt_14 # Graph fragment: # %convolution_14 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_13, %primals_30, %primals_31, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_14 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_14, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_22 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3p/c3pazcbmhoubkrcj7s65glics5kpj5vv7x2zlnvymydp46fxyf2m.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_14, %where_7], 1), kwargs = {}) triton_poi_fused_cat_23 = async_compile.triton('triton_poi_fused_cat_23', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_23', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_23(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 64) % 512 x0 = xindex % 64 x2 = (xindex // 32768) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x1) + (16384*x2)), tmp4, other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + (64*x1) + (16384*x2)), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 512, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + (x0 + (64*((-256) + x1)) + (16384*x2)), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x3), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mi/cmiwjqieuspwn256jnrugfvht2dt7ofln2psibayqc3twrtpkngi.py # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_22 => convert_element_type_9 # Graph fragment: # %convert_element_type_9 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {}) triton_poi_fused__to_copy_24 = async_compile.triton('triton_poi_fused__to_copy_24', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_24', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_24(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ki/ckith5u474vepvwaijseaqbn665u5jpg5stc4cj42bnzsgj6uexm.py # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_22 => add_15, clamp_max_8 # Graph fragment: # %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_9, 1), kwargs = {}) # %clamp_max_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_15, 7), kwargs = {}) triton_poi_fused_add_clamp_25 = async_compile.triton('triton_poi_fused_add_clamp_25', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_25', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_25(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 7, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/lu/cluyprd6omil4csahwtbdldnx2kt7j7znt35dzjdzj4xcxjsppaa.py # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x_22 => add_14, clamp_max_10, clamp_min_10, clamp_min_8, convert_element_type_8, iota_4, mul_26, sub_14, sub_16 # Graph fragment: # %iota_4 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_4, torch.float32), kwargs = {}) # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_8, 0.5), kwargs = {}) # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_14, 0.5), kwargs = {}) # %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_26, 0.5), kwargs = {}) # %clamp_min_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_14, 0.0), kwargs = {}) # %sub_16 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_8, %convert_element_type_11), kwargs = {}) # %clamp_min_10 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_16, 0.0), kwargs = {}) # %clamp_max_10 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_10, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_26 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_26', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_26', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_26(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qc/cqcxmomsd2pfozktj753ije5uupmwdotvhhglolxtdikeyegh5yz.py # Topologically Sorted Source Nodes: [conv2d_15, x_21, x_22], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # conv2d_15 => convolution_15 # x_21 => mul_25, where_15 # x_22 => _unsafe_index_10, _unsafe_index_11, _unsafe_index_8, _unsafe_index_9, add_18, add_19, add_20, mul_28, mul_29, mul_30, sub_17, sub_18, sub_20 # Graph fragment: # %convolution_15 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_32, %primals_33, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_15, 0.1), kwargs = {}) # %where_15 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_15, %convolution_15, %mul_25), kwargs = {}) # %_unsafe_index_8 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %convert_element_type_9, %convert_element_type_11]), kwargs = {}) # %_unsafe_index_9 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %convert_element_type_9, %clamp_max_9]), kwargs = {}) # %_unsafe_index_10 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %clamp_max_8, %convert_element_type_11]), kwargs = {}) # %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %clamp_max_8, %clamp_max_9]), kwargs = {}) # %sub_17 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_9, %_unsafe_index_8), kwargs = {}) # %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, %clamp_max_10), kwargs = {}) # %add_18 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_8, %mul_28), kwargs = {}) # %sub_18 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_11, %_unsafe_index_10), kwargs = {}) # %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_18, %clamp_max_10), kwargs = {}) # %add_19 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_10, %mul_29), kwargs = {}) # %sub_20 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_19, %add_18), kwargs = {}) # %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_20, %clamp_max_11), kwargs = {}) # %add_20 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_18, %mul_30), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 16) % 16 x0 = xindex % 16 x6 = (xindex // 256) x2 = (xindex // 256) % 256 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (8*tmp4) + (64*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + (8*tmp4) + (64*x6)), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + (8*tmp19) + (64*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + (8*tmp19) + (64*x6)), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + (8*tmp19) + (64*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + (8*tmp19) + (64*x6)), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + (8*tmp4) + (64*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + (8*tmp4) + (64*x6)), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + (x4), tmp49, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2n/c2ncutq26bahxlgkdh4rlnvyr47bwimc4zzutvjxr5n6y6efndwb.py # Topologically Sorted Source Nodes: [conv2d_16, x_23], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_16 => convolution_16 # x_23 => gt_16 # Graph fragment: # %convolution_16 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_20, %primals_34, %primals_35, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_16 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_16, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_28 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_28', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_28', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_28(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oe/coeffqdqijre65ihx7pvd5fl3wkvhaztzhmg43n5sxftyfhfnesu.py # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_2 => cat_2 # Graph fragment: # %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_16, %where_5], 1), kwargs = {}) triton_poi_fused_cat_29 = async_compile.triton('triton_poi_fused_cat_29', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_29', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_29(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 256) % 256 x0 = xindex % 256 x2 = (xindex // 65536) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (256*x1) + (32768*x2)), tmp4, other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + (256*x1) + (32768*x2)), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 256, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + (x0 + (256*((-128) + x1)) + (32768*x2)), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x3), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kk/ckknliedqrn55tdjnurtw2wmbhy4m7nftlest3rkcxytrug6sjjb.py # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_25 => convert_element_type_13 # Graph fragment: # %convert_element_type_13 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {}) triton_poi_fused__to_copy_30 = async_compile.triton('triton_poi_fused__to_copy_30', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_30', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_30(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yi/cyid3ait3xdgmowp4yeresvz4pwdwiylxhglyhgg7hauo5drkgwr.py # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_25 => add_22, clamp_max_12 # Graph fragment: # %add_22 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_13, 1), kwargs = {}) # %clamp_max_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_22, 15), kwargs = {}) triton_poi_fused_add_clamp_31 = async_compile.triton('triton_poi_fused_add_clamp_31', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_31', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_31(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 15, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2b/c2bhdwgkdtsx66umnkggdw7khh2c5wl4ogab34mcyesmsvh7u75z.py # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x_25 => add_21, clamp_max_14, clamp_min_12, clamp_min_14, convert_element_type_12, iota_6, mul_33, sub_21, sub_23 # Graph fragment: # %iota_6 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_12 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_6, torch.float32), kwargs = {}) # %add_21 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_12, 0.5), kwargs = {}) # %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_21, 0.5), kwargs = {}) # %sub_21 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_33, 0.5), kwargs = {}) # %clamp_min_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_21, 0.0), kwargs = {}) # %sub_23 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_12, %convert_element_type_15), kwargs = {}) # %clamp_min_14 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_23, 0.0), kwargs = {}) # %clamp_max_14 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_14, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_32 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_32', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_32', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_32(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/74/c74xhgb6wezra6e6cyzbt6yotgcl7i7n4p3es6nogdaczlcdlrl4.py # Topologically Sorted Source Nodes: [conv2d_17, x_24, x_25], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # conv2d_17 => convolution_17 # x_24 => mul_32, where_17 # x_25 => _unsafe_index_12, _unsafe_index_13, _unsafe_index_14, _unsafe_index_15, add_25, add_26, add_27, mul_35, mul_36, mul_37, sub_24, sub_25, sub_27 # Graph fragment: # %convolution_17 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_36, %primals_37, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_17, 0.1), kwargs = {}) # %where_17 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_17, %convolution_17, %mul_32), kwargs = {}) # %_unsafe_index_12 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_17, [None, None, %convert_element_type_13, %convert_element_type_15]), kwargs = {}) # %_unsafe_index_13 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_17, [None, None, %convert_element_type_13, %clamp_max_13]), kwargs = {}) # %_unsafe_index_14 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_17, [None, None, %clamp_max_12, %convert_element_type_15]), kwargs = {}) # %_unsafe_index_15 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_17, [None, None, %clamp_max_12, %clamp_max_13]), kwargs = {}) # %sub_24 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_13, %_unsafe_index_12), kwargs = {}) # %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_24, %clamp_max_14), kwargs = {}) # %add_25 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_12, %mul_35), kwargs = {}) # %sub_25 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_15, %_unsafe_index_14), kwargs = {}) # %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_25, %clamp_max_14), kwargs = {}) # %add_26 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_14, %mul_36), kwargs = {}) # %sub_27 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_26, %add_25), kwargs = {}) # %mul_37 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_27, %clamp_max_15), kwargs = {}) # %add_27 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_25, %mul_37), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 32) % 32 x0 = xindex % 32 x6 = (xindex // 1024) x2 = (xindex // 1024) % 128 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + (x4), tmp49, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hu/chuh444ehiqujq3pobg3s6kf4jk3jfs66ff4yxzuqyv7z7gvdw4l.py # Topologically Sorted Source Nodes: [conv2d_18, x_26], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_18 => convolution_18 # x_26 => gt_18 # Graph fragment: # %convolution_18 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_27, %primals_38, %primals_39, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_18 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_18, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_34 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_34', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_34', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_34(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wo/cwov5xjz2rgypru6odo5shttzkvjzbv2j5h765xadmngxefsg27w.py # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_3 => cat_3 # Graph fragment: # %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_18, %where_3], 1), kwargs = {}) triton_poi_fused_cat_35 = async_compile.triton('triton_poi_fused_cat_35', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_35', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_35(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 1024) % 128 x0 = xindex % 1024 x2 = (xindex // 131072) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (1024*x1) + (65536*x2)), tmp4, other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + (1024*x1) + (65536*x2)), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 128, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + (x0 + (1024*((-64) + x1)) + (65536*x2)), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x3), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dy/cdyi77rlf5lxwibfyd5p2m432vdqftcfdpn6tuqyv7hyajbxkkvo.py # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_28 => convert_element_type_17 # Graph fragment: # %convert_element_type_17 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_8, torch.int64), kwargs = {}) triton_poi_fused__to_copy_36 = async_compile.triton('triton_poi_fused__to_copy_36', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_36', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_36(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/l5/cl5xfazaijdiktz5n5gqb2xvmg6f5wpggcjdlnx676ib5wqnt2bo.py # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_28 => add_29, clamp_max_16 # Graph fragment: # %add_29 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_17, 1), kwargs = {}) # %clamp_max_16 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_29, 31), kwargs = {}) triton_poi_fused_add_clamp_37 = async_compile.triton('triton_poi_fused_add_clamp_37', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_37', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_37(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 31, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zw/czwrbkjbdq3qzzeebsz3vxkktcfyv5fp5csjdanc2n4yhokgkzxs.py # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x_28 => add_28, clamp_max_18, clamp_min_16, clamp_min_18, convert_element_type_16, iota_8, mul_40, sub_28, sub_30 # Graph fragment: # %iota_8 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_16 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_8, torch.float32), kwargs = {}) # %add_28 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_16, 0.5), kwargs = {}) # %mul_40 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_28, 0.5), kwargs = {}) # %sub_28 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_40, 0.5), kwargs = {}) # %clamp_min_16 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_28, 0.0), kwargs = {}) # %sub_30 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_16, %convert_element_type_19), kwargs = {}) # %clamp_min_18 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_30, 0.0), kwargs = {}) # %clamp_max_18 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_18, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_38 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_38', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_38', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_38(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/cj/ccjteqzvlszshm7xogphjn6lezrnhtguz6t2ft3y2qrajrcko2wk.py # Topologically Sorted Source Nodes: [conv2d_19, x_27, x_28], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # conv2d_19 => convolution_19 # x_27 => mul_39, where_19 # x_28 => _unsafe_index_16, _unsafe_index_17, _unsafe_index_18, _unsafe_index_19, add_32, add_33, add_34, mul_42, mul_43, mul_44, sub_31, sub_32, sub_34 # Graph fragment: # %convolution_19 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_3, %primals_40, %primals_41, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_39 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_19, 0.1), kwargs = {}) # %where_19 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_19, %convolution_19, %mul_39), kwargs = {}) # %_unsafe_index_16 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_19, [None, None, %convert_element_type_17, %convert_element_type_19]), kwargs = {}) # %_unsafe_index_17 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_19, [None, None, %convert_element_type_17, %clamp_max_17]), kwargs = {}) # %_unsafe_index_18 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_19, [None, None, %clamp_max_16, %convert_element_type_19]), kwargs = {}) # %_unsafe_index_19 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_19, [None, None, %clamp_max_16, %clamp_max_17]), kwargs = {}) # %sub_31 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_17, %_unsafe_index_16), kwargs = {}) # %mul_42 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_31, %clamp_max_18), kwargs = {}) # %add_32 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_16, %mul_42), kwargs = {}) # %sub_32 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_19, %_unsafe_index_18), kwargs = {}) # %mul_43 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_32, %clamp_max_18), kwargs = {}) # %add_33 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_18, %mul_43), kwargs = {}) # %sub_34 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_33, %add_32), kwargs = {}) # %mul_44 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_34, %clamp_max_19), kwargs = {}) # %add_34 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_32, %mul_44), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 64) % 64 x0 = xindex % 64 x6 = (xindex // 4096) x2 = (xindex // 4096) % 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + (x4), tmp49, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vz/cvzt4swwgye3zpxep4ligqcdlu5xxf7fecsvlec4qsz3qtn6tkxy.py # Topologically Sorted Source Nodes: [conv2d_20, x_29], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_20 => convolution_20 # x_29 => gt_20 # Graph fragment: # %convolution_20 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_34, %primals_42, %primals_43, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_20 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_20, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_40 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_40', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_40', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_40(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rm/crmdmqyxav4fb4725fm2hhwf6m4yrxuhqmo2dbcjkiu6gomd2akp.py # Topologically Sorted Source Nodes: [cat_4], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_4 => cat_4 # Graph fragment: # %cat_4 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_20, %where_1], 1), kwargs = {}) triton_poi_fused_cat_41 = async_compile.triton('triton_poi_fused_cat_41', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_41', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_41(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 64 x0 = xindex % 4096 x2 = (xindex // 262144) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (131072*x2)), tmp4, other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + (4096*x1) + (131072*x2)), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 64, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + (x0 + (4096*((-32) + x1)) + (131072*x2)), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x3), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/p7/cp74qdkmdadhqce4dzechhvpihfuica6bbejv65ptme5otg3jhj3.py # Topologically Sorted Source Nodes: [conv2d_22, x_31], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_22 => convolution_22 # x_31 => gt_22, mul_47, where_22 # Graph fragment: # %convolution_22 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_21, %primals_46, %primals_47, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_22 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_22, 0), kwargs = {}) # %mul_47 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_22, 0.1), kwargs = {}) # %where_22 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_22, %convolution_22, %mul_47), kwargs = {}) triton_poi_fused_convolution_leaky_relu_42 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_42', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_42', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_42(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 4 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47 = args args.clear() assert_size_stride(primals_1, (32, 4, 7, 7), (196, 49, 7, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (32, 32, 7, 7), (1568, 49, 7, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (64, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (128, ), (1, )) assert_size_stride(primals_14, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (256, ), (1, )) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256, ), (1, )) assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (512, ), (1, )) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512, ), (1, )) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512, ), (1, )) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512, ), (1, )) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512, ), (1, )) assert_size_stride(primals_28, (512, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_29, (512, ), (1, )) assert_size_stride(primals_30, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_31, (256, ), (1, )) assert_size_stride(primals_32, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_33, (256, ), (1, )) assert_size_stride(primals_34, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_35, (128, ), (1, )) assert_size_stride(primals_36, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_37, (128, ), (1, )) assert_size_stride(primals_38, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_39, (64, ), (1, )) assert_size_stride(primals_40, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_41, (64, ), (1, )) assert_size_stride(primals_42, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_43, (32, ), (1, )) assert_size_stride(primals_44, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_45, (32, ), (1, )) assert_size_stride(primals_46, (4, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_47, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf2 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 524288, grid=grid(524288), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf4 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d_1, s1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 524288, grid=grid(524288), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_1.run(buf5, buf6, 131072, grid=grid(131072), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf8 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) buf9 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf7, primals_7, buf8, buf9, 262144, grid=grid(262144), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf11 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) buf12 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf10, primals_9, buf11, buf12, 262144, grid=grid(262144), stream=stream0) del primals_9 buf13 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_3.run(buf12, buf13, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 128, 16, 16), (32768, 256, 16, 1)) buf15 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf16 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_4.run(buf14, primals_11, buf15, buf16, 131072, grid=grid(131072), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 128, 16, 16), (32768, 256, 16, 1)) buf18 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf19 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [conv2d_5, x_6], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_4.run(buf17, primals_13, buf18, buf19, 131072, grid=grid(131072), stream=stream0) del primals_13 buf20 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_5.run(buf19, buf20, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf20, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 256, 8, 8), (16384, 64, 8, 1)) buf22 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) buf23 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_6, x_8], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_6.run(buf21, primals_15, buf22, buf23, 65536, grid=grid(65536), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 256, 8, 8), (16384, 64, 8, 1)) buf25 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) buf26 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [conv2d_7, x_9], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_6.run(buf24, primals_17, buf25, buf26, 65536, grid=grid(65536), stream=stream0) del primals_17 buf27 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_7.run(buf26, buf27, 16384, grid=grid(16384), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 512, 4, 4), (8192, 16, 4, 1)) buf29 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool) buf30 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_8, x_11], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_8.run(buf28, primals_19, buf29, buf30, 32768, grid=grid(32768), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf31 = extern_kernels.convolution(buf30, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 512, 4, 4), (8192, 16, 4, 1)) buf32 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool) buf33 = buf28; del buf28 # reuse # Topologically Sorted Source Nodes: [conv2d_9, x_12], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_8.run(buf31, primals_21, buf32, buf33, 32768, grid=grid(32768), stream=stream0) del primals_21 buf34 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_9.run(buf33, buf34, 8192, grid=grid(8192), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf35 = extern_kernels.convolution(buf34, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 512, 2, 2), (2048, 4, 2, 1)) buf36 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.bool) buf37 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_10, x_14], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_10.run(buf35, primals_23, buf36, buf37, 8192, grid=grid(8192), stream=stream0) del buf35 del primals_23 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 512, 2, 2), (2048, 4, 2, 1)) buf39 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_11, x_15], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_11.run(buf38, primals_25, buf39, 8192, grid=grid(8192), stream=stream0) buf40 = empty_strided_cuda((4, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_12.run(buf40, 4, grid=grid(4), stream=stream0) buf41 = empty_strided_cuda((4, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_13.run(buf41, 4, grid=grid(4), stream=stream0) buf42 = empty_strided_cuda((4, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_12.run(buf42, 4, grid=grid(4), stream=stream0) buf43 = empty_strided_cuda((4, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_13.run(buf43, 4, grid=grid(4), stream=stream0) buf46 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14.run(buf46, 4, grid=grid(4), stream=stream0) buf48 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14.run(buf48, 4, grid=grid(4), stream=stream0) buf45 = buf31; del buf31 # reuse buf49 = buf45; del buf45 # reuse buf50 = buf49; del buf49 # reuse # Topologically Sorted Source Nodes: [conv2d_11, x_15, x_16], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15.run(buf50, buf41, buf42, buf39, buf38, primals_25, buf40, buf43, buf46, buf48, 32768, grid=grid(32768), stream=stream0) del buf38 del primals_25 # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] buf51 = extern_kernels.convolution(buf50, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf51, (4, 512, 4, 4), (8192, 16, 4, 1)) buf52 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_12, x_17], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_16.run(buf51, primals_27, buf52, 32768, grid=grid(32768), stream=stream0) buf53 = reinterpret_tensor(buf24, (4, 1024, 4, 4), (16384, 16, 4, 1), 0); del buf24 # reuse # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_17.run(buf52, buf51, primals_27, buf33, buf53, 65536, grid=grid(65536), stream=stream0) del buf51 del primals_27 # Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution] buf54 = extern_kernels.convolution(buf53, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf54, (4, 512, 4, 4), (8192, 16, 4, 1)) buf55 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_13, x_18], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_16.run(buf54, primals_29, buf55, 32768, grid=grid(32768), stream=stream0) buf56 = empty_strided_cuda((8, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_18.run(buf56, 8, grid=grid(8), stream=stream0) buf57 = empty_strided_cuda((8, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_19.run(buf57, 8, grid=grid(8), stream=stream0) buf58 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_18.run(buf58, 8, grid=grid(8), stream=stream0) buf59 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_19.run(buf59, 8, grid=grid(8), stream=stream0) buf62 = empty_strided_cuda((8, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_20.run(buf62, 8, grid=grid(8), stream=stream0) buf64 = empty_strided_cuda((8, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_20.run(buf64, 8, grid=grid(8), stream=stream0) buf61 = reinterpret_tensor(buf17, (4, 512, 8, 8), (32768, 64, 8, 1), 0); del buf17 # reuse buf65 = buf61; del buf61 # reuse buf66 = buf65; del buf65 # reuse # Topologically Sorted Source Nodes: [conv2d_13, x_18, x_19], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21.run(buf66, buf57, buf58, buf55, buf54, primals_29, buf56, buf59, buf62, buf64, 131072, grid=grid(131072), stream=stream0) del buf54 del primals_29 # Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution] buf67 = extern_kernels.convolution(buf66, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf67, (4, 256, 8, 8), (16384, 64, 8, 1)) buf68 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_14, x_20], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_22.run(buf67, primals_31, buf68, 65536, grid=grid(65536), stream=stream0) buf69 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_23.run(buf68, buf67, primals_31, buf26, buf69, 131072, grid=grid(131072), stream=stream0) del buf67 del primals_31 # Topologically Sorted Source Nodes: [conv2d_15], Original ATen: [aten.convolution] buf70 = extern_kernels.convolution(buf69, primals_32, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf70, (4, 256, 8, 8), (16384, 64, 8, 1)) buf71 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_15, x_21], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_22.run(buf70, primals_33, buf71, 65536, grid=grid(65536), stream=stream0) buf72 = empty_strided_cuda((16, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_24.run(buf72, 16, grid=grid(16), stream=stream0) buf73 = empty_strided_cuda((16, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_25.run(buf73, 16, grid=grid(16), stream=stream0) buf74 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_24.run(buf74, 16, grid=grid(16), stream=stream0) buf75 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_25.run(buf75, 16, grid=grid(16), stream=stream0) buf78 = empty_strided_cuda((16, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_26.run(buf78, 16, grid=grid(16), stream=stream0) buf80 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_26.run(buf80, 16, grid=grid(16), stream=stream0) buf77 = reinterpret_tensor(buf10, (4, 256, 16, 16), (65536, 256, 16, 1), 0); del buf10 # reuse buf81 = buf77; del buf77 # reuse buf82 = buf81; del buf81 # reuse # Topologically Sorted Source Nodes: [conv2d_15, x_21, x_22], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27.run(buf82, buf73, buf74, buf71, buf70, primals_33, buf72, buf75, buf78, buf80, 262144, grid=grid(262144), stream=stream0) del primals_33 # Topologically Sorted Source Nodes: [conv2d_16], Original ATen: [aten.convolution] buf83 = extern_kernels.convolution(buf82, primals_34, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf83, (4, 128, 16, 16), (32768, 256, 16, 1)) buf84 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_16, x_23], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_28.run(buf83, primals_35, buf84, 131072, grid=grid(131072), stream=stream0) buf85 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] triton_poi_fused_cat_29.run(buf84, buf83, primals_35, buf19, buf85, 262144, grid=grid(262144), stream=stream0) del buf83 del primals_35 # Topologically Sorted Source Nodes: [conv2d_17], Original ATen: [aten.convolution] buf86 = extern_kernels.convolution(buf85, primals_36, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf86, (4, 128, 16, 16), (32768, 256, 16, 1)) buf87 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_17, x_24], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_28.run(buf86, primals_37, buf87, 131072, grid=grid(131072), stream=stream0) buf88 = empty_strided_cuda((32, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_30.run(buf88, 32, grid=grid(32), stream=stream0) buf89 = empty_strided_cuda((32, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_31.run(buf89, 32, grid=grid(32), stream=stream0) buf90 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_30.run(buf90, 32, grid=grid(32), stream=stream0) buf91 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_31.run(buf91, 32, grid=grid(32), stream=stream0) buf94 = empty_strided_cuda((32, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_32.run(buf94, 32, grid=grid(32), stream=stream0) buf96 = empty_strided_cuda((32, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_32.run(buf96, 32, grid=grid(32), stream=stream0) buf93 = reinterpret_tensor(buf3, (4, 128, 32, 32), (131072, 1024, 32, 1), 0); del buf3 # reuse buf97 = buf93; del buf93 # reuse buf98 = buf97; del buf97 # reuse # Topologically Sorted Source Nodes: [conv2d_17, x_24, x_25], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33.run(buf98, buf89, buf90, buf87, buf86, primals_37, buf88, buf91, buf94, buf96, 524288, grid=grid(524288), stream=stream0) del buf86 del primals_37 # Topologically Sorted Source Nodes: [conv2d_18], Original ATen: [aten.convolution] buf99 = extern_kernels.convolution(buf98, primals_38, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf99, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf100 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_18, x_26], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_34.run(buf99, primals_39, buf100, 262144, grid=grid(262144), stream=stream0) buf101 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] triton_poi_fused_cat_35.run(buf100, buf99, primals_39, buf12, buf101, 524288, grid=grid(524288), stream=stream0) del buf99 del primals_39 # Topologically Sorted Source Nodes: [conv2d_19], Original ATen: [aten.convolution] buf102 = extern_kernels.convolution(buf101, primals_40, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf102, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf103 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_19, x_27], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_34.run(buf102, primals_41, buf103, 262144, grid=grid(262144), stream=stream0) buf104 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_36.run(buf104, 64, grid=grid(64), stream=stream0) buf105 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_37.run(buf105, 64, grid=grid(64), stream=stream0) buf106 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_36.run(buf106, 64, grid=grid(64), stream=stream0) buf107 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_37.run(buf107, 64, grid=grid(64), stream=stream0) buf110 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_38.run(buf110, 64, grid=grid(64), stream=stream0) buf112 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_38.run(buf112, 64, grid=grid(64), stream=stream0) buf109 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) buf113 = buf109; del buf109 # reuse buf114 = buf113; del buf113 # reuse # Topologically Sorted Source Nodes: [conv2d_19, x_27, x_28], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39.run(buf114, buf105, buf106, buf103, buf102, primals_41, buf104, buf107, buf110, buf112, 1048576, grid=grid(1048576), stream=stream0) del buf102 del primals_41 # Topologically Sorted Source Nodes: [conv2d_20], Original ATen: [aten.convolution] buf115 = extern_kernels.convolution(buf114, primals_42, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf115, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf116 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_20, x_29], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_40.run(buf115, primals_43, buf116, 524288, grid=grid(524288), stream=stream0) buf117 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_4], Original ATen: [aten.cat] triton_poi_fused_cat_41.run(buf116, buf115, primals_43, buf5, buf117, 1048576, grid=grid(1048576), stream=stream0) del primals_43 # Topologically Sorted Source Nodes: [conv2d_21], Original ATen: [aten.convolution] buf118 = extern_kernels.convolution(buf117, primals_44, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf118, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf119 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf120 = buf115; del buf115 # reuse # Topologically Sorted Source Nodes: [conv2d_21, x_30], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf118, primals_45, buf119, buf120, 524288, grid=grid(524288), stream=stream0) del buf118 del primals_45 # Topologically Sorted Source Nodes: [conv2d_22], Original ATen: [aten.convolution] buf121 = extern_kernels.convolution(buf120, primals_46, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf121, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf122 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.bool) buf123 = reinterpret_tensor(buf70, (4, 4, 64, 64), (16384, 4096, 64, 1), 0); del buf70 # reuse # Topologically Sorted Source Nodes: [conv2d_22, x_31], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_42.run(buf121, primals_47, buf122, buf123, 65536, grid=grid(65536), stream=stream0) del buf121 del primals_47 return (buf123, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, primals_42, primals_44, primals_46, buf1, buf2, buf4, buf5, buf6, buf8, buf9, buf11, buf12, buf13, buf15, buf16, buf18, buf19, buf20, buf22, buf23, buf25, buf26, buf27, buf29, buf30, buf32, buf33, buf34, buf36, buf37, buf39, buf40, buf41, buf42, buf43, buf46, buf48, buf50, buf52, buf53, buf55, buf56, buf57, buf58, buf59, buf62, buf64, buf66, buf68, buf69, buf71, buf72, buf73, buf74, buf75, buf78, buf80, buf82, buf84, buf85, buf87, buf88, buf89, buf90, buf91, buf94, buf96, buf98, buf100, buf101, buf103, buf104, buf105, buf106, buf107, buf110, buf112, buf114, buf116, buf117, buf119, buf120, buf122, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 4, 7, 7), (196, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 32, 7, 7), (1568, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 64, 5, 5), (1600, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((512, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_36 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_37 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_38 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_39 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_40 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_41 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_42 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_43 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_44 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_45 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_46 = rand_strided((4, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_47 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.functional import F import torch.nn as nn import torch.nn.functional as F class down(nn.Module): """ A class for creating neural network blocks containing layers: Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels, filterSize): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used as input and output channels for the second convolutional layer. filterSize : int filter size for the convolution filter. input N would create a N x N filter. """ super(down, self).__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride= 1, padding=int((filterSize - 1) / 2)) self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride =1, padding=int((filterSize - 1) / 2)) def forward(self, x): """ Returns output tensor after passing input `x` to the neural network block. Parameters ---------- x : tensor input to the NN block. Returns ------- tensor output of the NN block. """ x = F.avg_pool2d(x, 2) x = F.leaky_relu(self.conv1(x), negative_slope=0.1) x = F.leaky_relu(self.conv2(x), negative_slope=0.1) return x class up(nn.Module): """ A class for creating neural network blocks containing layers: Bilinear interpolation --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x, skpCn) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used for setting input and output channels for the second convolutional layer. """ super(up, self).__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, 3, stride=1, padding=1) self.conv2 = nn.Conv2d(2 * outChannels, outChannels, 3, stride=1, padding=1) def forward(self, x, skpCn): """ Returns output tensor after passing input `x` to the neural network block. Parameters ---------- x : tensor input to the NN block. skpCn : tensor skip connection input to the NN block. Returns ------- tensor output of the NN block. """ x = F.interpolate(x, scale_factor=2, mode='bilinear') x = F.leaky_relu(self.conv1(x), negative_slope=0.1) x = F.leaky_relu(self.conv2(torch.cat((x, skpCn), 1)), negative_slope=0.1) return x class UNet(nn.Module): """ A class for creating UNet like architecture as specified by the Super SloMo paper. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels): """ Parameters ---------- inChannels : int number of input channels for the UNet. outChannels : int number of output channels for the UNet. """ super(UNet, self).__init__() self.conv1 = nn.Conv2d(inChannels, 32, 7, stride=1, padding=3) self.conv2 = nn.Conv2d(32, 32, 7, stride=1, padding=3) self.down1 = down(32, 64, 5) self.down2 = down(64, 128, 3) self.down3 = down(128, 256, 3) self.down4 = down(256, 512, 3) self.down5 = down(512, 512, 3) self.up1 = up(512, 512) self.up2 = up(512, 256) self.up3 = up(256, 128) self.up4 = up(128, 64) self.up5 = up(64, 32) self.conv3 = nn.Conv2d(32, outChannels, 3, stride=1, padding=1) def forward(self, x): """ Returns output tensor after passing input `x` to the neural network. Parameters ---------- x : tensor input to the UNet. Returns ------- tensor output of the UNet. """ x = F.leaky_relu(self.conv1(x), negative_slope=0.1) s1 = F.leaky_relu(self.conv2(x), negative_slope=0.1) s2 = self.down1(s1) s3 = self.down2(s2) s4 = self.down3(s3) s5 = self.down4(s4) x = self.down5(s5) x = self.up1(x, s5) x = self.up2(x, s4) x = self.up3(x, s3) x = self.up4(x, s2) x = self.up5(x, s1) x = F.leaky_relu(self.conv3(x), negative_slope=0.1) return x def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [[], {'inChannels': 4, 'outChannels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.functional import F import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_avg_pool2d_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_avg_pool2d_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 16 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 16 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (8 + 2 * x0 + 16 * x1), None, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (9 + 2 * x0 + 16 * x1), None, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_avg_pool2d_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), None, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), None, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_11(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = triton_helpers.minimum(tmp10, tmp9) tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15( in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4 % 4 x0 = xindex % 4 x6 = xindex // 16 x2 = xindex // 16 % 512 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 2, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 2 * tmp4 + 4 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + 2 * tmp4 + 4 * x6), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + 2 * tmp19 + 4 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + 2 * tmp19 + 4 * x6), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + 2 * tmp19 + 4 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + 2 * tmp19 + 4 * x6), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + 2 * tmp4 + 4 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + 2 * tmp4 + 4 * x6), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + x4, tmp49, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_17(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 16 % 1024 x0 = xindex % 16 x2 = xindex // 16384 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 512, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 8192 * x2), tmp4, other=0.0).to(tl .int1) tmp6 = tl.load(in_ptr1 + (x0 + 16 * x1 + 8192 * x2), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 1024, tl.int64) tmp17 = tl.load(in_ptr3 + (x0 + 16 * (-512 + x1) + 8192 * x2), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x3, tmp18, None) @triton.jit def triton_poi_fused__to_copy_18(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_19(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 3, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_20(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21( in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 8 % 8 x0 = xindex % 8 x6 = xindex // 64 x2 = xindex // 64 % 512 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 4 * tmp4 + 16 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + 4 * tmp4 + 16 * x6), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + 4 * tmp19 + 16 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + 4 * tmp19 + 16 * x6), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + 4 * tmp19 + 16 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + 4 * tmp19 + 16 * x6), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + 4 * tmp4 + 16 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + 4 * tmp4 + 16 * x6), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + x4, tmp49, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_23(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 64 % 512 x0 = xindex % 64 x2 = xindex // 32768 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x1 + 16384 * x2), tmp4, other=0.0).to( tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + 64 * x1 + 16384 * x2), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 512, tl.int64) tmp17 = tl.load(in_ptr3 + (x0 + 64 * (-256 + x1) + 16384 * x2), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x3, tmp18, None) @triton.jit def triton_poi_fused__to_copy_24(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_25(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 7, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_26(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27( in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 16 % 16 x0 = xindex % 16 x6 = xindex // 256 x2 = xindex // 256 % 256 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 8 * tmp4 + 64 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + 8 * tmp4 + 64 * x6), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + 8 * tmp19 + 64 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + 8 * tmp19 + 64 * x6), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + 8 * tmp19 + 64 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + 8 * tmp19 + 64 * x6), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + 8 * tmp4 + 64 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + 8 * tmp4 + 64 * x6), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + x4, tmp49, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_28(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_29(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 256 % 256 x0 = xindex % 256 x2 = xindex // 65536 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 256 * x1 + 32768 * x2), tmp4, other=0.0).to( tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + 256 * x1 + 32768 * x2), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 256, tl.int64) tmp17 = tl.load(in_ptr3 + (x0 + 256 * (-128 + x1) + 32768 * x2), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x3, tmp18, None) @triton.jit def triton_poi_fused__to_copy_30(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_31(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 15, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_32(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33( in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 32 % 32 x0 = xindex % 32 x6 = xindex // 1024 x2 = xindex // 1024 % 128 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 16 * tmp4 + 256 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + 16 * tmp4 + 256 * x6), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + 16 * tmp19 + 256 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + 16 * tmp19 + 256 * x6), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + 16 * tmp19 + 256 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + 16 * tmp19 + 256 * x6), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + 16 * tmp4 + 256 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + 16 * tmp4 + 256 * x6), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + x4, tmp49, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_34(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_35(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 1024 % 128 x0 = xindex % 1024 x2 = xindex // 131072 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 1024 * x1 + 65536 * x2), tmp4, other=0.0 ).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + 1024 * x1 + 65536 * x2), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 128, tl.int64) tmp17 = tl.load(in_ptr3 + (x0 + 1024 * (-64 + x1) + 65536 * x2), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x3, tmp18, None) @triton.jit def triton_poi_fused__to_copy_36(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_37(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 31, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_38(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39( in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 64 % 64 x0 = xindex % 64 x6 = xindex // 4096 x2 = xindex // 4096 % 64 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 32 * tmp4 + 1024 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + 32 * tmp4 + 1024 * x6), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + 32 * tmp19 + 1024 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + 32 * tmp19 + 1024 * x6), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + 32 * tmp19 + 1024 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + 32 * tmp19 + 1024 * x6), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + 32 * tmp4 + 1024 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + 32 * tmp4 + 1024 * x6), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + x4, tmp49, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_40(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_41(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 64 x0 = xindex % 4096 x2 = xindex // 262144 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 131072 * x2), tmp4, other=0.0 ).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + 4096 * x1 + 131072 * x2), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 64, tl.int64) tmp17 = tl.load(in_ptr3 + (x0 + 4096 * (-32 + x1) + 131072 * x2), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x3, tmp18, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_42(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 4 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47) = args args.clear() assert_size_stride(primals_1, (32, 4, 7, 7), (196, 49, 7, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (32, 32, 7, 7), (1568, 49, 7, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (64, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (128,), (1,)) assert_size_stride(primals_14, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256,), (1,)) assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (512,), (1,)) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512,), (1,)) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512,), (1,)) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512,), (1,)) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512,), (1,)) assert_size_stride(primals_28, (512, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_29, (512,), (1,)) assert_size_stride(primals_30, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_31, (256,), (1,)) assert_size_stride(primals_32, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_33, (256,), (1,)) assert_size_stride(primals_34, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_35, (128,), (1,)) assert_size_stride(primals_36, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_37, (128,), (1,)) assert_size_stride(primals_38, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_39, (64,), (1,)) assert_size_stride(primals_40, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_41, (64,), (1,)) assert_size_stride(primals_42, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_43, (32,), (1,)) assert_size_stride(primals_44, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_45, (32,), (1,)) assert_size_stride(primals_46, (4, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_47, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf2 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf0, primals_2, buf1, buf2, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf4 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf5 = buf0 del buf0 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf3, primals_5, buf4, buf5, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) triton_poi_fused_avg_pool2d_1[grid(131072)](buf5, buf6, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf8 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) buf9 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_2[grid(262144)](buf7, primals_7, buf8, buf9, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_7 buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf11 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) buf12 = buf7 del buf7 triton_poi_fused_convolution_leaky_relu_2[grid(262144)](buf10, primals_9, buf11, buf12, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_9 buf13 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.float32) triton_poi_fused_avg_pool2d_3[grid(65536)](buf12, buf13, 65536, XBLOCK=256, num_warps=4, num_stages=1) buf14 = extern_kernels.convolution(buf13, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 128, 16, 16), (32768, 256, 16, 1)) buf15 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf16 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_4[grid(131072)](buf14, primals_11, buf15, buf16, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_11 buf17 = extern_kernels.convolution(buf16, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 128, 16, 16), (32768, 256, 16, 1)) buf18 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf19 = buf14 del buf14 triton_poi_fused_convolution_leaky_relu_4[grid(131072)](buf17, primals_13, buf18, buf19, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_13 buf20 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch. float32) triton_poi_fused_avg_pool2d_5[grid(32768)](buf19, buf20, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf21 = extern_kernels.convolution(buf20, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 256, 8, 8), (16384, 64, 8, 1)) buf22 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) buf23 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .float32) triton_poi_fused_convolution_leaky_relu_6[grid(65536)](buf21, primals_15, buf22, buf23, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 buf24 = extern_kernels.convolution(buf23, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 256, 8, 8), (16384, 64, 8, 1)) buf25 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) buf26 = buf21 del buf21 triton_poi_fused_convolution_leaky_relu_6[grid(65536)](buf24, primals_17, buf25, buf26, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_17 buf27 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch. float32) triton_poi_fused_avg_pool2d_7[grid(16384)](buf26, buf27, 16384, XBLOCK=128, num_warps=4, num_stages=1) buf28 = extern_kernels.convolution(buf27, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 512, 4, 4), (8192, 16, 4, 1)) buf29 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool ) buf30 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch. float32) triton_poi_fused_convolution_leaky_relu_8[grid(32768)](buf28, primals_19, buf29, buf30, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_19 buf31 = extern_kernels.convolution(buf30, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 512, 4, 4), (8192, 16, 4, 1)) buf32 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool ) buf33 = buf28 del buf28 triton_poi_fused_convolution_leaky_relu_8[grid(32768)](buf31, primals_21, buf32, buf33, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_21 buf34 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch. float32) triton_poi_fused_avg_pool2d_9[grid(8192)](buf33, buf34, 8192, XBLOCK=128, num_warps=4, num_stages=1) buf35 = extern_kernels.convolution(buf34, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 512, 2, 2), (2048, 4, 2, 1)) buf36 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.bool) buf37 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch. float32) triton_poi_fused_convolution_leaky_relu_10[grid(8192)](buf35, primals_23, buf36, buf37, 8192, XBLOCK=256, num_warps=4, num_stages=1) del buf35 del primals_23 buf38 = extern_kernels.convolution(buf37, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 512, 2, 2), (2048, 4, 2, 1)) buf39 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_11[grid(8192)](buf38, primals_25, buf39, 8192, XBLOCK=128, num_warps=4, num_stages=1) buf40 = empty_strided_cuda((4, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_12[grid(4)](buf40, 4, XBLOCK=4, num_warps =1, num_stages=1) buf41 = empty_strided_cuda((4, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_13[grid(4)](buf41, 4, XBLOCK=4, num_warps=1, num_stages=1) buf42 = empty_strided_cuda((4,), (1,), torch.int64) triton_poi_fused__to_copy_12[grid(4)](buf42, 4, XBLOCK=4, num_warps =1, num_stages=1) buf43 = empty_strided_cuda((4,), (1,), torch.int64) triton_poi_fused_add_clamp_13[grid(4)](buf43, 4, XBLOCK=4, num_warps=1, num_stages=1) buf46 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14[grid(4)](buf46, 4, XBLOCK=4, num_warps=1, num_stages=1) buf48 = empty_strided_cuda((4, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14[grid(4)](buf48, 4, XBLOCK=4, num_warps=1, num_stages=1) buf45 = buf31 del buf31 buf49 = buf45 del buf45 buf50 = buf49 del buf49 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15[ grid(32768)](buf50, buf41, buf42, buf39, buf38, primals_25, buf40, buf43, buf46, buf48, 32768, XBLOCK=128, num_warps=4, num_stages=1) del buf38 del primals_25 buf51 = extern_kernels.convolution(buf50, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf51, (4, 512, 4, 4), (8192, 16, 4, 1)) buf52 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool ) triton_poi_fused_convolution_leaky_relu_16[grid(32768)](buf51, primals_27, buf52, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf53 = reinterpret_tensor(buf24, (4, 1024, 4, 4), (16384, 16, 4, 1), 0 ) del buf24 triton_poi_fused_cat_17[grid(65536)](buf52, buf51, primals_27, buf33, buf53, 65536, XBLOCK=256, num_warps=4, num_stages=1) del buf51 del primals_27 buf54 = extern_kernels.convolution(buf53, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf54, (4, 512, 4, 4), (8192, 16, 4, 1)) buf55 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool ) triton_poi_fused_convolution_leaky_relu_16[grid(32768)](buf54, primals_29, buf55, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf56 = empty_strided_cuda((8, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_18[grid(8)](buf56, 8, XBLOCK=8, num_warps =1, num_stages=1) buf57 = empty_strided_cuda((8, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_19[grid(8)](buf57, 8, XBLOCK=8, num_warps=1, num_stages=1) buf58 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused__to_copy_18[grid(8)](buf58, 8, XBLOCK=8, num_warps =1, num_stages=1) buf59 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused_add_clamp_19[grid(8)](buf59, 8, XBLOCK=8, num_warps=1, num_stages=1) buf62 = empty_strided_cuda((8,), (1,), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_20[grid(8)](buf62, 8, XBLOCK=8, num_warps=1, num_stages=1) buf64 = empty_strided_cuda((8, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_20[grid(8)](buf64, 8, XBLOCK=8, num_warps=1, num_stages=1) buf61 = reinterpret_tensor(buf17, (4, 512, 8, 8), (32768, 64, 8, 1), 0) del buf17 buf65 = buf61 del buf61 buf66 = buf65 del buf65 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21[ grid(131072)](buf66, buf57, buf58, buf55, buf54, primals_29, buf56, buf59, buf62, buf64, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf54 del primals_29 buf67 = extern_kernels.convolution(buf66, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf67, (4, 256, 8, 8), (16384, 64, 8, 1)) buf68 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) triton_poi_fused_convolution_leaky_relu_22[grid(65536)](buf67, primals_31, buf68, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf69 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch .float32) triton_poi_fused_cat_23[grid(131072)](buf68, buf67, primals_31, buf26, buf69, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf67 del primals_31 buf70 = extern_kernels.convolution(buf69, primals_32, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf70, (4, 256, 8, 8), (16384, 64, 8, 1)) buf71 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) triton_poi_fused_convolution_leaky_relu_22[grid(65536)](buf70, primals_33, buf71, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf72 = empty_strided_cuda((16, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_24[grid(16)](buf72, 16, XBLOCK=16, num_warps=1, num_stages=1) buf73 = empty_strided_cuda((16, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_25[grid(16)](buf73, 16, XBLOCK=16, num_warps=1, num_stages=1) buf74 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused__to_copy_24[grid(16)](buf74, 16, XBLOCK=16, num_warps=1, num_stages=1) buf75 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused_add_clamp_25[grid(16)](buf75, 16, XBLOCK=16, num_warps=1, num_stages=1) buf78 = empty_strided_cuda((16,), (1,), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_26[grid(16)](buf78, 16, XBLOCK=16, num_warps=1, num_stages=1) buf80 = empty_strided_cuda((16, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_26[grid(16)](buf80, 16, XBLOCK=16, num_warps=1, num_stages=1) buf77 = reinterpret_tensor(buf10, (4, 256, 16, 16), (65536, 256, 16, 1), 0) del buf10 buf81 = buf77 del buf77 buf82 = buf81 del buf81 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27[ grid(262144)](buf82, buf73, buf74, buf71, buf70, primals_33, buf72, buf75, buf78, buf80, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_33 buf83 = extern_kernels.convolution(buf82, primals_34, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf83, (4, 128, 16, 16), (32768, 256, 16, 1)) buf84 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_28[grid(131072)](buf83, primals_35, buf84, 131072, XBLOCK=1024, num_warps=4, num_stages=1) buf85 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.float32) triton_poi_fused_cat_29[grid(262144)](buf84, buf83, primals_35, buf19, buf85, 262144, XBLOCK=512, num_warps=8, num_stages=1) del buf83 del primals_35 buf86 = extern_kernels.convolution(buf85, primals_36, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf86, (4, 128, 16, 16), (32768, 256, 16, 1)) buf87 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_28[grid(131072)](buf86, primals_37, buf87, 131072, XBLOCK=1024, num_warps=4, num_stages=1) buf88 = empty_strided_cuda((32, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_30[grid(32)](buf88, 32, XBLOCK=32, num_warps=1, num_stages=1) buf89 = empty_strided_cuda((32, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_31[grid(32)](buf89, 32, XBLOCK=32, num_warps=1, num_stages=1) buf90 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused__to_copy_30[grid(32)](buf90, 32, XBLOCK=32, num_warps=1, num_stages=1) buf91 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused_add_clamp_31[grid(32)](buf91, 32, XBLOCK=32, num_warps=1, num_stages=1) buf94 = empty_strided_cuda((32,), (1,), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_32[grid(32)](buf94, 32, XBLOCK=32, num_warps=1, num_stages=1) buf96 = empty_strided_cuda((32, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_32[grid(32)](buf96, 32, XBLOCK=32, num_warps=1, num_stages=1) buf93 = reinterpret_tensor(buf3, (4, 128, 32, 32), (131072, 1024, 32, 1), 0) del buf3 buf97 = buf93 del buf93 buf98 = buf97 del buf97 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33[ grid(524288)](buf98, buf89, buf90, buf87, buf86, primals_37, buf88, buf91, buf94, buf96, 524288, XBLOCK=512, num_warps=8, num_stages=1) del buf86 del primals_37 buf99 = extern_kernels.convolution(buf98, primals_38, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf99, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf100 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_34[grid(262144)](buf99, primals_39, buf100, 262144, XBLOCK=1024, num_warps=4, num_stages=1) buf101 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.float32) triton_poi_fused_cat_35[grid(524288)](buf100, buf99, primals_39, buf12, buf101, 524288, XBLOCK=512, num_warps=8, num_stages=1) del buf99 del primals_39 buf102 = extern_kernels.convolution(buf101, primals_40, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf102, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf103 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_34[grid(262144)](buf102, primals_41, buf103, 262144, XBLOCK=1024, num_warps=4, num_stages=1) buf104 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_36[grid(64)](buf104, 64, XBLOCK=64, num_warps=1, num_stages=1) buf105 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_37[grid(64)](buf105, 64, XBLOCK=64, num_warps=1, num_stages=1) buf106 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused__to_copy_36[grid(64)](buf106, 64, XBLOCK=64, num_warps=1, num_stages=1) buf107 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_add_clamp_37[grid(64)](buf107, 64, XBLOCK=64, num_warps=1, num_stages=1) buf110 = empty_strided_cuda((64,), (1,), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_38[grid(64)](buf110, 64, XBLOCK=64, num_warps=1, num_stages=1) buf112 = empty_strided_cuda((64, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_38[grid(64)](buf112, 64, XBLOCK=64, num_warps=1, num_stages=1) buf109 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) buf113 = buf109 del buf109 buf114 = buf113 del buf113 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39[ grid(1048576)](buf114, buf105, buf106, buf103, buf102, primals_41, buf104, buf107, buf110, buf112, 1048576, XBLOCK= 1024, num_warps=4, num_stages=1) del buf102 del primals_41 buf115 = extern_kernels.convolution(buf114, primals_42, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf115, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf116 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_40[grid(524288)](buf115, primals_43, buf116, 524288, XBLOCK=1024, num_warps=4, num_stages=1) buf117 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) triton_poi_fused_cat_41[grid(1048576)](buf116, buf115, primals_43, buf5, buf117, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_43 buf118 = extern_kernels.convolution(buf117, primals_44, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf118, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf119 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf120 = buf115 del buf115 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf118, primals_45, buf119, buf120, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf118 del primals_45 buf121 = extern_kernels.convolution(buf120, primals_46, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf121, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf122 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.bool) buf123 = reinterpret_tensor(buf70, (4, 4, 64, 64), (16384, 4096, 64, 1), 0) del buf70 triton_poi_fused_convolution_leaky_relu_42[grid(65536)](buf121, primals_47, buf122, buf123, 65536, XBLOCK=512, num_warps=4, num_stages=1) del buf121 del primals_47 return (buf123, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, primals_42, primals_44, primals_46, buf1, buf2, buf4, buf5, buf6, buf8, buf9, buf11, buf12, buf13, buf15, buf16, buf18, buf19, buf20, buf22, buf23, buf25, buf26, buf27, buf29, buf30, buf32, buf33, buf34, buf36, buf37, buf39, buf40, buf41, buf42, buf43, buf46, buf48, buf50, buf52, buf53, buf55, buf56, buf57, buf58, buf59, buf62, buf64, buf66, buf68, buf69, buf71, buf72, buf73, buf74, buf75, buf78, buf80, buf82, buf84, buf85, buf87, buf88, buf89, buf90, buf91, buf94, buf96, buf98, buf100, buf101, buf103, buf104, buf105, buf106, buf107, buf110, buf112, buf114, buf116, buf117, buf119, buf120, buf122) class down(nn.Module): """ A class for creating neural network blocks containing layers: Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels, filterSize): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used as input and output channels for the second convolutional layer. filterSize : int filter size for the convolution filter. input N would create a N x N filter. """ super(down, self).__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride= 1, padding=int((filterSize - 1) / 2)) self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride =1, padding=int((filterSize - 1) / 2)) def forward(self, x): """ Returns output tensor after passing input `x` to the neural network block. Parameters ---------- x : tensor input to the NN block. Returns ------- tensor output of the NN block. """ x = F.avg_pool2d(x, 2) x = F.leaky_relu(self.conv1(x), negative_slope=0.1) x = F.leaky_relu(self.conv2(x), negative_slope=0.1) return x class up(nn.Module): """ A class for creating neural network blocks containing layers: Bilinear interpolation --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x, skpCn) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used for setting input and output channels for the second convolutional layer. """ super(up, self).__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, 3, stride=1, padding=1) self.conv2 = nn.Conv2d(2 * outChannels, outChannels, 3, stride=1, padding=1) def forward(self, x, skpCn): """ Returns output tensor after passing input `x` to the neural network block. Parameters ---------- x : tensor input to the NN block. skpCn : tensor skip connection input to the NN block. Returns ------- tensor output of the NN block. """ x = F.interpolate(x, scale_factor=2, mode='bilinear') x = F.leaky_relu(self.conv1(x), negative_slope=0.1) x = F.leaky_relu(self.conv2(torch.cat((x, skpCn), 1)), negative_slope=0.1) return x class UNetNew(nn.Module): """ A class for creating UNet like architecture as specified by the Super SloMo paper. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels): """ Parameters ---------- inChannels : int number of input channels for the UNet. outChannels : int number of output channels for the UNet. """ super(UNetNew, self).__init__() self.conv1 = nn.Conv2d(inChannels, 32, 7, stride=1, padding=3) self.conv2 = nn.Conv2d(32, 32, 7, stride=1, padding=3) self.down1 = down(32, 64, 5) self.down2 = down(64, 128, 3) self.down3 = down(128, 256, 3) self.down4 = down(256, 512, 3) self.down5 = down(512, 512, 3) self.up1 = up(512, 512) self.up2 = up(512, 256) self.up3 = up(256, 128) self.up4 = up(128, 64) self.up5 = up(64, 32) self.conv3 = nn.Conv2d(32, outChannels, 3, stride=1, padding=1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.down1.conv1.weight primals_7 = self.down1.conv1.bias primals_8 = self.down1.conv2.weight primals_9 = self.down1.conv2.bias primals_10 = self.down2.conv1.weight primals_11 = self.down2.conv1.bias primals_12 = self.down2.conv2.weight primals_13 = self.down2.conv2.bias primals_14 = self.down3.conv1.weight primals_15 = self.down3.conv1.bias primals_16 = self.down3.conv2.weight primals_17 = self.down3.conv2.bias primals_18 = self.down4.conv1.weight primals_19 = self.down4.conv1.bias primals_20 = self.down4.conv2.weight primals_21 = self.down4.conv2.bias primals_22 = self.down5.conv1.weight primals_23 = self.down5.conv1.bias primals_24 = self.down5.conv2.weight primals_25 = self.down5.conv2.bias primals_26 = self.up1.conv1.weight primals_27 = self.up1.conv1.bias primals_28 = self.up1.conv2.weight primals_29 = self.up1.conv2.bias primals_30 = self.up2.conv1.weight primals_31 = self.up2.conv1.bias primals_32 = self.up2.conv2.weight primals_33 = self.up2.conv2.bias primals_34 = self.up3.conv1.weight primals_35 = self.up3.conv1.bias primals_36 = self.up3.conv2.weight primals_37 = self.up3.conv2.bias primals_38 = self.up4.conv1.weight primals_39 = self.up4.conv1.bias primals_40 = self.up4.conv2.weight primals_41 = self.up4.conv2.bias primals_42 = self.up5.conv1.weight primals_43 = self.up5.conv1.bias primals_44 = self.up5.conv2.weight primals_45 = self.up5.conv2.bias primals_46 = self.conv3.weight primals_47 = self.conv3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47]) return output[0]
samuelpietri/Super-SloMo
UNet
false
4,417
[ "MIT" ]
0
e20eaa5550c30737be42b61f8e82e731cfd17457
https://github.com/samuelpietri/Super-SloMo/tree/e20eaa5550c30737be42b61f8e82e731cfd17457
import torch from torch.functional import F import torch.nn as nn import torch.nn.functional as F class down(nn.Module): """ A class for creating neural network blocks containing layers: Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels, filterSize): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used as input and output channels for the second convolutional layer. filterSize : int filter size for the convolution filter. input N would create a N x N filter. """ super().__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride= 1, padding=int((filterSize - 1) / 2)) self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride =1, padding=int((filterSize - 1) / 2)) def forward(self, x): """ Returns output tensor after passing input `x` to the neural network block. Parameters ---------- x : tensor input to the NN block. Returns ------- tensor output of the NN block. """ x = F.avg_pool2d(x, 2) x = F.leaky_relu(self.conv1(x), negative_slope=0.1) x = F.leaky_relu(self.conv2(x), negative_slope=0.1) return x class up(nn.Module): """ A class for creating neural network blocks containing layers: Bilinear interpolation --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x, skpCn) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used for setting input and output channels for the second convolutional layer. """ super().__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, 3, stride=1, padding=1) self.conv2 = nn.Conv2d(2 * outChannels, outChannels, 3, stride=1, padding=1) def forward(self, x, skpCn): """ Returns output tensor after passing input `x` to the neural network block. Parameters ---------- x : tensor input to the NN block. skpCn : tensor skip connection input to the NN block. Returns ------- tensor output of the NN block. """ x = F.interpolate(x, scale_factor=2, mode='bilinear') x = F.leaky_relu(self.conv1(x), negative_slope=0.1) x = F.leaky_relu(self.conv2(torch.cat((x, skpCn), 1)), negative_slope=0.1) return x class Model(nn.Module): """ A class for creating UNet like architecture as specified by the Super SloMo paper. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels): """ Parameters ---------- inC # ... truncated (>4000 chars) for memory efficiency
SelfAttention2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/dr/cdrbbq25gaacwdmuqqn76ytppvbzlwbqwo7aazovogwtjetsi3kf.py # Topologically Sorted Source Nodes: [group_norm], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm => add, add_1, mul_1, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {}) triton_per_fused_native_group_norm_0 = async_compile.triton('triton_per_fused_native_group_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 64.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tl.store(out_ptr2 + (r1 + (64*x0)), tmp27, xmask) tl.store(out_ptr3 + (x0), tmp22, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qy/cqybr3bfdchissc3tv4xlletlf5no7mjnhuw24qu6wmoiuhhil2i.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul_2 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_2, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (192*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wd/cwdvu45in5wkbxprrqg4fvjqrrja7h3zzc4ftph46fdrjbwlrwjf.py # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul_1 => mul_3 # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_1, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 64) x3 = xindex % 64 x1 = (xindex // 16) % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (64 + x3 + (192*x2)), xmask) tmp1 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x4), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ix/cixlzwfqwprmvxssegu7cdwp36kw5djhtmyzduy5wsxqepltvl33.py # Topologically Sorted Source Nodes: [att], Original ATen: [aten._softmax] # Source node to ATen node mapping: # att => amax, div, exp, sub_1, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [3], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [3], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_3 = async_compile.triton('triton_per_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pg/cpgcves7a4ujl63zjmgzcuq2gy6hlloqdgfurbxytrayarhiafwv.py # Topologically Sorted Source Nodes: [qkv], Original ATen: [aten.convolution] # Source node to ATen node mapping: # qkv => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_1, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 12 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3d/c3dfkwtgizzvz4xvxxgt6iyt4zilefzurmuwbakvte7bn27uw3vi.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask) tl.store(out_ptr0 + (x2 + (16*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ch/cchbzqqfmofrdhniejotbjk3vhhcdsonxqmx47vvsyqvsgtjzpsz.py # Topologically Sorted Source Nodes: [conv2d_1, add], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # add => add_2 # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_9, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %convolution_1), kwargs = {}) triton_poi_fused_add_convolution_6 = async_compile.triton('triton_poi_fused_add_convolution_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_out_ptr0 + (x3), xmask) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (12, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf17 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) # Topologically Sorted Source Nodes: [group_norm], Original ATen: [aten.native_group_norm] stream0 = get_raw_stream(0) triton_per_fused_native_group_norm_0.run(primals_1, primals_2, primals_3, buf0, buf3, buf17, 4, 64, grid=grid(4), stream=stream0) del primals_2 del primals_3 # Topologically Sorted Source Nodes: [qkv], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 12, 4, 4), (192, 16, 4, 1)) buf5 = empty_strided_cuda((4, 1, 16, 4), (64, 64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(buf4, primals_5, buf5, 64, 4, grid=grid(64, 4), stream=stream0) buf6 = empty_strided_cuda((4, 1, 4, 16), (64, 1, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(buf4, primals_5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf5, (4, 16, 4), (64, 4, 1), 0), reinterpret_tensor(buf6, (4, 4, 16), (64, 16, 1), 0), out=buf7) buf10 = empty_strided_cuda((4, 1, 16, 16), (256, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [att], Original ATen: [aten._softmax] triton_per_fused__softmax_3.run(buf7, buf10, 64, 16, grid=grid(64), stream=stream0) del buf7 buf11 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [qkv], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(buf11, primals_5, 768, grid=grid(768), stream=stream0) del primals_5 buf12 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf10, (4, 16, 16), (256, 16, 1), 0), reinterpret_tensor(buf11, (4, 16, 4), (192, 1, 16), 128), out=buf12) buf13 = empty_strided_cuda((4, 1, 4, 16), (64, 1, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf12, buf13, 16, 16, grid=grid(16, 16), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(reinterpret_tensor(buf13, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 4, 4, 4), (64, 16, 4, 1)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [conv2d_1, add], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_6.run(buf15, primals_1, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 buf16 = reinterpret_tensor(buf12, (4, 4, 16), (64, 16, 1), 0); del buf12 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [aten.transpose] triton_poi_fused_clone_5.run(buf5, buf16, 16, 16, grid=grid(16, 16), stream=stream0) del buf5 return (buf15, primals_1, primals_4, primals_6, buf3, buf10, reinterpret_tensor(buf13, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf11, (4, 4, 16), (192, 16, 1), 128), buf16, reinterpret_tensor(buf6, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf17, (4, 1, 1), (1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class SelfAttention2d(nn.Module): def __init__(self, c_in, n_head=1, dropout_rate=0.1): super().__init__() assert c_in % n_head == 0 self.norm = nn.GroupNorm(1, c_in) self.n_head = n_head self.qkv_proj = nn.Conv2d(c_in, c_in * 3, 1) self.out_proj = nn.Conv2d(c_in, c_in, 1) self.dropout = nn.Identity() def forward(self, input): n, c, h, w = input.shape qkv = self.qkv_proj(self.norm(input)) qkv = qkv.view([n, self.n_head * 3, c // self.n_head, h * w] ).transpose(2, 3) q, k, v = qkv.chunk(3, dim=1) scale = k.shape[3] ** -0.25 att = (q * scale @ (k.transpose(2, 3) * scale)).softmax(3) y = (att @ v).transpose(2, 3).contiguous().view([n, c, h, w]) return input + self.dropout(self.out_proj(y)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'c_in': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_native_group_norm_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 64.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tl.store(out_ptr2 + (r1 + 64 * x0), tmp27, xmask) tl.store(out_ptr3 + x0, tmp22, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 192 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 64 x3 = xindex % 64 x1 = xindex // 16 % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (64 + x3 + 192 * x2), xmask) tmp1 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x4, tmp4, xmask) @triton.jit def triton_per_fused__softmax_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 12 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tl.store(out_ptr0 + (x2 + 16 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_convolution_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_out_ptr0 + x3, xmask) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (12, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf17 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) get_raw_stream(0) triton_per_fused_native_group_norm_0[grid(4)](primals_1, primals_2, primals_3, buf0, buf3, buf17, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_2 del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 12, 4, 4), (192, 16, 4, 1)) buf5 = empty_strided_cuda((4, 1, 16, 4), (64, 64, 4, 1), torch.float32) triton_poi_fused_mul_1[grid(64, 4)](buf4, primals_5, buf5, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((4, 1, 4, 16), (64, 1, 16, 1), torch.float32) triton_poi_fused_mul_2[grid(256)](buf4, primals_5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf5, (4, 16, 4), (64, 4, 1), 0), reinterpret_tensor(buf6, (4, 4, 16), (64, 16, 1), 0), out=buf7) buf10 = empty_strided_cuda((4, 1, 16, 16), (256, 256, 16, 1), torch .float32) triton_per_fused__softmax_3[grid(64)](buf7, buf10, 64, 16, XBLOCK= 32, num_warps=4, num_stages=1) del buf7 buf11 = buf4 del buf4 triton_poi_fused_convolution_4[grid(768)](buf11, primals_5, 768, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf12 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf10, (4, 16, 16), (256, 16, 1), 0), reinterpret_tensor(buf11, (4, 16, 4), (192, 1, 16), 128 ), out=buf12) buf13 = empty_strided_cuda((4, 1, 4, 16), (64, 1, 16, 1), torch.float32 ) triton_poi_fused_clone_5[grid(16, 16)](buf12, buf13, 16, 16, XBLOCK =16, YBLOCK=16, num_warps=4, num_stages=1) buf14 = extern_kernels.convolution(reinterpret_tensor(buf13, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 4, 4, 4), (64, 16, 4, 1)) buf15 = buf14 del buf14 triton_poi_fused_add_convolution_6[grid(256)](buf15, primals_1, primals_7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf16 = reinterpret_tensor(buf12, (4, 4, 16), (64, 16, 1), 0) del buf12 triton_poi_fused_clone_5[grid(16, 16)](buf5, buf16, 16, 16, XBLOCK= 16, YBLOCK=16, num_warps=4, num_stages=1) del buf5 return (buf15, primals_1, primals_4, primals_6, buf3, buf10, reinterpret_tensor(buf13, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf11, (4, 4, 16), (192, 16, 1), 128), buf16, reinterpret_tensor(buf6, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf17, (4, 1, 1), (1, 1, 1), 0)) class SelfAttention2dNew(nn.Module): def __init__(self, c_in, n_head=1, dropout_rate=0.1): super().__init__() assert c_in % n_head == 0 self.norm = nn.GroupNorm(1, c_in) self.n_head = n_head self.qkv_proj = nn.Conv2d(c_in, c_in * 3, 1) self.out_proj = nn.Conv2d(c_in, c_in, 1) self.dropout = nn.Identity() def forward(self, input_0): primals_2 = self.norm.weight primals_3 = self.norm.bias primals_4 = self.qkv_proj.weight primals_5 = self.qkv_proj.bias primals_6 = self.out_proj.weight primals_7 = self.out_proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
technillogue/v-diffusion-pytorch
SelfAttention2d
false
4,418
[ "MIT" ]
0
3aa8c7f32adbde1d1ea3a9650004ffafabe5221b
https://github.com/technillogue/v-diffusion-pytorch/tree/3aa8c7f32adbde1d1ea3a9650004ffafabe5221b
import torch from torch import nn class Model(nn.Module): def __init__(self, c_in, n_head=1, dropout_rate=0.1): super().__init__() assert c_in % n_head == 0 self.norm = nn.GroupNorm(1, c_in) self.n_head = n_head self.qkv_proj = nn.Conv2d(c_in, c_in * 3, 1) self.out_proj = nn.Conv2d(c_in, c_in, 1) self.dropout = nn.Identity() def forward(self, input): n, c, h, w = input.shape qkv = self.qkv_proj(self.norm(input)) qkv = qkv.view([n, self.n_head * 3, c // self.n_head, h * w] ).transpose(2, 3) q, k, v = qkv.chunk(3, dim=1) scale = k.shape[3] ** -0.25 att = (q * scale @ (k.transpose(2, 3) * scale)).softmax(3) y = (att @ v).transpose(2, 3).contiguous().view([n, c, h, w]) return input + self.dropout(self.out_proj(y)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
BCEWithLogitsLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/45/c45uetpy3ecci5gc2xqad6fg45cjpaecauyvwtsgtat7qpotr7bu.py # Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, mul], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul] # Source node to ATen node mapping: # binary_cross_entropy_with_logits => abs_1, exp, full_default, log1p, mean, minimum, mul, neg, sub, sub_1, sub_2 # mul => mul_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {}) triton_per_fused_binary_cross_entropy_with_logits_mul_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_binary_cross_entropy_with_logits_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tmp18 = tmp17 * tmp1 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp18, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, mul], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_binary_cross_entropy_with_logits_mul_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn as nn from torch.utils import data as data from torch import autograd as autograd import torch.onnx class BCEWithLogitsLoss(nn.Module): def __init__(self, loss_weight=1.0, **kwargs): super(BCEWithLogitsLoss, self).__init__() self.bce_wlogits_loss = nn.BCEWithLogitsLoss(**kwargs) self.loss_weight = loss_weight def forward(self, pred, gt): return self.bce_wlogits_loss(pred, gt) * self.loss_weight def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn as nn from torch.utils import data as data from torch import autograd as autograd import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_binary_cross_entropy_with_logits_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tmp18 = tmp17 * tmp1 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_binary_cross_entropy_with_logits_mul_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class BCEWithLogitsLossNew(nn.Module): def __init__(self, loss_weight=1.0, **kwargs): super(BCEWithLogitsLossNew, self).__init__() self.bce_wlogits_loss = nn.BCEWithLogitsLoss(**kwargs) self.loss_weight = loss_weight def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
theleokul/Real-ESRGAN
BCEWithLogitsLoss
false
4,419
[ "BSD-3-Clause" ]
0
0afbc090d012d729e6cb3ff47a80018d53bce3f6
https://github.com/theleokul/Real-ESRGAN/tree/0afbc090d012d729e6cb3ff47a80018d53bce3f6
import torch from torch import nn as nn from torch.utils import data as data from torch import autograd as autograd import torch.onnx class Model(nn.Module): def __init__(self, loss_weight=1.0, **kwargs): super().__init__() self.bce_wlogits_loss = nn.BCEWithLogitsLoss(**kwargs) self.loss_weight = loss_weight def forward(self, pred, gt): return self.bce_wlogits_loss(pred, gt) * self.loss_weight def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Emo16
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/tu/ctuwujqqargp3has2vrf3nh6p675lnlimk3ed4vwhxsy2jloq26v.py # Topologically Sorted Source Nodes: [conv1d, audio_out], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # audio_out => relu # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_2, %primals_3, [1], [9], [1], False, [0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3) % 40 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/al/calgibmbxp6mzvzldwekeqpugu6csgbtjvsrvftez3h6b3kfdzn3.py # Topologically Sorted Source Nodes: [audio_out_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # audio_out_1 => _low_memory_max_pool2d_with_offsets, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%unsqueeze, [1, 2], [1, 2], [0, 1], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.full([1], 0, tl.int64) tmp1 = tmp0 >= tmp0 tmp2 = tl.full([1], 1, tl.int64) tmp3 = tmp0 < tmp2 tmp4 = tmp1 & tmp3 tmp5 = (-1) + (2*x0) tmp6 = tmp5 >= tmp0 tmp7 = tl.full([1], 3, tl.int64) tmp8 = tmp5 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tmp4 & tmp9 tmp11 = tl.load(in_ptr0 + ((-1) + (2*x0) + (3*x1)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp12 = 2*x0 tmp13 = tmp12 >= tmp0 tmp14 = tmp12 < tmp7 tmp15 = tmp13 & tmp14 tmp16 = tmp4 & tmp15 tmp17 = tl.load(in_ptr0 + ((2*x0) + (3*x1)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp18 = tmp17 > tmp11 tmp19 = tl.full([1], 1, tl.int8) tmp20 = tl.full([1], 0, tl.int8) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = triton_helpers.maximum(tmp17, tmp11) tl.store(out_ptr0 + (x2), tmp21, xmask) tl.store(out_ptr1 + (x2), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/25/c25ptzj556bv6ouaevakwzgigp5hjwwfmlze7r7oyllkolcnlnqb.py # Topologically Sorted Source Nodes: [conv1d_1, audio_out_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # audio_out_2 => relu_1 # conv1d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%squeeze, %primals_4, %primals_5, [1], [19], [1], False, [0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 640 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 40 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kp/ckp26uds4kw5frmh7dwknn4baqpixncielhvohpwot7o5gx6orrm.py # Topologically Sorted Source Nodes: [audio_out_4], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # audio_out_4 => _low_memory_max_pool2d_with_offsets_1, getitem_5 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%unsqueeze_1, [1, 10], [1, 10], [0, 4], [1, 1], False), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.full([1], 0, tl.int64) tmp1 = tmp0 >= tmp0 tmp2 = tl.full([1], 1, tl.int64) tmp3 = tmp0 < tmp2 tmp4 = tmp1 & tmp3 tmp5 = (-4) + (10*x0) tmp6 = tmp5 >= tmp0 tmp7 = tl.full([1], 40, tl.int64) tmp8 = tmp5 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tmp4 & tmp9 tmp11 = tl.load(in_ptr0 + ((-4) + (10*x2)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp12 = (-3) + (10*x0) tmp13 = tmp12 >= tmp0 tmp14 = tmp12 < tmp7 tmp15 = tmp13 & tmp14 tmp16 = tmp4 & tmp15 tmp17 = tl.load(in_ptr0 + ((-3) + (10*x2)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = (-2) + (10*x0) tmp20 = tmp19 >= tmp0 tmp21 = tmp19 < tmp7 tmp22 = tmp20 & tmp21 tmp23 = tmp4 & tmp22 tmp24 = tl.load(in_ptr0 + ((-2) + (10*x2)), tmp23 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = (-1) + (10*x0) tmp27 = tmp26 >= tmp0 tmp28 = tmp26 < tmp7 tmp29 = tmp27 & tmp28 tmp30 = tmp4 & tmp29 tmp31 = tl.load(in_ptr0 + ((-1) + (10*x2)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = 10*x0 tmp34 = tmp33 >= tmp0 tmp35 = tmp33 < tmp7 tmp36 = tmp34 & tmp35 tmp37 = tmp4 & tmp36 tmp38 = tl.load(in_ptr0 + (10*x2), tmp37 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp39 = triton_helpers.maximum(tmp38, tmp32) tmp40 = 1 + (10*x0) tmp41 = tmp40 >= tmp0 tmp42 = tmp40 < tmp7 tmp43 = tmp41 & tmp42 tmp44 = tmp4 & tmp43 tmp45 = tl.load(in_ptr0 + (1 + (10*x2)), tmp44 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp46 = triton_helpers.maximum(tmp45, tmp39) tmp47 = 2 + (10*x0) tmp48 = tmp47 >= tmp0 tmp49 = tmp47 < tmp7 tmp50 = tmp48 & tmp49 tmp51 = tmp4 & tmp50 tmp52 = tl.load(in_ptr0 + (2 + (10*x2)), tmp51 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp53 = triton_helpers.maximum(tmp52, tmp46) tmp54 = 3 + (10*x0) tmp55 = tmp54 >= tmp0 tmp56 = tmp54 < tmp7 tmp57 = tmp55 & tmp56 tmp58 = tmp4 & tmp57 tmp59 = tl.load(in_ptr0 + (3 + (10*x2)), tmp58 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp60 = triton_helpers.maximum(tmp59, tmp53) tmp61 = 4 + (10*x0) tmp62 = tmp61 >= tmp0 tmp63 = tmp61 < tmp7 tmp64 = tmp62 & tmp63 tmp65 = tmp4 & tmp64 tmp66 = tl.load(in_ptr0 + (4 + (10*x2)), tmp65 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp67 = triton_helpers.maximum(tmp66, tmp60) tmp68 = 5 + (10*x0) tmp69 = tmp68 >= tmp0 tmp70 = tmp68 < tmp7 tmp71 = tmp69 & tmp70 tmp72 = tmp4 & tmp71 tmp73 = tl.load(in_ptr0 + (5 + (10*x2)), tmp72 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp74 = triton_helpers.maximum(tmp73, tmp67) tmp75 = tmp17 > tmp11 tmp76 = tl.full([1], 1, tl.int8) tmp77 = tl.full([1], 0, tl.int8) tmp78 = tl.where(tmp75, tmp76, tmp77) tmp79 = tmp24 > tmp18 tmp80 = tl.full([1], 2, tl.int8) tmp81 = tl.where(tmp79, tmp80, tmp78) tmp82 = tmp31 > tmp25 tmp83 = tl.full([1], 3, tl.int8) tmp84 = tl.where(tmp82, tmp83, tmp81) tmp85 = tmp38 > tmp32 tmp86 = tl.full([1], 4, tl.int8) tmp87 = tl.where(tmp85, tmp86, tmp84) tmp88 = tmp45 > tmp39 tmp89 = tl.full([1], 5, tl.int8) tmp90 = tl.where(tmp88, tmp89, tmp87) tmp91 = tmp52 > tmp46 tmp92 = tl.full([1], 6, tl.int8) tmp93 = tl.where(tmp91, tmp92, tmp90) tmp94 = tmp59 > tmp53 tmp95 = tl.full([1], 7, tl.int8) tmp96 = tl.where(tmp94, tmp95, tmp93) tmp97 = tmp66 > tmp60 tmp98 = tl.full([1], 8, tl.int8) tmp99 = tl.where(tmp97, tmp98, tmp96) tmp100 = tmp73 > tmp67 tmp101 = tl.full([1], 9, tl.int8) tmp102 = tl.where(tmp100, tmp101, tmp99) tl.store(out_ptr0 + (x2), tmp74, xmask) tl.store(out_ptr1 + (x2), tmp102, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (40, 1, 20), (20, 20, 1)) assert_size_stride(primals_3, (40, ), (1, )) assert_size_stride(primals_4, (40, 40, 40), (1600, 40, 1)) assert_size_stride(primals_5, (40, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_dropout] buf0 = torch.ops.aten.native_dropout.default(reinterpret_tensor(primals_1, (16, 1, 4), (4, 4, 1), 0), 0.5, True) del primals_1 buf1 = buf0[0] del buf0 # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf1, primals_2, stride=(1,), padding=(9,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (16, 40, 3), (120, 3, 1)) buf4 = buf3; del buf3 # reuse buf12 = empty_strided_cuda((16, 40, 3), (120, 3, 1), torch.bool) # Topologically Sorted Source Nodes: [conv1d, audio_out], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_threshold_backward_0.run(buf4, primals_3, buf12, 1920, grid=grid(1920), stream=stream0) del primals_3 buf5 = empty_strided_cuda((16, 40, 1, 2), (80, 2, 2, 1), torch.int8) buf6 = empty_strided_cuda((16, 40, 1, 2), (80, 2, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [audio_out_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf4, buf5, buf6, 1280, grid=grid(1280), stream=stream0) # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (16, 40, 2), (80, 2, 1), 0), primals_4, stride=(1,), padding=(19,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf7, (16, 40, 1), (40, 1, 1)) buf8 = buf7; del buf7 # reuse buf11 = empty_strided_cuda((16, 40, 1), (40, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [conv1d_1, audio_out_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_2.run(buf8, primals_5, buf11, 640, grid=grid(640), stream=stream0) del primals_5 buf9 = empty_strided_cuda((16, 1, 1, 4), (4, 4, 4, 1), torch.float32) buf10 = empty_strided_cuda((16, 1, 1, 4), (4, 4, 4, 1), torch.int8) # Topologically Sorted Source Nodes: [audio_out_4], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf8, buf9, buf10, 64, grid=grid(64), stream=stream0) return (reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0), primals_2, primals_4, buf1, reinterpret_tensor(buf4, (16, 40, 1, 3), (120, 3, 3, 1), 0), buf5, reinterpret_tensor(buf6, (16, 40, 2), (80, 2, 1), 0), reinterpret_tensor(buf8, (16, 1, 1, 40), (40, 40, 40, 1), 0), buf10, buf11, buf12, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((40, 1, 20), (20, 20, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((40, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((40, 40, 40), (1600, 40, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((40, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn import torch.nn.functional as F class Emo16(nn.Module): def __init__(self, input_size: 'int', num_channels: 'int'=40): """ Speech emotion recognition model proposed in: `Trigeorgis, G., Ringeval, F., Brueckner, R., Marchi, E., Nicolaou, M. A., Schuller, B., & Zafeiriou, S. Adieu features? end-to-end speech emotion recognition using a deep convolutional recurrent network. In 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 5200-5204). IEEE.` Args: input_size (int): Input size to the model. num_channels (int): Number of channels to use in the convolution layers (default `40`). """ super(Emo16, self).__init__() self.conv1 = nn.Conv1d(in_channels=1, out_channels=num_channels, kernel_size=20, stride=1, padding=9) self.max_pool1 = nn.MaxPool1d(2, 2, padding=1) self.conv2 = nn.Conv1d(in_channels=40, out_channels=num_channels, kernel_size=40, stride=1, padding=19) self.max_pool2 = nn.MaxPool1d(10, 10, padding=4) self.num_features = int(np.ceil(input_size / 2)) * 4 - 4 self.reset_parameters() def reset_parameters(self): """ Initialize parameters of the model.""" for m in list(self.modules()): self._init_weights(m) def _init_weights(self, m): """ Helper method to initialize the parameters of the model with Kaiming uniform initialization. """ if type(m) == nn.Conv1d or type(m) == nn.Linear: nn.init.kaiming_uniform_(m.weight) nn.init.zeros_(m.bias) def forward(self, x: 'torch.Tensor'): """ Forward pass. Args: x ((torch.Tensor) - BS x S x 1 x T) """ batch_size, seq_length, t = x.shape x = x.view(batch_size * seq_length, 1, t) x = F.dropout(x) audio_out = F.relu(self.conv1(x)) audio_out = self.max_pool1(audio_out) audio_out = F.relu(self.conv2(audio_out)) _, c2, t2 = audio_out.shape audio_out = audio_out.view(batch_size * seq_length, t2, c2) audio_out = self.max_pool2(audio_out) audio_out = audio_out.view(batch_size, seq_length, -1) return audio_out def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3 % 40 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.full([1], 0, tl.int64) tmp1 = tmp0 >= tmp0 tmp2 = tl.full([1], 1, tl.int64) tmp3 = tmp0 < tmp2 tmp4 = tmp1 & tmp3 tmp5 = -1 + 2 * x0 tmp6 = tmp5 >= tmp0 tmp7 = tl.full([1], 3, tl.int64) tmp8 = tmp5 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tmp4 & tmp9 tmp11 = tl.load(in_ptr0 + (-1 + 2 * x0 + 3 * x1), tmp10 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp12 = 2 * x0 tmp13 = tmp12 >= tmp0 tmp14 = tmp12 < tmp7 tmp15 = tmp13 & tmp14 tmp16 = tmp4 & tmp15 tmp17 = tl.load(in_ptr0 + (2 * x0 + 3 * x1), tmp16 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp18 = tmp17 > tmp11 tmp19 = tl.full([1], 1, tl.int8) tmp20 = tl.full([1], 0, tl.int8) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = triton_helpers.maximum(tmp17, tmp11) tl.store(out_ptr0 + x2, tmp21, xmask) tl.store(out_ptr1 + x2, tmp22, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 640 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 40 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.full([1], 0, tl.int64) tmp1 = tmp0 >= tmp0 tmp2 = tl.full([1], 1, tl.int64) tmp3 = tmp0 < tmp2 tmp4 = tmp1 & tmp3 tmp5 = -4 + 10 * x0 tmp6 = tmp5 >= tmp0 tmp7 = tl.full([1], 40, tl.int64) tmp8 = tmp5 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tmp4 & tmp9 tmp11 = tl.load(in_ptr0 + (-4 + 10 * x2), tmp10 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp12 = -3 + 10 * x0 tmp13 = tmp12 >= tmp0 tmp14 = tmp12 < tmp7 tmp15 = tmp13 & tmp14 tmp16 = tmp4 & tmp15 tmp17 = tl.load(in_ptr0 + (-3 + 10 * x2), tmp16 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = -2 + 10 * x0 tmp20 = tmp19 >= tmp0 tmp21 = tmp19 < tmp7 tmp22 = tmp20 & tmp21 tmp23 = tmp4 & tmp22 tmp24 = tl.load(in_ptr0 + (-2 + 10 * x2), tmp23 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = -1 + 10 * x0 tmp27 = tmp26 >= tmp0 tmp28 = tmp26 < tmp7 tmp29 = tmp27 & tmp28 tmp30 = tmp4 & tmp29 tmp31 = tl.load(in_ptr0 + (-1 + 10 * x2), tmp30 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = 10 * x0 tmp34 = tmp33 >= tmp0 tmp35 = tmp33 < tmp7 tmp36 = tmp34 & tmp35 tmp37 = tmp4 & tmp36 tmp38 = tl.load(in_ptr0 + 10 * x2, tmp37 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp39 = triton_helpers.maximum(tmp38, tmp32) tmp40 = 1 + 10 * x0 tmp41 = tmp40 >= tmp0 tmp42 = tmp40 < tmp7 tmp43 = tmp41 & tmp42 tmp44 = tmp4 & tmp43 tmp45 = tl.load(in_ptr0 + (1 + 10 * x2), tmp44 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp46 = triton_helpers.maximum(tmp45, tmp39) tmp47 = 2 + 10 * x0 tmp48 = tmp47 >= tmp0 tmp49 = tmp47 < tmp7 tmp50 = tmp48 & tmp49 tmp51 = tmp4 & tmp50 tmp52 = tl.load(in_ptr0 + (2 + 10 * x2), tmp51 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp53 = triton_helpers.maximum(tmp52, tmp46) tmp54 = 3 + 10 * x0 tmp55 = tmp54 >= tmp0 tmp56 = tmp54 < tmp7 tmp57 = tmp55 & tmp56 tmp58 = tmp4 & tmp57 tmp59 = tl.load(in_ptr0 + (3 + 10 * x2), tmp58 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp60 = triton_helpers.maximum(tmp59, tmp53) tmp61 = 4 + 10 * x0 tmp62 = tmp61 >= tmp0 tmp63 = tmp61 < tmp7 tmp64 = tmp62 & tmp63 tmp65 = tmp4 & tmp64 tmp66 = tl.load(in_ptr0 + (4 + 10 * x2), tmp65 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp67 = triton_helpers.maximum(tmp66, tmp60) tmp68 = 5 + 10 * x0 tmp69 = tmp68 >= tmp0 tmp70 = tmp68 < tmp7 tmp71 = tmp69 & tmp70 tmp72 = tmp4 & tmp71 tmp73 = tl.load(in_ptr0 + (5 + 10 * x2), tmp72 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp74 = triton_helpers.maximum(tmp73, tmp67) tmp75 = tmp17 > tmp11 tmp76 = tl.full([1], 1, tl.int8) tmp77 = tl.full([1], 0, tl.int8) tmp78 = tl.where(tmp75, tmp76, tmp77) tmp79 = tmp24 > tmp18 tmp80 = tl.full([1], 2, tl.int8) tmp81 = tl.where(tmp79, tmp80, tmp78) tmp82 = tmp31 > tmp25 tmp83 = tl.full([1], 3, tl.int8) tmp84 = tl.where(tmp82, tmp83, tmp81) tmp85 = tmp38 > tmp32 tmp86 = tl.full([1], 4, tl.int8) tmp87 = tl.where(tmp85, tmp86, tmp84) tmp88 = tmp45 > tmp39 tmp89 = tl.full([1], 5, tl.int8) tmp90 = tl.where(tmp88, tmp89, tmp87) tmp91 = tmp52 > tmp46 tmp92 = tl.full([1], 6, tl.int8) tmp93 = tl.where(tmp91, tmp92, tmp90) tmp94 = tmp59 > tmp53 tmp95 = tl.full([1], 7, tl.int8) tmp96 = tl.where(tmp94, tmp95, tmp93) tmp97 = tmp66 > tmp60 tmp98 = tl.full([1], 8, tl.int8) tmp99 = tl.where(tmp97, tmp98, tmp96) tmp100 = tmp73 > tmp67 tmp101 = tl.full([1], 9, tl.int8) tmp102 = tl.where(tmp100, tmp101, tmp99) tl.store(out_ptr0 + x2, tmp74, xmask) tl.store(out_ptr1 + x2, tmp102, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (40, 1, 20), (20, 20, 1)) assert_size_stride(primals_3, (40,), (1,)) assert_size_stride(primals_4, (40, 40, 40), (1600, 40, 1)) assert_size_stride(primals_5, (40,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten.native_dropout.default(reinterpret_tensor( primals_1, (16, 1, 4), (4, 4, 1), 0), 0.5, True) del primals_1 buf1 = buf0[0] del buf0 buf3 = extern_kernels.convolution(buf1, primals_2, stride=(1,), padding=(9,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf3, (16, 40, 3), (120, 3, 1)) buf4 = buf3 del buf3 buf12 = empty_strided_cuda((16, 40, 3), (120, 3, 1), torch.bool) get_raw_stream(0) triton_poi_fused_convolution_relu_threshold_backward_0[grid(1920)](buf4 , primals_3, buf12, 1920, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf5 = empty_strided_cuda((16, 40, 1, 2), (80, 2, 2, 1), torch.int8) buf6 = empty_strided_cuda((16, 40, 1, 2), (80, 2, 2, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_1[grid(1280)](buf4, buf5, buf6, 1280, XBLOCK=256, num_warps=4, num_stages=1) buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (16, 40, 2), (80, 2, 1), 0), primals_4, stride=(1,), padding=(19,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf7, (16, 40, 1), (40, 1, 1)) buf8 = buf7 del buf7 buf11 = empty_strided_cuda((16, 40, 1), (40, 1, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_2[grid(640)](buf8, primals_5, buf11, 640, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf9 = empty_strided_cuda((16, 1, 1, 4), (4, 4, 4, 1), torch.float32) buf10 = empty_strided_cuda((16, 1, 1, 4), (4, 4, 4, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(64)](buf8, buf9, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) return reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0 ), primals_2, primals_4, buf1, reinterpret_tensor(buf4, (16, 40, 1, 3), (120, 3, 3, 1), 0), buf5, reinterpret_tensor(buf6, (16, 40, 2), (80, 2, 1), 0), reinterpret_tensor(buf8, (16, 1, 1, 40), (40, 40, 40, 1), 0), buf10, buf11, buf12 class Emo16New(nn.Module): def __init__(self, input_size: 'int', num_channels: 'int'=40): """ Speech emotion recognition model proposed in: `Trigeorgis, G., Ringeval, F., Brueckner, R., Marchi, E., Nicolaou, M. A., Schuller, B., & Zafeiriou, S. Adieu features? end-to-end speech emotion recognition using a deep convolutional recurrent network. In 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 5200-5204). IEEE.` Args: input_size (int): Input size to the model. num_channels (int): Number of channels to use in the convolution layers (default `40`). """ super(Emo16New, self).__init__() self.conv1 = nn.Conv1d(in_channels=1, out_channels=num_channels, kernel_size=20, stride=1, padding=9) self.max_pool1 = nn.MaxPool1d(2, 2, padding=1) self.conv2 = nn.Conv1d(in_channels=40, out_channels=num_channels, kernel_size=40, stride=1, padding=19) self.max_pool2 = nn.MaxPool1d(10, 10, padding=4) self.num_features = int(np.ceil(input_size / 2)) * 4 - 4 self.reset_parameters() def reset_parameters(self): """ Initialize parameters of the model.""" for m in list(self.modules()): self._init_weights(m) def _init_weights(self, m): """ Helper method to initialize the parameters of the model with Kaiming uniform initialization. """ if type(m) == nn.Conv1d or type(m) == nn.Linear: nn.init.kaiming_uniform_(m.weight) nn.init.zeros_(m.bias) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
tfyd/myEnd2you
Emo16
false
4,421
[ "BSD-3-Clause" ]
0
455d5404a19dd4867cb5db4f30705041d425d2b3
https://github.com/tfyd/myEnd2you/tree/455d5404a19dd4867cb5db4f30705041d425d2b3
import torch import numpy as np from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, input_size: 'int', num_channels: 'int'=40): """ Speech emotion recognition model proposed in: `Trigeorgis, G., Ringeval, F., Brueckner, R., Marchi, E., Nicolaou, M. A., Schuller, B., & Zafeiriou, S. Adieu features? end-to-end speech emotion recognition using a deep convolutional recurrent network. In 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 5200-5204). IEEE.` Args: input_size (int): Input size to the model. num_channels (int): Number of channels to use in the convolution layers (default `40`). """ super().__init__() self.conv1 = nn.Conv1d(in_channels=1, out_channels=num_channels, kernel_size=20, stride=1, padding=9) self.max_pool1 = nn.MaxPool1d(2, 2, padding=1) self.conv2 = nn.Conv1d(in_channels=40, out_channels=num_channels, kernel_size=40, stride=1, padding=19) self.max_pool2 = nn.MaxPool1d(10, 10, padding=4) self.num_features = int(np.ceil(input_size / 2)) * 4 - 4 self.reset_parameters() def reset_parameters(self): """ Initialize parameters of the model.""" for m in list(self.modules()): self._init_weights(m) def _init_weights(self, m): """ Helper method to initialize the parameters of the model with Kaiming uniform initialization. """ if type(m) == nn.Conv1d or type(m) == nn.Linear: nn.init.kaiming_uniform_(m.weight) nn.init.zeros_(m.bias) def forward(self, x: 'torch.Tensor'): """ Forward pass. Args: x ((torch.Tensor) - BS x S x 1 x T) """ batch_size, seq_length, t = x.shape x = x.view(batch_size * seq_length, 1, t) x = F.dropout(x) audio_out = F.relu(self.conv1(x)) audio_out = self.max_pool1(audio_out) audio_out = F.relu(self.conv2(audio_out)) _, c2, t2 = audio_out.shape audio_out = audio_out.view(batch_size * seq_length, t2, c2) audio_out = self.max_pool2(audio_out) audio_out = audio_out.view(batch_size, seq_length, -1) return audio_out def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
ReluWithStats
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/qk/cqkf3pyr2owxhpy44ay2xbgol66of4e4vwjq6opak2fdigcjj4mc.py # Topologically Sorted Source Nodes: [abs_1, mean], Original ATen: [aten.abs, aten.mean] # Source node to ATen node mapping: # abs_1 => abs_1 # mean => mean # Graph fragment: # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {}) triton_per_fused_abs_mean_0 = async_compile.triton('triton_per_fused_abs_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl_math.abs(tmp0) tmp2 = tl.broadcast_to(tmp1, [RBLOCK]) tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0)) tmp5 = 256.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [abs_1, mean], Original ATen: [aten.abs, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_mean_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ReluWithStats(nn.Module): def __init__(self): super(ReluWithStats, self).__init__() self.collect_preact = True self.avg_preacts = [] def forward(self, preact): if self.collect_preact: self.avg_preacts.append(preact.abs().mean().item()) act = F.relu(preact) return act def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl_math.abs(tmp0) tmp2 = tl.broadcast_to(tmp1, [RBLOCK]) tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0)) tmp5 = 256.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp6, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_mean_0[grid(1)](buf1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 return buf1, class ReluWithStatsNew(nn.Module): def __init__(self): super(ReluWithStatsNew, self).__init__() self.collect_preact = True self.avg_preacts = [] def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
thudzj/SPAT
ReluWithStats
false
4,422
[ "MIT" ]
0
65632c157f40c05c9aee59080e26457bed5b484c
https://github.com/thudzj/SPAT/tree/65632c157f40c05c9aee59080e26457bed5b484c
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.collect_preact = True self.avg_preacts = [] def forward(self, preact): if self.collect_preact: self.avg_preacts.append(preact.abs().mean().item()) act = F.relu(preact) return act def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
LayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/sr/csrzlteph4svc746shxzwrfzfygp3ngujwxcrnvcusqhc43dtftf.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # y => add, clone, rsqrt, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x2), tmp8, xmask) tl.store(out_ptr1 + (x2), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kr/ckrgsxswvgegsbqfoto5m7jeyj5kla75z75anayv7klydrtg2kle.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # y => add, add_1, clone, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y3), ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (y3), ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2 + (4*y3)), tmp8, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, 4, grid=grid(16, 4), stream=stream0) del buf0 del buf1 del primals_2 del primals_3 return (reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNorm(nn.LayerNorm): def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True): """Layer Norm.""" super(LayerNorm, self).__init__(normalized_shape, eps=eps, elementwise_affine=elementwise_affine) def forward(self, x): x = x.permute(0, 2, 1) y = super(LayerNorm, self).forward(x) y = y.permute(0, 2, 1) return y def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'normalized_shape': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x2, tmp8, xmask) tl.store(out_ptr1 + x2, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y3, ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + y3, ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2 + 4 * y3), tmp8, xmask & ymask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(16)](primals_1, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(16, 4)](primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf0 del buf1 del primals_2 del primals_3 return reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_1 class LayerNormNew(nn.LayerNorm): def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True): """Layer Norm.""" super(LayerNormNew, self).__init__(normalized_shape, eps=eps, elementwise_affine=elementwise_affine) def forward(self, input_0): primals_2 = self.weight primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
thetobysiu/transfer-pytorch-dc-tts
LayerNorm
false
4,423
[ "MIT" ]
0
20d0c381970a01f0e343c65aeac2f325be436a7e
https://github.com/thetobysiu/transfer-pytorch-dc-tts/tree/20d0c381970a01f0e343c65aeac2f325be436a7e
import torch import torch.nn as nn class Model(nn.LayerNorm): def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True): """Layer Norm.""" super().__init__(normalized_shape, eps=eps, elementwise_affine=elementwise_affine) def forward(self, x): x = x.permute(0, 2, 1) y = super(LayerNorm, self).forward(x) y = y.permute(0, 2, 1) return y def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
FFNNClassifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/vy/cvy76z3xhuu5iebvxsmwl44toxyhkogty6m2fwp7r47fvhvoziwi.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten.tanh] # Source node to ATen node mapping: # h => tanh # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ul/culvxc5xcnacfjypzxghwcyc2445sqsz25ci4rib6axjxs3fv3so.py # Topologically Sorted Source Nodes: [log_probs], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_probs => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yr/cyr6fatjcqc5np3quy6arljtkkff4qjmueyb5b4pk5xvkxgrzuvd.py # Topologically Sorted Source Nodes: [log_probs], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_probs => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [h], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_probs], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [log_probs], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf3, buf4, 16, grid=grid(16), stream=stream0) del buf3 return (buf4, primals_1, buf1, buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import FloatTensor from torch.nn import Linear from torch.nn.functional import tanh from torch.nn.functional import log_softmax from torch.autograd import Variable class FFNNClassifier(Module): def __init__(self, n_inputs, n_hidden, n_outputs): super(FFNNClassifier, self).__init__() self.linear1 = Linear(n_inputs, n_hidden) self.linear2 = Linear(n_hidden, n_outputs) def forward(self, inputs): h = tanh(self.linear1(inputs.view(len(inputs), -1))) y = self.linear2(h) log_probs = log_softmax(y) return log_probs def predict(self, x): log_probs = self.forward(Variable(FloatTensor(x))) _, idx = log_probs.data.max(1) return idx[0] def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'n_inputs': 4, 'n_hidden': 4, 'n_outputs': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch.nn import Module from torch import FloatTensor from torch.nn import Linear from torch.autograd import Variable assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(16)](buf1, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__log_softmax_1[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = buf2 del buf2 triton_poi_fused__log_softmax_2[grid(16)](buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf3 return buf4, primals_1, buf1, buf4, primals_4 class FFNNClassifierNew(Module): def __init__(self, n_inputs, n_hidden, n_outputs): super(FFNNClassifierNew, self).__init__() self.linear1 = Linear(n_inputs, n_hidden) self.linear2 = Linear(n_hidden, n_outputs) def predict(self, x): log_probs = self.forward(Variable(FloatTensor(x))) _, idx = log_probs.data.max(1) return idx[0] def forward(self, input_0): primals_1 = self.linear1.weight primals_3 = self.linear1.bias primals_2 = self.linear2.weight primals_5 = self.linear2.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
theofpa/ci-torcs
FFNNClassifier
false
4,424
[ "MIT" ]
0
fcd1e9822301f1ad8f633468ed6276059afa94b9
https://github.com/theofpa/ci-torcs/tree/fcd1e9822301f1ad8f633468ed6276059afa94b9
from torch.nn import Module import torch from torch import FloatTensor from torch.nn import Linear from torch.nn.functional import tanh from torch.nn.functional import log_softmax from torch.autograd import Variable class Model(Module): def __init__(self, n_inputs, n_hidden, n_outputs): super().__init__() self.linear1 = Linear(n_inputs, n_hidden) self.linear2 = Linear(n_hidden, n_outputs) def forward(self, inputs): h = tanh(self.linear1(inputs.view(len(inputs), -1))) y = self.linear2(h) log_probs = log_softmax(y) return log_probs def predict(self, x): log_probs = self.forward(Variable(FloatTensor(x))) _, idx = log_probs.data.max(1) return idx[0] def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4]
_SepConv1d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ij/cijxdni7ku4ts6whctruxf5f4ylei3uarrpzft5qyigxeuit2esy.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_1, %primals_2, [1], [4], [1], False, [0], 4), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 36 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 9) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(4,), dilation=(1,), transposed=False, output_padding=(0,), groups=4, bias=None) assert_size_stride(buf0, (1, 4, 9), (36, 9, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 36, grid=grid(36), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 9), (0, 9, 1), 0), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (1, 4, 9), (36, 9, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf3, primals_5, 36, grid=grid(36), stream=stream0) del primals_5 return (reinterpret_tensor(buf3, (4, 9), (9, 1), 0), primals_1, primals_4, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class _SepConv1d(nn.Module): """A simple separable convolution implementation. The separable convlution is a method to reduce number of the parameters in the deep learning network for slight decrease in predictions quality. """ def __init__(self, ni, no, kernel, stride, pad): super().__init__() self.depthwise = nn.Conv1d(ni, ni, kernel, stride, padding=pad, groups=ni) self.pointwise = nn.Conv1d(ni, no, kernel_size=1) def forward(self, x): return self.pointwise(self.depthwise(x)) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'ni': 4, 'no': 4, 'kernel': 4, 'stride': 1, 'pad': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 36 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 9 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(4,), dilation=(1,), transposed=False, output_padding=(0,), groups=4, bias=None) assert_size_stride(buf0, (1, 4, 9), (36, 9, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(36)](buf1, primals_2, 36, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 9 ), (0, 9, 1), 0), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (1, 4, 9), (36, 9, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_0[grid(36)](buf3, primals_5, 36, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 return reinterpret_tensor(buf3, (4, 9), (9, 1), 0 ), primals_1, primals_4, reinterpret_tensor(primals_3, (1, 4, 4), ( 16, 4, 1), 0), buf1 class _SepConv1dNew(nn.Module): """A simple separable convolution implementation. The separable convlution is a method to reduce number of the parameters in the deep learning network for slight decrease in predictions quality. """ def __init__(self, ni, no, kernel, stride, pad): super().__init__() self.depthwise = nn.Conv1d(ni, ni, kernel, stride, padding=pad, groups=ni) self.pointwise = nn.Conv1d(ni, no, kernel_size=1) def forward(self, input_0): primals_1 = self.depthwise.weight primals_2 = self.depthwise.bias primals_4 = self.pointwise.weight primals_5 = self.pointwise.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
thupchnsky/ModifiedBasesAnalysis
_SepConv1d
false
4,425
[ "MIT" ]
0
904fab75eb5fdc67a050b3862d1432ecce8cf691
https://github.com/thupchnsky/ModifiedBasesAnalysis/tree/904fab75eb5fdc67a050b3862d1432ecce8cf691
import torch from torch import nn class Model(nn.Module): """A simple separable convolution implementation. The separable convlution is a method to reduce number of the parameters in the deep learning network for slight decrease in predictions quality. """ def __init__(self, ni, no, kernel, stride, pad): super().__init__() self.depthwise = nn.Conv1d(ni, ni, kernel, stride, padding=pad, groups=ni) self.pointwise = nn.Conv1d(ni, no, kernel_size=1) def forward(self, x): return self.pointwise(self.depthwise(x)) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4, 1, 4]
Highway
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/au/cau6qypw2vz4drppp6yr6chutchyhnniousxhhlq2y5r3yu3gep5.py # Topologically Sorted Source Nodes: [x_proj], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_proj => relu # Graph fragment: # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yn/cynkq6wyjv7523fpzsg3fegcbi2ai3v57hyj24ad4pyj3m7vwy2b.py # Topologically Sorted Source Nodes: [x_gate, mul, sub, mul_1, x_highway], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # sub => sub # x_gate => sigmoid # x_highway => add # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %relu), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp6 = tl.load(in_ptr2 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_proj], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_gate, mul, sub, mul_1, x_highway], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add] triton_poi_fused_add_mul_rsub_sigmoid_1.run(buf2, buf1, primals_3, buf3, 256, grid=grid(256), stream=stream0) return (buf3, primals_3, buf1, buf2, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.utils class Highway(nn.Module): """it is not fun""" def __init__(self, e_word_size, drop_rate=0.3): super(Highway, self).__init__() self.w_proj = nn.Linear(e_word_size, e_word_size) self.w_gate = nn.Linear(e_word_size, e_word_size) self.relu = torch.nn.functional.relu self.sigmoid = torch.sigmoid self.dropout = nn.Dropout(drop_rate) def forward(self, x_conv_out): """ Map from x_conv_out to x_highway with batches @para x_conv_out: shape (b, e_word_size): b - batch size, e_word_size @return x_highway: shape (b, e_word_size) """ x_proj = self.relu(self.w_proj(x_conv_out)) x_gate = self.sigmoid(self.w_gate(x_proj)) x_highway = x_gate * x_proj + (1 - x_gate) * x_conv_out return self.dropout(x_highway) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'e_word_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp6 = tl.load(in_ptr2 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_1[grid(256)](buf2, buf1, primals_3, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf3, primals_3, buf1, buf2, primals_4 class HighwayNew(nn.Module): """it is not fun""" def __init__(self, e_word_size, drop_rate=0.3): super(HighwayNew, self).__init__() self.w_proj = nn.Linear(e_word_size, e_word_size) self.w_gate = nn.Linear(e_word_size, e_word_size) self.relu = torch.nn.functional.relu self.sigmoid = torch.sigmoid self.dropout = nn.Dropout(drop_rate) def forward(self, input_0): primals_1 = self.w_proj.weight primals_2 = self.w_proj.bias primals_4 = self.w_gate.weight primals_5 = self.w_gate.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
thophan92/cs224n-winter2019
Highway
false
4,426
[ "MIT" ]
0
f3f8041b35e949e73167135d662a2bd93e7406de
https://github.com/thophan92/cs224n-winter2019/tree/f3f8041b35e949e73167135d662a2bd93e7406de
import torch import torch.nn as nn import torch.nn.utils class Model(nn.Module): """it is not fun""" def __init__(self, e_word_size, drop_rate=0.3): super().__init__() self.w_proj = nn.Linear(e_word_size, e_word_size) self.w_gate = nn.Linear(e_word_size, e_word_size) self.relu = torch.nn.functional.relu self.sigmoid = torch.sigmoid self.dropout = nn.Dropout(drop_rate) def forward(self, x_conv_out): """ Map from x_conv_out to x_highway with batches @para x_conv_out: shape (b, e_word_size): b - batch size, e_word_size @return x_highway: shape (b, e_word_size) """ x_proj = self.relu(self.w_proj(x_conv_out)) x_gate = self.sigmoid(self.w_gate(x_proj)) x_highway = x_gate * x_proj + (1 - x_gate) * x_conv_out return self.dropout(x_highway) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
GroupLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/sp/cspwzdzhbzqhjdadobinhw4fwo4nfyuqfzlulkqterwashmqnla2.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_3 => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_3, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 16), (16, 1)) assert_size_stride(primals_3, (16, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 16), (16, 1), 0), reinterpret_tensor(primals_2, (16, 16), (1, 16), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_3, buf1, buf2, 256, grid=grid(256), stream=stream0) del buf0 del primals_3 return (buf2, reinterpret_tensor(primals_1, (16, 16), (16, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.optim import torch.nn as nn import torch.nn.functional as f class GroupLinear(nn.Module): def __init__(self, groups, channels, map_size, dropout=None): super(GroupLinear, self).__init__() self.groups = groups self.channels = channels self.map_size = map_size self.linear_nodes = int(map_size[0] * map_size[1] * channels / groups) check = map_size[0] * map_size[1] * channels % groups if check != 0: raise Exception('Invalid parameters for GroupLinear') self.fc = nn.Linear(self.linear_nodes, self.linear_nodes) if dropout is not None: self.dropout = nn.Dropout(dropout) else: self.dropout = None return def forward(self, x): x = x.view([x.size()[0], self.groups, self.linear_nodes]) x = self.fc(x) if self.dropout is not None: x = self.dropout(x) x = x.view([x.size()[0], self.channels, self.map_size[0], self. map_size[1]]) x = f.leaky_relu(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'groups': 4, 'channels': 4, 'map_size': [4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.optim import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 16), (16, 1)) assert_size_stride(primals_3, (16,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 16), (16, 1), 0), reinterpret_tensor(primals_2, (16, 16), (1, 16), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(256)](buf0, primals_3, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_3 return buf2, reinterpret_tensor(primals_1, (16, 16), (16, 1), 0), buf1 class GroupLinearNew(nn.Module): def __init__(self, groups, channels, map_size, dropout=None): super(GroupLinearNew, self).__init__() self.groups = groups self.channels = channels self.map_size = map_size self.linear_nodes = int(map_size[0] * map_size[1] * channels / groups) check = map_size[0] * map_size[1] * channels % groups if check != 0: raise Exception('Invalid parameters for GroupLinear') self.fc = nn.Linear(self.linear_nodes, self.linear_nodes) if dropout is not None: self.dropout = nn.Dropout(dropout) else: self.dropout = None return def forward(self, input_0): primals_2 = self.fc.weight primals_3 = self.fc.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
tiruns/grad_proj
GroupLinear
false
4,427
[ "MIT" ]
0
8882ff1e3205e346e972d963480c57dbf5aef407
https://github.com/tiruns/grad_proj/tree/8882ff1e3205e346e972d963480c57dbf5aef407
import torch import torch.optim import torch.nn as nn import torch.nn.functional as f class Model(nn.Module): def __init__(self, groups, channels, map_size, dropout=None): super().__init__() self.groups = groups self.channels = channels self.map_size = map_size self.linear_nodes = int(map_size[0] * map_size[1] * channels / groups) check = map_size[0] * map_size[1] * channels % groups if check != 0: raise Exception('Invalid parameters for GroupLinear') self.fc = nn.Linear(self.linear_nodes, self.linear_nodes) if dropout is not None: self.dropout = nn.Dropout(dropout) else: self.dropout = None return def forward(self, x): x = x.view([x.size()[0], self.groups, self.linear_nodes]) x = self.fc(x) if self.dropout is not None: x = self.dropout(x) x = x.view([x.size()[0], self.channels, self.map_size[0], self. map_size[1]]) x = f.leaky_relu(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/pe/cpe72cgpd4z64h2axqrdbkoze64mvbp63x63szieqz6knbjcyjcc.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 36864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 576) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/x7/cx732l5gfxckgq3cguhrzuhkljbjgliecdjefmtikkaq6ngnqx3x.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (48*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (48*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (24 + (2*x0) + (48*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (25 + (2*x0) + (48*x1)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6d/c6dz2dumx4wlj5pirixblkfk3txccdodjsdotukxf4ckcuyhmwl3.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 144) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2y/c2y7n4gjxhpjqwl25hyfnif5qezsnowu3ilecvquatu4pyqdmxu7.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (24*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (24*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (12 + (2*x0) + (24*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (13 + (2*x0) + (24*x1)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/q5/cq5saw32s2cwfsm335wkr534unqrueck3xccdegdfapamptyqk2y.py # Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # relu_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 36) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7f/c7fcgwfsrhapbdkffcm7m6sbya7zskc5wlzyhiwrrtwm6qxjbxni.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => _low_memory_max_pool2d_with_offsets_2, getitem_5 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_2 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_2, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = (xindex // 3) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (12*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (12*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (6 + (2*x0) + (12*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (7 + (2*x0) + (12*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/4d/c4du65qclyui2slr55w75uy2vgvlytpo6a7ayna5e7srbmclnrnv.py # Topologically Sorted Source Nodes: [relu_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu_3 => relu_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_6 = async_compile.triton('triton_poi_fused_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/45/c45fwo2r2l35nfsje3ilxfhmpxdxtlh3tdu2tbcidp53gd4icmoo.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, exp, log, sub, sub_1, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_7 = async_compile.triton('triton_poi_fused__log_softmax_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 2) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (2*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (2*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tmp1 - tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 - tmp3 tmp8 = tl_math.exp(tmp7) tmp9 = tmp6 + tmp8 tmp10 = tl_math.log(tmp9) tmp11 = tmp4 - tmp10 tl.store(out_ptr0 + (x2), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 3, 24, 24), (1728, 576, 24, 1)) assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (100, 576), (576, 1)) assert_size_stride(primals_9, (100, ), (1, )) assert_size_stride(primals_10, (2, 100), (100, 1)) assert_size_stride(primals_11, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 24, 24), (9216, 576, 24, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 36864, grid=grid(36864), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 16, 12, 12), (2304, 144, 12, 1), torch.float32) buf3 = empty_strided_cuda((4, 16, 12, 12), (2304, 144, 12, 1), torch.int8) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 9216, grid=grid(9216), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 12, 12), (4608, 144, 12, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 18432, grid=grid(18432), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 32, 6, 6), (1152, 36, 6, 1), torch.float32) buf7 = empty_strided_cuda((4, 32, 6, 6), (1152, 36, 6, 1), torch.int8) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 4608, grid=grid(4608), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 6, 6), (2304, 36, 6, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf9, primals_7, 9216, grid=grid(9216), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 64, 3, 3), (576, 9, 3, 1), torch.int8) buf11 = empty_strided_cuda((4, 64, 3, 3), (576, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf9, buf10, buf11, 2304, grid=grid(2304), stream=stream0) buf12 = empty_strided_cuda((4, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf11, (4, 576), (576, 1), 0), reinterpret_tensor(primals_8, (576, 100), (1, 576), 0), out=buf12) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [relu_3], Original ATen: [aten.relu] triton_poi_fused_relu_6.run(buf13, primals_9, 400, grid=grid(400), stream=stream0) del primals_9 buf14 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf13, reinterpret_tensor(primals_10, (100, 2), (1, 100), 0), alpha=1, beta=1, out=buf14) del primals_11 buf15 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_7.run(buf14, buf15, 8, grid=grid(8), stream=stream0) del buf14 return (buf15, primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, reinterpret_tensor(buf11, (4, 576), (576, 1), 0), buf13, buf15, primals_10, primals_8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 24, 24), (1728, 576, 24, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((100, 576), (576, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((2, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 16, 3, padding=1) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.conv3 = nn.Conv2d(32, 64, 3, padding=1) self.fc1 = nn.Linear(3 * 3 * 64, 100, bias=True) self.fc2 = nn.Linear(100, 2, bias=True) self.dropout = nn.Dropout(p=0.25) self.pool = nn.MaxPool2d(2, 2) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = self.pool(F.relu(self.conv3(x))) x = x.view(-1, 3 * 3 * 64) x = self.dropout(F.relu(self.fc1(x))) x = self.fc2(x) return F.log_softmax(x) def get_inputs(): return [torch.rand([4, 3, 24, 24])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 576 % 16 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 48 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 48 * x1), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (24 + 2 * x0 + 48 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (25 + 2 * x0 + 48 * x1), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 144 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 24 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 24 * x1), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (12 + 2 * x0 + 24 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (13 + 2 * x0 + 24 * x1), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 36 % 64 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = xindex // 3 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 12 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 12 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (6 + 2 * x0 + 12 * x1), xmask, eviction_policy ='evict_last') tmp12 = tl.load(in_ptr0 + (7 + 2 * x0 + 12 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__log_softmax_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 2 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tmp1 - tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 - tmp3 tmp8 = tl_math.exp(tmp7) tmp9 = tmp6 + tmp8 tmp10 = tl_math.log(tmp9) tmp11 = tmp4 - tmp10 tl.store(out_ptr0 + x2, tmp11, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 3, 24, 24), (1728, 576, 24, 1)) assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (100, 576), (576, 1)) assert_size_stride(primals_9, (100,), (1,)) assert_size_stride(primals_10, (2, 100), (100, 1)) assert_size_stride(primals_11, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 24, 24), (9216, 576, 24, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(36864)](buf1, primals_2, 36864, XBLOCK=512, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 16, 12, 12), (2304, 144, 12, 1), torch.float32) buf3 = empty_strided_cuda((4, 16, 12, 12), (2304, 144, 12, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(9216)](buf1, buf2, buf3, 9216, XBLOCK=128, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 12, 12), (4608, 144, 12, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(18432)](buf5, primals_5, 18432, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 32, 6, 6), (1152, 36, 6, 1), torch. float32) buf7 = empty_strided_cuda((4, 32, 6, 6), (1152, 36, 6, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(4608)](buf5, buf6, buf7, 4608, XBLOCK=128, num_warps=4, num_stages=1) buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 6, 6), (2304, 36, 6, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_4[grid(9216)](buf9, primals_7, 9216, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 64, 3, 3), (576, 9, 3, 1), torch.int8) buf11 = empty_strided_cuda((4, 64, 3, 3), (576, 9, 3, 1), torch.float32 ) triton_poi_fused_max_pool2d_with_indices_5[grid(2304)](buf9, buf10, buf11, 2304, XBLOCK=256, num_warps=4, num_stages=1) buf12 = empty_strided_cuda((4, 100), (100, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf11, (4, 576), (576, 1), 0), reinterpret_tensor(primals_8, (576, 100), (1, 576), 0), out=buf12) buf13 = buf12 del buf12 triton_poi_fused_relu_6[grid(400)](buf13, primals_9, 400, XBLOCK= 128, num_warps=4, num_stages=1) del primals_9 buf14 = empty_strided_cuda((4, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_11, buf13, reinterpret_tensor( primals_10, (100, 2), (1, 100), 0), alpha=1, beta=1, out=buf14) del primals_11 buf15 = empty_strided_cuda((4, 2), (2, 1), torch.float32) triton_poi_fused__log_softmax_7[grid(8)](buf14, buf15, 8, XBLOCK=8, num_warps=1, num_stages=1) del buf14 return (buf15, primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, reinterpret_tensor(buf11, (4, 576), (576, 1), 0), buf13, buf15, primals_10, primals_8) class NetNew(nn.Module): def __init__(self): super(NetNew, self).__init__() self.conv1 = nn.Conv2d(3, 16, 3, padding=1) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.conv3 = nn.Conv2d(32, 64, 3, padding=1) self.fc1 = nn.Linear(3 * 3 * 64, 100, bias=True) self.fc2 = nn.Linear(100, 2, bias=True) self.dropout = nn.Dropout(p=0.25) self.pool = nn.MaxPool2d(2, 2) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.fc1.weight primals_9 = self.fc1.bias primals_10 = self.fc2.weight primals_11 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
thejammerr/DriveAlert
Net
false
4,428
[ "MIT" ]
0
bac025c2e2919aeb67ef717e90d3049403ecdef5
https://github.com/thejammerr/DriveAlert/tree/bac025c2e2919aeb67ef717e90d3049403ecdef5
import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 16, 3, padding=1) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.conv3 = nn.Conv2d(32, 64, 3, padding=1) self.fc1 = nn.Linear(3 * 3 * 64, 100, bias=True) self.fc2 = nn.Linear(100, 2, bias=True) self.dropout = nn.Dropout(p=0.25) self.pool = nn.MaxPool2d(2, 2) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = self.pool(F.relu(self.conv3(x))) x = x.view(-1, 3 * 3 * 64) x = self.dropout(F.relu(self.fc1(x))) x = self.fc2(x) return F.log_softmax(x) def get_inputs(): return [torch.rand([4, 3, 24, 24])] def get_init_inputs(): return []
Actor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xc/cxcj5l7s6w5ttrq2fk2nirlbp44yesw6n2m2dnxtpcjjmym2njhr.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ns/cnszijuiz432ctw37rqktvk3syr2vugzeuatmva3neoizic6f3sq.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) triton_poi_fused_tanh_2 = async_compile.triton('triton_poi_fused_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 128), (128, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 8192, grid=grid(8192), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 64), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse buf6 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf6, 4096, grid=grid(4096), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] triton_poi_fused_tanh_2.run(buf5, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(buf3, (64, 64), (64, 1), 0), buf5, primals_6, buf6, primals_4, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn.functional as F from torch import nn def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Actor(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc_units=128, fc_units2=64): super(Actor, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc_units) self.fc2 = nn.Linear(fc_units, fc_units2) self.fc3 = nn.Linear(fc_units2, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, state): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) return torch.tanh(self.fc3(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import numpy as np from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 128), (128, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf0 buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1, primals_2, buf7, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 64), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf2 buf6 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool ) triton_poi_fused_relu_threshold_backward_1[grid(4096)](buf3, primals_5, buf6, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 triton_poi_fused_tanh_2[grid(256)](buf5, primals_7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 128), (128, 1), 0 ), reinterpret_tensor(buf3, (64, 64), (64, 1), 0 ), buf5, primals_6, buf6, primals_4, buf7 def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class ActorNew(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc_units=128, fc_units2=64): super(ActorNew, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc_units) self.fc2 = nn.Linear(fc_units, fc_units2) self.fc3 = nn.Linear(fc_units2, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
tjkemp/ubik-agent
Actor
false
4,429
[ "MIT" ]
0
34e4dd0d6319b8f5c5dba0cd9e087490720b723b
https://github.com/tjkemp/ubik-agent/tree/34e4dd0d6319b8f5c5dba0cd9e087490720b723b
import torch import numpy as np import torch.nn.functional as F from torch import nn def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Model(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc_units=128, fc_units2=64): super().__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc_units) self.fc2 = nn.Linear(fc_units, fc_units2) self.fc3 = nn.Linear(fc_units2, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, state): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) return torch.tanh(self.fc3(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
StableBCELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/cy/ccyyd5io4c2jg22qb5a5nd5hj2bgy4azt7pblg6ozpn6xjmjmjh7.py # Topologically Sorted Source Nodes: [clamp, mul, sub, abs_1, neg_abs, exp, add, log, loss, mean], Original ATen: [aten.clamp, aten.mul, aten.sub, aten.abs, aten.neg, aten.exp, aten.add, aten.log, aten.mean] # Source node to ATen node mapping: # abs_1 => abs_1 # add => add # clamp => clamp_min # exp => exp # log => log # loss => add_1 # mean => mean # mul => mul # neg_abs => neg # sub => sub # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%view, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %mul), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%view,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp, 1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %log), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_1,), kwargs = {}) triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0 = async_compile.triton('triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = tmp0 * tmp3 tmp5 = tmp2 - tmp4 tmp6 = tl_math.abs(tmp0) tmp7 = -tmp6 tmp8 = tl_math.exp(tmp7) tmp9 = 1.0 tmp10 = tmp8 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp5 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [clamp, mul, sub, abs_1, neg_abs, exp, add, log, loss, mean], Original ATen: [aten.clamp, aten.mul, aten.sub, aten.abs, aten.neg, aten.exp, aten.add, aten.log, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class StableBCELoss(nn.Module): def __init__(self): super(StableBCELoss, self).__init__() def forward(self, input, target): input = input.float().view(-1) target = target.float().view(-1) neg_abs = -input.abs() loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log() return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = tmp0 * tmp3 tmp5 = tmp2 - tmp4 tmp6 = tl_math.abs(tmp0) tmp7 = -tmp6 tmp8 = tl_math.exp(tmp7) tmp9 = 1.0 tmp10 = tmp8 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp5 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0[grid(1)](buf1 , arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class StableBCELossNew(nn.Module): def __init__(self): super(StableBCELossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
toandaominh1997/understanding_cloud_organization
StableBCELoss
false
4,431
[ "MIT" ]
0
7da991ff3da557c18f4585c1b956ed799c104c7c
https://github.com/toandaominh1997/understanding_cloud_organization/tree/7da991ff3da557c18f4585c1b956ed799c104c7c
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, input, target): input = input.float().view(-1) target = target.float().view(-1) neg_abs = -input.abs() loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log() return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
AngleMultipleLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/q6/cq6gwmkqzrgsbed25n3t4wvathkclo5jeckxfwnebre5sud4mcnj.py # Topologically Sorted Source Nodes: [normalized_weights], Original ATen: [aten.div] # Source node to ATen node mapping: # normalized_weights => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, %expand), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ec/cecvzfrpaaz5jk4lgldwe2qaluhsli4gb5osso4bx6vrtrko5grx.py # Topologically Sorted Source Nodes: [prod_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # prod_weights => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 10.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp6 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = -1.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tmp4 * tmp3 tmp7 = triton_helpers.maximum(tmp6, tmp1) tmp8 = triton_helpers.minimum(tmp7, tmp3) tmp9 = tmp8 * tmp3 tmp11 = triton_helpers.maximum(tmp10, tmp1) tmp12 = triton_helpers.minimum(tmp11, tmp3) tmp13 = tmp12 * tmp3 tmp14 = triton_helpers.maximum(tmp9, tmp13) tmp16 = triton_helpers.maximum(tmp15, tmp1) tmp17 = triton_helpers.minimum(tmp16, tmp3) tmp18 = tmp17 * tmp3 tmp19 = triton_helpers.maximum(tmp14, tmp18) tmp21 = triton_helpers.maximum(tmp20, tmp1) tmp22 = triton_helpers.minimum(tmp21, tmp3) tmp23 = tmp22 * tmp3 tmp24 = triton_helpers.maximum(tmp19, tmp23) tmp25 = tmp5 - tmp24 tmp26 = 10.0 tmp27 = tmp25 * tmp26 tmp28 = tl_math.exp(tmp27) tl.store(out_ptr0 + (x2), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mi/cmiyjejsvgxujqegsxne3sldy3bdyhjzsmbxl6zmvrlyenqewaiu.py # Topologically Sorted Source Nodes: [prod_weights, mul_1, scores], Original ATen: [aten._softmax, aten.mul, aten.sum] # Source node to ATen node mapping: # mul_1 => mul_1 # prod_weights => div_1, sum_2 # scores => sum_3 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %view_2), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1]), kwargs = {}) triton_poi_fused__softmax_mul_sum_2 = async_compile.triton('triton_poi_fused__softmax_mul_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tmp0 / tmp6 tmp9 = -1.0 tmp10 = triton_helpers.maximum(tmp8, tmp9) tmp11 = 1.0 tmp12 = triton_helpers.minimum(tmp10, tmp11) tmp13 = tmp7 * tmp12 tmp14 = tmp1 / tmp6 tmp16 = triton_helpers.maximum(tmp15, tmp9) tmp17 = triton_helpers.minimum(tmp16, tmp11) tmp18 = tmp14 * tmp17 tmp19 = tmp13 + tmp18 tmp20 = tmp3 / tmp6 tmp22 = triton_helpers.maximum(tmp21, tmp9) tmp23 = triton_helpers.minimum(tmp22, tmp11) tmp24 = tmp20 * tmp23 tmp25 = tmp19 + tmp24 tmp26 = tmp5 / tmp6 tmp28 = triton_helpers.maximum(tmp27, tmp9) tmp29 = triton_helpers.minimum(tmp28, tmp11) tmp30 = tmp26 * tmp29 tmp31 = tmp25 + tmp30 tl.store(out_ptr0 + (x0), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [normalized_weights], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(primals_2, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [normalized_weights, prod], Original ATen: [aten.div, aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf0, out=buf1) del buf0 buf2 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [prod_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 1024, grid=grid(1024), stream=stream0) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [prod_weights, mul_1, scores], Original ATen: [aten._softmax, aten.mul, aten.sum] triton_poi_fused__softmax_mul_sum_2.run(buf2, buf1, buf3, 256, grid=grid(256), stream=stream0) del buf2 return (buf3, primals_2, buf1, reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter def normalize(x, dim, p=2, eps=1e-12): if torch.onnx.is_in_onnx_export(): return OnnxLpNormalization.apply(x, dim, p, eps) else: return F.normalize(x, dim=dim) class OnnxLpNormalization(torch.autograd.Function): @staticmethod def forward(ctx, x, axis=0, p=2, eps=1e-12): denom = x.norm(2, axis, True).clamp_min(eps).expand_as(x) return x / denom @staticmethod def symbolic(g, x, axis=0, p=2, eps=1e-12): return g.op('LpNormalization', x, axis_i=int(axis), p_i=int(p)) class AngleMultipleLinear(nn.Module): """Based on SoftTriplet loss: https://arxiv.org/pdf/1909.05235.pdf """ def __init__(self, in_features, num_classes, num_centers, scale=10.0, reg_weight=0.2, reg_threshold=0.2): super(AngleMultipleLinear, self).__init__() self.in_features = in_features assert in_features > 0 self.num_classes = num_classes assert num_classes >= 2 self.num_centers = num_centers assert num_centers >= 1 self.scale = scale assert scale > 0.0 weight_shape = [in_features, num_classes, num_centers ] if num_centers > 1 else [in_features, num_classes] self.weight = Parameter(torch.Tensor(*weight_shape)) self.weight.data.normal_().renorm_(2, 1, 1e-05).mul_(100000.0) self.enable_regularization = (reg_weight is not None and reg_weight > 0.0) if self.enable_regularization: self.reg_weight = reg_weight if num_centers == 1: self.reg_threshold = reg_threshold assert self.reg_threshold >= 0.0 reg_valid_mask = np.triu(np.ones((num_classes, num_classes), dtype=np.float32), k=1) else: self.reg_weight /= num_classes if num_centers > 2: self.reg_weight /= (num_centers - 1) * (num_centers - 2) reg_valid_mask = np.tile(np.triu(np.ones((1, num_centers, num_centers), dtype=np.float32), k=1), (num_classes, 1, 1)) self.register_buffer('reg_mask', torch.from_numpy(reg_valid_mask)) else: self.reg_weight = None self.reg_mask = None def forward(self, normalized_x): normalized_x = normalized_x.view(-1, self.in_features) normalized_weights = normalize(self.weight.view(self.in_features, - 1), dim=0) prod = normalized_x.mm(normalized_weights) if not torch.onnx.is_in_onnx_export(): prod = prod.clamp(-1.0, 1.0) if self.num_centers > 1: prod = prod.view(-1, self.num_classes, self.num_centers) prod_weights = F.softmax(self.scale * prod, dim=-1) scores = torch.sum(prod_weights * prod, dim=-1) else: scores = prod return scores def loss(self, name): out_losses = dict() if self.enable_regularization: normalized_weights = F.normalize(self.weight, dim=0) if self.num_centers == 1: all_pairwise_scores = normalized_weights.permute(1, 0).matmul( normalized_weights) valid_pairwise_scores = all_pairwise_scores[self.reg_mask > 0.0 ] losses = valid_pairwise_scores[valid_pairwise_scores > self .reg_threshold] - self.reg_threshold out_losses['loss/cpush' + name ] = self.reg_weight * losses.mean() if losses.numel( ) > 0 else losses.sum() else: all_pairwise_scores = normalized_weights.permute(1, 2, 0 ).matmul(normalized_weights.permute(1, 0, 2)) valid_pairwise_scores = all_pairwise_scores[self.reg_mask > 0.0 ] losses = 1.0 - valid_pairwise_scores out_losses['loss/st_reg' + name ] = self.reg_weight * losses.sum() return out_losses def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'num_classes': 4, 'num_centers': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp6 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = -1.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tmp4 * tmp3 tmp7 = triton_helpers.maximum(tmp6, tmp1) tmp8 = triton_helpers.minimum(tmp7, tmp3) tmp9 = tmp8 * tmp3 tmp11 = triton_helpers.maximum(tmp10, tmp1) tmp12 = triton_helpers.minimum(tmp11, tmp3) tmp13 = tmp12 * tmp3 tmp14 = triton_helpers.maximum(tmp9, tmp13) tmp16 = triton_helpers.maximum(tmp15, tmp1) tmp17 = triton_helpers.minimum(tmp16, tmp3) tmp18 = tmp17 * tmp3 tmp19 = triton_helpers.maximum(tmp14, tmp18) tmp21 = triton_helpers.maximum(tmp20, tmp1) tmp22 = triton_helpers.minimum(tmp21, tmp3) tmp23 = tmp22 * tmp3 tmp24 = triton_helpers.maximum(tmp19, tmp23) tmp25 = tmp5 - tmp24 tmp26 = 10.0 tmp27 = tmp25 * tmp26 tmp28 = tl_math.exp(tmp27) tl.store(out_ptr0 + x2, tmp28, xmask) @triton.jit def triton_poi_fused__softmax_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp21 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp27 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tmp0 / tmp6 tmp9 = -1.0 tmp10 = triton_helpers.maximum(tmp8, tmp9) tmp11 = 1.0 tmp12 = triton_helpers.minimum(tmp10, tmp11) tmp13 = tmp7 * tmp12 tmp14 = tmp1 / tmp6 tmp16 = triton_helpers.maximum(tmp15, tmp9) tmp17 = triton_helpers.minimum(tmp16, tmp11) tmp18 = tmp14 * tmp17 tmp19 = tmp13 + tmp18 tmp20 = tmp3 / tmp6 tmp22 = triton_helpers.maximum(tmp21, tmp9) tmp23 = triton_helpers.minimum(tmp22, tmp11) tmp24 = tmp20 * tmp23 tmp25 = tmp19 + tmp24 tmp26 = tmp5 / tmp6 tmp28 = triton_helpers.maximum(tmp27, tmp9) tmp29 = triton_helpers.minimum(tmp28, tmp11) tmp30 = tmp26 * tmp29 tmp31 = tmp25 + tmp30 tl.store(out_ptr0 + x0, tmp31, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16), (16, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(64)](primals_2, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf0, out=buf1) del buf0 buf2 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(1024)](buf1, buf2, 1024, XBLOCK= 128, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) triton_poi_fused__softmax_mul_sum_2[grid(256)](buf2, buf1, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 return buf3, primals_2, buf1, reinterpret_tensor(primals_1, (4, 64), (1, 4), 0) def normalize(x, dim, p=2, eps=1e-12): if torch.onnx.is_in_onnx_export(): return OnnxLpNormalization.apply(x, dim, p, eps) else: return F.normalize(x, dim=dim) class OnnxLpNormalization(torch.autograd.Function): @staticmethod def forward(ctx, x, axis=0, p=2, eps=1e-12): denom = x.norm(2, axis, True).clamp_min(eps).expand_as(x) return x / denom @staticmethod def symbolic(g, x, axis=0, p=2, eps=1e-12): return g.op('LpNormalization', x, axis_i=int(axis), p_i=int(p)) class AngleMultipleLinearNew(nn.Module): """Based on SoftTriplet loss: https://arxiv.org/pdf/1909.05235.pdf """ def __init__(self, in_features, num_classes, num_centers, scale=10.0, reg_weight=0.2, reg_threshold=0.2): super(AngleMultipleLinearNew, self).__init__() self.in_features = in_features assert in_features > 0 self.num_classes = num_classes assert num_classes >= 2 self.num_centers = num_centers assert num_centers >= 1 self.scale = scale assert scale > 0.0 weight_shape = [in_features, num_classes, num_centers ] if num_centers > 1 else [in_features, num_classes] self.weight = Parameter(torch.Tensor(*weight_shape)) self.weight.data.normal_().renorm_(2, 1, 1e-05).mul_(100000.0) self.enable_regularization = (reg_weight is not None and reg_weight > 0.0) if self.enable_regularization: self.reg_weight = reg_weight if num_centers == 1: self.reg_threshold = reg_threshold assert self.reg_threshold >= 0.0 reg_valid_mask = np.triu(np.ones((num_classes, num_classes), dtype=np.float32), k=1) else: self.reg_weight /= num_classes if num_centers > 2: self.reg_weight /= (num_centers - 1) * (num_centers - 2) reg_valid_mask = np.tile(np.triu(np.ones((1, num_centers, num_centers), dtype=np.float32), k=1), (num_classes, 1, 1)) self.register_buffer('reg_mask', torch.from_numpy(reg_valid_mask)) else: self.reg_weight = None self.reg_mask = None def loss(self, name): out_losses = dict() if self.enable_regularization: normalized_weights = F.normalize(self.weight, dim=0) if self.num_centers == 1: all_pairwise_scores = normalized_weights.permute(1, 0).matmul( normalized_weights) valid_pairwise_scores = all_pairwise_scores[self.reg_mask > 0.0 ] losses = valid_pairwise_scores[valid_pairwise_scores > self .reg_threshold] - self.reg_threshold out_losses['loss/cpush' + name ] = self.reg_weight * losses.mean() if losses.numel( ) > 0 else losses.sum() else: all_pairwise_scores = normalized_weights.permute(1, 2, 0 ).matmul(normalized_weights.permute(1, 0, 2)) valid_pairwise_scores = all_pairwise_scores[self.reg_mask > 0.0 ] losses = 1.0 - valid_pairwise_scores out_losses['loss/st_reg' + name ] = self.reg_weight * losses.sum() return out_losses def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
sovrasov/mmaction2
AngleMultipleLinear
false
4,432
[ "Apache-2.0" ]
0
055625bf6d6e06e9f811cc4f8b0332c18cebc98c
https://github.com/sovrasov/mmaction2/tree/055625bf6d6e06e9f811cc4f8b0332c18cebc98c
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter def normalize(x, dim, p=2, eps=1e-12): if torch.onnx.is_in_onnx_export(): return OnnxLpNormalization.apply(x, dim, p, eps) else: return F.normalize(x, dim=dim) class OnnxLpNormalization(torch.autograd.Function): @staticmethod def forward(ctx, x, axis=0, p=2, eps=1e-12): denom = x.norm(2, axis, True).clamp_min(eps).expand_as(x) return x / denom @staticmethod def symbolic(g, x, axis=0, p=2, eps=1e-12): return g.op('LpNormalization', x, axis_i=int(axis), p_i=int(p)) class Model(nn.Module): """Based on SoftTriplet loss: https://arxiv.org/pdf/1909.05235.pdf """ def __init__(self, in_features, num_classes, num_centers, scale=10.0, reg_weight=0.2, reg_threshold=0.2): super().__init__() self.in_features = in_features assert in_features > 0 self.num_classes = num_classes assert num_classes >= 2 self.num_centers = num_centers assert num_centers >= 1 self.scale = scale assert scale > 0.0 weight_shape = [in_features, num_classes, num_centers ] if num_centers > 1 else [in_features, num_classes] self.weight = Parameter(torch.Tensor(*weight_shape)) self.weight.data.normal_().renorm_(2, 1, 1e-05).mul_(100000.0) self.enable_regularization = (reg_weight is not None and reg_weight > 0.0) if self.enable_regularization: self.reg_weight = reg_weight if num_centers == 1: self.reg_threshold = reg_threshold assert self.reg_threshold >= 0.0 reg_valid_mask = np.triu(np.ones((num_classes, num_classes), dtype=np.float32), k=1) else: self.reg_weight /= num_classes if num_centers > 2: self.reg_weight /= (num_centers - 1) * (num_centers - 2) reg_valid_mask = np.tile(np.triu(np.ones((1, num_centers, num_centers), dtype=np.float32), k=1), (num_classes, 1, 1)) self.register_buffer('reg_mask', torch.from_numpy(reg_valid_mask)) else: self.reg_weight = None self.reg_mask = None def forward(self, normalized_x): normalized_x = normalized_x.view(-1, self.in_features) normalized_weights = normalize(self.weight.view(self.in_features, - 1), dim=0) prod = normalized_x.mm(normalized_weights) if not torch.onnx.is_in_onnx_export(): prod = prod.clamp(-1.0, 1.0) if self.num_centers > 1: prod = prod.view(-1, self.num_classes, self.num_centers) prod_weights = F.softmax(self.scale * prod, dim=-1) scores = torch.sum(prod_weights * prod, dim=-1) else: scores = prod return scores def loss(self, name): out_losses = dict() if self.enable_regularization: normalized_weights = F.normalize(self.weight, dim=0) if self.num_centers == 1: all_pairwise_scores = normalized_weights.permute(1, 0).matmul( normalized_weights) valid_pairwise_scores = all_pairwise_scores[self.reg_mask > 0.0 ] losses = valid_pairwise_scores[valid_pairwise_scores > self .reg_threshold] - self.reg_threshold out_losses['loss/cpush' + name ] = self.reg_weight * losses.mean() if losses.numel( ) > 0 else losses.sum() else: all_pairwise_scores = normalized_weights.permute(1, 2, 0 ).matmul(normalized_weights.permute(1, 0, 2)) valid_pairwise_scores = all_pairwise_scores[self.reg_mask > 0.0 ] losses = 1.0 - valid_pairwise_ # ... truncated (>4000 chars) for memory efficiency
VectorQuantizer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/73/c73ncdy6vy626ejaszt4jxwks75kgjm465emef4gnjjep5u2fw4w.py # Topologically Sorted Source Nodes: [pow_1, sum_1, pow_2, sum_2, add, mul, dist], Original ATen: [aten.pow, aten.sum, aten.add, aten.mul, aten.sub] # Source node to ATen node mapping: # add => add # dist => sub # mul => mul # pow_1 => pow_1 # pow_2 => pow_2 # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [1]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mul), kwargs = {}) triton_poi_fused_add_mul_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_add_mul_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = 2.0 tmp25 = tmp23 * tmp24 tmp26 = tmp22 - tmp25 tl.store(in_out_ptr0 + (x2), tmp26, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qg/cqgo745dancguaiyptd32quhvnmspavyjyq2io4utqsifwkwzyv4.py # Topologically Sorted Source Nodes: [argmin], Original ATen: [aten.argmin] # Source node to ATen node mapping: # argmin => argmin # Graph fragment: # %argmin : [num_users=1] = call_function[target=torch.ops.aten.argmin.default](args = (%sub, 1), kwargs = {}) triton_poi_fused_argmin_1 = async_compile.triton('triton_poi_fused_argmin_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_argmin_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_argmin_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 < tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 < tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 < tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tmp45 = tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + (x0), tmp46, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ln/clnzygzwdtagxuqagtcerti6utr5rdxefzpdmaublkiwr43nl6v5.py # Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter] # Source node to ATen node mapping: # scatter_ => scatter_upon_const_tensor # Graph fragment: # %scatter_upon_const_tensor : [num_users=2] = call_function[target=torch._inductor.fx_passes.post_grad.scatter_upon_const_tensor](args = (), kwargs = {shape: [4, 4], background_val: 0, dtype: torch.float32, dim: 1, selector: %unsqueeze, val: 1}) triton_poi_fused_scatter_2 = async_compile.triton('triton_poi_fused_scatter_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_scatter_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_scatter_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6q/c6qokbifuhr25hwxm4jd4sf3bwbhvmbr3cjgb667kfmbvwlmj374.py # Topologically Sorted Source Nodes: [commitment_loss, mul_1, vq_loss, quantized_latents_1], Original ATen: [aten.mse_loss, aten.mul, aten.add, aten.mse_loss_backward] # Source node to ATen node mapping: # commitment_loss => mean, pow_3, sub_1 # mul_1 => mul_1 # quantized_latents_1 => add_2 # vq_loss => add_1 # Graph fragment: # %sub_1 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mm_1, %primals_1), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.25), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mean), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %sub_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 0.125), kwargs = {}) triton_per_fused_add_mse_loss_mse_loss_backward_mul_3 = async_compile.triton('triton_per_fused_add_mse_loss_mse_loss_backward_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mse_loss_mse_loss_backward_mul_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mse_loss_mse_loss_backward_mul_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = tmp1 + tmp2 tmp8 = 0.125 tmp9 = tmp2 * tmp8 tmp10 = 16.0 tmp11 = tmp6 / tmp10 tmp12 = 0.25 tmp13 = tmp11 * tmp12 tmp14 = tmp13 + tmp11 tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp7, None) tl.store(out_ptr1 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp9, None) tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp14, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [pow_1, sum_1, pow_2, sum_2, add, mul, dist], Original ATen: [aten.pow, aten.sum, aten.add, aten.mul, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_pow_sub_sum_0.run(buf1, primals_1, primals_2, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [argmin], Original ATen: [aten.argmin] triton_poi_fused_argmin_1.run(buf1, buf2, 4, grid=grid(4), stream=stream0) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter] triton_poi_fused_scatter_2.run(buf2, buf3, 16, grid=grid(16), stream=stream0) del buf2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [quantized_latents], Original ATen: [aten.mm] extern_kernels.mm(buf3, primals_2, out=buf4) del primals_2 buf5 = empty_strided_cuda((), (), torch.float32) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf8 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [commitment_loss, mul_1, vq_loss, quantized_latents_1], Original ATen: [aten.mse_loss, aten.mul, aten.add, aten.mse_loss_backward] triton_per_fused_add_mse_loss_mse_loss_backward_mul_3.run(buf8, buf4, primals_1, buf6, buf7, 1, 16, grid=grid(1), stream=stream0) del buf4 del primals_1 return (buf6, buf8, buf7, reinterpret_tensor(buf3, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F class VectorQuantizer(nn.Module): """ Reference: [1] https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py """ def __init__(self, num_embeddings: 'int', embedding_dim: 'int', beta: 'float'=0.25): super(VectorQuantizer, self).__init__() self.K = num_embeddings self.D = embedding_dim self.beta = beta self.embedding = nn.Embedding(self.K, self.D) self.embedding.weight.data.uniform_(-1 / self.K, 1 / self.K) def forward(self, latents: 'torch.Tensor') ->torch.Tensor: dist = torch.sum(latents ** 2, dim=1, keepdim=True) + torch.sum( self.embedding.weight ** 2, dim=1) - 2 * torch.matmul(latents, self.embedding.weight.t()) encoding_inds = torch.argmin(dist, dim=1).unsqueeze(1) device = latents.device encoding_one_hot = torch.zeros(encoding_inds.size(0), self.K, device=device) encoding_one_hot.scatter_(1, encoding_inds, 1) quantized_latents = torch.matmul(encoding_one_hot, self.embedding. weight) commitment_loss = F.mse_loss(quantized_latents.detach(), latents) embedding_loss = F.mse_loss(quantized_latents, latents.detach()) vq_loss = commitment_loss * self.beta + embedding_loss quantized_latents = latents + (quantized_latents - latents).detach() return quantized_latents, vq_loss def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'num_embeddings': 4, 'embedding_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = 2.0 tmp25 = tmp23 * tmp24 tmp26 = tmp22 - tmp25 tl.store(in_out_ptr0 + x2, tmp26, xmask) @triton.jit def triton_poi_fused_argmin_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 < tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 < tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 < tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + x0, tmp46, xmask) @triton.jit def triton_poi_fused_scatter_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_per_fused_add_mse_loss_mse_loss_backward_mul_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr ): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = tmp1 + tmp2 tmp8 = 0.125 tmp9 = tmp2 * tmp8 tmp10 = 16.0 tmp11 = tmp6 / tmp10 tmp12 = 0.25 tmp13 = tmp11 * tmp12 tmp14 = tmp13 + tmp11 tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp7, None) tl.store(out_ptr1 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp9, None) tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp14, None) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_mul_pow_sub_sum_0[grid(16)](buf1, primals_1, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4,), (1,), torch.int64) triton_poi_fused_argmin_1[grid(4)](buf1, buf2, 4, XBLOCK=4, num_warps=1, num_stages=1) buf3 = buf1 del buf1 triton_poi_fused_scatter_2[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf3, primals_2, out=buf4) del primals_2 buf5 = empty_strided_cuda((), (), torch.float32) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf8 = buf5 del buf5 triton_per_fused_add_mse_loss_mse_loss_backward_mul_3[grid(1)](buf8, buf4, primals_1, buf6, buf7, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf4 del primals_1 return buf6, buf8, buf7, reinterpret_tensor(buf3, (4, 4), (1, 4), 0) class VectorQuantizerNew(nn.Module): """ Reference: [1] https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py """ def __init__(self, num_embeddings: 'int', embedding_dim: 'int', beta: 'float'=0.25): super(VectorQuantizerNew, self).__init__() self.K = num_embeddings self.D = embedding_dim self.beta = beta self.embedding = nn.Embedding(self.K, self.D) self.embedding.weight.data.uniform_(-1 / self.K, 1 / self.K) def forward(self, input_0): primals_1 = self.embedding.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0], output[1]
threewisemonkeys-as/PyTorch-VAE
VectorQuantizer
false
4,433
[ "Apache-2.0" ]
0
4ed0fc7581d4792b435134aa9e06d5e35a5db118
https://github.com/threewisemonkeys-as/PyTorch-VAE/tree/4ed0fc7581d4792b435134aa9e06d5e35a5db118
import torch from torch import nn from torch.nn import functional as F class Model(nn.Module): """ Reference: [1] https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py """ def __init__(self, num_embeddings: 'int', embedding_dim: 'int', beta: 'float'=0.25): super().__init__() self.K = num_embeddings self.D = embedding_dim self.beta = beta self.embedding = nn.Embedding(self.K, self.D) self.embedding.weight.data.uniform_(-1 / self.K, 1 / self.K) def forward(self, latents: 'torch.Tensor') ->torch.Tensor: dist = torch.sum(latents ** 2, dim=1, keepdim=True) + torch.sum( self.embedding.weight ** 2, dim=1) - 2 * torch.matmul(latents, self.embedding.weight.t()) encoding_inds = torch.argmin(dist, dim=1).unsqueeze(1) device = latents.device encoding_one_hot = torch.zeros(encoding_inds.size(0), self.K, device=device) encoding_one_hot.scatter_(1, encoding_inds, 1) quantized_latents = torch.matmul(encoding_one_hot, self.embedding. weight) commitment_loss = F.mse_loss(quantized_latents.detach(), latents) embedding_loss = F.mse_loss(quantized_latents, latents.detach()) vq_loss = commitment_loss * self.beta + embedding_loss quantized_latents = latents + (quantized_latents - latents).detach() return quantized_latents, vq_loss def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/sm/csm4ofalq42npqq7fv6jo3il6ujywmjwqnazwa5z35h4asxel7vx.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_4], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 68 x1 = (xindex // 68) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((64*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 68, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-64) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/b7/cb7yiqdigd2vu5it7f2y6axob3bgvkx2ecs3nmymezsrlxsu2jhl.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_6), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/it/cit4qjb7wmwrbvv2rtchpn3duppvfiyliqnz2jz3tymwbqqane7m.py # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # xs => relu # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (32, 68), (68, 1)) assert_size_stride(primals_6, (32, ), (1, )) assert_size_stride(primals_7, (32, 32), (32, 1)) assert_size_stride(primals_8, (32, ), (1, )) assert_size_stride(primals_9, (1, 32), (32, 1)) assert_size_stride(primals_10, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 68), (68, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, primals_2, primals_4, buf1, 272, grid=grid(272), stream=stream0) del primals_4 buf2 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (68, 32), (1, 68), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_6, 128, grid=grid(128), stream=stream0) del primals_6 buf4 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_7, (32, 32), (1, 32), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf5, primals_8, 128, grid=grid(128), stream=stream0) del primals_8 buf7 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, buf5, reinterpret_tensor(primals_9, (32, 1), (1, 32), 0), alpha=1, beta=1, out=buf7) del primals_10 buf8 = empty_strided_cuda((4, 64), (64, 1), torch.bool) # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf0, primals_2, buf8, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 return (buf7, primals_3, buf1, buf3, buf5, primals_9, primals_7, primals_5, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, 68), (68, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn.functional as F from torch import nn def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Critic(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=64, fc2_units=32, fc3_units=32): super(Critic, self).__init__() self.seed = torch.manual_seed(seed) self.fcs1 = nn.Linear(state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, fc3_units) self.fc4 = nn.Linear(fc3_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(*hidden_init(self.fc3)) self.fc4.weight.data.uniform_(-0.003, 0.003) def forward(self, state, action): xs = F.relu(self.fcs1(state)) x = torch.cat((xs, action), dim=1) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) return self.fc4(x) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 68 x1 = xindex // 68 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (64 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 68, tl.int64) tmp15 = tl.load(in_ptr2 + (4 * x1 + (-64 + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (32, 68), (68, 1)) assert_size_stride(primals_6, (32,), (1,)) assert_size_stride(primals_7, (32, 32), (32, 1)) assert_size_stride(primals_8, (32,), (1,)) assert_size_stride(primals_9, (1, 32), (32, 1)) assert_size_stride(primals_10, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 68), (68, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(272)](buf0, primals_2, primals_4, buf1, 272, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (68, 32), (1, 68), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(128)](buf3, primals_6, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_7, (32, 32), (1, 32), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_relu_1[grid(128)](buf5, primals_8, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_8 buf7 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_10, buf5, reinterpret_tensor(primals_9, (32, 1), (1, 32), 0), alpha=1, beta=1, out=buf7) del primals_10 buf8 = empty_strided_cuda((4, 64), (64, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(256)](buf0, primals_2, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_2 return (buf7, primals_3, buf1, buf3, buf5, primals_9, primals_7, primals_5, buf8) def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class CriticNew(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=64, fc2_units=32, fc3_units=32): super(CriticNew, self).__init__() self.seed = torch.manual_seed(seed) self.fcs1 = nn.Linear(state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, fc3_units) self.fc4 = nn.Linear(fc3_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(*hidden_init(self.fc3)) self.fc4.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0, input_1): primals_1 = self.fcs1.weight primals_2 = self.fcs1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_7 = self.fc3.weight primals_8 = self.fc3.bias primals_9 = self.fc4.weight primals_10 = self.fc4.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
tjkemp/ubik-agent
Critic
false
4,434
[ "MIT" ]
0
34e4dd0d6319b8f5c5dba0cd9e087490720b723b
https://github.com/tjkemp/ubik-agent/tree/34e4dd0d6319b8f5c5dba0cd9e087490720b723b
import torch import numpy as np import torch.nn.functional as F from torch import nn def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Model(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=64, fc2_units=32, fc3_units=32): super().__init__() self.seed = torch.manual_seed(seed) self.fcs1 = nn.Linear(state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, fc3_units) self.fc4 = nn.Linear(fc3_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(*hidden_init(self.fc3)) self.fc4.weight.data.uniform_(-0.003, 0.003) def forward(self, state, action): xs = F.relu(self.fcs1(state)) x = torch.cat((xs, action), dim=1) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) return self.fc4(x) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4]
DeepQNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/om/com5yebxo5qsahe3lhucgobrzm6npeoi425wxqvff6fvddh4edcs.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (512*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ne/cnepmjd66uu3laeexeusfxab3aayptiri2wp2knrgtgmx52tvzxj.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ub/cubq6mwncunyjmqflzpohu2yx3nbpr4nqxrc52pzll64qdraayed.py # Topologically Sorted Source Nodes: [conv2d, observation_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # observation_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [4, 4], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 2048], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 128 xnumel = 1035 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (1035*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (y0 + (32*x2) + (33120*y1)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yg/cyg7vbt2gdbmfx3lsg5ur2uhn4u2rduakwkwvreokkpnad22mdmv.py # Topologically Sorted Source Nodes: [conv2d_1, observation_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # observation_3 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 53760 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ra/crabviiruolsyez6gpqibnseksdal55s6wmpbs2mp3dhmq4ih4cx.py # Topologically Sorted Source Nodes: [conv2d_2, observation_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # observation_4 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 256], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 152 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 128 y1 = (yindex // 128) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (128*x2) + (19456*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (152*y3)), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + (128*x2) + (19456*y1)), tmp6, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vm/cvmov3inzvpsh4jpqe4q6w2qzcune6prysd6txail3qiwclxodlb.py # Topologically Sorted Source Nodes: [observation_6], Original ATen: [aten.relu] # Source node to ATen node mapping: # observation_6 => relu_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 1, 185, 95), (17575, 17575, 95, 1)) assert_size_stride(primals_2, (32, 1, 8, 8), (64, 64, 8, 1)) assert_size_stride(primals_3, (32, ), (1, )) assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (512, 19456), (19456, 1)) assert_size_stride(primals_9, (512, ), (1, )) assert_size_stride(primals_10, (6, 512), (512, 1)) assert_size_stride(primals_11, (6, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32, 4, 4), (512, 1, 128, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_4, buf0, 2048, 16, grid=grid(2048, 16), stream=stream0) del primals_4 buf1 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_6, buf1, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_1, primals_2, stride=(4, 4), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 45, 23), (33120, 1035, 23, 1)) buf3 = empty_strided_cuda((4, 32, 45, 23), (33120, 1, 736, 32), torch.float32) # Topologically Sorted Source Nodes: [conv2d, observation_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf2, primals_3, buf3, 128, 1035, grid=grid(128, 1035), stream=stream0) del buf2 del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 21, 10), (13440, 1, 640, 64)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, observation_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf5, primals_5, 53760, grid=grid(53760), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 19, 8), (19456, 1, 1024, 128)) buf7 = empty_strided_cuda((4, 128, 19, 8), (19456, 152, 8, 1), torch.float32) buf11 = empty_strided_cuda((4, 128, 19, 8), (19456, 1, 1024, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, observation_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_4.run(buf6, primals_7, buf7, buf11, 512, 152, grid=grid(512, 152), stream=stream0) del buf6 del primals_7 buf8 = empty_strided_cuda((4, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (4, 19456), (19456, 1), 0), reinterpret_tensor(primals_8, (19456, 512), (1, 19456), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [observation_6], Original ATen: [aten.relu] triton_poi_fused_relu_5.run(buf9, primals_9, 2048, grid=grid(2048), stream=stream0) del primals_9 buf10 = empty_strided_cuda((4, 6), (6, 1), torch.float32) # Topologically Sorted Source Nodes: [actions], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf9, reinterpret_tensor(primals_10, (512, 6), (1, 512), 0), alpha=1, beta=1, out=buf10) del primals_11 return (buf10, primals_2, buf0, buf1, primals_1, buf3, buf5, reinterpret_tensor(buf7, (4, 19456), (19456, 1), 0), buf9, primals_10, primals_8, buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 185, 95), (17575, 17575, 95, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, 1, 8, 8), (64, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((512, 19456), (19456, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((6, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch as T import torch.nn as nn import torch.nn.functional as F import torch.optim as optim class DeepQNetwork(nn.Module): def __init__(self, ALPHA): super(DeepQNetwork, self).__init__() self.conv1 = nn.Conv2d(1, 32, 8, stride=4, padding=1) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 128, 3) self.fc1 = nn.Linear(128 * 19 * 8, 512) self.fc2 = nn.Linear(512, 6) self.optimizer = optim.RMSprop(self.parameters(), lr=ALPHA) self.loss = nn.MSELoss() self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') self def forward(self, observation): observation = T.Tensor(observation) observation = observation.view(-1, 1, 185, 95) observation = F.relu(self.conv1(observation)) observation = F.relu(self.conv2(observation)) observation = F.relu(self.conv3(observation)) observation = observation.view(-1, 128 * 19 * 8) observation = F.relu(self.fc1(observation)) actions = self.fc2(observation) return actions def get_inputs(): return [torch.rand([4, 1, 185, 95])] def get_init_inputs(): return [[], {'ALPHA': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch as T import torch.nn as nn import torch.optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 32 * x2 + 512 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 128 xnumel = 1035 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 1035 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (y0 + 32 * x2 + 33120 * y1), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 53760 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 512 xnumel = 152 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 128 y1 = yindex // 128 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 128 * x2 + 19456 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 152 * y3), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + 128 * x2 + 19456 * y1), tmp6, xmask & ymask) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 1, 185, 95), (17575, 17575, 95, 1)) assert_size_stride(primals_2, (32, 1, 8, 8), (64, 64, 8, 1)) assert_size_stride(primals_3, (32,), (1,)) assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (512, 19456), (19456, 1)) assert_size_stride(primals_9, (512,), (1,)) assert_size_stride(primals_10, (6, 512), (512, 1)) assert_size_stride(primals_11, (6,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32, 4, 4), (512, 1, 128, 32), torch. float32) get_raw_stream(0) triton_poi_fused_0[grid(2048, 16)](primals_4, buf0, 2048, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf1 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_1[grid(8192, 9)](primals_6, buf1, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf2 = extern_kernels.convolution(primals_1, primals_2, stride=(4, 4), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 45, 23), (33120, 1035, 23, 1)) buf3 = empty_strided_cuda((4, 32, 45, 23), (33120, 1, 736, 32), torch.float32) triton_poi_fused_convolution_relu_2[grid(128, 1035)](buf2, primals_3, buf3, 128, 1035, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf2 del primals_3 buf4 = extern_kernels.convolution(buf3, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 21, 10), (13440, 1, 640, 64)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_3[grid(53760)](buf5, primals_5, 53760, XBLOCK=512, num_warps=4, num_stages=1) del primals_5 buf6 = extern_kernels.convolution(buf5, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 19, 8), (19456, 1, 1024, 128)) buf7 = empty_strided_cuda((4, 128, 19, 8), (19456, 152, 8, 1), torch.float32) buf11 = empty_strided_cuda((4, 128, 19, 8), (19456, 1, 1024, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_4[grid(512, 152)]( buf6, primals_7, buf7, buf11, 512, 152, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf6 del primals_7 buf8 = empty_strided_cuda((4, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 19456), (19456, 1), 0), reinterpret_tensor(primals_8, (19456, 512), (1, 19456), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_5[grid(2048)](buf9, primals_9, 2048, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf10 = empty_strided_cuda((4, 6), (6, 1), torch.float32) extern_kernels.addmm(primals_11, buf9, reinterpret_tensor( primals_10, (512, 6), (1, 512), 0), alpha=1, beta=1, out=buf10) del primals_11 return (buf10, primals_2, buf0, buf1, primals_1, buf3, buf5, reinterpret_tensor(buf7, (4, 19456), (19456, 1), 0), buf9, primals_10, primals_8, buf11) class DeepQNetworkNew(nn.Module): def __init__(self, ALPHA): super(DeepQNetworkNew, self).__init__() self.conv1 = nn.Conv2d(1, 32, 8, stride=4, padding=1) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 128, 3) self.fc1 = nn.Linear(128 * 19 * 8, 512) self.fc2 = nn.Linear(512, 6) self.optimizer = optim.RMSprop(self.parameters(), lr=ALPHA) self.loss = nn.MSELoss() self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') self def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.fc1.weight primals_9 = self.fc1.bias primals_10 = self.fc2.weight primals_11 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
SuperSaiyan-God/Reinforcement-Learning
DeepQNetwork
false
4,435
[ "MIT" ]
0
b43a2997e28ec3bf437c37d060637f6deecf89c6
https://github.com/SuperSaiyan-God/Reinforcement-Learning/tree/b43a2997e28ec3bf437c37d060637f6deecf89c6
import torch import torch as T import torch.nn as nn import torch.nn.functional as F import torch.optim as optim class Model(nn.Module): def __init__(self, ALPHA): super().__init__() self.conv1 = nn.Conv2d(1, 32, 8, stride=4, padding=1) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 128, 3) self.fc1 = nn.Linear(128 * 19 * 8, 512) self.fc2 = nn.Linear(512, 6) self.optimizer = optim.RMSprop(self.parameters(), lr=ALPHA) self.loss = nn.MSELoss() self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') self def forward(self, observation): observation = T.Tensor(observation) observation = observation.view(-1, 1, 185, 95) observation = F.relu(self.conv1(observation)) observation = F.relu(self.conv2(observation)) observation = F.relu(self.conv3(observation)) observation = observation.view(-1, 128 * 19 * 8) observation = F.relu(self.fc1(observation)) actions = self.fc2(observation) return actions def get_inputs(): return [torch.rand([4, 1, 185, 95])] def get_init_inputs(): return [4]
Model
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/cw/ccwssfx6qcvunhe3oavlbicw6nznahssfugkgjkuhgpjkulcytk6.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # out_1 => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mb/cmbsdmqnevipwmbqgqx2bf34tpzu2mclezyvh2hjavdeq4ms7h6y.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # out_3 => gt_1, mul_1, where_1 # Graph fragment: # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 0.01), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %view_3, %mul_1), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/64/c64e7fv6lemz2halxnpuvaeiuojnzoec3h32jk4stustlcnfwuwm.py # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # out_5 => gt_2, mul_2, where_2 # Graph fragment: # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_5, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 0.01), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %view_5, %mul_2), kwargs = {}) triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xc/cxcrfkbyzif3efshywa3lhxtvgyh2s3suanqgnyt3a7i7tb3gujn.py # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # out_7 => gt_3, mul_3, where_3 # Graph fragment: # %gt_3 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_7, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, 0.01), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %view_7, %mul_3), kwargs = {}) triton_poi_fused_leaky_relu_3 = async_compile.triton('triton_poi_fused_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6b/c6bzzj7jhfh6jyhe5cqdrid6jfurueetai5mq7x2oanvqbw2b4ea.py # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # out_9 => gt_4, mul_4, where_4 # Graph fragment: # %gt_4 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_9, 0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_9, 0.01), kwargs = {}) # %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %view_9, %mul_4), kwargs = {}) triton_poi_fused_leaky_relu_4 = async_compile.triton('triton_poi_fused_leaky_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/q5/cq52367iy7qxerabkae5oft5s5ysbjmasgh4nqtrcegjfkrvztq2.py # Topologically Sorted Source Nodes: [out_11], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # out_11 => gt_5, mul_5, where_5 # Graph fragment: # %gt_5 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_11, 0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.01), kwargs = {}) # %where_5 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %view_11, %mul_5), kwargs = {}) triton_poi_fused_leaky_relu_5 = async_compile.triton('triton_poi_fused_leaky_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ha/chatowqegrdo5jmrxbgmwc5lv7vfx6pis2pjupqtenu4dcrurqz6.py # Topologically Sorted Source Nodes: [out_27], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # out_27 => gt_13, mul_13, where_13 # Graph fragment: # %gt_13 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_27, 0), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_27, 0.01), kwargs = {}) # %where_13 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_13, %view_27, %mul_13), kwargs = {}) triton_poi_fused_leaky_relu_6 = async_compile.triton('triton_poi_fused_leaky_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 3 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (32, 16), (16, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (64, 32), (32, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (128, 64), (64, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (256, 128), (128, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (512, 256), (256, 1)) assert_size_stride(primals_13, (512, ), (1, )) assert_size_stride(primals_14, (512, 512), (512, 1)) assert_size_stride(primals_15, (512, ), (1, )) assert_size_stride(primals_16, (512, 512), (512, 1)) assert_size_stride(primals_17, (512, ), (1, )) assert_size_stride(primals_18, (512, 512), (512, 1)) assert_size_stride(primals_19, (512, ), (1, )) assert_size_stride(primals_20, (256, 512), (512, 1)) assert_size_stride(primals_21, (256, ), (1, )) assert_size_stride(primals_22, (128, 256), (256, 1)) assert_size_stride(primals_23, (128, ), (1, )) assert_size_stride(primals_24, (64, 128), (128, 1)) assert_size_stride(primals_25, (64, ), (1, )) assert_size_stride(primals_26, (32, 64), (64, 1)) assert_size_stride(primals_27, (32, ), (1, )) assert_size_stride(primals_28, (3, 32), (32, 1)) assert_size_stride(primals_29, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 1024, grid=grid(1024), stream=stream0) del buf0 del primals_2 buf3 = empty_strided_cuda((64, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 32), (1, 16), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf3, primals_5, buf4, buf5, 2048, grid=grid(2048), stream=stream0) del primals_5 buf6 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 64), (1, 32), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) buf8 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_2.run(buf6, primals_7, buf7, buf8, 4096, grid=grid(4096), stream=stream0) del primals_7 buf9 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf8, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 128), (1, 64), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf11 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_3.run(buf9, primals_9, buf10, buf11, 8192, grid=grid(8192), stream=stream0) del primals_9 buf12 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf11, (64, 128), (128, 1), 0), reinterpret_tensor(primals_10, (128, 256), (1, 128), 0), out=buf12) buf13 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) buf14 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.float32) # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_4.run(buf12, primals_11, buf13, buf14, 16384, grid=grid(16384), stream=stream0) del primals_11 buf15 = empty_strided_cuda((64, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf14, (64, 256), (256, 1), 0), reinterpret_tensor(primals_12, (256, 512), (1, 256), 0), out=buf15) buf16 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) buf17 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [out_11], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_5.run(buf15, primals_13, buf16, buf17, 32768, grid=grid(32768), stream=stream0) del primals_13 buf18 = buf15; del buf15 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf17, (64, 512), (512, 1), 0), reinterpret_tensor(primals_14, (512, 512), (1, 512), 0), out=buf18) buf19 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) buf20 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [out_13], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_5.run(buf18, primals_15, buf19, buf20, 32768, grid=grid(32768), stream=stream0) del primals_15 buf21 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf20, (64, 512), (512, 1), 0), reinterpret_tensor(primals_16, (512, 512), (1, 512), 0), out=buf21) buf22 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) buf23 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [out_15], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_5.run(buf21, primals_17, buf22, buf23, 32768, grid=grid(32768), stream=stream0) del primals_17 buf24 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf23, (64, 512), (512, 1), 0), reinterpret_tensor(primals_18, (512, 512), (1, 512), 0), out=buf24) buf25 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) buf26 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [out_17], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_5.run(buf24, primals_19, buf25, buf26, 32768, grid=grid(32768), stream=stream0) del buf24 del primals_19 buf27 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf26, (64, 512), (512, 1), 0), reinterpret_tensor(primals_20, (512, 256), (1, 512), 0), out=buf27) buf28 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) buf29 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.float32) # Topologically Sorted Source Nodes: [out_19], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_4.run(buf27, primals_21, buf28, buf29, 16384, grid=grid(16384), stream=stream0) del buf27 del primals_21 buf30 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf29, (64, 256), (256, 1), 0), reinterpret_tensor(primals_22, (256, 128), (1, 256), 0), out=buf30) buf31 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf32 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) # Topologically Sorted Source Nodes: [out_21], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_3.run(buf30, primals_23, buf31, buf32, 8192, grid=grid(8192), stream=stream0) del buf30 del primals_23 buf33 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf32, (64, 128), (128, 1), 0), reinterpret_tensor(primals_24, (128, 64), (1, 128), 0), out=buf33) buf34 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) buf35 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [out_23], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_2.run(buf33, primals_25, buf34, buf35, 4096, grid=grid(4096), stream=stream0) del buf33 del primals_25 buf36 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf35, (64, 64), (64, 1), 0), reinterpret_tensor(primals_26, (64, 32), (1, 64), 0), out=buf36) buf37 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) buf38 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [out_25], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf36, primals_27, buf37, buf38, 2048, grid=grid(2048), stream=stream0) del buf36 del primals_27 buf39 = empty_strided_cuda((64, 3), (3, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf38, (64, 32), (32, 1), 0), reinterpret_tensor(primals_28, (32, 3), (1, 32), 0), out=buf39) buf40 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.bool) buf41 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [out_27], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_6.run(buf39, primals_29, buf40, buf41, 192, grid=grid(192), stream=stream0) del buf39 del primals_29 return (buf41, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 16), (16, 1), 0), buf4, reinterpret_tensor(buf5, (64, 32), (32, 1), 0), buf7, reinterpret_tensor(buf8, (64, 64), (64, 1), 0), buf10, reinterpret_tensor(buf11, (64, 128), (128, 1), 0), buf13, reinterpret_tensor(buf14, (64, 256), (256, 1), 0), buf16, reinterpret_tensor(buf17, (64, 512), (512, 1), 0), buf19, reinterpret_tensor(buf20, (64, 512), (512, 1), 0), buf22, reinterpret_tensor(buf23, (64, 512), (512, 1), 0), buf25, reinterpret_tensor(buf26, (64, 512), (512, 1), 0), buf28, reinterpret_tensor(buf29, (64, 256), (256, 1), 0), buf31, reinterpret_tensor(buf32, (64, 128), (128, 1), 0), buf34, reinterpret_tensor(buf35, (64, 64), (64, 1), 0), buf37, reinterpret_tensor(buf38, (64, 32), (32, 1), 0), buf40, primals_28, primals_26, primals_24, primals_22, primals_20, primals_18, primals_16, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((512, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((256, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((32, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((3, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, inputdim): super(Model, self).__init__() self.layer1 = nn.Linear(inputdim, 16) torch.nn.init.xavier_uniform_(self.layer1.weight) self.layer2 = nn.Linear(16, 32) torch.nn.init.xavier_uniform_(self.layer2.weight) self.layer3 = nn.Linear(32, 64) torch.nn.init.xavier_uniform_(self.layer3.weight) self.layer4 = nn.Linear(64, 128) torch.nn.init.xavier_uniform_(self.layer4.weight) self.layer5 = nn.Linear(128, 256) torch.nn.init.xavier_uniform_(self.layer5.weight) self.layer6 = nn.Linear(256, 512) torch.nn.init.xavier_uniform_(self.layer6.weight) self.layer11 = nn.Linear(512, 512) torch.nn.init.xavier_uniform_(self.layer11.weight) self.layer12 = nn.Linear(512, 512) torch.nn.init.xavier_uniform_(self.layer12.weight) self.layer13 = nn.Linear(512, 512) torch.nn.init.xavier_uniform_(self.layer13.weight) self.layer14 = nn.Linear(512, 256) torch.nn.init.xavier_uniform_(self.layer14.weight) self.layer7 = nn.Linear(256, 128) torch.nn.init.xavier_uniform_(self.layer7.weight) self.layer8 = nn.Linear(128, 64) torch.nn.init.xavier_uniform_(self.layer8.weight) self.layer9 = nn.Linear(64, 32) torch.nn.init.xavier_uniform_(self.layer9.weight) self.layer10 = nn.Linear(32, 3) torch.nn.init.xavier_uniform_(self.layer10.weight) def forward(self, motor_control): out = self.layer1(motor_control) out = nn.LeakyReLU()(out) out = self.layer2(out) out = nn.LeakyReLU()(out) out = self.layer3(out) out = nn.LeakyReLU()(out) out = self.layer4(out) out = nn.LeakyReLU()(out) out = self.layer5(out) out = nn.LeakyReLU()(out) out = self.layer6(out) out = nn.LeakyReLU()(out) out = self.layer11(out) out = nn.LeakyReLU()(out) out = self.layer12(out) out = nn.LeakyReLU()(out) out = self.layer13(out) out = nn.LeakyReLU()(out) out = self.layer14(out) out = nn.LeakyReLU()(out) out = self.layer7(out) out = nn.LeakyReLU()(out) out = self.layer8(out) out = nn.LeakyReLU()(out) out = self.layer9(out) out = nn.LeakyReLU()(out) out = self.layer10(out) out = nn.LeakyReLU()(out) pos_value = out return pos_value def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inputdim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_leaky_relu_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 3 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29) = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (32, 16), (16, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (64, 32), (32, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (128, 64), (64, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (256, 128), (128, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (512, 256), (256, 1)) assert_size_stride(primals_13, (512,), (1,)) assert_size_stride(primals_14, (512, 512), (512, 1)) assert_size_stride(primals_15, (512,), (1,)) assert_size_stride(primals_16, (512, 512), (512, 1)) assert_size_stride(primals_17, (512,), (1,)) assert_size_stride(primals_18, (512, 512), (512, 1)) assert_size_stride(primals_19, (512,), (1,)) assert_size_stride(primals_20, (256, 512), (512, 1)) assert_size_stride(primals_21, (256,), (1,)) assert_size_stride(primals_22, (128, 256), (256, 1)) assert_size_stride(primals_23, (128,), (1,)) assert_size_stride(primals_24, (64, 128), (128, 1)) assert_size_stride(primals_25, (64,), (1,)) assert_size_stride(primals_26, (32, 64), (64, 1)) assert_size_stride(primals_27, (32,), (1,)) assert_size_stride(primals_28, (3, 32), (32, 1)) assert_size_stride(primals_29, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch. float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(1024)](buf0, primals_2, buf1, buf2, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 buf3 = empty_strided_cuda((64, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 32), (1, 16), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch. float32) triton_poi_fused_leaky_relu_1[grid(2048)](buf3, primals_5, buf4, buf5, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 64), (1, 32), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool ) buf8 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch. float32) triton_poi_fused_leaky_relu_2[grid(4096)](buf6, primals_7, buf7, buf8, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf9 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 128), (1, 64), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf11 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) triton_poi_fused_leaky_relu_3[grid(8192)](buf9, primals_9, buf10, buf11, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf12 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf11, (64, 128), (128, 1), 0), reinterpret_tensor(primals_10, (128, 256), (1, 128), 0), out=buf12) buf13 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) buf14 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.float32) triton_poi_fused_leaky_relu_4[grid(16384)](buf12, primals_11, buf13, buf14, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf15 = empty_strided_cuda((64, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf14, (64, 256), (256, 1), 0), reinterpret_tensor(primals_12, (256, 512), (1, 256), 0), out=buf15) buf16 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) buf17 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32) triton_poi_fused_leaky_relu_5[grid(32768)](buf15, primals_13, buf16, buf17, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_13 buf18 = buf15 del buf15 extern_kernels.mm(reinterpret_tensor(buf17, (64, 512), (512, 1), 0), reinterpret_tensor(primals_14, (512, 512), (1, 512), 0), out=buf18) buf19 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) buf20 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32) triton_poi_fused_leaky_relu_5[grid(32768)](buf18, primals_15, buf19, buf20, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 buf21 = buf18 del buf18 extern_kernels.mm(reinterpret_tensor(buf20, (64, 512), (512, 1), 0), reinterpret_tensor(primals_16, (512, 512), (1, 512), 0), out=buf21) buf22 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) buf23 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32) triton_poi_fused_leaky_relu_5[grid(32768)](buf21, primals_17, buf22, buf23, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_17 buf24 = buf21 del buf21 extern_kernels.mm(reinterpret_tensor(buf23, (64, 512), (512, 1), 0), reinterpret_tensor(primals_18, (512, 512), (1, 512), 0), out=buf24) buf25 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) buf26 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32) triton_poi_fused_leaky_relu_5[grid(32768)](buf24, primals_19, buf25, buf26, 32768, XBLOCK=256, num_warps=4, num_stages=1) del buf24 del primals_19 buf27 = buf12 del buf12 extern_kernels.mm(reinterpret_tensor(buf26, (64, 512), (512, 1), 0), reinterpret_tensor(primals_20, (512, 256), (1, 512), 0), out=buf27) buf28 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) buf29 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.float32) triton_poi_fused_leaky_relu_4[grid(16384)](buf27, primals_21, buf28, buf29, 16384, XBLOCK=256, num_warps=4, num_stages=1) del buf27 del primals_21 buf30 = buf9 del buf9 extern_kernels.mm(reinterpret_tensor(buf29, (64, 256), (256, 1), 0), reinterpret_tensor(primals_22, (256, 128), (1, 256), 0), out=buf30) buf31 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf32 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) triton_poi_fused_leaky_relu_3[grid(8192)](buf30, primals_23, buf31, buf32, 8192, XBLOCK=256, num_warps=4, num_stages=1) del buf30 del primals_23 buf33 = buf6 del buf6 extern_kernels.mm(reinterpret_tensor(buf32, (64, 128), (128, 1), 0), reinterpret_tensor(primals_24, (128, 64), (1, 128), 0), out=buf33) buf34 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch .bool) buf35 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch .float32) triton_poi_fused_leaky_relu_2[grid(4096)](buf33, primals_25, buf34, buf35, 4096, XBLOCK=128, num_warps=4, num_stages=1) del buf33 del primals_25 buf36 = buf3 del buf3 extern_kernels.mm(reinterpret_tensor(buf35, (64, 64), (64, 1), 0), reinterpret_tensor(primals_26, (64, 32), (1, 64), 0), out=buf36) buf37 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool ) buf38 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch. float32) triton_poi_fused_leaky_relu_1[grid(2048)](buf36, primals_27, buf37, buf38, 2048, XBLOCK=256, num_warps=4, num_stages=1) del buf36 del primals_27 buf39 = empty_strided_cuda((64, 3), (3, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf38, (64, 32), (32, 1), 0), reinterpret_tensor(primals_28, (32, 3), (1, 32), 0), out=buf39) buf40 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.bool) buf41 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32) triton_poi_fused_leaky_relu_6[grid(192)](buf39, primals_29, buf40, buf41, 192, XBLOCK=128, num_warps=4, num_stages=1) del buf39 del primals_29 return (buf41, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 16), (16, 1), 0), buf4, reinterpret_tensor(buf5, (64, 32), (32, 1), 0), buf7, reinterpret_tensor(buf8, (64, 64), (64, 1), 0), buf10, reinterpret_tensor(buf11, (64, 128), (128, 1), 0), buf13, reinterpret_tensor(buf14, (64, 256), (256, 1), 0), buf16, reinterpret_tensor(buf17, (64, 512), (512, 1), 0), buf19, reinterpret_tensor(buf20, (64, 512), (512, 1), 0), buf22, reinterpret_tensor(buf23, (64, 512), (512, 1), 0), buf25, reinterpret_tensor(buf26, (64, 512), (512, 1), 0), buf28, reinterpret_tensor(buf29, (64, 256), (256, 1), 0), buf31, reinterpret_tensor(buf32, (64, 128), (128, 1), 0), buf34, reinterpret_tensor(buf35, (64, 64), (64, 1), 0), buf37, reinterpret_tensor(buf38, (64, 32), (32, 1), 0), buf40, primals_28, primals_26, primals_24, primals_22, primals_20, primals_18, primals_16, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4) class ModelNew(nn.Module): def __init__(self, inputdim): super(ModelNew, self).__init__() self.layer1 = nn.Linear(inputdim, 16) torch.nn.init.xavier_uniform_(self.layer1.weight) self.layer2 = nn.Linear(16, 32) torch.nn.init.xavier_uniform_(self.layer2.weight) self.layer3 = nn.Linear(32, 64) torch.nn.init.xavier_uniform_(self.layer3.weight) self.layer4 = nn.Linear(64, 128) torch.nn.init.xavier_uniform_(self.layer4.weight) self.layer5 = nn.Linear(128, 256) torch.nn.init.xavier_uniform_(self.layer5.weight) self.layer6 = nn.Linear(256, 512) torch.nn.init.xavier_uniform_(self.layer6.weight) self.layer11 = nn.Linear(512, 512) torch.nn.init.xavier_uniform_(self.layer11.weight) self.layer12 = nn.Linear(512, 512) torch.nn.init.xavier_uniform_(self.layer12.weight) self.layer13 = nn.Linear(512, 512) torch.nn.init.xavier_uniform_(self.layer13.weight) self.layer14 = nn.Linear(512, 256) torch.nn.init.xavier_uniform_(self.layer14.weight) self.layer7 = nn.Linear(256, 128) torch.nn.init.xavier_uniform_(self.layer7.weight) self.layer8 = nn.Linear(128, 64) torch.nn.init.xavier_uniform_(self.layer8.weight) self.layer9 = nn.Linear(64, 32) torch.nn.init.xavier_uniform_(self.layer9.weight) self.layer10 = nn.Linear(32, 3) torch.nn.init.xavier_uniform_(self.layer10.weight) def forward(self, input_0): primals_1 = self.layer1.weight primals_2 = self.layer1.bias primals_4 = self.layer2.weight primals_5 = self.layer2.bias primals_6 = self.layer3.weight primals_7 = self.layer3.bias primals_8 = self.layer4.weight primals_9 = self.layer4.bias primals_10 = self.layer5.weight primals_11 = self.layer5.bias primals_12 = self.layer6.weight primals_13 = self.layer6.bias primals_14 = self.layer11.weight primals_15 = self.layer11.bias primals_16 = self.layer12.weight primals_17 = self.layer12.bias primals_18 = self.layer13.weight primals_19 = self.layer13.bias primals_20 = self.layer14.weight primals_21 = self.layer14.bias primals_22 = self.layer7.weight primals_23 = self.layer7.bias primals_24 = self.layer8.weight primals_25 = self.layer8.bias primals_26 = self.layer9.weight primals_27 = self.layer9.bias primals_28 = self.layer10.weight primals_29 = self.layer10.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29]) return output[0]
terry97-guel/POENet-ActiveLearning
Model
false
4,436
[ "MIT" ]
0
78e959c8c5eacc5b2dc4e3334ed609d182ce7b6c
https://github.com/terry97-guel/POENet-ActiveLearning/tree/78e959c8c5eacc5b2dc4e3334ed609d182ce7b6c
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, inputdim): super(Model, self).__init__() self.layer1 = nn.Linear(inputdim, 16) torch.nn.init.xavier_uniform_(self.layer1.weight) self.layer2 = nn.Linear(16, 32) torch.nn.init.xavier_uniform_(self.layer2.weight) self.layer3 = nn.Linear(32, 64) torch.nn.init.xavier_uniform_(self.layer3.weight) self.layer4 = nn.Linear(64, 128) torch.nn.init.xavier_uniform_(self.layer4.weight) self.layer5 = nn.Linear(128, 256) torch.nn.init.xavier_uniform_(self.layer5.weight) self.layer6 = nn.Linear(256, 512) torch.nn.init.xavier_uniform_(self.layer6.weight) self.layer11 = nn.Linear(512, 512) torch.nn.init.xavier_uniform_(self.layer11.weight) self.layer12 = nn.Linear(512, 512) torch.nn.init.xavier_uniform_(self.layer12.weight) self.layer13 = nn.Linear(512, 512) torch.nn.init.xavier_uniform_(self.layer13.weight) self.layer14 = nn.Linear(512, 256) torch.nn.init.xavier_uniform_(self.layer14.weight) self.layer7 = nn.Linear(256, 128) torch.nn.init.xavier_uniform_(self.layer7.weight) self.layer8 = nn.Linear(128, 64) torch.nn.init.xavier_uniform_(self.layer8.weight) self.layer9 = nn.Linear(64, 32) torch.nn.init.xavier_uniform_(self.layer9.weight) self.layer10 = nn.Linear(32, 3) torch.nn.init.xavier_uniform_(self.layer10.weight) def forward(self, motor_control): out = self.layer1(motor_control) out = nn.LeakyReLU()(out) out = self.layer2(out) out = nn.LeakyReLU()(out) out = self.layer3(out) out = nn.LeakyReLU()(out) out = self.layer4(out) out = nn.LeakyReLU()(out) out = self.layer5(out) out = nn.LeakyReLU()(out) out = self.layer6(out) out = nn.LeakyReLU()(out) out = self.layer11(out) out = nn.LeakyReLU()(out) out = self.layer12(out) out = nn.LeakyReLU()(out) out = self.layer13(out) out = nn.LeakyReLU()(out) out = self.layer14(out) out = nn.LeakyReLU()(out) out = self.layer7(out) out = nn.LeakyReLU()(out) out = self.layer8(out) out = nn.LeakyReLU()(out) out = self.layer9(out) out = nn.LeakyReLU()(out) out = self.layer10(out) out = nn.LeakyReLU()(out) pos_value = out return pos_value def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
wide_basic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/wo/cwo5hzyj7r5kfs5qkbujhau55erj2h3367t3krgxxma4ysrszby7.py # Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # leaky_relu => gt, mul, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %primals_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vo/cvo56aotw4yuhuax6oyrf43t5ssqhzuwodjmjfylt42bqssid7vq.py # Topologically Sorted Source Nodes: [conv2d, leaky_relu_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # leaky_relu_1 => gt_1, mul_1, where_1 # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution, %mul_1), kwargs = {}) triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yl/cyl57twtgf3lzd5sst7snomgtzysir6mpvrzx6jm7k4lxpcq6sru.py # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # out_1 => convolution_1 # out_2 => add # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %primals_1), kwargs = {}) triton_poi_fused_add_convolution_2 = async_compile.triton('triton_poi_fused_add_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, leaky_relu_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_1.run(buf1, primals_3, buf2, buf3, 256, grid=grid(256), stream=stream0) del buf1 del primals_3 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_2.run(buf5, primals_5, primals_1, 256, grid=grid(256), stream=stream0) del primals_1 del primals_5 return (buf5, primals_2, primals_4, buf0, buf2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def get_norm(n_filters, norm): if norm is None: return Identity() elif norm == 'batch': return nn.BatchNorm2d(n_filters, momentum=0.9) elif norm == 'instance': return nn.InstanceNorm2d(n_filters, affine=True) elif norm == 'layer': return nn.GroupNorm(1, n_filters) elif norm == 'act': return norms.ActNorm(n_filters, False) class Identity(nn.Module): def __init__(self, *args, **kwargs): super().__init__() def forward(self, x): return x class wide_basic(nn.Module): def __init__(self, in_planes, planes, dropout_rate, stride=1, norm=None, leak=0.2): super(wide_basic, self).__init__() self.lrelu = nn.LeakyReLU(leak) self.bn1 = get_norm(in_planes, norm) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, bias=True) self.dropout = Identity() if dropout_rate == 0.0 else nn.Dropout(p= dropout_rate) self.bn2 = get_norm(planes, norm) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: self.shortcut = nn.Sequential(nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=True)) def forward(self, x): out = self.dropout(self.conv1(self.lrelu(self.bn1(x)))) out = self.conv2(self.lrelu(self.bn2(out))) out += self.shortcut(x) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_planes': 4, 'planes': 4, 'dropout_rate': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_1[grid(256)](buf1, primals_3, buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4 del buf4 triton_poi_fused_add_convolution_2[grid(256)](buf5, primals_5, primals_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_5 return buf5, primals_2, primals_4, buf0, buf2, buf3 def get_norm(n_filters, norm): if norm is None: return Identity() elif norm == 'batch': return nn.BatchNorm2d(n_filters, momentum=0.9) elif norm == 'instance': return nn.InstanceNorm2d(n_filters, affine=True) elif norm == 'layer': return nn.GroupNorm(1, n_filters) elif norm == 'act': return norms.ActNorm(n_filters, False) class Identity(nn.Module): def __init__(self, *args, **kwargs): super().__init__() def forward(self, x): return x class wide_basicNew(nn.Module): def __init__(self, in_planes, planes, dropout_rate, stride=1, norm=None, leak=0.2): super(wide_basicNew, self).__init__() self.lrelu = nn.LeakyReLU(leak) self.bn1 = get_norm(in_planes, norm) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, bias=True) self.dropout = Identity() if dropout_rate == 0.0 else nn.Dropout(p= dropout_rate) self.bn2 = get_norm(planes, norm) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: self.shortcut = nn.Sequential(nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=True)) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
tianyi21/JEM
wide_basic
false
4,437
[ "Apache-2.0" ]
0
59b4bb87be1b1643731540133df557edd7780a88
https://github.com/tianyi21/JEM/tree/59b4bb87be1b1643731540133df557edd7780a88
import torch import torch.nn as nn def get_norm(n_filters, norm): if norm is None: return Identity() elif norm == 'batch': return nn.BatchNorm2d(n_filters, momentum=0.9) elif norm == 'instance': return nn.InstanceNorm2d(n_filters, affine=True) elif norm == 'layer': return nn.GroupNorm(1, n_filters) elif norm == 'act': return norms.ActNorm(n_filters, False) class Identity(nn.Module): def __init__(self, *args, **kwargs): super().__init__() def forward(self, x): return x class Model(nn.Module): def __init__(self, in_planes, planes, dropout_rate, stride=1, norm=None, leak=0.2): super().__init__() self.lrelu = nn.LeakyReLU(leak) self.bn1 = get_norm(in_planes, norm) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, bias=True) self.dropout = Identity() if dropout_rate == 0.0 else nn.Dropout(p= dropout_rate) self.bn2 = get_norm(planes, norm) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: self.shortcut = nn.Sequential(nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=True)) def forward(self, x): out = self.dropout(self.conv1(self.lrelu(self.bn1(x)))) out = self.conv2(self.lrelu(self.bn2(out))) out += self.shortcut(x) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 0.5]
BhattacharyyaDistance
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/k5/ck5vvldryec7avcf4vir56zfl2wyi2gyfnf3hm3fzzioem3q4e2k.py # Topologically Sorted Source Nodes: [mul, sqrt, bh_dist], Original ATen: [aten.mul, aten.sqrt, aten.sum] # Source node to ATen node mapping: # bh_dist => sum_1 # mul => mul # sqrt => sqrt # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%mul,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sqrt,), kwargs = {}) triton_per_fused_mul_sqrt_sum_0 = async_compile.triton('triton_per_fused_mul_sqrt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 * tmp1 tmp3 = libdevice.sqrt(tmp2) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [mul, sqrt, bh_dist], Original ATen: [aten.mul, aten.sqrt, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_mul_sqrt_sum_0.run(arg0_1, arg1_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class BhattacharyyaDistance(nn.Module): def __init__(self): super(BhattacharyyaDistance, self).__init__() def forward(self, hist1, hist2): bh_dist = torch.sqrt(hist1 * hist2).sum() return bh_dist def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mul_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel ): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 * tmp1 tmp3 = libdevice.sqrt(tmp2) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp6, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_mul_sqrt_sum_0[grid(1)](arg0_1, arg1_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class BhattacharyyaDistanceNew(nn.Module): def __init__(self): super(BhattacharyyaDistanceNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
tommy90191/Find_Tiny_but_Important_Image_Changes
BhattacharyyaDistance
false
4,438
[ "MIT" ]
0
429d679606f96f32db4cddf167a9cfb963d3df26
https://github.com/tommy90191/Find_Tiny_but_Important_Image_Changes/tree/429d679606f96f32db4cddf167a9cfb963d3df26
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, hist1, hist2): bh_dist = torch.sqrt(hist1 * hist2).sum() return bh_dist def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
l1normalization
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/7t/c7tqo2fpeboli5rib2mfjnjthqgpw2oftychazkilam4rbhrt735.py # Topologically Sorted Source Nodes: [mul, mul_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %expand), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp9 = tmp7 + tmp8 tmp10 = 1e-12 tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp12 = libdevice.rsqrt(tmp11) tmp13 = tmp2 * tmp12 tl.store(out_ptr0 + (x3), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class l1normalization(nn.Module): def __init__(self, scale): super(l1normalization, self).__init__() self.scale = scale def forward(self, x, dim=1): return self.scale * x * x.pow(1).sum(dim).clamp(min=1e-12).rsqrt( ).expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'scale': 1.0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp9 = tmp7 + tmp8 tmp10 = 1e-12 tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp12 = libdevice.rsqrt(tmp11) tmp13 = tmp2 * tmp12 tl.store(out_ptr0 + x3, tmp13, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class l1normalizationNew(nn.Module): def __init__(self, scale): super(l1normalizationNew, self).__init__() self.scale = scale def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
tommy90191/Find_Tiny_but_Important_Image_Changes
l1normalization
false
4,439
[ "MIT" ]
0
429d679606f96f32db4cddf167a9cfb963d3df26
https://github.com/tommy90191/Find_Tiny_but_Important_Image_Changes/tree/429d679606f96f32db4cddf167a9cfb963d3df26
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, scale): super().__init__() self.scale = scale def forward(self, x, dim=1): return self.scale * x * x.pow(1).sum(dim).clamp(min=1e-12).rsqrt( ).expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [1.0]
Conv2dWithConstraint
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yh/cyh4pryu2jgarzqowy7e5deko7a55m4ec467wn5xfn4z5apvtnbn.py # Topologically Sorted Source Nodes: [renorm], Original ATen: [aten.renorm] # Source node to ATen node mapping: # renorm => add, full_default, gt, mul, mul_1, pow_1, pow_2, reciprocal, sum_1, where # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1, 2, 3], True), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%pow_2, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1e-07), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %full_default), kwargs = {}) # %mul_1 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %where), kwargs = {}) triton_per_fused_renorm_0 = async_compile.triton('triton_per_fused_renorm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_renorm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_renorm_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp7 = 1.0 tmp8 = tmp6 > tmp7 tmp9 = 1e-07 tmp10 = tmp6 + tmp9 tmp11 = tl.full([1, 1], 1, tl.int32) tmp12 = tmp11 / tmp10 tmp13 = tmp12 * tmp7 tmp14 = tl.where(tmp8, tmp13, tmp7) tmp15 = tmp0 * tmp14 tl.store(out_ptr1 + (r1 + (64*x0)), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5a/c5akibbug5lics4mwbiuq6exp2vbsmrjui7arezogi5dyxv3ptat.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %mul_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [renorm], Original ATen: [aten.renorm] stream0 = get_raw_stream(0) triton_per_fused_renorm_0.run(primals_1, buf1, 4, 64, grid=grid(4), stream=stream0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_3, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_2, buf3, 16, grid=grid(16), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [], Original ATen: [] buf4 = torch.ops.aten.set_.source_Tensor(primals_1, buf1) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) del buf2 del primals_1 return (buf3, primals_3, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Conv2dWithConstraint(nn.Conv2d): def __init__(self, *args, max_norm=1, **kwargs): self.max_norm = max_norm super(Conv2dWithConstraint, self).__init__(*args, **kwargs) def forward(self, x): self.weight.data = torch.renorm(self.weight.data, p=2, dim=0, maxnorm=self.max_norm) return super(Conv2dWithConstraint, self).forward(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_renorm_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl .constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp7 = 1.0 tmp8 = tmp6 > tmp7 tmp9 = 1e-07 tmp10 = tmp6 + tmp9 tmp11 = tl.full([1, 1], 1, tl.int32) tmp12 = tmp11 / tmp10 tmp13 = tmp12 * tmp7 tmp14 = tl.where(tmp8, tmp13, tmp7) tmp15 = tmp0 * tmp14 tl.store(out_ptr1 + (r1 + 64 * x0), tmp15, xmask) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_renorm_0[grid(4)](primals_1, buf1, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(primals_3, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused_convolution_1[grid(16)](buf2, primals_2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf4 = torch.ops.aten.set_.source_Tensor(primals_1, buf1) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) del buf2 del primals_1 return buf3, primals_3, buf1 class Conv2dWithConstraintNew(nn.Conv2d): def __init__(self, *args, max_norm=1, **kwargs): self.max_norm = max_norm super(Conv2dWithConstraintNew, self).__init__(*args, **kwargs) def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
tomMoral/braindecode
Conv2dWithConstraint
false
4,440
[ "BSD-3-Clause" ]
0
09d63b7e32fdfcfbaac7569a003f2611721a78ca
https://github.com/tomMoral/braindecode/tree/09d63b7e32fdfcfbaac7569a003f2611721a78ca
import torch from torch import nn class Model(nn.Conv2d): def __init__(self, *args, max_norm=1, **kwargs): self.max_norm = max_norm super().__init__(*args, **kwargs) def forward(self, x): self.weight.data = torch.renorm(self.weight.data, p=2, dim=0, maxnorm=self.max_norm) return super(Conv2dWithConstraint, self).forward(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
KLCoefficient
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/lj/clj5k7rarjdhpgwrfulppkhoedvwvift5w74x7dqsesx3wos43uh.py # Topologically Sorted Source Nodes: [kl, dist], Original ATen: [aten.xlogy, aten.mul, aten.sub, aten.mean, aten.add] # Source node to ATen node mapping: # dist => add # kl => eq, full_default, full_default_1, isnan, log, mean, mul, mul_1, sub, where, where_1 # Graph fragment: # %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%arg0_1,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg0_1, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %log), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 1.0), kwargs = {}) triton_per_fused_add_mean_mul_sub_xlogy_0 = async_compile.triton('triton_per_fused_add_mean_mul_sub_xlogy_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_sub_xlogy_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_sub_xlogy_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr1 + (r0), None) tmp1 = libdevice.isnan(tmp0).to(tl.int1) tmp2 = 0.0 tmp3 = tmp0 == tmp2 tmp4 = tl_math.log(tmp0) tmp5 = tmp0 * tmp4 tmp6 = tl.where(tmp3, tmp2, tmp5) tmp7 = float("nan") tmp8 = tl.where(tmp1, tmp7, tmp6) tmp10 = tmp0 * tmp9 tmp11 = tmp8 - tmp10 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 256.0 tmp16 = tmp14 / tmp15 tmp17 = 1.0 tmp18 = tmp16 + tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp18, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [kl, dist], Original ATen: [aten.xlogy, aten.mul, aten.sub, aten.mean, aten.add] stream0 = get_raw_stream(0) triton_per_fused_add_mean_mul_sub_xlogy_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F class KLCoefficient(nn.Module): def __init__(self): super(KLCoefficient, self).__init__() def forward(self, hist1, hist2): kl = F.kl_div(hist1, hist2) dist = 1.0 / 1 + kl return dist def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_mul_sub_xlogy_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr1 + r0, None) tmp1 = libdevice.isnan(tmp0).to(tl.int1) tmp2 = 0.0 tmp3 = tmp0 == tmp2 tmp4 = tl_math.log(tmp0) tmp5 = tmp0 * tmp4 tmp6 = tl.where(tmp3, tmp2, tmp5) tmp7 = float('nan') tmp8 = tl.where(tmp1, tmp7, tmp6) tmp10 = tmp0 * tmp9 tmp11 = tmp8 - tmp10 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 256.0 tmp16 = tmp14 / tmp15 tmp17 = 1.0 tmp18 = tmp16 + tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_mean_mul_sub_xlogy_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class KLCoefficientNew(nn.Module): def __init__(self): super(KLCoefficientNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
tommy90191/Find_Tiny_but_Important_Image_Changes
KLCoefficient
false
4,441
[ "MIT" ]
0
429d679606f96f32db4cddf167a9cfb963d3df26
https://github.com/tommy90191/Find_Tiny_but_Important_Image_Changes/tree/429d679606f96f32db4cddf167a9cfb963d3df26
import torch import torch.nn as nn from torch.nn import functional as F class Model(nn.Module): def __init__(self): super().__init__() def forward(self, hist1, hist2): kl = F.kl_div(hist1, hist2) dist = 1.0 / 1 + kl return dist def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ConstractiveLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/lh/clhtaboxxs526aw4bqcb7s6xoig5vzwco55tfg6waaga3ao3elgd.py # Topologically Sorted Source Nodes: [distance], Original ATen: [aten.sub, aten.add, aten.norm] # Source node to ATen node mapping: # distance => add, pow_1, pow_2, sub, sum_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%sub, 1e-06), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3]), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) triton_poi_fused_add_norm_sub_0 = async_compile.triton('triton_poi_fused_add_norm_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_norm_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + (x0), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wx/cwxikpjpr57re2psoi6jqgmjc6f6z6saxetdr7br74i2nq3zmyoz.py # Topologically Sorted Source Nodes: [sub, pow_1, mul, sub_1, clamp, pow_2, mul_1, add, constractive_loss], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.clamp, aten.add, aten.sum] # Source node to ATen node mapping: # add => add_1 # clamp => clamp_min # constractive_loss => sum_2 # mul => mul # mul_1 => mul_1 # pow_1 => pow_3 # pow_2 => pow_4 # sub => sub_1 # sub_1 => sub_2 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg2_1), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_2, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %pow_3), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (2.0, %pow_2), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min, 2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %pow_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add_1,), kwargs = {}) triton_per_fused_add_clamp_mul_pow_rsub_sum_1 = async_compile.triton('triton_per_fused_add_clamp_mul_pow_rsub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_mul_pow_rsub_sum_1', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_mul_pow_rsub_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + (r2), None) tmp3 = tl.load(in_ptr1 + (r0), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 * tmp3 tmp5 = tmp2 * tmp4 tmp6 = 2.0 tmp7 = tmp6 - tmp3 tmp8 = 0.0 tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tmp9 * tmp9 tmp11 = tmp0 * tmp10 tmp12 = tmp5 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp15, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [distance], Original ATen: [aten.sub, aten.add, aten.norm] stream0 = get_raw_stream(0) triton_poi_fused_add_norm_sub_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sub, pow_1, mul, sub_1, clamp, pow_2, mul_1, add, constractive_loss], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.clamp, aten.add, aten.sum] triton_per_fused_add_clamp_mul_pow_rsub_sum_1.run(arg2_1, buf0, buf1, 1, 256, grid=grid(1), stream=stream0) del arg2_1 del buf0 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn from torch.nn import functional as F class ConstractiveLoss(nn.Module): def __init__(self, margin=2.0, dist_flag='l2'): super(ConstractiveLoss, self).__init__() self.margin = margin self.dist_flag = dist_flag def various_distance(self, out_vec_t0, out_vec_t1): if self.dist_flag == 'l2': distance = F.pairwise_distance(out_vec_t0, out_vec_t1, p=2) if self.dist_flag == 'l1': distance = F.pairwise_distance(out_vec_t0, out_vec_t1, p=1) if self.dist_flag == 'cos': similarity = F.cosine_similarity(out_vec_t0, out_vec_t1) distance = 1 - 2 * similarity / np.pi return distance def forward(self, out_vec_t0, out_vec_t1, label): distance = self.various_distance(out_vec_t0, out_vec_t1) constractive_loss = torch.sum((1 - label) * torch.pow(distance, 2) + label * torch.pow(torch.clamp(self.margin - distance, min=0.0), 2)) return constractive_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn from torch.nn import functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + x0, tmp24, xmask) @triton.jit def triton_per_fused_add_clamp_mul_pow_rsub_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + r2, None) tmp3 = tl.load(in_ptr1 + r0, None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 * tmp3 tmp5 = tmp2 * tmp4 tmp6 = 2.0 tmp7 = tmp6 - tmp3 tmp8 = 0.0 tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tmp9 * tmp9 tmp11 = tmp0 * tmp10 tmp12 = tmp5 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_norm_sub_0[grid(64)](arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) triton_per_fused_add_clamp_mul_pow_rsub_sum_1[grid(1)](arg2_1, buf0, buf1, 1, 256, num_warps=2, num_stages=1) del arg2_1 del buf0 return buf1, class ConstractiveLossNew(nn.Module): def __init__(self, margin=2.0, dist_flag='l2'): super(ConstractiveLossNew, self).__init__() self.margin = margin self.dist_flag = dist_flag def various_distance(self, out_vec_t0, out_vec_t1): if self.dist_flag == 'l2': distance = F.pairwise_distance(out_vec_t0, out_vec_t1, p=2) if self.dist_flag == 'l1': distance = F.pairwise_distance(out_vec_t0, out_vec_t1, p=1) if self.dist_flag == 'cos': similarity = F.cosine_similarity(out_vec_t0, out_vec_t1) distance = 1 - 2 * similarity / np.pi return distance def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
tommy90191/Find_Tiny_but_Important_Image_Changes
ConstractiveLoss
false
4,442
[ "MIT" ]
0
429d679606f96f32db4cddf167a9cfb963d3df26
https://github.com/tommy90191/Find_Tiny_but_Important_Image_Changes/tree/429d679606f96f32db4cddf167a9cfb963d3df26
import torch import numpy as np import torch.nn as nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, margin=2.0, dist_flag='l2'): super().__init__() self.margin = margin self.dist_flag = dist_flag def various_distance(self, out_vec_t0, out_vec_t1): if self.dist_flag == 'l2': distance = F.pairwise_distance(out_vec_t0, out_vec_t1, p=2) if self.dist_flag == 'l1': distance = F.pairwise_distance(out_vec_t0, out_vec_t1, p=1) if self.dist_flag == 'cos': similarity = F.cosine_similarity(out_vec_t0, out_vec_t1) distance = 1 - 2 * similarity / np.pi return distance def forward(self, out_vec_t0, out_vec_t1, label): distance = self.various_distance(out_vec_t0, out_vec_t1) constractive_loss = torch.sum((1 - label) * torch.pow(distance, 2) + label * torch.pow(torch.clamp(self.margin - distance, min=0.0), 2)) return constractive_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
l2normalization
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/vr/cvrx7ltjmvbuzul6u4y4avyel3cqizmtgma6z53jflo4m3vyvgkg.py # Topologically Sorted Source Nodes: [mul, mul_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %expand), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = 1e-12 tmp15 = triton_helpers.maximum(tmp13, tmp14) tmp16 = libdevice.rsqrt(tmp15) tmp17 = tmp2 * tmp16 tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class l2normalization(nn.Module): def __init__(self, scale): super(l2normalization, self).__init__() self.scale = scale def forward(self, x, dim=1): """out = scale * x / sqrt(\\sum x_i^2)""" return self.scale * x * x.pow(2).sum(dim).clamp(min=1e-12).rsqrt( ).expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'scale': 1.0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = 1e-12 tmp15 = triton_helpers.maximum(tmp13, tmp14) tmp16 = libdevice.rsqrt(tmp15) tmp17 = tmp2 * tmp16 tl.store(out_ptr0 + x3, tmp17, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class l2normalizationNew(nn.Module): def __init__(self, scale): super(l2normalizationNew, self).__init__() self.scale = scale def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
tommy90191/Find_Tiny_but_Important_Image_Changes
l2normalization
false
4,443
[ "MIT" ]
0
429d679606f96f32db4cddf167a9cfb963d3df26
https://github.com/tommy90191/Find_Tiny_but_Important_Image_Changes/tree/429d679606f96f32db4cddf167a9cfb963d3df26
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, scale): super().__init__() self.scale = scale def forward(self, x, dim=1): """out = scale * x / sqrt(\\sum x_i^2)""" return self.scale * x * x.pow(2).sum(dim).clamp(min=1e-12).rsqrt( ).expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [1.0]
scale_feature
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/cv/ccvh5pcjc57oskvep5v2okylauufvnesitt2j6dbyvr6fh3vwuer.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class scale_feature(nn.Module): def __init__(self, scale): super(scale_feature, self).__init__() self.scale = scale def forward(self, x): return self.scale * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'scale': 1.0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class scale_featureNew(nn.Module): def __init__(self, scale): super(scale_featureNew, self).__init__() self.scale = scale def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
tommy90191/Find_Tiny_but_Important_Image_Changes
scale_feature
false
4,444
[ "MIT" ]
0
429d679606f96f32db4cddf167a9cfb963d3df26
https://github.com/tommy90191/Find_Tiny_but_Important_Image_Changes/tree/429d679606f96f32db4cddf167a9cfb963d3df26
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, scale): super().__init__() self.scale = scale def forward(self, x): return self.scale * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [1.0]
DQFFN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/kj/ckjt7otcndomrxrrcxufztdiirrwnu4fbyih2bbgvbowwzgi4kft.py # Topologically Sorted Source Nodes: [upper_indices], Original ATen: [aten.triu_indices] # Source node to ATen node mapping: # upper_indices => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_1, %add_2],), kwargs = {}) triton_poi_fused_triu_indices_0 = async_compile.triton('triton_poi_fused_triu_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_triu_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_triu_indices_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 10, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp0.to(tl.float64) tmp6 = tl.full([1], 2.0, tl.float64) tmp7 = tmp5 * tmp6 tmp8 = tl.full([1], 20.25, tl.float64) tmp9 = tmp8 - tmp7 tmp10 = libdevice.sqrt(tmp9) tmp11 = tl.full([1], 4.5, tl.float64) tmp12 = tmp11 - tmp10 tmp13 = libdevice.floor(tmp12) tmp14 = tmp13.to(tl.int64) tmp15 = tmp14 + tmp1 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp4, tmp15, tmp16) tmp18 = tmp0 >= tmp3 tmp19 = tl.full([1], 20, tl.int64) tmp20 = tmp0 < tmp19 tmp21 = (-10) + x0 tmp22 = tmp21.to(tl.float64) tmp23 = tmp22 * tmp6 tmp24 = tmp8 - tmp23 tmp25 = libdevice.sqrt(tmp24) tmp26 = tmp11 - tmp25 tmp27 = libdevice.floor(tmp26) tmp28 = tl.full([1], 7.0, tl.float64) tmp29 = tmp28 - tmp27 tmp30 = tmp29 * tmp27 tmp31 = tl.full([1], 0.5, tl.float64) tmp32 = tmp30 * tmp31 tmp33 = tmp22 - tmp32 tmp34 = libdevice.floor(tmp33) tmp35 = tmp34.to(tl.int64) tmp36 = tmp35 + tmp1 tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp18, tmp36, tmp37) tmp39 = tl.where(tmp4, tmp17, tmp38) tl.store(out_ptr0 + (x0), tmp39, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3u/c3u527yjixokxirt6uopj7rbnm52377p7p3ekxs2ui6oenscoxw4.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.index] # Source node to ATen node mapping: # x => index # Graph fragment: # %index : [num_users=2] = call_function[target=torch.ops.aten.index.Tensor](args = (%primals_1, [None, %select, %select_1]), kwargs = {}) triton_poi_fused_index_1 = async_compile.triton('triton_poi_fused_index_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 40 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 10 x1 = (xindex // 10) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (10 + x0), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4") tmp7 = tmp6 + tmp1 tmp8 = tmp6 < 0 tmp9 = tl.where(tmp8, tmp7, tmp6) tl.device_assert(((0 <= tmp9) & (tmp9 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp9 < 4") tmp11 = tl.load(in_ptr1 + (tmp9 + (4*tmp4) + (16*x1)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/v4/cv4npzde5hmtlzg5ytildbsefgwc3vph732gnrjzhpw5tmlcgyui.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kf/ckf4ymtqer5mpqdh6uye5letk5ma76sey2j7l3ryhz4wmztc7iq5.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_2 => relu_1 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_3 = async_compile.triton('triton_poi_fused_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (2048, 10), (10, 1)) assert_size_stride(primals_3, (2048, ), (1, )) assert_size_stride(primals_4, (1024, 2048), (2048, 1)) assert_size_stride(primals_5, (1024, ), (1, )) assert_size_stride(primals_6, (4, 1024), (1024, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((20, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [upper_indices], Original ATen: [aten.triu_indices] stream0 = get_raw_stream(0) triton_poi_fused_triu_indices_0.run(buf0, 20, grid=grid(20), stream=stream0) buf1 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.index] triton_poi_fused_index_1.run(buf0, primals_1, buf1, 40, grid=grid(40), stream=stream0) del buf0 del primals_1 buf2 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_2, (10, 2048), (1, 10), 0), out=buf2) del primals_2 buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] triton_poi_fused_relu_2.run(buf3, primals_3, 8192, grid=grid(8192), stream=stream0) del primals_3 buf4 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_4, (2048, 1024), (1, 2048), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] triton_poi_fused_relu_3.run(buf5, primals_5, 4096, grid=grid(4096), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf5, reinterpret_tensor(primals_6, (1024, 4), (1, 1024), 0), alpha=1, beta=1, out=buf6) del primals_7 return (buf6, buf1, buf3, buf5, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2048, 10), (10, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1024, 2048), (2048, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class DQFFN(nn.Module): def __init__(self, n): """ Create Feed-forward Network with n dim input and n dim output """ super(DQFFN, self).__init__() self.n = n self.l1 = nn.Linear(n * (n + 1) // 2, 2048) self.l2 = nn.Linear(2048, 1024) self.l3 = nn.Linear(1024, n) def forward(self, x): """ input is of shape (batch_size, n, n) """ upper_indices = torch.triu_indices(self.n, self.n) x = x[:, upper_indices[0], upper_indices[1]] x = F.relu(self.l1(x)) x = F.relu(self.l2(x)) return self.l3(x) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'n': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_triu_indices_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 20 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 10, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp0.to(tl.float64) tmp6 = tl.full([1], 2.0, tl.float64) tmp7 = tmp5 * tmp6 tmp8 = tl.full([1], 20.25, tl.float64) tmp9 = tmp8 - tmp7 tmp10 = libdevice.sqrt(tmp9) tmp11 = tl.full([1], 4.5, tl.float64) tmp12 = tmp11 - tmp10 tmp13 = libdevice.floor(tmp12) tmp14 = tmp13.to(tl.int64) tmp15 = tmp14 + tmp1 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp4, tmp15, tmp16) tmp18 = tmp0 >= tmp3 tl.full([1], 20, tl.int64) tmp21 = -10 + x0 tmp22 = tmp21.to(tl.float64) tmp23 = tmp22 * tmp6 tmp24 = tmp8 - tmp23 tmp25 = libdevice.sqrt(tmp24) tmp26 = tmp11 - tmp25 tmp27 = libdevice.floor(tmp26) tmp28 = tl.full([1], 7.0, tl.float64) tmp29 = tmp28 - tmp27 tmp30 = tmp29 * tmp27 tmp31 = tl.full([1], 0.5, tl.float64) tmp32 = tmp30 * tmp31 tmp33 = tmp22 - tmp32 tmp34 = libdevice.floor(tmp33) tmp35 = tmp34.to(tl.int64) tmp36 = tmp35 + tmp1 tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp18, tmp36, tmp37) tmp39 = tl.where(tmp4, tmp17, tmp38) tl.store(out_ptr0 + x0, tmp39, xmask) @triton.jit def triton_poi_fused_index_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 40 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 10 x1 = xindex // 10 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (10 + x0), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp7 = tmp6 + tmp1 tmp8 = tmp6 < 0 tmp9 = tl.where(tmp8, tmp7, tmp6) tl.device_assert((0 <= tmp9) & (tmp9 < 4) | ~xmask, 'index out of bounds: 0 <= tmp9 < 4') tmp11 = tl.load(in_ptr1 + (tmp9 + 4 * tmp4 + 16 * x1), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp11, xmask) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (2048, 10), (10, 1)) assert_size_stride(primals_3, (2048,), (1,)) assert_size_stride(primals_4, (1024, 2048), (2048, 1)) assert_size_stride(primals_5, (1024,), (1,)) assert_size_stride(primals_6, (4, 1024), (1024, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((20,), (1,), torch.int64) get_raw_stream(0) triton_poi_fused_triu_indices_0[grid(20)](buf0, 20, XBLOCK=32, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 10), (10, 1), torch.float32) triton_poi_fused_index_1[grid(40)](buf0, primals_1, buf1, 40, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del primals_1 buf2 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_2, (10, 2048), ( 1, 10), 0), out=buf2) del primals_2 buf3 = buf2 del buf2 triton_poi_fused_relu_2[grid(8192)](buf3, primals_3, 8192, XBLOCK= 256, num_warps=4, num_stages=1) del primals_3 buf4 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_4, (2048, 1024), (1, 2048), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_relu_3[grid(4096)](buf5, primals_5, 4096, XBLOCK= 256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, buf5, reinterpret_tensor(primals_6, (1024, 4), (1, 1024), 0), alpha=1, beta=1, out=buf6) del primals_7 return buf6, buf1, buf3, buf5, primals_6, primals_4 class DQFFNNew(nn.Module): def __init__(self, n): """ Create Feed-forward Network with n dim input and n dim output """ super(DQFFNNew, self).__init__() self.n = n self.l1 = nn.Linear(n * (n + 1) // 2, 2048) self.l2 = nn.Linear(2048, 1024) self.l3 = nn.Linear(1024, n) def forward(self, input_0): primals_2 = self.l1.weight primals_3 = self.l1.bias primals_4 = self.l2.weight primals_5 = self.l2.bias primals_6 = self.l3.weight primals_7 = self.l3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
thomashopkins32/RedBlueGame
DQFFN
false
4,445
[ "MIT" ]
0
dd3e759123acc02375fdfcc504892e00e6b31ef1
https://github.com/thomashopkins32/RedBlueGame/tree/dd3e759123acc02375fdfcc504892e00e6b31ef1
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, n): """ Create Feed-forward Network with n dim input and n dim output """ super().__init__() self.n = n self.l1 = nn.Linear(n * (n + 1) // 2, 2048) self.l2 = nn.Linear(2048, 1024) self.l3 = nn.Linear(1024, n) def forward(self, x): """ input is of shape (batch_size, n, n) """ upper_indices = torch.triu_indices(self.n, self.n) x = x[:, upper_indices[0], upper_indices[1]] x = F.relu(self.l1(x)) x = F.relu(self.l2(x)) return self.l3(x) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
L2Norm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/aq/caqr3sakwoofh553ujdgdtlagzy24ygwtyr2sratsmpvljzyoiyj.py # Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, x, out], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div, aten.mul] # Source node to ATen node mapping: # norm => add # out => mul # pow_1 => pow_1 # sqrt => sqrt # sum_1 => sum_1 # x => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-10), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %add), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %div), kwargs = {}) # %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%primals_1, %div), kwargs = {}) triton_poi_fused_add_div_mul_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sqrt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sqrt_sum_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr2'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-10 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tmp17 = tmp16 * tmp15 tl.store(out_ptr0 + (x3), tmp15, xmask) tl.store(out_ptr1 + (x3), tmp17, xmask) tl.store(out_ptr2 + (x3), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, x, out], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sqrt_sum_0.run(primals_1, primals_2, buf0, buf1, primals_1, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf1, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from math import sqrt as sqrt from itertools import product as product import torch.nn as nn import torch.nn.init as init class L2Norm(nn.Module): def __init__(self, n_channels, scale): super(L2Norm, self).__init__() self.n_channels = n_channels self.gamma = scale or None self.eps = 1e-10 self.weight = nn.Parameter(torch.Tensor(self.n_channels)) self.reset_parameters() def reset_parameters(self): init.constant_(self.weight, self.gamma) def forward(self, x): norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps x /= norm out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x ) * x return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_channels': 4, 'scale': 1.0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from math import sqrt as sqrt from itertools import product as product import torch.nn as nn import torch.nn.init as init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-10 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tmp17 = tmp16 * tmp15 tl.store(out_ptr0 + x3, tmp15, xmask) tl.store(out_ptr1 + x3, tmp17, xmask) tl.store(out_ptr2 + x3, tmp15, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sqrt_sum_0[grid(256)](primals_1, primals_2, buf0, buf1, primals_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf1, buf0 class L2NormNew(nn.Module): def __init__(self, n_channels, scale): super(L2NormNew, self).__init__() self.n_channels = n_channels self.gamma = scale or None self.eps = 1e-10 self.weight = nn.Parameter(torch.Tensor(self.n_channels)) self.reset_parameters() def reset_parameters(self): init.constant_(self.weight, self.gamma) def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
tomgause/pytorch-ssd
L2Norm
false
4,446
[ "MIT" ]
0
e458d4319deb21c8970bcce13382e7ada70ea1a2
https://github.com/tomgause/pytorch-ssd/tree/e458d4319deb21c8970bcce13382e7ada70ea1a2
import torch from math import sqrt as sqrt from itertools import product as product import torch.nn as nn import torch.nn.init as init class Model(nn.Module): def __init__(self, n_channels, scale): super().__init__() self.n_channels = n_channels self.gamma = scale or None self.eps = 1e-10 self.weight = nn.Parameter(torch.Tensor(self.n_channels)) self.reset_parameters() def reset_parameters(self): init.constant_(self.weight, self.gamma) def forward(self, x): norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps x /= norm out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x ) * x return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 1.0]
FeatureCorrelation
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ez/cezmv74yrhrunjwqrletcmzzbnanma4ylsle3v7w345t7kxp622s.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xt/cxtzcoyig2swejmilc2ry6olyexmmgssaymzffz3feso6bavx5b3.py # Topologically Sorted Source Nodes: [correlation_tensor], Original ATen: [aten.mul] # Source node to ATen node mapping: # correlation_tensor => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [feature_mul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf0, (4, 4, 16), (64, 16, 1), 0), out=buf1) del arg1_1 del buf0 buf2 = reinterpret_tensor(buf1, (4, 16, 4, 4), (256, 1, 64, 16), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [correlation_tensor], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(buf2, 1024, grid=grid(1024), stream=stream0) return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FeatureCorrelation(nn.Module): def __init__(self, scale): super(FeatureCorrelation, self).__init__() self.scale = scale def forward(self, feature_A, feature_B): b, c, h, w = feature_A.size() feature_A = feature_A.transpose(2, 3).contiguous().view(b, c, h * w) feature_B = feature_B.view(b, c, h * w).transpose(1, 2) feature_mul = torch.bmm(feature_B, feature_A) correlation_tensor = self.scale * feature_mul.view(b, h, w, h * w ).transpose(2, 3).transpose(1, 2) return correlation_tensor def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'scale': 1.0}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_mul_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64, 4)](arg0_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf0, (4, 4, 16), (64, 16, 1), 0), out=buf1) del arg1_1 del buf0 buf2 = reinterpret_tensor(buf1, (4, 16, 4, 4), (256, 1, 64, 16), 0) del buf1 triton_poi_fused_mul_1[grid(1024)](buf2, 1024, XBLOCK=256, num_warps=4, num_stages=1) return buf2, class FeatureCorrelationNew(nn.Module): def __init__(self, scale): super(FeatureCorrelationNew, self).__init__() self.scale = scale def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
tommy90191/Find_Tiny_but_Important_Image_Changes
FeatureCorrelation
false
4,447
[ "MIT" ]
0
429d679606f96f32db4cddf167a9cfb963d3df26
https://github.com/tommy90191/Find_Tiny_but_Important_Image_Changes/tree/429d679606f96f32db4cddf167a9cfb963d3df26
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, scale): super().__init__() self.scale = scale def forward(self, feature_A, feature_B): b, c, h, w = feature_A.size() feature_A = feature_A.transpose(2, 3).contiguous().view(b, c, h * w) feature_B = feature_B.view(b, c, h * w).transpose(1, 2) feature_mul = torch.bmm(feature_B, feature_A) correlation_tensor = self.scale * feature_mul.view(b, h, w, h * w ).transpose(2, 3).transpose(1, 2) return correlation_tensor def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [1.0]
ConstractiveThresholdHingeLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/lh/clhtaboxxs526aw4bqcb7s6xoig5vzwco55tfg6waaga3ao3elgd.py # Topologically Sorted Source Nodes: [distance], Original ATen: [aten.sub, aten.add, aten.norm] # Source node to ATen node mapping: # distance => add, pow_1, pow_2, sub, sum_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%sub, 1e-06), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3]), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) triton_poi_fused_add_norm_sub_0 = async_compile.triton('triton_poi_fused_add_norm_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_norm_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + (x0), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vq/cvq24lbvymtr6ut57cramtwphba7otu3simsesii5lhnoxj4juv5.py # Topologically Sorted Source Nodes: [sub_2, sub, similar_pair, pow_1, mul, sub_1, dissimilar_pair, pow_2, mul_1, add, constractive_thresh_loss], Original ATen: [aten.rsub, aten.sub, aten.clamp, aten.pow, aten.mul, aten.add, aten.sum] # Source node to ATen node mapping: # add => add_1 # constractive_thresh_loss => sum_2 # dissimilar_pair => clamp_min_1 # mul => mul # mul_1 => mul_1 # pow_1 => pow_3 # pow_2 => pow_4 # similar_pair => clamp_min # sub => sub_1 # sub_1 => sub_2 # sub_2 => sub_3 # Graph fragment: # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg2_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_2, 0.0), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 0.0), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %pow_3), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (2.0, %pow_2), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min_1, 2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %pow_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add_1,), kwargs = {}) triton_per_fused_add_clamp_mul_pow_rsub_sub_sum_1 = async_compile.triton('triton_per_fused_add_clamp_mul_pow_rsub_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_mul_pow_rsub_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_mul_pow_rsub_sub_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + (r2), None) tmp3 = tl.load(in_ptr1 + (r0), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = 0.0 tmp5 = tmp3 - tmp4 tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp6 * tmp6 tmp8 = tmp2 * tmp7 tmp9 = 2.0 tmp10 = tmp9 - tmp3 tmp11 = triton_helpers.maximum(tmp10, tmp4) tmp12 = tmp11 * tmp11 tmp13 = tmp0 * tmp12 tmp14 = tmp8 + tmp13 tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [distance], Original ATen: [aten.sub, aten.add, aten.norm] stream0 = get_raw_stream(0) triton_poi_fused_add_norm_sub_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sub_2, sub, similar_pair, pow_1, mul, sub_1, dissimilar_pair, pow_2, mul_1, add, constractive_thresh_loss], Original ATen: [aten.rsub, aten.sub, aten.clamp, aten.pow, aten.mul, aten.add, aten.sum] triton_per_fused_add_clamp_mul_pow_rsub_sub_sum_1.run(arg2_1, buf0, buf1, 1, 256, grid=grid(1), stream=stream0) del arg2_1 del buf0 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F class ConstractiveThresholdHingeLoss(nn.Module): def __init__(self, hingethresh=0.0, margin=2.0): super(ConstractiveThresholdHingeLoss, self).__init__() self.threshold = hingethresh self.margin = margin def forward(self, out_vec_t0, out_vec_t1, label): distance = F.pairwise_distance(out_vec_t0, out_vec_t1, p=2) similar_pair = torch.clamp(distance - self.threshold, min=0.0) dissimilar_pair = torch.clamp(self.margin - distance, min=0.0) constractive_thresh_loss = torch.sum((1 - label) * torch.pow( similar_pair, 2) + label * torch.pow(dissimilar_pair, 2)) return constractive_thresh_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + x0, tmp24, xmask) @triton.jit def triton_per_fused_add_clamp_mul_pow_rsub_sub_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + r2, None) tmp3 = tl.load(in_ptr1 + r0, None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = 0.0 tmp5 = tmp3 - tmp4 tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp6 * tmp6 tmp8 = tmp2 * tmp7 tmp9 = 2.0 tmp10 = tmp9 - tmp3 tmp11 = triton_helpers.maximum(tmp10, tmp4) tmp12 = tmp11 * tmp11 tmp13 = tmp0 * tmp12 tmp14 = tmp8 + tmp13 tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_norm_sub_0[grid(64)](arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) triton_per_fused_add_clamp_mul_pow_rsub_sub_sum_1[grid(1)](arg2_1, buf0, buf1, 1, 256, num_warps=2, num_stages=1) del arg2_1 del buf0 return buf1, class ConstractiveThresholdHingeLossNew(nn.Module): def __init__(self, hingethresh=0.0, margin=2.0): super(ConstractiveThresholdHingeLossNew, self).__init__() self.threshold = hingethresh self.margin = margin def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
tommy90191/Find_Tiny_but_Important_Image_Changes
ConstractiveThresholdHingeLoss
false
4,448
[ "MIT" ]
0
429d679606f96f32db4cddf167a9cfb963d3df26
https://github.com/tommy90191/Find_Tiny_but_Important_Image_Changes/tree/429d679606f96f32db4cddf167a9cfb963d3df26
import torch import torch.nn as nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, hingethresh=0.0, margin=2.0): super().__init__() self.threshold = hingethresh self.margin = margin def forward(self, out_vec_t0, out_vec_t1, label): distance = F.pairwise_distance(out_vec_t0, out_vec_t1, p=2) similar_pair = torch.clamp(distance - self.threshold, min=0.0) dissimilar_pair = torch.clamp(self.margin - distance, min=0.0) constractive_thresh_loss = torch.sum((1 - label) * torch.pow( similar_pair, 2) + label * torch.pow(dissimilar_pair, 2)) return constractive_thresh_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
ResNetBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ud/cudyzxnmfg4f3tctrw4y4j3pbwl55yw66d3vdzdxkxldjzcvtpic.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # x => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jm/cjmofcnohhr2ifdrhojswx43oxn5itk37bj7xoplgteeze4ypvha.py # Topologically Sorted Source Nodes: [conv2d_1, x_1, mul, add], Original ATen: [aten.convolution, aten.leaky_relu, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # conv2d_1 => convolution_1 # mul => mul_2 # x_1 => gt_1, mul_1, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.2), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_1, 0.1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul_2), kwargs = {}) triton_poi_fused_add_convolution_leaky_relu_mul_1 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp6 = 0.2 tmp7 = tmp2 * tmp6 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tmp5 + tmp10 tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_3, buf1, buf2, 256, grid=grid(256), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1, mul, add], Original ATen: [aten.convolution, aten.leaky_relu, aten.mul, aten.add] triton_poi_fused_add_convolution_leaky_relu_mul_1.run(buf3, primals_5, primals_1, buf4, buf5, 256, grid=grid(256), stream=stream0) del buf3 del primals_5 return (buf5, primals_1, primals_2, primals_4, buf1, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ResNetBlock(nn.Module): def __init__(self, in_channels: 'int', out_channels: 'int', hid_channels: 'int', bias: 'bool'): super().__init__() self.shortcut = in_channels != out_channels self.conv_0 = nn.Conv2d(in_channels, hid_channels, 3, stride=1, padding=1) self.conv_1 = nn.Conv2d(hid_channels, out_channels, 3, stride=1, padding=1, bias=bias) if self.shortcut: self.conv_shortcut = nn.Conv2d(in_channels, out_channels, 1, stride=1, bias=False) def forward(self, x): xs = x if not self.shortcut else self.conv_shortcut(x) x = F.leaky_relu(self.conv_0(x), 0.2) x = F.leaky_relu(self.conv_1(x), 0.2) return xs + 0.1 * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'hid_channels': 4, 'bias': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x3, xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp6 = 0.2 tmp7 = tmp2 * tmp6 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tmp5 + tmp10 tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp11, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf0, primals_3, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = buf0 del buf0 triton_poi_fused_add_convolution_leaky_relu_mul_1[grid(256)](buf3, primals_5, primals_1, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf3 del primals_5 return buf5, primals_1, primals_2, primals_4, buf1, buf2, buf4 class ResNetBlockNew(nn.Module): def __init__(self, in_channels: 'int', out_channels: 'int', hid_channels: 'int', bias: 'bool'): super().__init__() self.shortcut = in_channels != out_channels self.conv_0 = nn.Conv2d(in_channels, hid_channels, 3, stride=1, padding=1) self.conv_1 = nn.Conv2d(hid_channels, out_channels, 3, stride=1, padding=1, bias=bias) if self.shortcut: self.conv_shortcut = nn.Conv2d(in_channels, out_channels, 1, stride=1, bias=False) def forward(self, input_0): primals_2 = self.conv_0.weight primals_3 = self.conv_0.bias primals_4 = self.conv_1.weight primals_5 = self.conv_1.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
tmralmeida/VGAN
ResNetBlock
false
4,449
[ "MIT" ]
0
103d2e7ac0b84b08ff3c3a40e0ccb16390b1e008
https://github.com/tmralmeida/VGAN/tree/103d2e7ac0b84b08ff3c3a40e0ccb16390b1e008
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_channels: 'int', out_channels: 'int', hid_channels: 'int', bias: 'bool'): super().__init__() self.shortcut = in_channels != out_channels self.conv_0 = nn.Conv2d(in_channels, hid_channels, 3, stride=1, padding=1) self.conv_1 = nn.Conv2d(hid_channels, out_channels, 3, stride=1, padding=1, bias=bias) if self.shortcut: self.conv_shortcut = nn.Conv2d(in_channels, out_channels, 1, stride=1, bias=False) def forward(self, x): xs = x if not self.shortcut else self.conv_shortcut(x) x = F.leaky_relu(self.conv_0(x), 0.2) x = F.leaky_relu(self.conv_1(x), 0.2) return xs + 0.1 * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'hid_channels': 4, 'bias': 4}]
Affine
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/we/cwegr75gc7slhvygkh4qgpti3y7cw7j23tllhdeulaje2nyjxbbr.py # Topologically Sorted Source Nodes: [addcmul], Original ATen: [aten.addcmul] # Source node to ATen node mapping: # addcmul => add, mul, mul_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul_1), kwargs = {}) triton_poi_fused_addcmul_0 = async_compile.triton('triton_poi_fused_addcmul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_addcmul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_addcmul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x2), xmask) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp5 = tmp3 * tmp4 tmp6 = tmp0 + tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [addcmul], Original ATen: [aten.addcmul] stream0 = get_raw_stream(0) triton_poi_fused_addcmul_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf0, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data class Affine(nn.Module): def __init__(self, dim): super().__init__() self.alpha = nn.Parameter(torch.ones((1, 1, dim))) self.beta = nn.Parameter(torch.zeros((1, 1, dim))) def forward(self, x): return torch.addcmul(self.beta, self.alpha, x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_addcmul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + x2, xmask) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp5 = tmp3 * tmp4 tmp6 = tmp0 + tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_addcmul_0[grid(256)](primals_1, primals_2, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, primals_3 class AffineNew(nn.Module): def __init__(self, dim): super().__init__() self.alpha = nn.Parameter(torch.ones((1, 1, dim))) self.beta = nn.Parameter(torch.zeros((1, 1, dim))) def forward(self, input_0): primals_1 = self.alpha primals_2 = self.beta primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
tor4z/pytorch-image-models
Affine
false
4,450
[ "Apache-2.0" ]
0
d7bab8a6c52a72487d1bed0a28aad41e326d7622
https://github.com/tor4z/pytorch-image-models/tree/d7bab8a6c52a72487d1bed0a28aad41e326d7622
import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data class Model(nn.Module): def __init__(self, dim): super().__init__() self.alpha = nn.Parameter(torch.ones((1, 1, dim))) self.beta = nn.Parameter(torch.zeros((1, 1, dim))) def forward(self, x): return torch.addcmul(self.beta, self.alpha, x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
L1
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/2f/c2fbnaaj2bpzpte4fivh5hdge5qx52bvvlupw3qdsvrbii2wlul3.py # Topologically Sorted Source Nodes: [sub, abs_1, lossvalue], Original ATen: [aten.sub, aten.abs, aten.mean] # Source node to ATen node mapping: # abs_1 => abs_1 # lossvalue => mean # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {}) triton_per_fused_abs_mean_sub_0 = async_compile.triton('triton_per_fused_abs_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 1024], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 1024 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex % 64 r2 = (rindex // 256) r3 = rindex % 256 tmp0 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 1024.0 tmp8 = tmp6 / tmp7 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, abs_1, lossvalue], Original ATen: [aten.sub, aten.abs, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_mean_sub_0.run(buf1, arg0_1, arg1_1, 1, 1024, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class L1(nn.Module): def __init__(self): super(L1, self).__init__() def forward(self, output, target): lossvalue = torch.abs(output[:, None] - target).mean() return lossvalue def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex % 64 r2 = rindex // 256 r3 = rindex % 256 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 1024.0 tmp8 = tmp6 / tmp7 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp8, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_mean_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 1024, num_warps=8, num_stages=1) del arg0_1 del arg1_1 return buf1, class L1New(nn.Module): def __init__(self): super(L1New, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
tomrunia/flownet2-pytorch
L1
false
4,451
[ "Apache-2.0" ]
0
759b09c375348cf64f52f914cf3bf3e9095cc959
https://github.com/tomrunia/flownet2-pytorch/tree/759b09c375348cf64f52f914cf3bf3e9095cc959
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, output, target): lossvalue = torch.abs(output[:, None] - target).mean() return lossvalue def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
L2
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/qs/cqsgo727jj2x6sg5is2lxqtlrssfxmc2fpvk5jnlvdtomcs5ow2q.py # Topologically Sorted Source Nodes: [sub, norm, lossvalue], Original ATen: [aten.sub, aten.linalg_vector_norm, aten.mean] # Source node to ATen node mapping: # lossvalue => mean # norm => pow_1, pow_2, sum_1 # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {}) triton_per_fused_linalg_vector_norm_mean_sub_0 = async_compile.triton('triton_per_fused_linalg_vector_norm_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_linalg_vector_norm_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + (r2), None) tmp1 = tl.load(in_ptr1 + (r0), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (64 + r0), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (128 + r0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (192 + r0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp5 = tmp0 - tmp4 tmp6 = tmp5 * tmp5 tmp7 = tmp3 + tmp6 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp7 + tmp10 tmp13 = tmp0 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp11 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tl.broadcast_to(tmp16, [RBLOCK]) tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0)) tmp20 = 256.0 tmp21 = tmp19 / tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, norm, lossvalue], Original ATen: [aten.sub, aten.linalg_vector_norm, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_linalg_vector_norm_mean_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class L2(nn.Module): def __init__(self): super(L2, self).__init__() def forward(self, output, target): lossvalue = torch.norm(output[:, None] - target, p=2, dim=1).mean() return lossvalue def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_linalg_vector_norm_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + r2, None) tmp1 = tl.load(in_ptr1 + r0, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (64 + r0), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (128 + r0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (192 + r0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp5 = tmp0 - tmp4 tmp6 = tmp5 * tmp5 tmp7 = tmp3 + tmp6 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp7 + tmp10 tmp13 = tmp0 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp11 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tl.broadcast_to(tmp16, [RBLOCK]) tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0)) tmp20 = 256.0 tmp21 = tmp19 / tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_linalg_vector_norm_mean_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class L2New(nn.Module): def __init__(self): super(L2New, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
tomrunia/flownet2-pytorch
L2
false
4,452
[ "Apache-2.0" ]
0
759b09c375348cf64f52f914cf3bf3e9095cc959
https://github.com/tomrunia/flownet2-pytorch/tree/759b09c375348cf64f52f914cf3bf3e9095cc959
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, output, target): lossvalue = torch.norm(output[:, None] - target, p=2, dim=1).mean() return lossvalue def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
AvgConsensus
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/hh/chh6c5w5qa6uf7vojzls7kg4by5riqn4sgtlt67ukhrqv4nd6zcl.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [1], True), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class AvgConsensus(nn.Module): """Average consensus module. Args: dim (int): Decide which dim consensus function to apply. Default: 1. """ def __init__(self, dim=1): super().__init__() self.dim = dim def forward(self, x): """Defines the computation performed at every call.""" return x.mean(dim=self.dim, keepdim=True) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class AvgConsensusNew(nn.Module): """Average consensus module. Args: dim (int): Decide which dim consensus function to apply. Default: 1. """ def __init__(self, dim=1): super().__init__() self.dim = dim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
scenarios/dev
AvgConsensus
false
4,453
[ "Apache-2.0" ]
0
9f91ebc142cea1c31231d233571ad59460ab6fba
https://github.com/scenarios/dev/tree/9f91ebc142cea1c31231d233571ad59460ab6fba
import torch import torch.nn as nn class Model(nn.Module): """Average consensus module. Args: dim (int): Decide which dim consensus function to apply. Default: 1. """ def __init__(self, dim=1): super().__init__() self.dim = dim def forward(self, x): """Defines the computation performed at every call.""" return x.mean(dim=self.dim, keepdim=True) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
WeightNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/fa/cfa6itnokv74hv7k5ssvcinm66irvjdzfky2hejxqzrga4jb3fq4.py # Topologically Sorted Source Nodes: [x, sigmoid, x_3], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # sigmoid => sigmoid # x => convolution # x_3 => mul # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%permute,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, 2), kwargs = {}) triton_poi_fused_convolution_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = 2.0 tmp6 = tmp4 * tmp5 tl.store(in_out_ptr0 + (x0), tmp3, xmask) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4, 3), (12, 3, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4), (4, 4, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x, sigmoid, x_3], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0.run(buf1, primals_3, buf2, 16, grid=grid(16), stream=stream0) del primals_3 return (buf2, primals_1, primals_2, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class WeightNet(nn.Module): """WeightNet in Temporal interlace module. The WeightNet consists of two parts: one convolution layer and a sigmoid function. Following the convolution layer, the sigmoid function and rescale module can scale our output to the range (0, 2). Here we set the initial bias of the convolution layer to 0, and the final initial output will be 1.0. Args: in_channels (int): Channel num of input features. groups (int): Number of groups for fc layer outputs. """ def __init__(self, in_channels, groups): super().__init__() self.sigmoid = nn.Sigmoid() self.groups = groups self.conv = nn.Conv1d(in_channels, groups, 3, padding=1) self.init_weights() def init_weights(self): """Initiate the parameters either from existing checkpoint or from scratch.""" self.conv.bias.data[...] = 0 def forward(self, x): """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module. """ n, _, t = x.shape x = self.conv(x) x = x.view(n, self.groups, t) x = x.permute(0, 2, 1) x = 2 * self.sigmoid(x) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'groups': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = 2.0 tmp6 = tmp4 * tmp5 tl.store(in_out_ptr0 + x0, tmp3, xmask) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4, 3), (12, 3, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4), (4, 4, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0[grid(16)](buf1, primals_3, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return buf2, primals_1, primals_2, buf1 class WeightNetNew(nn.Module): """WeightNet in Temporal interlace module. The WeightNet consists of two parts: one convolution layer and a sigmoid function. Following the convolution layer, the sigmoid function and rescale module can scale our output to the range (0, 2). Here we set the initial bias of the convolution layer to 0, and the final initial output will be 1.0. Args: in_channels (int): Channel num of input features. groups (int): Number of groups for fc layer outputs. """ def __init__(self, in_channels, groups): super().__init__() self.sigmoid = nn.Sigmoid() self.groups = groups self.conv = nn.Conv1d(in_channels, groups, 3, padding=1) self.init_weights() def init_weights(self): """Initiate the parameters either from existing checkpoint or from scratch.""" self.conv.bias.data[...] = 0 def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
scenarios/dev
WeightNet
false
4,454
[ "Apache-2.0" ]
0
9f91ebc142cea1c31231d233571ad59460ab6fba
https://github.com/scenarios/dev/tree/9f91ebc142cea1c31231d233571ad59460ab6fba
import torch import torch.nn as nn class Model(nn.Module): """WeightNet in Temporal interlace module. The WeightNet consists of two parts: one convolution layer and a sigmoid function. Following the convolution layer, the sigmoid function and rescale module can scale our output to the range (0, 2). Here we set the initial bias of the convolution layer to 0, and the final initial output will be 1.0. Args: in_channels (int): Channel num of input features. groups (int): Number of groups for fc layer outputs. """ def __init__(self, in_channels, groups): super().__init__() self.sigmoid = nn.Sigmoid() self.groups = groups self.conv = nn.Conv1d(in_channels, groups, 3, padding=1) self.init_weights() def init_weights(self): """Initiate the parameters either from existing checkpoint or from scratch.""" self.conv.bias.data[...] = 0 def forward(self, x): """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module. """ n, _, t = x.shape x = self.conv(x) x = x.view(n, self.groups, t) x = x.permute(0, 2, 1) x = 2 * self.sigmoid(x) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 1]
BinaryLogisticRegressionLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/tt/ctthaisn2h6qlimrjmp65k5b5meevfl4by5fxrswxdbne2bmkie2.py # Topologically Sorted Source Nodes: [gt, pmask, sum_1, num_positive, ratio, clamp_1, ratio_1, coef_1, mul_2, add, log, mul_3, mul, sub, coef_0, sub_1, mul_4, sub_2, add_1, log_1, mul_5, loss, mean, loss_1], Original ATen: [aten.gt, aten._to_copy, aten.sum, aten.clamp, aten.reciprocal, aten.mul, aten.add, aten.log, aten.sub, aten.div, aten.rsub, aten.mean, aten.neg] # Source node to ATen node mapping: # add => add # add_1 => add_1 # clamp_1 => clamp_min_1 # coef_0 => div # coef_1 => mul_2 # gt => gt # log => log # log_1 => log_1 # loss => add_2 # loss_1 => neg # mean => mean # mul => mul_1 # mul_2 => mul_3 # mul_3 => mul_4 # mul_4 => mul_5 # mul_5 => mul_6 # num_positive => clamp_min # pmask => convert_element_type # ratio => mul, reciprocal # ratio_1 => clamp_max # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sum_1 => sum_1 # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view, 0.5), kwargs = {}) # %convert_element_type : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_1, 1), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%clamp_min,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 256), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 1.05), kwargs = {}) # %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 21), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 0.5), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %convert_element_type), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, 1e-05), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %log), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 0.5), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %sub), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %convert_element_type), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %view_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_2, 1e-05), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %log_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_6), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_2,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {}) triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0 = async_compile.triton('triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp19 = tl.load(in_ptr1 + (r0), None) tmp1 = 0.5 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 1.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp9 / tmp8 tmp11 = 256.0 tmp12 = tmp10 * tmp11 tmp13 = 1.05 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = 21.0 tmp16 = triton_helpers.minimum(tmp14, tmp15) tmp17 = tmp16 * tmp1 tmp18 = tmp17 * tmp3 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = tl_math.log(tmp21) tmp23 = tmp18 * tmp22 tmp24 = tmp16 - tmp7 tmp25 = tmp17 / tmp24 tmp26 = tmp7 - tmp3 tmp27 = tmp25 * tmp26 tmp28 = tmp7 - tmp19 tmp29 = tmp28 + tmp20 tmp30 = tl_math.log(tmp29) tmp31 = tmp27 * tmp30 tmp32 = tmp23 + tmp31 tmp33 = tl.broadcast_to(tmp32, [RBLOCK]) tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0)) tmp36 = tmp35 / tmp11 tmp37 = -tmp36 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp37, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [gt, pmask, sum_1, num_positive, ratio, clamp_1, ratio_1, coef_1, mul_2, add, log, mul_3, mul, sub, coef_0, sub_1, mul_4, sub_2, add_1, log_1, mul_5, loss, mean, loss_1], Original ATen: [aten.gt, aten._to_copy, aten.sum, aten.clamp, aten.reciprocal, aten.mul, aten.add, aten.log, aten.sub, aten.div, aten.rsub, aten.mean, aten.neg] stream0 = get_raw_stream(0) triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0.run(buf3, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def binary_logistic_regression_loss(reg_score, label, threshold=0.5, ratio_range=(1.05, 21), eps=1e-05): """Binary Logistic Regression Loss.""" label = label.view(-1) reg_score = reg_score.contiguous().view(-1) pmask = (label > threshold).float() num_positive = max(torch.sum(pmask), 1) num_entries = len(label) ratio = num_entries / num_positive ratio = min(max(ratio, ratio_range[0]), ratio_range[1]) coef_0 = 0.5 * ratio / (ratio - 1) coef_1 = 0.5 * ratio loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask ) * torch.log(1.0 - reg_score + eps) loss = -torch.mean(loss) return loss class BinaryLogisticRegressionLoss(nn.Module): """Binary Logistic Regression Loss. It will calculate binary logistic regression loss given reg_score and label. """ def forward(self, reg_score, label, threshold=0.5, ratio_range=(1.05, 21), eps=1e-05): """Calculate Binary Logistic Regression Loss. Args: reg_score (torch.Tensor): Predicted score by model. label (torch.Tensor): Groundtruth labels. threshold (float): Threshold for positive instances. Default: 0.5. ratio_range (tuple): Lower bound and upper bound for ratio. Default: (1.05, 21) eps (float): Epsilon for small value. Default: 1e-5. Returns: torch.Tensor: Returned binary logistic loss. """ return binary_logistic_regression_loss(reg_score, label, threshold, ratio_range, eps) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp19 = tl.load(in_ptr1 + r0, None) tmp1 = 0.5 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 1.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp9 / tmp8 tmp11 = 256.0 tmp12 = tmp10 * tmp11 tmp13 = 1.05 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = 21.0 tmp16 = triton_helpers.minimum(tmp14, tmp15) tmp17 = tmp16 * tmp1 tmp18 = tmp17 * tmp3 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = tl_math.log(tmp21) tmp23 = tmp18 * tmp22 tmp24 = tmp16 - tmp7 tmp25 = tmp17 / tmp24 tmp26 = tmp7 - tmp3 tmp27 = tmp25 * tmp26 tmp28 = tmp7 - tmp19 tmp29 = tmp28 + tmp20 tmp30 = tl_math.log(tmp29) tmp31 = tmp27 * tmp30 tmp32 = tmp23 + tmp31 tmp33 = tl.broadcast_to(tmp32, [RBLOCK]) tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0)) tmp36 = tmp35 / tmp11 tmp37 = -tmp36 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp37, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 get_raw_stream(0) triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0[ grid(1)](buf3, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, def binary_logistic_regression_loss(reg_score, label, threshold=0.5, ratio_range=(1.05, 21), eps=1e-05): """Binary Logistic Regression Loss.""" label = label.view(-1) reg_score = reg_score.contiguous().view(-1) pmask = (label > threshold).float() num_positive = max(torch.sum(pmask), 1) num_entries = len(label) ratio = num_entries / num_positive ratio = min(max(ratio, ratio_range[0]), ratio_range[1]) coef_0 = 0.5 * ratio / (ratio - 1) coef_1 = 0.5 * ratio loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask ) * torch.log(1.0 - reg_score + eps) loss = -torch.mean(loss) return loss class BinaryLogisticRegressionLossNew(nn.Module): """Binary Logistic Regression Loss. It will calculate binary logistic regression loss given reg_score and label. """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
scenarios/dev
BinaryLogisticRegressionLoss
false
4,455
[ "Apache-2.0" ]
0
9f91ebc142cea1c31231d233571ad59460ab6fba
https://github.com/scenarios/dev/tree/9f91ebc142cea1c31231d233571ad59460ab6fba
import torch import torch.nn as nn def binary_logistic_regression_loss(reg_score, label, threshold=0.5, ratio_range=(1.05, 21), eps=1e-05): """Binary Logistic Regression Loss.""" label = label.view(-1) reg_score = reg_score.contiguous().view(-1) pmask = (label > threshold).float() num_positive = max(torch.sum(pmask), 1) num_entries = len(label) ratio = num_entries / num_positive ratio = min(max(ratio, ratio_range[0]), ratio_range[1]) coef_0 = 0.5 * ratio / (ratio - 1) coef_1 = 0.5 * ratio loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask ) * torch.log(1.0 - reg_score + eps) loss = -torch.mean(loss) return loss class Model(nn.Module): """Binary Logistic Regression Loss. It will calculate binary logistic regression loss given reg_score and label. """ def forward(self, reg_score, label, threshold=0.5, ratio_range=(1.05, 21), eps=1e-05): """Calculate Binary Logistic Regression Loss. Args: reg_score (torch.Tensor): Predicted score by model. label (torch.Tensor): Groundtruth labels. threshold (float): Threshold for positive instances. Default: 0.5. ratio_range (tuple): Lower bound and upper bound for ratio. Default: (1.05, 21) eps (float): Epsilon for small value. Default: 1e-5. Returns: torch.Tensor: Returned binary logistic loss. """ return binary_logistic_regression_loss(reg_score, label, threshold, ratio_range, eps) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
GCN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yd/cydbtjoq352gcolmflbvu2nqkda7xg7q5hnvltb47jsg5dbmubym.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qb/cqbwl3od5t7kftxtql4hsgjs46qr4jt6yvzsihdv5ilfyljomj65.py # Topologically Sorted Source Nodes: [h_1, h_2], Original ATen: [aten.add, aten.relu] # Source node to ATen node mapping: # h_1 => add # h_2 => relu # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %primals_1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) triton_poi_fused_add_relu_1 = async_compile.triton('triton_poi_fused_add_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_1(in_out_ptr0, in_ptr0, in_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0), ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.full([1, 1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + (4*y3)), tmp6, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [h_1, h_2], Original ATen: [aten.add, aten.relu] triton_poi_fused_add_relu_1.run(buf2, primals_3, primals_1, 16, 4, grid=grid(16, 4), stream=stream0) del primals_1 del primals_3 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.convolution] triton_poi_fused_clone_0.run(buf2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4), (16, 4, 1)) del buf3 return (buf4, primals_2, primals_4, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torchvision.datasets import * import torch.nn as nn from torchvision.transforms import * class GCN(nn.Module): def __init__(self, num_state, num_node, bias=False): super(GCN, self).__init__() self.conv1 = nn.Conv1d(num_node, num_node, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv1d(num_state, num_state, kernel_size=1, padding =0, stride=1, groups=1, bias=bias) def forward(self, x): h = self.conv1(x.permute(0, 2, 1).contiguous()).permute(0, 2, 1) h = h + x h = self.relu(h) h = self.conv2(h) return h def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'num_state': 4, 'num_node': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torchvision.datasets import * import torch.nn as nn from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_relu_1(in_out_ptr0, in_ptr0, in_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_out_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + y0, ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.full([1, 1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + 4 * y3), tmp6, xmask & ymask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0) del buf1 triton_poi_fused_add_relu_1[grid(16, 4)](buf2, primals_3, primals_1, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_1 del primals_3 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](buf2, buf3, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4), (16, 4, 1)) del buf3 return buf4, primals_2, primals_4, buf0, buf2 class GCNNew(nn.Module): def __init__(self, num_state, num_node, bias=False): super(GCNNew, self).__init__() self.conv1 = nn.Conv1d(num_node, num_node, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv1d(num_state, num_state, kernel_size=1, padding =0, stride=1, groups=1, bias=bias) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
tousifulhaque/DANet
GCN
false
4,456
[ "MIT" ]
0
1a0c91f0e551a071b5e335b4157313780a8a1b1a
https://github.com/tousifulhaque/DANet/tree/1a0c91f0e551a071b5e335b4157313780a8a1b1a
import torch from torchvision.datasets import * import torch.nn as nn from torchvision.transforms import * class Model(nn.Module): def __init__(self, num_state, num_node, bias=False): super().__init__() self.conv1 = nn.Conv1d(num_node, num_node, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv1d(num_state, num_state, kernel_size=1, padding =0, stride=1, groups=1, bias=bias) def forward(self, x): h = self.conv1(x.permute(0, 2, 1).contiguous()).permute(0, 2, 1) h = h + x h = self.relu(h) h = self.conv2(h) return h def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4]
Normalize
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/74/c74cgsnsrc4jmxl2qqe5j2mmuphscf6e56iqf2iy24pro6mj73sp.py # Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div] # Source node to ATen node mapping: # normalize => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %expand), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-08 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x3), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torchvision.datasets import * import torch.nn as nn import torch.nn.functional as F from torchvision.transforms import * class Normalize(nn.Module): """Performs :math:`L_p` normalization of inputs over specified dimension. Does: .. math:: v = \\frac{v}{\\max(\\lVert v \\rVert_p, \\epsilon)} for each subtensor v over dimension dim of input. Each subtensor is flattened into a vector, i.e. :math:`\\lVert v \\rVert_p` is not a matrix norm. With default arguments normalizes over the second dimension with Euclidean norm. Args: p (float): the exponent value in the norm formulation. Default: 2 dim (int): the dimension to reduce. Default: 1 """ def __init__(self, p=2, dim=1): super(Normalize, self).__init__() self.p = p self.dim = dim def forward(self, x): return F.normalize(x, self.p, self.dim, eps=1e-08) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torchvision.datasets import * import torch.nn as nn from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-08 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x3, tmp15, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class NormalizeNew(nn.Module): """Performs :math:`L_p` normalization of inputs over specified dimension. Does: .. math:: v = \\frac{v}{\\max(\\lVert v \\rVert_p, \\epsilon)} for each subtensor v over dimension dim of input. Each subtensor is flattened into a vector, i.e. :math:`\\lVert v \\rVert_p` is not a matrix norm. With default arguments normalizes over the second dimension with Euclidean norm. Args: p (float): the exponent value in the norm formulation. Default: 2 dim (int): the dimension to reduce. Default: 1 """ def __init__(self, p=2, dim=1): super(NormalizeNew, self).__init__() self.p = p self.dim = dim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
tousifulhaque/DANet
Normalize
false
4,457
[ "MIT" ]
0
1a0c91f0e551a071b5e335b4157313780a8a1b1a
https://github.com/tousifulhaque/DANet/tree/1a0c91f0e551a071b5e335b4157313780a8a1b1a
import torch from torchvision.datasets import * import torch.nn as nn import torch.nn.functional as F from torchvision.transforms import * class Model(nn.Module): """Performs :math:`L_p` normalization of inputs over specified dimension. Does: .. math:: v = \\frac{v}{\\max(\\lVert v \\rVert_p, \\epsilon)} for each subtensor v over dimension dim of input. Each subtensor is flattened into a vector, i.e. :math:`\\lVert v \\rVert_p` is not a matrix norm. With default arguments normalizes over the second dimension with Euclidean norm. Args: p (float): the exponent value in the norm formulation. Default: 2 dim (int): the dimension to reduce. Default: 1 """ def __init__(self, p=2, dim=1): super().__init__() self.p = p self.dim = dim def forward(self, x): return F.normalize(x, self.p, self.dim, eps=1e-08) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
OffsetNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/3u/c3u6zmp5plplv5tjyzlxet5sgcucpeizysbhi7xphxjhdc6kmodq.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5b/c5br3r4gpi7zzaygqfdgcqeerwiekt2d2t2wkw4sj54lam6radgq.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_2 => relu # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qs/cqsk6a76egdyzr4pbwvfkopx7r76mm6pjq7rxndgddfyegzfpbgy.py # Topologically Sorted Source Nodes: [sigmoid, sub, x_5], Original ATen: [aten.sigmoid, aten.sub, aten.mul] # Source node to ATen node mapping: # sigmoid => sigmoid # sub => sub # x_5 => mul # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sigmoid, 0.5), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 4), kwargs = {}) triton_poi_fused_mul_sigmoid_sub_2 = async_compile.triton('triton_poi_fused_mul_sigmoid_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_sub_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 0.5 tmp3 = tmp1 - tmp2 tmp4 = 4.0 tmp5 = tmp3 * tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4, 3), (12, 3, 1)) assert_size_stride(primals_3, (1, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4), (4, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_7 buf6 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, sub, x_5], Original ATen: [aten.sigmoid, aten.sub, aten.mul] triton_poi_fused_mul_sigmoid_sub_2.run(buf5, buf6, 4, grid=grid(4), stream=stream0) return (buf6, primals_1, primals_2, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf3, buf5, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class OffsetNet(nn.Module): """OffsetNet in Temporal interlace module. The OffsetNet consists of one convolution layer and two fc layers with a relu activation following with a sigmoid function. Following the convolution layer, two fc layers and relu are applied to the output. Then, apply the sigmoid function with a multiply factor and a minus 0.5 to transform the output to (-4, 4). Args: in_channels (int): Channel num of input features. groups (int): Number of groups for fc layer outputs. num_segments (int): Number of frame segments. """ def __init__(self, in_channels, groups, num_segments): super().__init__() self.sigmoid = nn.Sigmoid() kernel_size = 3 padding = 1 self.conv = nn.Conv1d(in_channels, 1, kernel_size, padding=padding) self.fc1 = nn.Linear(num_segments, num_segments) self.relu = nn.ReLU() self.fc2 = nn.Linear(num_segments, groups) self.init_weights() def init_weights(self): """Initiate the parameters either from existing checkpoint or from scratch.""" self.fc2.bias.data[...] = 0.5108 def forward(self, x): """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module. """ n, _, t = x.shape x = self.conv(x) x = x.view(n, t) x = self.relu(self.fc1(x)) x = self.fc2(x) x = x.view(n, 1, -1) x = 4 * (self.sigmoid(x) - 0.5) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'groups': 1, 'num_segments': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_sub_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 0.5 tmp3 = tmp1 - tmp2 tmp4 = 4.0 tmp5 = tmp3 * tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4, 3), (12, 3, 1)) assert_size_stride(primals_3, (1,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4), (4, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16)](buf1, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(16)](buf3, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_7 buf6 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) triton_poi_fused_mul_sigmoid_sub_2[grid(4)](buf5, buf6, 4, XBLOCK=4, num_warps=1, num_stages=1) return buf6, primals_1, primals_2, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf3, buf5, primals_6, primals_4 class OffsetNetNew(nn.Module): """OffsetNet in Temporal interlace module. The OffsetNet consists of one convolution layer and two fc layers with a relu activation following with a sigmoid function. Following the convolution layer, two fc layers and relu are applied to the output. Then, apply the sigmoid function with a multiply factor and a minus 0.5 to transform the output to (-4, 4). Args: in_channels (int): Channel num of input features. groups (int): Number of groups for fc layer outputs. num_segments (int): Number of frame segments. """ def __init__(self, in_channels, groups, num_segments): super().__init__() self.sigmoid = nn.Sigmoid() kernel_size = 3 padding = 1 self.conv = nn.Conv1d(in_channels, 1, kernel_size, padding=padding) self.fc1 = nn.Linear(num_segments, num_segments) self.relu = nn.ReLU() self.fc2 = nn.Linear(num_segments, groups) self.init_weights() def init_weights(self): """Initiate the parameters either from existing checkpoint or from scratch.""" self.fc2.bias.data[...] = 0.5108 def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_4 = self.fc1.weight primals_5 = self.fc1.bias primals_6 = self.fc2.weight primals_7 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
scenarios/dev
OffsetNet
false
4,458
[ "Apache-2.0" ]
0
9f91ebc142cea1c31231d233571ad59460ab6fba
https://github.com/scenarios/dev/tree/9f91ebc142cea1c31231d233571ad59460ab6fba
import torch import torch.nn as nn class Model(nn.Module): """OffsetNet in Temporal interlace module. The OffsetNet consists of one convolution layer and two fc layers with a relu activation following with a sigmoid function. Following the convolution layer, two fc layers and relu are applied to the output. Then, apply the sigmoid function with a multiply factor and a minus 0.5 to transform the output to (-4, 4). Args: in_channels (int): Channel num of input features. groups (int): Number of groups for fc layer outputs. num_segments (int): Number of frame segments. """ def __init__(self, in_channels, groups, num_segments): super().__init__() self.sigmoid = nn.Sigmoid() kernel_size = 3 padding = 1 self.conv = nn.Conv1d(in_channels, 1, kernel_size, padding=padding) self.fc1 = nn.Linear(num_segments, num_segments) self.relu = nn.ReLU() self.fc2 = nn.Linear(num_segments, groups) self.init_weights() def init_weights(self): """Initiate the parameters either from existing checkpoint or from scratch.""" self.fc2.bias.data[...] = 0.5108 def forward(self, x): """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module. """ n, _, t = x.shape x = self.conv(x) x = x.view(n, t) x = self.relu(self.fc1(x)) x = self.fc2(x) x = x.view(n, 1, -1) x = 4 * (self.sigmoid(x) - 0.5) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 1, 4]
TwoPartSimpleModel
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xj/cxjjyap5h4xinysxtj5lobv6fjzu5rhy3tl7qqllmsjdfnzsp4rb.py # Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # x => mul # x_1 => add # x_2 => mul_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 2), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp1 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class SimpleModel(nn.Module): def forward(self, x): return 2 * x def prepare_for_export(self, cfg, inputs, predictor_type): return PredictorExportConfig(model=self, data_generator=lambda x: (x,)) class TwoPartSimpleModel(nn.Module): """ Suppose there're some function in the middle that can't be traced, therefore we need to export the model as two parts. """ def __init__(self): super().__init__() self.part1 = SimpleModel() self.part2 = SimpleModel() def forward(self, x): x = self.part1(x) x = TwoPartSimpleModel.non_traceable_func(x) x = self.part2(x) return x def prepare_for_export(self, cfg, inputs, predictor_type): def data_generator(x): part1_args = x, x = self.part1(x) x = TwoPartSimpleModel.non_traceable_func(x) part2_args = x, return {'part1': part1_args, 'part2': part2_args} return PredictorExportConfig(model={'part1': self.part1, 'part2': self.part2}, data_generator=data_generator, run_func_info= FuncInfo.gen_func_info(TwoPartSimpleModel.RunFunc, params={})) @staticmethod def non_traceable_func(x): return x + 1 if len(x.shape) > 3 else x - 1 class RunFunc(object): def __call__(self, model, x): assert isinstance(model, dict) x = model['part1'](x) x = TwoPartSimpleModel.non_traceable_func(x) x = model['part2'](x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp1 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class SimpleModel(nn.Module): def forward(self, x): return 2 * x def prepare_for_export(self, cfg, inputs, predictor_type): return PredictorExportConfig(model=self, data_generator=lambda x: (x,)) class TwoPartSimpleModelNew(nn.Module): """ Suppose there're some function in the middle that can't be traced, therefore we need to export the model as two parts. """ def __init__(self): super().__init__() self.part1 = SimpleModel() self.part2 = SimpleModel() def prepare_for_export(self, cfg, inputs, predictor_type): def data_generator(x): part1_args = x, x = self.part1(x) x = TwoPartSimpleModelNew.non_traceable_func(x) part2_args = x, return {'part1': part1_args, 'part2': part2_args} return PredictorExportConfig(model={'part1': self.part1, 'part2': self.part2}, data_generator=data_generator, run_func_info= FuncInfo.gen_func_info(TwoPartSimpleModelNew.RunFunc, params={})) @staticmethod def non_traceable_func(x): return x + 1 if len(x.shape) > 3 else x - 1 class RunFunc(object): def __call__(self, model, x): assert isinstance(model, dict) x = model['part1'](x) x = TwoPartSimpleModelNew.non_traceable_func(x) x = model['part2'](x) return x def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
tsubauaaa/d2go
TwoPartSimpleModel
false
4,459
[ "Apache-2.0" ]
0
9f746159ebf78ce79f644c405ca8695bc29d1075
https://github.com/tsubauaaa/d2go/tree/9f746159ebf78ce79f644c405ca8695bc29d1075
import torch import torch.nn as nn import torch.utils.data class SimpleModel(nn.Module): def forward(self, x): return 2 * x def prepare_for_export(self, cfg, inputs, predictor_type): return PredictorExportConfig(model=self, data_generator=lambda x: (x,)) class Model(nn.Module): """ Suppose there're some function in the middle that can't be traced, therefore we need to export the model as two parts. """ def __init__(self): super().__init__() self.part1 = SimpleModel() self.part2 = SimpleModel() def forward(self, x): x = self.part1(x) x = TwoPartSimpleModel.non_traceable_func(x) x = self.part2(x) return x def prepare_for_export(self, cfg, inputs, predictor_type): def data_generator(x): part1_args = x, x = self.part1(x) x = TwoPartSimpleModel.non_traceable_func(x) part2_args = x, return {'part1': part1_args, 'part2': part2_args} return PredictorExportConfig(model={'part1': self.part1, 'part2': self.part2}, data_generator=data_generator, run_func_info= FuncInfo.gen_func_info(TwoPartSimpleModel.RunFunc, params={})) @staticmethod def non_traceable_func(x): return x + 1 if len(x.shape) > 3 else x - 1 class RunFunc(object): def __call__(self, model, x): assert isinstance(model, dict) x = model['part1'](x) x = TwoPartSimpleModel.non_traceable_func(x) x = model['part2'](x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CPAMDec
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/zo/czobpmlyr5atbcpsuque6vcmk7nafmb3smtbzoqilz46drm7zbkm.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_3, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/j4/cj4f6qdb45emg4zrdv5vzxtw2vswpyt2rqyalr6mxgomzeyk55j5.py # Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # mul => mul # out_2 => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_9, %view_6), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_1), kwargs = {}) triton_poi_fused_add_mul_3 = async_compile.triton('triton_poi_fused_add_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask) tmp3 = tmp1 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (1, 4), (4, 1)) assert_size_stride(primals_6, (1, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = reinterpret_tensor(buf0, (4, 1, 4, 4), (16, 1, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf3, primals_4, 64, grid=grid(64), stream=stream0) del primals_4 buf4 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [energy], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (4, 16, 1), (16, 1, 0), 0), reinterpret_tensor(buf2, (4, 1, 4), (4, 1, 1), 0), out=buf4) buf5 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7) del primals_7 del primals_8 buf8 = reinterpret_tensor(buf5, (4, 4, 16), (64, 16, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf6, (4, 4, 16), (64, 1, 4), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_3.run(primals_9, buf8, primals_1, buf9, 256, grid=grid(256), stream=stream0) return (buf9, primals_1, primals_3, primals_9, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf6, buf8, reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf3, (4, 1, 16), (16, 16, 1), 0), reinterpret_tensor(buf2, (4, 4, 1), (4, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torchvision.datasets import * from torch.nn import Parameter from torch.nn import Conv2d from torch.nn import Linear from torch.nn import Softmax from torchvision.transforms import * class CPAMDec(Module): """ CPAM decoding module """ def __init__(self, in_channels): super(CPAMDec, self).__init__() self.softmax = Softmax(dim=-1) self.scale = Parameter(torch.zeros(1)) self.conv_query = Conv2d(in_channels=in_channels, out_channels= in_channels // 4, kernel_size=1) self.conv_key = Linear(in_channels, in_channels // 4) self.conv_value = Linear(in_channels, in_channels) def forward(self, x, y): """ inputs : x : input feature(N,C,H,W) y:gathering centers(N,K,M) returns : out : compact position attention feature attention map: (H*W)*M """ m_batchsize, C, width, height = x.size() m_batchsize, K, _M = y.size() proj_query = self.conv_query(x).view(m_batchsize, -1, width * height ).permute(0, 2, 1) proj_key = self.conv_key(y).view(m_batchsize, K, -1).permute(0, 2, 1) energy = torch.bmm(proj_query, proj_key) attention = self.softmax(energy) proj_value = self.conv_value(y).permute(0, 2, 1) out = torch.bmm(proj_value, attention.permute(0, 2, 1)) out = out.view(m_batchsize, C, width, height) out = self.scale * out + x return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module from torchvision.datasets import * from torch.nn import Parameter from torch.nn import Conv2d from torch.nn import Linear from torch.nn import Softmax from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask) tmp3 = tmp1 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (1, 4), (4, 1)) assert_size_stride(primals_6, (1,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 1), (1, 4), 0 ), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = reinterpret_tensor(buf0, (4, 1, 4, 4), (16, 1, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(64)](buf3, primals_4, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_4 buf4 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (4, 16, 1), (16, 1, 0), 0), reinterpret_tensor(buf2, (4, 1, 4), (4, 1, 1), 0), out=buf4) buf5 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf7) del primals_7 del primals_8 buf8 = reinterpret_tensor(buf5, (4, 4, 16), (64, 16, 1), 0) del buf5 extern_kernels.bmm(reinterpret_tensor(buf7, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf6, (4, 4, 16), (64, 1, 4), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_3[grid(256)](primals_9, buf8, primals_1, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf9, primals_1, primals_3, primals_9, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf6, buf8, reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf3, (4, 1, 16), (16, 16, 1), 0 ), reinterpret_tensor(buf2, (4, 4, 1), (4, 1, 1), 0) class CPAMDecNew(Module): """ CPAM decoding module """ def __init__(self, in_channels): super(CPAMDecNew, self).__init__() self.softmax = Softmax(dim=-1) self.scale = Parameter(torch.zeros(1)) self.conv_query = Conv2d(in_channels=in_channels, out_channels= in_channels // 4, kernel_size=1) self.conv_key = Linear(in_channels, in_channels // 4) self.conv_value = Linear(in_channels, in_channels) def forward(self, input_0, input_1): primals_4 = self.scale primals_3 = self.conv_query.weight primals_6 = self.conv_query.bias primals_5 = self.conv_key.weight primals_9 = self.conv_key.bias primals_7 = self.conv_value.weight primals_8 = self.conv_value.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
tousifulhaque/DANet
CPAMDec
false
4,460
[ "MIT" ]
0
1a0c91f0e551a071b5e335b4157313780a8a1b1a
https://github.com/tousifulhaque/DANet/tree/1a0c91f0e551a071b5e335b4157313780a8a1b1a
from torch.nn import Module import torch from torchvision.datasets import * from torch.nn import Parameter from torch.nn import Conv2d from torch.nn import Linear from torch.nn import Softmax from torchvision.transforms import * class Model(Module): """ CPAM decoding module """ def __init__(self, in_channels): super().__init__() self.softmax = Softmax(dim=-1) self.scale = Parameter(torch.zeros(1)) self.conv_query = Conv2d(in_channels=in_channels, out_channels= in_channels // 4, kernel_size=1) self.conv_key = Linear(in_channels, in_channels // 4) self.conv_value = Linear(in_channels, in_channels) def forward(self, x, y): """ inputs : x : input feature(N,C,H,W) y:gathering centers(N,K,M) returns : out : compact position attention feature attention map: (H*W)*M """ m_batchsize, C, width, height = x.size() m_batchsize, K, _M = y.size() proj_query = self.conv_query(x).view(m_batchsize, -1, width * height ).permute(0, 2, 1) proj_key = self.conv_key(y).view(m_batchsize, K, -1).permute(0, 2, 1) energy = torch.bmm(proj_query, proj_key) attention = self.softmax(energy) proj_value = self.conv_value(y).permute(0, 2, 1) out = torch.bmm(proj_value, attention.permute(0, 2, 1)) out = out.view(m_batchsize, C, width, height) out = self.scale * out + x return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
SplitAndConcat
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/dm/cdm7gguqbidi2lqrahwmmne3zoqbx3zistzz33duvcyyqdkluky6.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1],), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 32) x0 = xindex % 32 x2 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x1)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + (32 + x0 + (64*((-4) + x1))), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class SplitAndConcat(nn.Module): """Split the data from split_dim and concatenate in concat_dim. @param split_dim from which axis the data will be chunk @param concat_dim to which axis the data will be concatenated @param chunk size of the data to be chunk/concatenated """ def __init__(self, split_dim: 'int'=1, concat_dim: 'int'=0, chunk: 'int'=2 ): super(SplitAndConcat, self).__init__() self.split_dim = split_dim self.concat_dim = concat_dim self.chunk = chunk def forward(self, x): x = torch.chunk(x, self.chunk, dim=self.split_dim) x = torch.cat(x, dim=self.concat_dim) return x def extra_repr(self): return ( f'split_dim={self.split_dim}, concat_dim={self.concat_dim}, chunk={self.chunk}' ) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 32 x0 = xindex % 32 x2 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x1), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (32 + x0 + 64 * (-4 + x1)), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 2, 4, 4), (32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class SplitAndConcatNew(nn.Module): """Split the data from split_dim and concatenate in concat_dim. @param split_dim from which axis the data will be chunk @param concat_dim to which axis the data will be concatenated @param chunk size of the data to be chunk/concatenated """ def __init__(self, split_dim: 'int'=1, concat_dim: 'int'=0, chunk: 'int'=2 ): super(SplitAndConcatNew, self).__init__() self.split_dim = split_dim self.concat_dim = concat_dim self.chunk = chunk def extra_repr(self): return ( f'split_dim={self.split_dim}, concat_dim={self.concat_dim}, chunk={self.chunk}' ) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
tsubauaaa/d2go
SplitAndConcat
false
4,461
[ "Apache-2.0" ]
0
9f746159ebf78ce79f644c405ca8695bc29d1075
https://github.com/tsubauaaa/d2go/tree/9f746159ebf78ce79f644c405ca8695bc29d1075
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): """Split the data from split_dim and concatenate in concat_dim. @param split_dim from which axis the data will be chunk @param concat_dim to which axis the data will be concatenated @param chunk size of the data to be chunk/concatenated """ def __init__(self, split_dim: 'int'=1, concat_dim: 'int'=0, chunk: 'int'=2 ): super().__init__() self.split_dim = split_dim self.concat_dim = concat_dim self.chunk = chunk def forward(self, x): x = torch.chunk(x, self.chunk, dim=self.split_dim) x = torch.cat(x, dim=self.concat_dim) return x def extra_repr(self): return ( f'split_dim={self.split_dim}, concat_dim={self.concat_dim}, chunk={self.chunk}' ) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
GELU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/iz/ciz2f2pscrf2tsmzct4hd4myt3fkrqwmv3eh6oduxwelwqmkr4vm.py # Topologically Sorted Source Nodes: [mul, sigmoid, mul_1], Original ATen: [aten.mul, aten.sigmoid] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # sigmoid => sigmoid # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.702), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg0_1), kwargs = {}) triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.702 tmp2 = tmp0 * tmp1 tmp3 = tl.sigmoid(tmp2) tmp4 = tmp3 * tmp0 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, sigmoid, mul_1], Original ATen: [aten.mul, aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_mul_sigmoid_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GELU(nn.Module): def forward(self, x): return torch.sigmoid(1.702 * x) * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.702 tmp2 = tmp0 * tmp1 tmp3 = tl.sigmoid(tmp2) tmp4 = tmp3 * tmp0 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_0[grid(256)](arg0_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 return buf0, class GELUNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
txsing/augmix
GELU
false
4,462
[ "Apache-2.0" ]
0
9127809d8534ccb20a654f631833153e75a277fd
https://github.com/txsing/augmix/tree/9127809d8534ccb20a654f631833153e75a277fd
import torch import torch.nn as nn class Model(nn.Module): def forward(self, x): return torch.sigmoid(1.702 * x) * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
InstanceNormLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/bt/cbty6aktspcpn2i4hqhd57tuurtxy7jyiq6n7smwcnjcrfghdp6t.py # Topologically Sorted Source Nodes: [mean, x, pow_1, mean_1, add, sqrt, x_1], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.div] # Source node to ATen node mapping: # add => add # mean => mean # mean_1 => mean_1 # pow_1 => pow_1 # sqrt => sqrt # x => sub # x_1 => div # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [2, 3], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [2, 3], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-08), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) triton_per_fused_add_div_mean_pow_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_pow_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_pow_sqrt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_pow_sqrt_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tmp7 = tmp0 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tmp12 / tmp5 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp7 / tmp16 tl.store(out_ptr2 + (r1 + (16*x0)), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, x, pow_1, mean_1, add, sqrt, x_1], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_pow_sqrt_sub_0.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class InstanceNormLayer(nn.Module): """Implements instance normalization layer.""" def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, x): if len(x.shape) != 4: raise ValueError( f'The input tensor should be with shape [batch_size, num_channels, height, width], but {x.shape} received!' ) x = x - torch.mean(x, dim=[2, 3], keepdim=True) x = x / torch.sqrt(torch.mean(x ** 2, dim=[2, 3], keepdim=True) + self.epsilon) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mean_pow_sqrt_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tmp7 = tmp0 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tmp12 / tmp5 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp7 / tmp16 tl.store(out_ptr2 + (r1 + 16 * x0), tmp17, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_pow_sqrt_sub_0[grid(16)](arg0_1, buf2, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf2, class InstanceNormLayerNew(nn.Module): """Implements instance normalization layer.""" def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
tylerwilliams/InterFaceGAN
InstanceNormLayer
false
4,463
[ "MIT" ]
0
120babcc0dc777aa902ef0dcdeaec7c528369dbc
https://github.com/tylerwilliams/InterFaceGAN/tree/120babcc0dc777aa902ef0dcdeaec7c528369dbc
import torch from torch import nn class Model(nn.Module): """Implements instance normalization layer.""" def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, x): if len(x.shape) != 4: raise ValueError( f'The input tensor should be with shape [batch_size, num_channels, height, width], but {x.shape} received!' ) x = x - torch.mean(x, dim=[2, 3], keepdim=True) x = x / torch.sqrt(torch.mean(x ** 2, dim=[2, 3], keepdim=True) + self.epsilon) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CCAMDec
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/3m/c3mxgkf4weymbmbgydi4j4i6eycdz2flzbf3jce3eapte2aqyfta.py # Topologically Sorted Source Nodes: [energy_new], Original ATen: [aten.sub] # Source node to ATen node mapping: # energy_new => sub # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %bmm), kwargs = {}) triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (x2), xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = tmp6 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention => amax, exp, sub_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sub, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5e/c5e7z5qmoiqut4wygb4iv6xmv65bbiotnb64o5cgidinohzcyout.py # Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # mul => mul # out_2 => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %view_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul), kwargs = {}) triton_poi_fused_add_mul_3 = async_compile.triton('triton_poi_fused_add_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tl.load(in_ptr2 + (x0), xmask) tmp4 = tmp2 * tmp3 tmp5 = tmp0 + tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [energy], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(primals_2, (4, 16, 4), (64, 1, 16), 0), out=buf0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [energy_new], Original ATen: [aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_sub_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0) del buf2 buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [attention, out], Original ATen: [aten._softmax, aten.bmm] extern_kernels.bmm(buf3, reinterpret_tensor(primals_2, (4, 4, 16), (64, 16, 1), 0), out=buf4) del buf3 del primals_2 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_3.run(primals_1, primals_3, buf4, buf5, 256, grid=grid(256), stream=stream0) del primals_1 del primals_3 return (buf5, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torchvision.datasets import * from torch.nn import Parameter from torch.nn import Softmax from torchvision.transforms import * class CCAMDec(Module): """ CCAM decoding module """ def __init__(self): super(CCAMDec, self).__init__() self.softmax = Softmax(dim=-1) self.scale = Parameter(torch.zeros(1)) def forward(self, x, y): """ inputs : x : input feature(N,C,H,W) y:gathering centers(N,K,H,W) returns : out : compact channel attention feature attention map: K*C """ m_batchsize, C, width, height = x.size() x_reshape = x.view(m_batchsize, C, -1) B, K, _W, _H = y.size() y_reshape = y.view(B, K, -1) proj_query = x_reshape proj_key = y_reshape.permute(0, 2, 1) energy = torch.bmm(proj_query, proj_key) energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy ) - energy attention = self.softmax(energy_new) proj_value = y.view(B, K, -1) out = torch.bmm(attention, proj_value) out = out.view(m_batchsize, C, width, height) out = x + self.scale * out return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module from torchvision.datasets import * from torch.nn import Parameter from torch.nn import Softmax from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + x2, xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = tmp6 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tl.load(in_ptr2 + x0, xmask) tmp4 = tmp2 * tmp3 tmp5 = tmp0 + tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(primals_2, (4, 16, 4), (64, 1, 16), 0), out=buf0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sub_0[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = buf0 del buf0 triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = buf1 del buf1 triton_poi_fused__softmax_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf2 buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) extern_kernels.bmm(buf3, reinterpret_tensor(primals_2, (4, 4, 16), (64, 16, 1), 0), out=buf4) del buf3 del primals_2 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_3[grid(256)](primals_1, primals_3, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_3 return buf5, buf4 class CCAMDecNew(Module): """ CCAM decoding module """ def __init__(self): super(CCAMDecNew, self).__init__() self.softmax = Softmax(dim=-1) self.scale = Parameter(torch.zeros(1)) def forward(self, input_0, input_1): primals_3 = self.scale primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
tousifulhaque/DANet
CCAMDec
false
4,464
[ "MIT" ]
0
1a0c91f0e551a071b5e335b4157313780a8a1b1a
https://github.com/tousifulhaque/DANet/tree/1a0c91f0e551a071b5e335b4157313780a8a1b1a
from torch.nn import Module import torch from torchvision.datasets import * from torch.nn import Parameter from torch.nn import Softmax from torchvision.transforms import * class Model(Module): """ CCAM decoding module """ def __init__(self): super().__init__() self.softmax = Softmax(dim=-1) self.scale = Parameter(torch.zeros(1)) def forward(self, x, y): """ inputs : x : input feature(N,C,H,W) y:gathering centers(N,K,H,W) returns : out : compact channel attention feature attention map: K*C """ m_batchsize, C, width, height = x.size() x_reshape = x.view(m_batchsize, C, -1) B, K, _W, _H = y.size() y_reshape = y.view(B, K, -1) proj_query = x_reshape proj_key = y_reshape.permute(0, 2, 1) energy = torch.bmm(proj_query, proj_key) energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy ) - energy attention = self.softmax(energy_new) proj_value = y.view(B, K, -1) out = torch.bmm(attention, proj_value) out = out.view(m_batchsize, C, width, height) out = x + self.scale * out return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Bandpass
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/vg/cvgxgetmy2prnvyo2efkvrdvnuvm7fu3v6addfamzmrlc5qip6gp.py # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] # Source node to ATen node mapping: # clamp => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_1, 0.01), kwargs = {}) # %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 100), kwargs = {}) triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = 0.01 tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = 100.0 tmp5 = triton_helpers.minimum(tmp3, tmp4) tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp5, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vo/cvogaa2kdidx3xx2powky23jasx57zg6shjdud7pufgml7sf6keb.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.sub] # Source node to ATen node mapping: # x => sub # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %primals_2), kwargs = {}) triton_poi_fused_sub_1 = async_compile.triton('triton_poi_fused_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3j/c3jud3jq225nz5vhmvkhwuox5r6nnluvuik4u25j75tggjdq63jw.py # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = (xindex // 256) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/fj/cfjwppm7ygpvcbxnveaaroobzyzwgxtpw352otziao2eixlw6ioc.py # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_1 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ma/cmafa57cr2g6c2f5gqnz3mqq4ohehajopwpeksy43nmsbr72v47z.py # Topologically Sorted Source Nodes: [xm_2, pow_1, neg, xm_3], Original ATen: [aten.abs, aten.pow, aten.neg, aten.exp] # Source node to ATen node mapping: # neg => neg # pow_1 => pow_1 # xm_2 => abs_1 # xm_3 => exp # Graph fragment: # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%squeeze,), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%abs_1, %clamp_max), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) triton_poi_fused_abs_exp_neg_pow_4 = async_compile.triton('triton_poi_fused_abs_exp_neg_pow_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_exp_neg_pow_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_exp_neg_pow_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp1 = tl_math.abs(tmp0) tmp4 = libdevice.pow(tmp1, tmp3) tmp5 = -tmp4 tmp6 = tl_math.exp(tmp5) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, ), (1, )) assert_size_stride(primals_2, (1, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] stream0 = get_raw_stream(0) triton_poi_fused_clamp_0.run(primals_1, buf0, 1, grid=grid(1), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.sub] triton_poi_fused_sub_1.run(primals_3, primals_2, buf1, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [xm], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf2, buf3, 1024, grid=grid(1024), stream=stream0) del buf2 buf4 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf1, buf4, 1024, grid=grid(1024), stream=stream0) buf5 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (64, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [xm_2, pow_1, neg, xm_3], Original ATen: [aten.abs, aten.pow, aten.neg, aten.exp] triton_poi_fused_abs_exp_neg_pow_4.run(buf5, buf0, buf6, 1024, grid=grid(1024), stream=stream0) # Topologically Sorted Source Nodes: [], Original ATen: [] buf7 = torch.ops.aten.set_.source_Tensor(primals_1, buf0) assert_size_stride(buf7, (1, ), (1, )) del primals_1 return (buf6, buf0, buf5, buf6, reinterpret_tensor(buf3, (64, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (64, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (4, 64), (1, 4), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Bandpass(nn.Module): def __init__(self, input_dim): super().__init__() self.mean = nn.Parameter(torch.randn(1, input_dim, dtype=torch.float32) ) self.icov = nn.Parameter(torch.eye(input_dim, input_dim, dtype= torch.float32) * 2) self.a = nn.Parameter(torch.tensor([2], dtype=torch.float32)) def forward(self, x): self.a.data = torch.clamp(self.a.data, 0.01, 100) x = x - self.mean xm = torch.matmul(x.unsqueeze(1), self.icov) xm = torch.matmul(xm, x.unsqueeze(2)).squeeze(1) xm = torch.abs(xm) xm = torch.exp(-xm ** self.a) return xm def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = 0.01 tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = 100.0 tmp5 = triton_helpers.minimum(tmp3, tmp4) tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp5, None) @triton.jit def triton_poi_fused_sub_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex // 256 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_abs_exp_neg_pow_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp1 = tl_math.abs(tmp0) tmp4 = libdevice.pow(tmp1, tmp3) tmp5 = -tmp4 tmp6 = tl_math.exp(tmp5) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1,), (1,)) assert_size_stride(primals_2, (1, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1,), (1,), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_0[grid(1)](primals_1, buf0, 1, XBLOCK=1, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_sub_1[grid(256)](primals_3, primals_2, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(1024)](buf2, buf3, 1024, XBLOCK=128, num_warps=4, num_stages=1) del buf2 buf4 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_clone_3[grid(1024)](buf1, buf4, 1024, XBLOCK=128, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (64, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_abs_exp_neg_pow_4[grid(1024)](buf5, buf0, buf6, 1024, XBLOCK=128, num_warps=4, num_stages=1) buf7 = torch.ops.aten.set_.source_Tensor(primals_1, buf0) assert_size_stride(buf7, (1,), (1,)) del primals_1 return buf6, buf0, buf5, buf6, reinterpret_tensor(buf3, (64, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (64, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf1, (4, 64), (1, 4), 0), reinterpret_tensor( primals_4, (4, 4), (1, 4), 0) class BandpassNew(nn.Module): def __init__(self, input_dim): super().__init__() self.mean = nn.Parameter(torch.randn(1, input_dim, dtype=torch.float32) ) self.icov = nn.Parameter(torch.eye(input_dim, input_dim, dtype= torch.float32) * 2) self.a = nn.Parameter(torch.tensor([2], dtype=torch.float32)) def forward(self, input_0): primals_2 = self.mean primals_4 = self.icov primals_1 = self.a primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
tsumansapkota/Input-Invex-Neural-Network
Bandpass
false
4,465
[ "Apache-2.0" ]
0
6a14ee12b33da1d231d231c8f9631851a7668997
https://github.com/tsumansapkota/Input-Invex-Neural-Network/tree/6a14ee12b33da1d231d231c8f9631851a7668997
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, input_dim): super().__init__() self.mean = nn.Parameter(torch.randn(1, input_dim, dtype=torch.float32) ) self.icov = nn.Parameter(torch.eye(input_dim, input_dim, dtype= torch.float32) * 2) self.a = nn.Parameter(torch.tensor([2], dtype=torch.float32)) def forward(self, x): self.a.data = torch.clamp(self.a.data, 0.01, 100) x = x - self.mean xm = torch.matmul(x.unsqueeze(1), self.icov) xm = torch.matmul(xm, x.unsqueeze(2)).squeeze(1) xm = torch.abs(xm) xm = torch.exp(-xm ** self.a) return xm def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
DQN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 128), (128, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (8, 128), (128, 1)) assert_size_stride(primals_7, (8, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 8192, grid=grid(8192), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf5, 8192, grid=grid(8192), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 8), (1, 128), 0), alpha=1, beta=1, out=buf4) del primals_7 return (reinterpret_tensor(buf4, (4, 4, 4, 8), (128, 32, 8, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(buf3, (64, 128), (128, 1), 0), primals_6, buf5, primals_4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class DQN(nn.Module): def __init__(self, obs_size, action_size, seed): super(DQN, self).__init__() self.fc1 = nn.Linear(obs_size, 128) self.fc2 = nn.Linear(128, 128) self.fc3 = nn.Linear(128, sum(action_size)) def forward(self, x): x = self.fc1(x) x = F.relu(x) x = F.relu(self.fc2(x)) return self.fc3(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'obs_size': 4, 'action_size': [4, 4], 'seed': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 128), (128, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (8, 128), (128, 1)) assert_size_stride(primals_7, (8,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1, primals_2, buf6, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf2 buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf3, primals_5, buf5, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 8), (1, 128), 0), alpha=1, beta=1, out=buf4) del primals_7 return reinterpret_tensor(buf4, (4, 4, 4, 8), (128, 32, 8, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 128), (128, 1), 0 ), reinterpret_tensor(buf3, (64, 128), (128, 1), 0 ), primals_6, buf5, primals_4, buf6 class DQNNew(nn.Module): def __init__(self, obs_size, action_size, seed): super(DQNNew, self).__init__() self.fc1 = nn.Linear(obs_size, 128) self.fc2 = nn.Linear(128, 128) self.fc3 = nn.Linear(128, sum(action_size)) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
ulyssesdotcodes/ReaL-Crowds
DQN
false
4,466
[ "BSD-3-Clause" ]
0
9da01fe4d1858c3c26d6387e34f4e76db5385d51
https://github.com/ulyssesdotcodes/ReaL-Crowds/tree/9da01fe4d1858c3c26d6387e34f4e76db5385d51
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, obs_size, action_size, seed): super().__init__() self.fc1 = nn.Linear(obs_size, 128) self.fc2 = nn.Linear(128, 128) self.fc3 = nn.Linear(128, sum(action_size)) def forward(self, x): x = self.fc1(x) x = F.relu(x) x = F.relu(self.fc2(x)) return self.fc3(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
TSA_Fusion
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/g4/cg4ol27qewbsblsqindyqcoqjbv3ocrgpr3ueqortiqfpei53c5z.py # Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone] # Source node to ATen node mapping: # clone => clone # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 1024 x1 = (xindex // 1024) x2 = xindex tmp0 = tl.load(in_ptr0 + (2048 + x0 + (5120*x1)), None) tl.store(out_ptr0 + (x2), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vl/cvlmoerlrbmnehdmef3bbge55w43r7yeghhzhrdh2czvthybjclb.py # Topologically Sorted Source Nodes: [emb_ref], Original ATen: [aten.convolution] # Source node to ATen node mapping: # emb_ref => convolution # Graph fragment: # %convolution : [num_users=6] = call_function[target=torch.ops.aten.convolution.default](args = (%clone, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/in/cinfzueyyyniakvywqmnsv3rq6nal3xyzxhsxtrblzrtqg3xc4w6.py # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6g/c6g5w2xfkgqh3jcdcbb55u57ppgqo3xomq7ralymlbohawjrlbf7.py # Topologically Sorted Source Nodes: [mul, sum_1, mul_1, sum_2, mul_2, sum_3, mul_3, sum_4, mul_4, sum_5, cat], Original ATen: [aten.mul, aten.sum, aten.cat] # Source node to ATen node mapping: # cat => cat # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # sum_1 => sum_1 # sum_2 => sum_2 # sum_3 => sum_3 # sum_4 => sum_4 # sum_5 => sum_5 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %convolution), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %convolution), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %convolution), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_4, %convolution), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_5, %convolution), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [1]), kwargs = {}) # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3, %unsqueeze_4], 1), kwargs = {}) triton_per_fused_cat_mul_sum_3 = async_compile.triton('triton_per_fused_cat_mul_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 64], reduction_hint=ReductionHint.OUTER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cat_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 5, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_cat_mul_sum_3(in_ptr0, in_ptr1, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 16 x1 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (5120*x1)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (x0 + (16*r2) + (1024*x1)), xmask, other=0.0) tmp7 = tl.load(in_ptr0 + (1024 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0) tmp13 = tl.load(in_ptr0 + (2048 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0) tmp19 = tl.load(in_ptr0 + (3072 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0) tmp25 = tl.load(in_ptr0 + (4096 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp7 * tmp1 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp14 = tmp13 * tmp1 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp20 = tmp19 * tmp1 tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK]) tmp23 = tl.where(xmask, tmp21, 0) tmp24 = tl.sum(tmp23, 1)[:, None] tmp26 = tmp25 * tmp1 tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.where(xmask, tmp27, 0) tmp30 = tl.sum(tmp29, 1)[:, None] tl.store(out_ptr5 + (x0 + (80*x1)), tmp6, xmask) tl.store(out_ptr6 + (x0 + (80*x1)), tmp12, xmask) tl.store(out_ptr7 + (x0 + (80*x1)), tmp18, xmask) tl.store(out_ptr8 + (x0 + (80*x1)), tmp24, xmask) tl.store(out_ptr9 + (x0 + (80*x1)), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/fh/cfhd3pv6oq22djbxa5tx4y42vjmwgldrhgaichhekhdwb5ize252.py # Topologically Sorted Source Nodes: [aligned_fea], Original ATen: [aten.mul] # Source node to ATen node mapping: # aligned_fea => mul_5 # Graph fragment: # %mul_5 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %view_2), kwargs = {}) triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 16 x1 = (xindex // 16) % 320 x2 = (xindex // 5120) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x0 + (16*(x1 // 64)) + (80*x2)), None) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x3), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zr/czrki3u23zsgaiiexnna7jtzoedroempx47tvzii26xeuavvtgad.py # Topologically Sorted Source Nodes: [conv2d_3, att], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # att => gt_1, mul_7, where_1 # conv2d_3 => convolution_3 # Graph fragment: # %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_5, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.1), kwargs = {}) # %where_1 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_3, %mul_7), kwargs = {}) triton_poi_fused_convolution_leaky_relu_5 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pk/cpk3fygaseyui7qdpy3xpxqkvxk3hgw7slvnar3gxlbr74q67zf5.py # Topologically Sorted Source Nodes: [att_max, att_avg], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d] # Source node to ATen node mapping: # att_avg => avg_pool2d # att_max => _low_memory_max_pool2d_with_offsets, getitem_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%where_1, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_1, [3, 3], [2, 2], [1, 1]), kwargs = {}) triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6 = async_compile.triton('triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 2 x0 = xindex % 2 x5 = (xindex // 2) x3 = (xindex // 256) x6 = xindex % 256 x7 = xindex tmp0 = (-1) + (2*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + (2*x0) tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x5)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp12 = 2*x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x5)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + (2*x0) tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x5)), tmp23 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2*x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x5)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + ((2*x0) + (8*x5)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x5)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + (2*x1) tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x5)), tmp43 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x5)), tmp46 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x5)), tmp49 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tmp77 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x5)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp78 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x5)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp79 = tmp78 + tmp77 tmp80 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x5)), tmp23 & xmask, eviction_policy='evict_last', other=0.0) tmp81 = tmp80 + tmp79 tmp82 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x5)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp83 = tmp82 + tmp81 tmp84 = tl.load(in_ptr0 + ((2*x0) + (8*x5)), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp85 = tmp84 + tmp83 tmp86 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x5)), tmp36 & xmask, eviction_policy='evict_last', other=0.0) tmp87 = tmp86 + tmp85 tmp88 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x5)), tmp43 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tmp88 + tmp87 tmp90 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x5)), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp91 = tmp90 + tmp89 tmp92 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x5)), tmp49 & xmask, eviction_policy='evict_last', other=0.0) tmp93 = tmp92 + tmp91 tmp94 = 1 + ((-2)*x0) + ((-2)*x1) + (((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x0*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x1*((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))) + (4*x0*x1) + ((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5))) + ((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5))) tmp95 = tmp93 / tmp94 tl.store(out_ptr0 + (x6 + (512*x3)), tmp51, xmask) tl.store(out_ptr1 + (x7), tmp76, xmask) tl.store(out_ptr2 + (x6 + (512*x3)), tmp95, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ku/ckudte3yk3k5yua5cn4wgvpz6fzasnpftrdhrse4k2pj5bssbxy3.py # Topologically Sorted Source Nodes: [conv2d_4, att_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # att_1 => gt_2, mul_8, where_2 # conv2d_4 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.1), kwargs = {}) # %where_2 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_4, %mul_8), kwargs = {}) triton_poi_fused_convolution_leaky_relu_7 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/sg/csgczegfowupuwjczr4ywjw7hwfokovqexu34tu4cf2odny25h7r.py # Topologically Sorted Source Nodes: [att_max_1, att_avg_1], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d] # Source node to ATen node mapping: # att_avg_1 => avg_pool2d_1 # att_max_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%where_3, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) # %avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_3, [3, 3], [2, 2], [1, 1]), kwargs = {}) triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = (xindex // 64) tmp0 = tl.full([1], -1, tl.int64) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tmp5 & tmp5 tmp7 = tl.load(in_ptr0 + ((-3) + (4*x2)), tmp6 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp8 = tmp1 >= tmp1 tmp9 = tmp1 < tmp3 tmp10 = tmp8 & tmp9 tmp11 = tmp5 & tmp10 tmp12 = tl.load(in_ptr0 + ((-2) + (4*x2)), tmp11 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp13 = triton_helpers.maximum(tmp12, tmp7) tmp14 = tl.full([1], 1, tl.int64) tmp15 = tmp14 >= tmp1 tmp16 = tmp14 < tmp3 tmp17 = tmp15 & tmp16 tmp18 = tmp5 & tmp17 tmp19 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp18 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp20 = triton_helpers.maximum(tmp19, tmp13) tmp21 = tmp10 & tmp5 tmp22 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp21 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp23 = triton_helpers.maximum(tmp22, tmp20) tmp24 = tmp10 & tmp10 tmp25 = tl.load(in_ptr0 + (4*x2), tmp24 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp26 = triton_helpers.maximum(tmp25, tmp23) tmp27 = tmp10 & tmp17 tmp28 = tl.load(in_ptr0 + (1 + (4*x2)), tmp27 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp29 = triton_helpers.maximum(tmp28, tmp26) tmp30 = tmp17 & tmp5 tmp31 = tl.load(in_ptr0 + (1 + (4*x2)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp29) tmp33 = tmp17 & tmp10 tmp34 = tl.load(in_ptr0 + (2 + (4*x2)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp17 & tmp17 tmp37 = tl.load(in_ptr0 + (3 + (4*x2)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = tmp12 > tmp7 tmp40 = tl.full([1], 1, tl.int8) tmp41 = tl.full([1], 0, tl.int8) tmp42 = tl.where(tmp39, tmp40, tmp41) tmp43 = tmp19 > tmp13 tmp44 = tl.full([1], 2, tl.int8) tmp45 = tl.where(tmp43, tmp44, tmp42) tmp46 = tmp22 > tmp20 tmp47 = tl.full([1], 3, tl.int8) tmp48 = tl.where(tmp46, tmp47, tmp45) tmp49 = tmp25 > tmp23 tmp50 = tl.full([1], 4, tl.int8) tmp51 = tl.where(tmp49, tmp50, tmp48) tmp52 = tmp28 > tmp26 tmp53 = tl.full([1], 5, tl.int8) tmp54 = tl.where(tmp52, tmp53, tmp51) tmp55 = tmp31 > tmp29 tmp56 = tl.full([1], 6, tl.int8) tmp57 = tl.where(tmp55, tmp56, tmp54) tmp58 = tmp34 > tmp32 tmp59 = tl.full([1], 7, tl.int8) tmp60 = tl.where(tmp58, tmp59, tmp57) tmp61 = tmp37 > tmp35 tmp62 = tl.full([1], 8, tl.int8) tmp63 = tl.where(tmp61, tmp62, tmp60) tmp64 = tl.load(in_ptr0 + ((-3) + (4*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp65 = tl.load(in_ptr0 + ((-2) + (4*x2)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp66 = tmp65 + tmp64 tmp67 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp68 = tmp67 + tmp66 tmp69 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp21 & xmask, eviction_policy='evict_last', other=0.0) tmp70 = tmp69 + tmp68 tmp71 = tl.load(in_ptr0 + (4*x2), tmp24 & xmask, eviction_policy='evict_last', other=0.0) tmp72 = tmp71 + tmp70 tmp73 = tl.load(in_ptr0 + (1 + (4*x2)), tmp27 & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tmp73 + tmp72 tmp75 = tl.load(in_ptr0 + (1 + (4*x2)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp76 = tmp75 + tmp74 tmp77 = tl.load(in_ptr0 + (2 + (4*x2)), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp78 = tmp77 + tmp76 tmp79 = tl.load(in_ptr0 + (3 + (4*x2)), tmp36 & xmask, eviction_policy='evict_last', other=0.0) tmp80 = tmp79 + tmp78 tmp81 = tl.full([1], 9, tl.int32) tmp82 = tmp80 / tmp81 tl.store(out_ptr0 + (x0 + (128*x1)), tmp38, xmask) tl.store(out_ptr1 + (x2), tmp63, xmask) tl.store(out_ptr2 + (x0 + (128*x1)), tmp82, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wq/cwqagsj5ls25hrcw6hxsayqci33xusemulwfozklrduzjqzpvbdb.py # Topologically Sorted Source Nodes: [conv2d_6, att_L_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # att_L_1 => gt_4, mul_10, where_4 # conv2d_6 => convolution_6 # Graph fragment: # %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_6, 0), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.1), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_6, %mul_10), kwargs = {}) triton_poi_fused_convolution_leaky_relu_9 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/l4/cl4vcjd4z7lumtxc5zcpws7ce6eexgpl5gregarvkbnjzwfii7gk.py # Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # att_L_3 => convert_element_type_1 # Graph fragment: # %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {}) triton_poi_fused__to_copy_10 = async_compile.triton('triton_poi_fused__to_copy_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_10(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vi/cvixasqvjpzhra4mkzvqpwqtena4rblcmdqim6ofp3nmxkli5cho.py # Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # att_L_3 => add_1, clamp_max # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {}) # %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_1, 0), kwargs = {}) triton_poi_fused_add_clamp_11 = async_compile.triton('triton_poi_fused_add_clamp_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_11(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 0, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dw/cdwvjjvjx5yjaylq4q7psjgmnhvskuynevkz7t3bpyhxzjigsatv.py # Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # att_L_3 => add, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul_12, sub, sub_2 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (2,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_12, 0.5), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/g7/cg7hwas3ulxmdn6h36bo5ewdukiqxglk6whwhnhy37eovq7koydc.py # Topologically Sorted Source Nodes: [conv2d_7, att_L_2, att_L_3, conv2d_8, att_2, att_3], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add, aten.leaky_relu_backward] # Source node to ATen node mapping: # att_2 => gt_6, mul_17, where_6 # att_3 => add_7 # att_L_2 => gt_5, mul_11, where_5 # att_L_3 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_4, add_5, add_6, mul_14, mul_15, mul_16, sub_3, sub_4, sub_6 # conv2d_7 => convolution_7 # conv2d_8 => convolution_8 # Graph fragment: # %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_7, 0), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_7, 0.1), kwargs = {}) # %where_5 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %convolution_7, %mul_11), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_14), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_15), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_16), kwargs = {}) # %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {}) # %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 0.1), kwargs = {}) # %where_6 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %convolution_8, %mul_17), kwargs = {}) # %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_6, %add_6), kwargs = {}) # %gt_11 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_6, 0), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*i64', 10: '*fp32', 11: '*i1', 12: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 2 x0 = xindex % 2 x5 = (xindex // 4) x2 = (xindex // 4) % 64 x6 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x6), xmask) tmp26 = tl.load(in_ptr7 + (x2), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr8 + (x1), xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr9 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 1, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp11 = tmp9 + tmp10 tmp12 = 0.0 tmp13 = tmp11 > tmp12 tmp14 = 0.1 tmp15 = tmp11 * tmp14 tmp16 = tl.where(tmp13, tmp11, tmp15) tmp18 = tmp17 + tmp1 tmp19 = tmp17 < 0 tmp20 = tl.where(tmp19, tmp18, tmp17) tmp21 = tmp16 - tmp16 tmp23 = tmp21 * tmp22 tmp24 = tmp16 + tmp23 tmp27 = tmp25 + tmp26 tmp28 = tmp27 > tmp12 tmp29 = tmp27 * tmp14 tmp30 = tl.where(tmp28, tmp27, tmp29) tmp32 = tmp31 + tmp1 tmp33 = tmp31 < 0 tmp34 = tl.where(tmp33, tmp32, tmp31) tmp35 = tmp24 - tmp24 tmp37 = tmp35 * tmp36 tmp38 = tmp24 + tmp37 tmp39 = tmp30 + tmp38 tmp40 = tmp30 > tmp12 tl.store(in_out_ptr0 + (x6), tmp39, xmask) tl.store(out_ptr0 + (x6), tmp40, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qh/cqhre475mhrzai26fnzznz5at2t325ucwdj2hqvrn3rxtfvbapzo.py # Topologically Sorted Source Nodes: [att_5], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # att_5 => convert_element_type_5 # Graph fragment: # %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {}) triton_poi_fused__to_copy_14 = async_compile.triton('triton_poi_fused__to_copy_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5f/c5fjkguhvjg5ryun7wopg6renfax5rp23vfbg6nzsu7akebanlci.py # Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # att_5 => add_9, clamp_max_4 # Graph fragment: # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {}) # %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_9, 1), kwargs = {}) triton_poi_fused_add_clamp_15 = async_compile.triton('triton_poi_fused_add_clamp_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = triton_helpers.minimum(tmp10, tmp9) tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ae/caebye2u374vhzlpesqh72pu5msuyvgx2qnngs7zftzquvm3h3mg.py # Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # att_5 => add_8, clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, iota_2, mul_19, sub_7, sub_9 # Graph fragment: # %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_2, torch.float32), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.5), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_8, 0.5), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_19, 0.5), kwargs = {}) # %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_7, 0.0), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {}) # %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_9, 0.0), kwargs = {}) # %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5d/c5digbxcc3yvdlkmff5azrziozddchj6yb3sq5xkpjinfocpzrk4.py # Topologically Sorted Source Nodes: [conv2d_9, att_4, att_5], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # att_4 => gt_7, mul_18, where_7 # att_5 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_12, add_13, add_14, mul_21, mul_22, mul_23, sub_10, sub_11, sub_13 # conv2d_9 => convolution_9 # Graph fragment: # %convolution_9 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_7, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_9, 0), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_9, 0.1), kwargs = {}) # %where_7 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %convolution_9, %mul_18), kwargs = {}) # %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {}) # %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {}) # %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {}) # %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {}) # %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %clamp_max_6), kwargs = {}) # %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_21), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {}) # %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_6), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_22), kwargs = {}) # %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_13, %add_12), kwargs = {}) # %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %clamp_max_7), kwargs = {}) # %add_14 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_12, %mul_23), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*i64', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4) % 4 x0 = xindex % 4 x6 = (xindex // 16) x2 = (xindex // 16) % 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last') tmp48 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 2, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = 0.0 tmp13 = tmp11 > tmp12 tmp14 = 0.1 tmp15 = tmp11 * tmp14 tmp16 = tl.where(tmp13, tmp11, tmp15) tmp18 = tmp17 + tmp1 tmp19 = tmp17 < 0 tmp20 = tl.where(tmp19, tmp18, tmp17) tmp21 = tl.load(in_ptr2 + (tmp20 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp10 tmp23 = tmp22 > tmp12 tmp24 = tmp22 * tmp14 tmp25 = tl.where(tmp23, tmp22, tmp24) tmp26 = tmp25 - tmp16 tmp28 = tmp26 * tmp27 tmp29 = tmp16 + tmp28 tmp31 = tmp30 + tmp1 tmp32 = tmp30 < 0 tmp33 = tl.where(tmp32, tmp31, tmp30) tmp34 = tl.load(in_ptr2 + (tmp8 + (2*tmp33) + (4*x6)), None, eviction_policy='evict_last') tmp35 = tmp34 + tmp10 tmp36 = tmp35 > tmp12 tmp37 = tmp35 * tmp14 tmp38 = tl.where(tmp36, tmp35, tmp37) tmp39 = tl.load(in_ptr2 + (tmp20 + (2*tmp33) + (4*x6)), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp10 tmp41 = tmp40 > tmp12 tmp42 = tmp40 * tmp14 tmp43 = tl.where(tmp41, tmp40, tmp42) tmp44 = tmp43 - tmp38 tmp45 = tmp44 * tmp27 tmp46 = tmp38 + tmp45 tmp47 = tmp46 - tmp29 tmp49 = tmp47 * tmp48 tmp50 = tmp29 + tmp49 tl.store(in_out_ptr0 + (x4), tmp50, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/cu/ccuvxkf5qhj2jvrsbb3ffhmjd2jtqb6hmsyda6rq3u6bfora32rr.py # Topologically Sorted Source Nodes: [conv2d_2, fea, att_add, att_7, mul_6, mul_7, fea_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.sigmoid, aten.mul, aten.add] # Source node to ATen node mapping: # att_7 => sigmoid_1 # att_add => convolution_12 # conv2d_2 => convolution_2 # fea => gt, mul_6, where # fea_1 => add_15 # mul_6 => mul_25 # mul_7 => mul_26 # Graph fragment: # %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_5, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution_2, %mul_6), kwargs = {}) # %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_8, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_10,), kwargs = {}) # %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %sigmoid_1), kwargs = {}) # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_25, 2), kwargs = {}) # %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_26, %convolution_12), kwargs = {}) triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (x3), None) tmp13 = tl.load(in_out_ptr1 + (x3), None) tmp14 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp9 = tl.sigmoid(tmp8) tmp10 = tmp7 * tmp9 tmp11 = 2.0 tmp12 = tmp10 * tmp11 tmp15 = tmp13 + tmp14 tmp16 = tmp12 + tmp15 tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(in_out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/74/c744ryizhtwhrucrt6eo7euxmid6gpfdi3fhwvvcyslcqrxawzy3.py # Topologically Sorted Source Nodes: [conv2d_9, att_4], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # att_4 => gt_7, mul_18, where_7 # conv2d_9 => convolution_9 # Graph fragment: # %convolution_9 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_7, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_9, 0), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_9, 0.1), kwargs = {}) # %where_7 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %convolution_9, %mul_18), kwargs = {}) # %gt_10 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_7, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 64 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ey/ceyyqukhyyygq34vtv7g5xckv5mooqbd7qwq2qatahqa4c2so7gc.py # Topologically Sorted Source Nodes: [conv2d_7, att_L_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # att_L_2 => gt_5, mul_11, where_5 # conv2d_7 => convolution_7 # Graph fragment: # %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_7, 0), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_7, 0.1), kwargs = {}) # %where_5 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %convolution_7, %mul_11), kwargs = {}) # %gt_12 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_5, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27 = args args.clear() assert_size_stride(primals_1, (4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1)) assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 320, 1, 1), (320, 1, 1, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 320, 1, 1), (320, 1, 1, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (64, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_11, (64, ), (1, )) assert_size_stride(primals_12, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_13, (64, ), (1, )) assert_size_stride(primals_14, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (64, ), (1, )) assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_17, (64, ), (1, )) assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (64, ), (1, )) assert_size_stride(primals_20, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_21, (64, ), (1, )) assert_size_stride(primals_22, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_23, (64, ), (1, )) assert_size_stride(primals_24, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_25, (64, ), (1, )) assert_size_stride(primals_26, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_27, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 4096, grid=grid(4096), stream=stream0) # Topologically Sorted Source Nodes: [emb_ref], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [emb_ref], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 4096, grid=grid(4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (20, 64, 4, 4), (1024, 16, 4, 1), 0), primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (20, 64, 4, 4), (1024, 16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf4, primals_5, 20480, grid=grid(20480), stream=stream0) del primals_5 buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf10 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0) # alias buf11 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 16) # alias buf12 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 32) # alias buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 48) # alias buf14 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias # Topologically Sorted Source Nodes: [mul, sum_1, mul_1, sum_2, mul_2, sum_3, mul_3, sum_4, mul_4, sum_5, cat], Original ATen: [aten.mul, aten.sum, aten.cat] triton_per_fused_cat_mul_sum_3.run(buf4, buf2, buf10, buf11, buf12, buf13, buf14, 64, 64, grid=grid(64), stream=stream0) buf16 = empty_strided_cuda((4, 320, 4, 4), (5120, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [aligned_fea], Original ATen: [aten.mul] triton_poi_fused_mul_4.run(primals_1, buf15, buf16, 20480, grid=grid(20480), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 64, 4, 4), (1024, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf16, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 64, 4, 4), (1024, 16, 4, 1)) buf20 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [conv2d_3, att], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_5.run(buf20, primals_9, 4096, grid=grid(4096), stream=stream0) del primals_9 buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 4, 2, 1), torch.float32) buf21 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 0) # alias buf22 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.int8) buf23 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 256) # alias # Topologically Sorted Source Nodes: [att_max, att_avg], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d] triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6.run(buf20, buf21, buf22, buf23, 1024, grid=grid(1024), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf25 = extern_kernels.convolution(buf24, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 64, 2, 2), (256, 4, 2, 1)) buf26 = buf25; del buf25 # reuse # Topologically Sorted Source Nodes: [conv2d_4, att_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_7.run(buf26, primals_11, 1024, grid=grid(1024), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf27 = extern_kernels.convolution(buf26, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 64, 2, 2), (256, 4, 2, 1)) buf28 = buf27; del buf27 # reuse # Topologically Sorted Source Nodes: [conv2d_5, att_L], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_7.run(buf28, primals_13, 1024, grid=grid(1024), stream=stream0) del primals_13 buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.float32) buf29 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 0) # alias buf30 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.int8) buf31 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 64) # alias # Topologically Sorted Source Nodes: [att_max_1, att_avg_1], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d] triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8.run(buf28, buf29, buf30, buf31, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf33 = extern_kernels.convolution(buf32, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 64, 1, 1), (64, 1, 1, 1)) buf34 = buf33; del buf33 # reuse # Topologically Sorted Source Nodes: [conv2d_6, att_L_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_9.run(buf34, primals_15, 256, grid=grid(256), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf35 = extern_kernels.convolution(buf34, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 64, 1, 1), (64, 1, 1, 1)) buf36 = empty_strided_cuda((2, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_10.run(buf36, 2, grid=grid(2), stream=stream0) buf37 = empty_strided_cuda((2, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_11.run(buf37, 2, grid=grid(2), stream=stream0) buf38 = empty_strided_cuda((2, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_10.run(buf38, 2, grid=grid(2), stream=stream0) buf39 = empty_strided_cuda((2, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_11.run(buf39, 2, grid=grid(2), stream=stream0) buf40 = empty_strided_cuda((2, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12.run(buf40, 2, grid=grid(2), stream=stream0) buf42 = empty_strided_cuda((2, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12.run(buf42, 2, grid=grid(2), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf43 = extern_kernels.convolution(buf26, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 64, 2, 2), (256, 4, 2, 1)) buf41 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.float32) buf44 = buf41; del buf41 # reuse buf62 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_7, att_L_2, att_L_3, conv2d_8, att_2, att_3], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add, aten.leaky_relu_backward] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13.run(buf44, buf36, buf38, buf35, primals_17, buf39, buf40, buf43, primals_19, buf37, buf42, buf62, 1024, grid=grid(1024), stream=stream0) del buf43 del primals_19 # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf45 = extern_kernels.convolution(buf44, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 64, 2, 2), (256, 4, 2, 1)) buf46 = empty_strided_cuda((4, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [att_5], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_14.run(buf46, 4, grid=grid(4), stream=stream0) buf47 = empty_strided_cuda((4, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_15.run(buf47, 4, grid=grid(4), stream=stream0) buf48 = empty_strided_cuda((4, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_14.run(buf48, 4, grid=grid(4), stream=stream0) buf49 = empty_strided_cuda((4, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_15.run(buf49, 4, grid=grid(4), stream=stream0) buf50 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16.run(buf50, 4, grid=grid(4), stream=stream0) buf52 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16.run(buf52, 4, grid=grid(4), stream=stream0) buf53 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.float32) buf54 = buf53; del buf53 # reuse # Topologically Sorted Source Nodes: [conv2d_9, att_4, att_5], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17.run(buf54, buf46, buf48, buf45, primals_21, buf49, buf50, buf47, buf52, 4096, grid=grid(4096), stream=stream0) # Topologically Sorted Source Nodes: [att_6], Original ATen: [aten.convolution] buf55 = extern_kernels.convolution(buf54, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf55, (4, 64, 4, 4), (1024, 16, 4, 1)) buf56 = buf55; del buf55 # reuse # Topologically Sorted Source Nodes: [att_6], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf56, primals_23, 4096, grid=grid(4096), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf57 = extern_kernels.convolution(buf56, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf57, (4, 64, 4, 4), (1024, 16, 4, 1)) buf58 = buf57; del buf57 # reuse # Topologically Sorted Source Nodes: [conv2d_11, leaky_relu_8], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_5.run(buf58, primals_25, 4096, grid=grid(4096), stream=stream0) del primals_25 # Topologically Sorted Source Nodes: [att_add], Original ATen: [aten.convolution] buf59 = extern_kernels.convolution(buf58, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf59, (4, 64, 4, 4), (1024, 16, 4, 1)) buf18 = buf17; del buf17 # reuse buf60 = buf59; del buf59 # reuse # Topologically Sorted Source Nodes: [conv2d_2, fea, att_add, att_7, mul_6, mul_7, fea_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.sigmoid, aten.mul, aten.add] triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18.run(buf18, buf60, primals_7, buf56, primals_27, 4096, grid=grid(4096), stream=stream0) del primals_27 del primals_7 buf61 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_9, att_4], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19.run(buf45, primals_21, buf61, 1024, grid=grid(1024), stream=stream0) del buf45 del primals_21 buf63 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_7, att_L_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20.run(buf35, primals_17, buf63, 256, grid=grid(256), stream=stream0) del buf35 del primals_17 return (buf60, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, buf0, buf2, reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 0), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 1024), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 2048), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 3072), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 4096), buf15, buf16, buf18, buf20, buf22, buf24, buf26, buf28, buf30, buf32, buf34, buf36, buf37, buf38, buf39, buf40, buf42, buf44, buf46, buf47, buf48, buf49, buf50, buf52, buf54, buf56, buf58, buf61, buf62, buf63, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 320, 1, 1), (320, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 320, 1, 1), (320, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((64, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn import torch.nn.functional as F class TSA_Fusion(nn.Module): """ Temporal Spatial Attention fusion module Temporal: correlation; Spatial: 3 pyramid levels. """ def __init__(self, nf=64, nframes=5, center=2): super(TSA_Fusion, self).__init__() self.center = center self.tAtt_1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.tAtt_2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.fea_fusion = nn.Conv2d(nframes * nf, nf, 1, 1, bias=True) self.sAtt_1 = nn.Conv2d(nframes * nf, nf, 1, 1, bias=True) self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) self.avgpool = nn.AvgPool2d(3, stride=2, padding=1) self.sAtt_2 = nn.Conv2d(nf * 2, nf, 1, 1, bias=True) self.sAtt_3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.sAtt_4 = nn.Conv2d(nf, nf, 1, 1, bias=True) self.sAtt_5 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.sAtt_L1 = nn.Conv2d(nf, nf, 1, 1, bias=True) self.sAtt_L2 = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True) self.sAtt_L3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.sAtt_add_1 = nn.Conv2d(nf, nf, 1, 1, bias=True) self.sAtt_add_2 = nn.Conv2d(nf, nf, 1, 1, bias=True) self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) def forward(self, aligned_fea): B, N, C, H, W = aligned_fea.size() emb_ref = self.tAtt_2(aligned_fea[:, self.center, :, :, :].clone()) emb = self.tAtt_1(aligned_fea.view(-1, C, H, W)).view(B, N, -1, H, W) cor_l = [] for i in range(N): emb_nbr = emb[:, i, :, :, :] cor_tmp = torch.sum(emb_nbr * emb_ref, 1).unsqueeze(1) cor_l.append(cor_tmp) cor_prob = torch.sigmoid(torch.cat(cor_l, dim=1)) cor_prob = cor_prob.unsqueeze(2).repeat(1, 1, C, 1, 1).view(B, -1, H, W ) aligned_fea = aligned_fea.view(B, -1, H, W) * cor_prob fea = self.lrelu(self.fea_fusion(aligned_fea)) att = self.lrelu(self.sAtt_1(aligned_fea)) att_max = self.maxpool(att) att_avg = self.avgpool(att) att = self.lrelu(self.sAtt_2(torch.cat([att_max, att_avg], dim=1))) att_L = self.lrelu(self.sAtt_L1(att)) att_max = self.maxpool(att_L) att_avg = self.avgpool(att_L) att_L = self.lrelu(self.sAtt_L2(torch.cat([att_max, att_avg], dim=1))) att_L = self.lrelu(self.sAtt_L3(att_L)) att_L = F.interpolate(att_L, scale_factor=2, mode='bilinear', align_corners=False) att = self.lrelu(self.sAtt_3(att)) att = att + att_L att = self.lrelu(self.sAtt_4(att)) att = F.interpolate(att, scale_factor=2, mode='bilinear', align_corners=False) att = self.sAtt_5(att) att_add = self.sAtt_add_2(self.lrelu(self.sAtt_add_1(att))) att = torch.sigmoid(att) fea = fea * att * 2 + att_add return fea def get_inputs(): return [torch.rand([4, 5, 64, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 1024 x1 = xindex // 1024 x2 = xindex tmp0 = tl.load(in_ptr0 + (2048 + x0 + 5120 * x1), None) tl.store(out_ptr0 + x2, tmp0, None) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_per_fused_cat_mul_sum_3(in_ptr0, in_ptr1, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 5120 * x1), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (x0 + 16 * r2 + 1024 * x1), xmask, other=0.0) tmp7 = tl.load(in_ptr0 + (1024 + x0 + 16 * r2 + 5120 * x1), xmask, other=0.0) tmp13 = tl.load(in_ptr0 + (2048 + x0 + 16 * r2 + 5120 * x1), xmask, other=0.0) tmp19 = tl.load(in_ptr0 + (3072 + x0 + 16 * r2 + 5120 * x1), xmask, other=0.0) tmp25 = tl.load(in_ptr0 + (4096 + x0 + 16 * r2 + 5120 * x1), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp7 * tmp1 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp14 = tmp13 * tmp1 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp20 = tmp19 * tmp1 tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK]) tmp23 = tl.where(xmask, tmp21, 0) tmp24 = tl.sum(tmp23, 1)[:, None] tmp26 = tmp25 * tmp1 tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.where(xmask, tmp27, 0) tmp30 = tl.sum(tmp29, 1)[:, None] tl.store(out_ptr5 + (x0 + 80 * x1), tmp6, xmask) tl.store(out_ptr6 + (x0 + 80 * x1), tmp12, xmask) tl.store(out_ptr7 + (x0 + 80 * x1), tmp18, xmask) tl.store(out_ptr8 + (x0 + 80 * x1), tmp24, xmask) tl.store(out_ptr9 + (x0 + 80 * x1), tmp30, xmask) @triton.jit def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 16 x1 = xindex // 16 % 320 x2 = xindex // 5120 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (x0 + 16 * (x1 // 64) + 80 * x2), None) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x3, tmp3, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, None) @triton.jit def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 2 x0 = xindex % 2 x5 = xindex // 2 x3 = xindex // 256 x6 = xindex % 256 x7 = xindex tmp0 = -1 + 2 * x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + 2 * x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x5), tmp10 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp12 = 2 * x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x5), tmp16 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + 2 * x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x5), tmp23 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2 * x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x5), tmp30 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (2 * x0 + 8 * x5), tmp33 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x5), tmp36 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + 2 * x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x5), tmp43 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x5), tmp46 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x5), tmp49 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tmp77 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x5), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp78 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x5), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp79 = tmp78 + tmp77 tmp80 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x5), tmp23 & xmask, eviction_policy='evict_last', other=0.0) tmp81 = tmp80 + tmp79 tmp82 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x5), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp83 = tmp82 + tmp81 tmp84 = tl.load(in_ptr0 + (2 * x0 + 8 * x5), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp85 = tmp84 + tmp83 tmp86 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x5), tmp36 & xmask, eviction_policy='evict_last', other=0.0) tmp87 = tmp86 + tmp85 tmp88 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x5), tmp43 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tmp88 + tmp87 tmp90 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x5), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp91 = tmp90 + tmp89 tmp92 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x5), tmp49 & xmask, eviction_policy='evict_last', other=0.0) tmp93 = tmp92 + tmp91 tmp94 = 1 + -2 * x0 + -2 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)) + -2 * x0 * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)) + -2 * x1 * (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) + 4 * x0 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) + (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5) ) tmp95 = tmp93 / tmp94 tl.store(out_ptr0 + (x6 + 512 * x3), tmp51, xmask) tl.store(out_ptr1 + x7, tmp76, xmask) tl.store(out_ptr2 + (x6 + 512 * x3), tmp95, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 64 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = xindex // 64 tmp0 = tl.full([1], -1, tl.int64) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tmp5 & tmp5 tmp7 = tl.load(in_ptr0 + (-3 + 4 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp8 = tmp1 >= tmp1 tmp9 = tmp1 < tmp3 tmp10 = tmp8 & tmp9 tmp11 = tmp5 & tmp10 tmp12 = tl.load(in_ptr0 + (-2 + 4 * x2), tmp11 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp13 = triton_helpers.maximum(tmp12, tmp7) tmp14 = tl.full([1], 1, tl.int64) tmp15 = tmp14 >= tmp1 tmp16 = tmp14 < tmp3 tmp17 = tmp15 & tmp16 tmp18 = tmp5 & tmp17 tmp19 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp18 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp20 = triton_helpers.maximum(tmp19, tmp13) tmp21 = tmp10 & tmp5 tmp22 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp21 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp23 = triton_helpers.maximum(tmp22, tmp20) tmp24 = tmp10 & tmp10 tmp25 = tl.load(in_ptr0 + 4 * x2, tmp24 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp26 = triton_helpers.maximum(tmp25, tmp23) tmp27 = tmp10 & tmp17 tmp28 = tl.load(in_ptr0 + (1 + 4 * x2), tmp27 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp29 = triton_helpers.maximum(tmp28, tmp26) tmp30 = tmp17 & tmp5 tmp31 = tl.load(in_ptr0 + (1 + 4 * x2), tmp30 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp29) tmp33 = tmp17 & tmp10 tmp34 = tl.load(in_ptr0 + (2 + 4 * x2), tmp33 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp17 & tmp17 tmp37 = tl.load(in_ptr0 + (3 + 4 * x2), tmp36 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = tmp12 > tmp7 tmp40 = tl.full([1], 1, tl.int8) tmp41 = tl.full([1], 0, tl.int8) tmp42 = tl.where(tmp39, tmp40, tmp41) tmp43 = tmp19 > tmp13 tmp44 = tl.full([1], 2, tl.int8) tmp45 = tl.where(tmp43, tmp44, tmp42) tmp46 = tmp22 > tmp20 tmp47 = tl.full([1], 3, tl.int8) tmp48 = tl.where(tmp46, tmp47, tmp45) tmp49 = tmp25 > tmp23 tmp50 = tl.full([1], 4, tl.int8) tmp51 = tl.where(tmp49, tmp50, tmp48) tmp52 = tmp28 > tmp26 tmp53 = tl.full([1], 5, tl.int8) tmp54 = tl.where(tmp52, tmp53, tmp51) tmp55 = tmp31 > tmp29 tmp56 = tl.full([1], 6, tl.int8) tmp57 = tl.where(tmp55, tmp56, tmp54) tmp58 = tmp34 > tmp32 tmp59 = tl.full([1], 7, tl.int8) tmp60 = tl.where(tmp58, tmp59, tmp57) tmp61 = tmp37 > tmp35 tmp62 = tl.full([1], 8, tl.int8) tmp63 = tl.where(tmp61, tmp62, tmp60) tmp64 = tl.load(in_ptr0 + (-3 + 4 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp65 = tl.load(in_ptr0 + (-2 + 4 * x2), tmp11 & xmask, eviction_policy ='evict_last', other=0.0) tmp66 = tmp65 + tmp64 tmp67 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp18 & xmask, eviction_policy ='evict_last', other=0.0) tmp68 = tmp67 + tmp66 tmp69 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp21 & xmask, eviction_policy ='evict_last', other=0.0) tmp70 = tmp69 + tmp68 tmp71 = tl.load(in_ptr0 + 4 * x2, tmp24 & xmask, eviction_policy= 'evict_last', other=0.0) tmp72 = tmp71 + tmp70 tmp73 = tl.load(in_ptr0 + (1 + 4 * x2), tmp27 & xmask, eviction_policy= 'evict_last', other=0.0) tmp74 = tmp73 + tmp72 tmp75 = tl.load(in_ptr0 + (1 + 4 * x2), tmp30 & xmask, eviction_policy= 'evict_last', other=0.0) tmp76 = tmp75 + tmp74 tmp77 = tl.load(in_ptr0 + (2 + 4 * x2), tmp33 & xmask, eviction_policy= 'evict_last', other=0.0) tmp78 = tmp77 + tmp76 tmp79 = tl.load(in_ptr0 + (3 + 4 * x2), tmp36 & xmask, eviction_policy= 'evict_last', other=0.0) tmp80 = tmp79 + tmp78 tmp81 = tl.full([1], 9, tl.int32) tmp82 = tmp80 / tmp81 tl.store(out_ptr0 + (x0 + 128 * x1), tmp38, xmask) tl.store(out_ptr1 + x2, tmp63, xmask) tl.store(out_ptr2 + (x0 + 128 * x1), tmp82, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x2, tmp7, xmask) @triton.jit def triton_poi_fused__to_copy_10(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_11(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 0, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 2 x0 = xindex % 2 x5 = xindex // 4 x2 = xindex // 4 % 64 x6 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x6, xmask) tmp26 = tl.load(in_ptr7 + x2, xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr8 + x1, xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr9 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 1, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tl.where(tmp7, tmp6, tmp5) tmp11 = tmp9 + tmp10 tmp12 = 0.0 tmp13 = tmp11 > tmp12 tmp14 = 0.1 tmp15 = tmp11 * tmp14 tmp16 = tl.where(tmp13, tmp11, tmp15) tmp18 = tmp17 + tmp1 tmp19 = tmp17 < 0 tl.where(tmp19, tmp18, tmp17) tmp21 = tmp16 - tmp16 tmp23 = tmp21 * tmp22 tmp24 = tmp16 + tmp23 tmp27 = tmp25 + tmp26 tmp28 = tmp27 > tmp12 tmp29 = tmp27 * tmp14 tmp30 = tl.where(tmp28, tmp27, tmp29) tmp32 = tmp31 + tmp1 tmp33 = tmp31 < 0 tl.where(tmp33, tmp32, tmp31) tmp35 = tmp24 - tmp24 tmp37 = tmp35 * tmp36 tmp38 = tmp24 + tmp37 tmp39 = tmp30 + tmp38 tmp40 = tmp30 > tmp12 tl.store(in_out_ptr0 + x6, tmp39, xmask) tl.store(out_ptr0 + x6, tmp40, xmask) @triton.jit def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = triton_helpers.minimum(tmp10, tmp9) tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4 % 4 x0 = xindex % 4 x6 = xindex // 16 x2 = xindex // 16 % 64 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last') tmp48 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 2, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 2 * tmp4 + 4 * x6), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = 0.0 tmp13 = tmp11 > tmp12 tmp14 = 0.1 tmp15 = tmp11 * tmp14 tmp16 = tl.where(tmp13, tmp11, tmp15) tmp18 = tmp17 + tmp1 tmp19 = tmp17 < 0 tmp20 = tl.where(tmp19, tmp18, tmp17) tmp21 = tl.load(in_ptr2 + (tmp20 + 2 * tmp4 + 4 * x6), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp10 tmp23 = tmp22 > tmp12 tmp24 = tmp22 * tmp14 tmp25 = tl.where(tmp23, tmp22, tmp24) tmp26 = tmp25 - tmp16 tmp28 = tmp26 * tmp27 tmp29 = tmp16 + tmp28 tmp31 = tmp30 + tmp1 tmp32 = tmp30 < 0 tmp33 = tl.where(tmp32, tmp31, tmp30) tmp34 = tl.load(in_ptr2 + (tmp8 + 2 * tmp33 + 4 * x6), None, eviction_policy='evict_last') tmp35 = tmp34 + tmp10 tmp36 = tmp35 > tmp12 tmp37 = tmp35 * tmp14 tmp38 = tl.where(tmp36, tmp35, tmp37) tmp39 = tl.load(in_ptr2 + (tmp20 + 2 * tmp33 + 4 * x6), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp10 tmp41 = tmp40 > tmp12 tmp42 = tmp40 * tmp14 tmp43 = tl.where(tmp41, tmp40, tmp42) tmp44 = tmp43 - tmp38 tmp45 = tmp44 * tmp27 tmp46 = tmp38 + tmp45 tmp47 = tmp46 - tmp29 tmp49 = tmp47 * tmp48 tmp50 = tmp29 + tmp49 tl.store(in_out_ptr0 + x4, tmp50, None) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + x3, None) tmp13 = tl.load(in_out_ptr1 + x3, None) tmp14 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp9 = tl.sigmoid(tmp8) tmp10 = tmp7 * tmp9 tmp11 = 2.0 tmp12 = tmp10 * tmp11 tmp15 = tmp13 + tmp14 tmp16 = tmp12 + tmp15 tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(in_out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27) = args args.clear() assert_size_stride(primals_1, (4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1)) assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 320, 1, 1), (320, 1, 1, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 320, 1, 1), (320, 1, 1, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (64, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_11, (64,), (1,)) assert_size_stride(primals_12, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_13, (64,), (1,)) assert_size_stride(primals_14, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (64,), (1,)) assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_17, (64,), (1,)) assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (64,), (1,)) assert_size_stride(primals_20, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_21, (64,), (1,)) assert_size_stride(primals_22, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_23, (64,), (1,)) assert_size_stride(primals_24, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_25, (64,), (1,)) assert_size_stride(primals_26, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_27, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch. float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(4096)](primals_1, buf0, 4096, XBLOCK= 128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(4096)](buf2, primals_3, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (20, 64, 4, 4), (1024, 16, 4, 1), 0), primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (20, 64, 4, 4), (1024, 16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_2[grid(20480)](buf4, primals_5, 20480, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf10 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0) buf11 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 16) buf12 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 32) buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 48) buf14 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 64) triton_per_fused_cat_mul_sum_3[grid(64)](buf4, buf2, buf10, buf11, buf12, buf13, buf14, 64, 64, XBLOCK=32, num_warps=8, num_stages=1) buf16 = empty_strided_cuda((4, 320, 4, 4), (5120, 16, 4, 1), torch. float32) triton_poi_fused_mul_4[grid(20480)](primals_1, buf15, buf16, 20480, XBLOCK=256, num_warps=4, num_stages=1) buf17 = extern_kernels.convolution(buf16, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 64, 4, 4), (1024, 16, 4, 1)) buf19 = extern_kernels.convolution(buf16, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 64, 4, 4), (1024, 16, 4, 1)) buf20 = buf19 del buf19 triton_poi_fused_convolution_leaky_relu_5[grid(4096)](buf20, primals_9, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 4, 2, 1), torch. float32) buf21 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 0) buf22 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.int8) buf23 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 256) triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6[grid(1024)](buf20 , buf21, buf22, buf23, 1024, XBLOCK=128, num_warps=4, num_stages=1) buf25 = extern_kernels.convolution(buf24, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 64, 2, 2), (256, 4, 2, 1)) buf26 = buf25 del buf25 triton_poi_fused_convolution_leaky_relu_7[grid(1024)](buf26, primals_11, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf27 = extern_kernels.convolution(buf26, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 64, 2, 2), (256, 4, 2, 1)) buf28 = buf27 del buf27 triton_poi_fused_convolution_leaky_relu_7[grid(1024)](buf28, primals_13, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_13 buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch. float32) buf29 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 0) buf30 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.int8) buf31 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 64) triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8[grid(256)](buf28, buf29, buf30, buf31, 256, XBLOCK=128, num_warps=4, num_stages=1) buf33 = extern_kernels.convolution(buf32, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 64, 1, 1), (64, 1, 1, 1)) buf34 = buf33 del buf33 triton_poi_fused_convolution_leaky_relu_9[grid(256)](buf34, primals_15, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 buf35 = extern_kernels.convolution(buf34, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 64, 1, 1), (64, 1, 1, 1)) buf36 = empty_strided_cuda((2, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_10[grid(2)](buf36, 2, XBLOCK=2, num_warps =1, num_stages=1) buf37 = empty_strided_cuda((2, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_11[grid(2)](buf37, 2, XBLOCK=2, num_warps=1, num_stages=1) buf38 = empty_strided_cuda((2,), (1,), torch.int64) triton_poi_fused__to_copy_10[grid(2)](buf38, 2, XBLOCK=2, num_warps =1, num_stages=1) buf39 = empty_strided_cuda((2,), (1,), torch.int64) triton_poi_fused_add_clamp_11[grid(2)](buf39, 2, XBLOCK=2, num_warps=1, num_stages=1) buf40 = empty_strided_cuda((2,), (1,), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12[grid(2)](buf40, 2, XBLOCK=2, num_warps=1, num_stages=1) buf42 = empty_strided_cuda((2, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12[grid(2)](buf42, 2, XBLOCK=2, num_warps=1, num_stages=1) buf43 = extern_kernels.convolution(buf26, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 64, 2, 2), (256, 4, 2, 1)) buf41 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.float32 ) buf44 = buf41 del buf41 buf62 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13[ grid(1024)](buf44, buf36, buf38, buf35, primals_17, buf39, buf40, buf43, primals_19, buf37, buf42, buf62, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf43 del primals_19 buf45 = extern_kernels.convolution(buf44, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 64, 2, 2), (256, 4, 2, 1)) buf46 = empty_strided_cuda((4, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_14[grid(4)](buf46, 4, XBLOCK=4, num_warps =1, num_stages=1) buf47 = empty_strided_cuda((4, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_15[grid(4)](buf47, 4, XBLOCK=4, num_warps=1, num_stages=1) buf48 = empty_strided_cuda((4,), (1,), torch.int64) triton_poi_fused__to_copy_14[grid(4)](buf48, 4, XBLOCK=4, num_warps =1, num_stages=1) buf49 = empty_strided_cuda((4,), (1,), torch.int64) triton_poi_fused_add_clamp_15[grid(4)](buf49, 4, XBLOCK=4, num_warps=1, num_stages=1) buf50 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16[grid(4)](buf50, 4, XBLOCK=4, num_warps=1, num_stages=1) buf52 = empty_strided_cuda((4, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16[grid(4)](buf52, 4, XBLOCK=4, num_warps=1, num_stages=1) buf53 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch. float32) buf54 = buf53 del buf53 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17[ grid(4096)](buf54, buf46, buf48, buf45, primals_21, buf49, buf50, buf47, buf52, 4096, XBLOCK=128, num_warps=4, num_stages=1) buf55 = extern_kernels.convolution(buf54, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf55, (4, 64, 4, 4), (1024, 16, 4, 1)) buf56 = buf55 del buf55 triton_poi_fused_convolution_1[grid(4096)](buf56, primals_23, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 buf57 = extern_kernels.convolution(buf56, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf57, (4, 64, 4, 4), (1024, 16, 4, 1)) buf58 = buf57 del buf57 triton_poi_fused_convolution_leaky_relu_5[grid(4096)](buf58, primals_25, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_25 buf59 = extern_kernels.convolution(buf58, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf59, (4, 64, 4, 4), (1024, 16, 4, 1)) buf18 = buf17 del buf17 buf60 = buf59 del buf59 triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18[grid(4096)]( buf18, buf60, primals_7, buf56, primals_27, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_27 del primals_7 buf61 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19[grid (1024)](buf45, primals_21, buf61, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf45 del primals_21 buf63 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20[grid (256)](buf35, primals_17, buf63, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf35 del primals_17 return (buf60, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, buf0, buf2, reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 0), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 1024), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 2048), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 3072), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 4096), buf15, buf16, buf18, buf20, buf22, buf24, buf26, buf28, buf30, buf32, buf34, buf36, buf37, buf38, buf39, buf40, buf42, buf44, buf46, buf47, buf48, buf49, buf50, buf52, buf54, buf56, buf58, buf61, buf62, buf63) class TSA_FusionNew(nn.Module): """ Temporal Spatial Attention fusion module Temporal: correlation; Spatial: 3 pyramid levels. """ def __init__(self, nf=64, nframes=5, center=2): super(TSA_FusionNew, self).__init__() self.center = center self.tAtt_1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.tAtt_2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.fea_fusion = nn.Conv2d(nframes * nf, nf, 1, 1, bias=True) self.sAtt_1 = nn.Conv2d(nframes * nf, nf, 1, 1, bias=True) self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) self.avgpool = nn.AvgPool2d(3, stride=2, padding=1) self.sAtt_2 = nn.Conv2d(nf * 2, nf, 1, 1, bias=True) self.sAtt_3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.sAtt_4 = nn.Conv2d(nf, nf, 1, 1, bias=True) self.sAtt_5 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.sAtt_L1 = nn.Conv2d(nf, nf, 1, 1, bias=True) self.sAtt_L2 = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True) self.sAtt_L3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.sAtt_add_1 = nn.Conv2d(nf, nf, 1, 1, bias=True) self.sAtt_add_2 = nn.Conv2d(nf, nf, 1, 1, bias=True) self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) def forward(self, input_0): primals_2 = self.tAtt_1.weight primals_3 = self.tAtt_1.bias primals_4 = self.tAtt_2.weight primals_5 = self.tAtt_2.bias primals_6 = self.fea_fusion.weight primals_7 = self.fea_fusion.bias primals_8 = self.sAtt_1.weight primals_9 = self.sAtt_1.bias primals_10 = self.sAtt_2.weight primals_11 = self.sAtt_2.bias primals_16 = self.sAtt_3.weight primals_13 = self.sAtt_3.bias primals_12 = self.sAtt_4.weight primals_15 = self.sAtt_4.bias primals_18 = self.sAtt_5.weight primals_17 = self.sAtt_5.bias primals_20 = self.sAtt_L1.weight primals_19 = self.sAtt_L1.bias primals_14 = self.sAtt_L2.weight primals_21 = self.sAtt_L2.bias primals_22 = self.sAtt_L3.weight primals_23 = self.sAtt_L3.bias primals_24 = self.sAtt_add_1.weight primals_25 = self.sAtt_add_1.bias primals_26 = self.sAtt_add_2.weight primals_27 = self.sAtt_add_2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return output[0]
sutkarsh/EDVR
TSA_Fusion
false
4,467
[ "Apache-2.0" ]
0
cd9f2d46edbb00333d8ffb31aebc52cfbda4b6e3
https://github.com/sutkarsh/EDVR/tree/cd9f2d46edbb00333d8ffb31aebc52cfbda4b6e3
import torch import torch.utils.data import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ Temporal Spatial Attention fusion module Temporal: correlation; Spatial: 3 pyramid levels. """ def __init__(self, nf=64, nframes=5, center=2): super().__init__() self.center = center self.tAtt_1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.tAtt_2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.fea_fusion = nn.Conv2d(nframes * nf, nf, 1, 1, bias=True) self.sAtt_1 = nn.Conv2d(nframes * nf, nf, 1, 1, bias=True) self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) self.avgpool = nn.AvgPool2d(3, stride=2, padding=1) self.sAtt_2 = nn.Conv2d(nf * 2, nf, 1, 1, bias=True) self.sAtt_3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.sAtt_4 = nn.Conv2d(nf, nf, 1, 1, bias=True) self.sAtt_5 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.sAtt_L1 = nn.Conv2d(nf, nf, 1, 1, bias=True) self.sAtt_L2 = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True) self.sAtt_L3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.sAtt_add_1 = nn.Conv2d(nf, nf, 1, 1, bias=True) self.sAtt_add_2 = nn.Conv2d(nf, nf, 1, 1, bias=True) self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) def forward(self, aligned_fea): B, N, C, H, W = aligned_fea.size() emb_ref = self.tAtt_2(aligned_fea[:, self.center, :, :, :].clone()) emb = self.tAtt_1(aligned_fea.view(-1, C, H, W)).view(B, N, -1, H, W) cor_l = [] for i in range(N): emb_nbr = emb[:, i, :, :, :] cor_tmp = torch.sum(emb_nbr * emb_ref, 1).unsqueeze(1) cor_l.append(cor_tmp) cor_prob = torch.sigmoid(torch.cat(cor_l, dim=1)) cor_prob = cor_prob.unsqueeze(2).repeat(1, 1, C, 1, 1).view(B, -1, H, W ) aligned_fea = aligned_fea.view(B, -1, H, W) * cor_prob fea = self.lrelu(self.fea_fusion(aligned_fea)) att = self.lrelu(self.sAtt_1(aligned_fea)) att_max = self.maxpool(att) att_avg = self.avgpool(att) att = self.lrelu(self.sAtt_2(torch.cat([att_max, att_avg], dim=1))) att_L = self.lrelu(self.sAtt_L1(att)) att_max = self.maxpool(att_L) att_avg = self.avgpool(att_L) att_L = self.lrelu(self.sAtt_L2(torch.cat([att_max, att_avg], dim=1))) att_L = self.lrelu(self.sAtt_L3(att_L)) att_L = F.interpolate(att_L, scale_factor=2, mode='bilinear', align_corners=False) att = self.lrelu(self.sAtt_3(att)) att = att + att_L att = self.lrelu(self.sAtt_4(att)) att = F.interpolate(att, scale_factor=2, mode='bilinear', align_corners=False) att = self.sAtt_5(att) att_add = self.sAtt_add_2(self.lrelu(self.sAtt_add_1(att))) att = torch.sigmoid(att) fea = fea * att * 2 + att_add return fea def get_inputs(): return [torch.rand([4, 5, 64, 4, 4])] def get_init_inputs(): return []
LenCompLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xo/cxo2kdggbpnag3efrup3cbsxqbqiogk2xtmowlvjs4pmhwt7sjqp.py # Topologically Sorted Source Nodes: [sum_1, sum_2, loss], Original ATen: [aten.sum, aten.sub, aten.abs, aten.mean] # Source node to ATen node mapping: # loss => abs_1, mean, sub # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg0_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg1_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {}) triton_per_fused_abs_mean_sub_sum_0 = async_compile.triton('triton_per_fused_abs_mean_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp4 = tl.load(in_ptr1 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0)) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tmp3 - tmp7 tmp9 = tl_math.abs(tmp8) tmp10 = 1.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sum_1, sum_2, loss], Original ATen: [aten.sum, aten.sub, aten.abs, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_mean_sub_sum_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch import torch.nn as nn class LenCompLoss(nn.Module): def __init__(self): super(LenCompLoss, self).__init__() self.loss = nn.L1Loss() def forward(self, x, y): loss = self.loss(torch.sum(x), torch.sum(y)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.utils.data import torch import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_mean_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp4 = tl.load(in_ptr1 + r0, None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0)) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tmp3 - tmp7 tmp9 = tl_math.abs(tmp8) tmp10 = 1.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_mean_sub_sum_0[grid(1)](buf2, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class LenCompLossNew(nn.Module): def __init__(self): super(LenCompLossNew, self).__init__() self.loss = nn.L1Loss() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
usmanwardag/pytorch-CycleGAN-and-pix2pix
LenCompLoss
false
4,468
[ "BSD-3-Clause" ]
0
72f2050600e7821476c9e19fcf8f1973f6a6f78c
https://github.com/usmanwardag/pytorch-CycleGAN-and-pix2pix/tree/72f2050600e7821476c9e19fcf8f1973f6a6f78c
import torch import torch.utils.data import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.loss = nn.L1Loss() def forward(self, x, y): loss = self.loss(torch.sum(x), torch.sum(y)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
FluidGravityForce
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/zx/czxnj2jqqa7xh3e3a44piulfrkoqpjkwijsmuagzktv3ujhmu5y3.py # Topologically Sorted Source Nodes: [mul, vel, vv, add_1, vv_1, neg], Original ATen: [aten.mul, aten.add, aten.linalg_vector_norm, aten.reciprocal, aten.neg] # Source node to ATen node mapping: # add_1 => add_1 # mul => mul # neg => neg # vel => add # vv => pow_1, pow_2, sum_1 # vv_1 => mul_1, reciprocal # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 4), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %mul), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 0.0001), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 3), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mul_1,), kwargs = {}) triton_poi_fused_add_linalg_vector_norm_mul_neg_reciprocal_0 = async_compile.triton('triton_poi_fused_add_linalg_vector_norm_mul_neg_reciprocal_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_linalg_vector_norm_mul_neg_reciprocal_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_linalg_vector_norm_mul_neg_reciprocal_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = 4.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp7 * tmp2 tmp9 = tmp6 + tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp13 * tmp2 tmp15 = tmp12 + tmp14 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp19 * tmp2 tmp21 = tmp18 + tmp20 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 0.0001 tmp26 = tmp24 + tmp25 tmp27 = tl.full([1], 1, tl.int32) tmp28 = tmp27 / tmp26 tmp29 = 3.0 tmp30 = tmp28 * tmp29 tmp31 = -tmp30 tl.store(out_ptr0 + (x0), tmp31, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uq/cuq6youjtdea27w6voavepwc7an5xlwjvkcnbuntotrxqybcjuor.py # Topologically Sorted Source Nodes: [mul, vel, add_2, relu, sub, vv_2, vel_1, mul_2, locs], Original ATen: [aten.mul, aten.add, aten.relu, aten.sub, aten.neg] # Source node to ATen node mapping: # add_2 => add_2 # locs => add_3 # mul => mul # mul_2 => mul_3 # relu => relu # sub => sub # vel => add # vel_1 => mul_2 # vv_2 => neg_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 4), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %mul), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, 1.0), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add_2,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu, 1.0), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sub,), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %neg_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %arg0_1), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg2_1, %mul_3), kwargs = {}) triton_poi_fused_add_mul_neg_relu_sub_1 = async_compile.triton('triton_poi_fused_add_mul_neg_relu_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_neg_relu_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_neg_relu_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp5 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr3 + (x2), xmask) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tmp9 - tmp6 tmp11 = -tmp10 tmp12 = tmp4 * tmp11 tmp14 = tmp12 * tmp1 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + (x2), tmp12, xmask) tl.store(out_ptr1 + (x2), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [mul, vel, vv, add_1, vv_1, neg], Original ATen: [aten.mul, aten.add, aten.linalg_vector_norm, aten.reciprocal, aten.neg] stream0 = get_raw_stream(0) triton_poi_fused_add_linalg_vector_norm_mul_neg_reciprocal_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, vel, add_2, relu, sub, vv_2, vel_1, mul_2, locs], Original ATen: [aten.mul, aten.add, aten.relu, aten.sub, aten.neg] triton_poi_fused_add_mul_neg_relu_sub_1.run(arg1_1, arg0_1, buf0, arg2_1, buf1, buf2, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del buf0 return (buf2, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FluidGravityForce(nn.Module): def __init__(self, gravity, maxSpeed=3): """ Initializes a fluid gravity model. Arguments: gravity: Gravity vector in the global frame (same as particle l) for the simulation maxSpeed: The maximum magnitude of the particle velocities. Higher velocities are clamped. Previous work used: MAX_VEL = 0.5*0.1*NSUBSTEPS/DT """ super(FluidGravityForce, self).__init__() self.gravity = gravity self.maxSpeed = maxSpeed self.relu = nn.ReLU() def _cap_magnitude(self, A, cap): d = len(A.size()) vv = torch.norm(A, 2, d - 1, keepdim=True) vv = cap / (vv + 0.0001) vv = -(self.relu(-vv + 1.0) - 1.0) return A * vv def forward(self, locs, vel, dt): """ Applies gravity force to fluid sim Inputs: locs: A BxNx3 tensor where B is the batch size, N is the number of particles. The tensor contains the locations of every particle. vels: A BxNx3 tensor that contains the velocity of every particle dt: timestep to predict for gravity: 1x1x3 tensor containing the direction of gravity in the same coordinate frame as particles maxSpeed: maximum velocity possible for nay particle Returns: locs: A BxNx3 tensor with the new particle positions vel: A BxNx3 tensor with the new particle velocities """ vel = vel + self.gravity * dt vel = self._cap_magnitude(vel, self.maxSpeed) locs = locs + vel * dt return locs, vel def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'gravity': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_linalg_vector_norm_mul_neg_reciprocal_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp7 * tmp2 tmp9 = tmp6 + tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp13 * tmp2 tmp15 = tmp12 + tmp14 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp19 * tmp2 tmp21 = tmp18 + tmp20 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 0.0001 tmp26 = tmp24 + tmp25 tmp27 = tl.full([1], 1, tl.int32) tmp28 = tmp27 / tmp26 tmp29 = 3.0 tmp30 = tmp28 * tmp29 tmp31 = -tmp30 tl.store(out_ptr0 + x0, tmp31, xmask) @triton.jit def triton_poi_fused_add_mul_neg_relu_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp5 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr3 + x2, xmask) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tmp9 - tmp6 tmp11 = -tmp10 tmp12 = tmp4 * tmp11 tmp14 = tmp12 * tmp1 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + x2, tmp12, xmask) tl.store(out_ptr1 + x2, tmp15, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_add_linalg_vector_norm_mul_neg_reciprocal_0[grid(64)]( arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_neg_relu_sub_1[grid(256)](arg1_1, arg0_1, buf0, arg2_1, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del buf0 return buf2, buf1 class FluidGravityForceNew(nn.Module): def __init__(self, gravity, maxSpeed=3): """ Initializes a fluid gravity model. Arguments: gravity: Gravity vector in the global frame (same as particle l) for the simulation maxSpeed: The maximum magnitude of the particle velocities. Higher velocities are clamped. Previous work used: MAX_VEL = 0.5*0.1*NSUBSTEPS/DT """ super(FluidGravityForceNew, self).__init__() self.gravity = gravity self.maxSpeed = maxSpeed self.relu = nn.ReLU() def _cap_magnitude(self, A, cap): d = len(A.size()) vv = torch.norm(A, 2, d - 1, keepdim=True) vv = cap / (vv + 0.0001) vv = -(self.relu(-vv + 1.0) - 1.0) return A * vv def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
ucsdarclab/liquid_reconstruction
FluidGravityForce
false
4,469
[ "MIT" ]
0
5559edbf71dba05d432d85e7dbbfe3634e650aeb
https://github.com/ucsdarclab/liquid_reconstruction/tree/5559edbf71dba05d432d85e7dbbfe3634e650aeb
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, gravity, maxSpeed=3): """ Initializes a fluid gravity model. Arguments: gravity: Gravity vector in the global frame (same as particle l) for the simulation maxSpeed: The maximum magnitude of the particle velocities. Higher velocities are clamped. Previous work used: MAX_VEL = 0.5*0.1*NSUBSTEPS/DT """ super().__init__() self.gravity = gravity self.maxSpeed = maxSpeed self.relu = nn.ReLU() def _cap_magnitude(self, A, cap): d = len(A.size()) vv = torch.norm(A, 2, d - 1, keepdim=True) vv = cap / (vv + 0.0001) vv = -(self.relu(-vv + 1.0) - 1.0) return A * vv def forward(self, locs, vel, dt): """ Applies gravity force to fluid sim Inputs: locs: A BxNx3 tensor where B is the batch size, N is the number of particles. The tensor contains the locations of every particle. vels: A BxNx3 tensor that contains the velocity of every particle dt: timestep to predict for gravity: 1x1x3 tensor containing the direction of gravity in the same coordinate frame as particles maxSpeed: maximum velocity possible for nay particle Returns: locs: A BxNx3 tensor with the new particle positions vel: A BxNx3 tensor with the new particle velocities """ vel = vel + self.gravity * dt vel = self._cap_magnitude(vel, self.maxSpeed) locs = locs + vel * dt return locs, vel def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [4]
KLDivergence
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6i/c6iiwgq54ijmru27rhoqdykbg7szraaaib7jzs3dve7heohre5hf.py # Topologically Sorted Source Nodes: [add, pow_1, sub, exp, sub_1, loss, loss_1, mul_1, loss_2], Original ATen: [aten.add, aten.pow, aten.sub, aten.exp, aten.mul, aten.mean, aten.maximum] # Source node to ATen node mapping: # add => add # exp => exp # loss => mul # loss_1 => mean # loss_2 => maximum # mul_1 => full_default # pow_1 => pow_1 # sub => sub # sub_1 => sub_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %pow_1), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %exp), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, -0.5), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.20000000298023224), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%mean, %full_default), kwargs = {}) triton_per_fused_add_exp_maximum_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused_add_exp_maximum_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_exp_maximum_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_exp_maximum_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 - tmp4 tmp6 = tl_math.exp(tmp0) tmp7 = tmp5 - tmp6 tmp8 = -0.5 tmp9 = tmp7 * tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 256.0 tmp14 = tmp12 / tmp13 tmp15 = 0.20000000298023224 tmp16 = triton_helpers.maximum(tmp14, tmp15) tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add, pow_1, sub, exp, sub_1, loss, loss_1, mul_1, loss_2], Original ATen: [aten.add, aten.pow, aten.sub, aten.exp, aten.mul, aten.mean, aten.maximum] stream0 = get_raw_stream(0) triton_per_fused_add_exp_maximum_mean_mul_pow_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch as th class KLDivergence(th.nn.Module): """ Args: min_value(float): the loss is clipped so that value below this number don't affect the optimization. """ def __init__(self, min_value=0.2): super(KLDivergence, self).__init__() self.min_value = min_value def forward(self, mu, log_sigma): loss = -0.5 * (1.0 + log_sigma - mu.pow(2) - log_sigma.exp()) loss = loss.mean() loss = th.max(loss, self.min_value * th.ones_like(loss)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch as th assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_exp_maximum_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 - tmp4 tmp6 = tl_math.exp(tmp0) tmp7 = tmp5 - tmp6 tmp8 = -0.5 tmp9 = tmp7 * tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 256.0 tmp14 = tmp12 / tmp13 tmp15 = 0.20000000298023224 tmp16 = triton_helpers.maximum(tmp14, tmp15) tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp16, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_exp_maximum_mean_mul_pow_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class KLDivergenceNew(th.nn.Module): """ Args: min_value(float): the loss is clipped so that value below this number don't affect the optimization. """ def __init__(self, min_value=0.2): super(KLDivergenceNew, self).__init__() self.min_value = min_value def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
v-a-s-a/diffvg
KLDivergence
false
4,470
[ "Apache-2.0" ]
0
3685f3d47a5a4e5c76c68643ebf383f809ba59ed
https://github.com/v-a-s-a/diffvg/tree/3685f3d47a5a4e5c76c68643ebf383f809ba59ed
import torch import torch as th class Model(th.nn.Module): """ Args: min_value(float): the loss is clipped so that value below this number don't affect the optimization. """ def __init__(self, min_value=0.2): super().__init__() self.min_value = min_value def forward(self, mu, log_sigma): loss = -0.5 * (1.0 + log_sigma - mu.pow(2) - log_sigma.exp()) loss = loss.mean() loss = th.max(loss, self.min_value * th.ones_like(loss)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
BMNLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/vw/cvww5edufkr5ujgf6bj4jckegfkgvq2h247sfq65sokeomv4ycn6.py # Topologically Sorted Source Nodes: [gt_6, pmask_1, sum_9, num_positive_1, ratio_2, clamp_3, ratio_3, coef_3, mul_18, add_6, log_2, mul_19, mul_16, sub_4, coef_2, sub_5, mul_20, sub_6, add_7, log_3, mul_21, loss_3, mean, loss_4, gt_7, pmask_2, sum_10, num_positive_2, ratio_4, clamp_6, ratio_5, coef_5, mul_24, add_9, log_4, mul_25, mul_22, sub_7, coef_4, sub_8, mul_26, sub_9, add_10, log_5, mul_27, loss_5, mean_1, loss_6, loss_7, mul_28, pred_bm_reg, gt_iou_map, le, gt_1, and_, u_mmask, u_smmask_1, gt, u_hmask, num_h, num_m, r_m, sub, gt_3, u_smmask_2, add, le_1, gt_2, and__1, u_lmask, u_lmask_1, u_slmask_1, num_l, r_l, sub_1, gt_4, u_slmask_2, weights, mul_4, mul_5, loss, ones_like, mul_6, sum_4, mul_7, sum_5, loss_1, mul_29, add_13, gt_5, pmask, sum_6, num_positive, le_2, nmask, nmask_1, sum_7, num_entries, ratio, ratio_1, coef_1, pred_bm_cls, add_3, log, mul_11, loss_pos, mul_9, sub_2, coef_0, sub_3, add_4, log_1, mul_13, loss_neg, add_5, sum_8, mul_15, loss_2, mul_30, loss_8], Original ATen: [aten.gt, aten._to_copy, aten.sum, aten.clamp, aten.reciprocal, aten.mul, aten.add, aten.log, aten.sub, aten.div, aten.rsub, aten.mean, aten.neg, aten.clone, aten.le, aten.bitwise_and, aten.mse_loss, aten.ones_like] # Source node to ATen node mapping: # add => add # add_10 => add_10 # add_13 => add_13 # add_3 => add_3 # add_4 => add_4 # add_5 => add_5 # add_6 => add_6 # add_7 => add_7 # add_9 => add_9 # and_ => bitwise_and # and__1 => bitwise_and_1 # clamp_3 => clamp_min_3 # clamp_6 => clamp_min_5 # coef_0 => div_4 # coef_1 => mul_10 # coef_2 => div_6 # coef_3 => mul_18 # coef_4 => div_7 # coef_5 => mul_25 # gt => gt # gt_1 => gt_1 # gt_2 => gt_2 # gt_3 => gt_3 # gt_4 => gt_4 # gt_5 => gt_5 # gt_6 => gt_6 # gt_7 => gt_7 # gt_iou_map => mul # le => le # le_1 => le_1 # le_2 => le_2 # log => log # log_1 => log_1 # log_2 => log_2 # log_3 => log_3 # log_4 => log_4 # log_5 => log_5 # loss => mean, pow_1, sub_2 # loss_1 => div_2 # loss_2 => div_5 # loss_3 => add_8 # loss_4 => neg # loss_5 => add_11 # loss_6 => neg_1 # loss_7 => add_12 # loss_8 => add_14 # loss_neg => mul_14 # loss_pos => mul_12 # mean => mean_1 # mean_1 => mean_2 # mul_11 => mul_11 # mul_13 => mul_13 # mul_15 => mul_15 # mul_16 => mul_17 # mul_18 => mul_19 # mul_19 => mul_20 # mul_20 => mul_21 # mul_21 => mul_22 # mul_22 => mul_24 # mul_24 => mul_26 # mul_25 => mul_27 # mul_26 => mul_28 # mul_27 => mul_29 # mul_28 => mul_30 # mul_29 => mul_31 # mul_30 => mul_32 # mul_4 => mul_4 # mul_5 => mul_5 # mul_6 => mul_6 # mul_7 => mul_7 # mul_9 => mul_9 # nmask => convert_element_type_6 # nmask_1 => mul_8 # num_entries => add_2 # num_h => sum_1 # num_l => sum_3 # num_m => sum_2 # num_positive => clamp_min # num_positive_1 => clamp_min_2 # num_positive_2 => clamp_min_4 # ones_like => full_default # pmask => convert_element_type_5 # pmask_1 => convert_element_type_7 # pmask_2 => convert_element_type_8 # pred_bm_cls => clone_1 # pred_bm_reg => clone # r_l => div_1 # r_m => div # ratio => div_3 # ratio_1 => clamp_max, clamp_min_1 # ratio_2 => mul_16, reciprocal # ratio_3 => clamp_max_1 # ratio_4 => mul_23, reciprocal_1 # ratio_5 => clamp_max_2 # sub => sub # sub_1 => sub_1 # sub_2 => sub_3 # sub_3 => sub_4 # sub_4 => sub_5 # sub_5 => sub_6 # sub_6 => sub_7 # sub_7 => sub_8 # sub_8 => sub_9 # sub_9 => sub_10 # sum_10 => sum_10 # sum_4 => sum_4 # sum_5 => sum_5 # sum_6 => sum_6 # sum_7 => sum_7 # sum_8 => sum_8 # sum_9 => sum_9 # u_hmask => convert_element_type # u_lmask => convert_element_type_2 # u_lmask_1 => mul_1 # u_mmask => convert_element_type_1 # u_slmask_1 => mul_3 # u_slmask_2 => convert_element_type_4 # u_smmask_1 => mul_2 # u_smmask_2 => convert_element_type_3 # weights => add_1 # Graph fragment: # %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view, 0.5), kwargs = {}) # %convert_element_type_7 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt_6, torch.float32), kwargs = {}) # %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type_7,), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_9, 1), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%clamp_min_2,), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 256), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_16, 1.05), kwargs = {}) # %clamp_max_1 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 21), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max_1, 0.5), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_18, %convert_element_type_7), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, 1e-05), kwargs = {}) # %log_2 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_6,), kwargs = {}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_19, %log_2), kwargs = {}) # %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max_1, 0.5), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max_1, 1), kwargs = {}) # %div_6 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_17, %sub_5), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %convert_element_type_7), kwargs = {}) # %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_6, %sub_6), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %view_1), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_7, 1e-05), kwargs = {}) # %log_3 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_7,), kwargs = {}) # %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_21, %log_3), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_20, %mul_22), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_8,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean_1,), kwargs = {}) # %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_2, 0.5), kwargs = {}) # %convert_element_type_8 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt_7, torch.float32), kwargs = {}) # %sum_10 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type_8,), kwargs = {}) # %clamp_min_4 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_10, 1), kwargs = {}) # %reciprocal_1 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%clamp_min_4,), kwargs = {}) # %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_1, 256), kwargs = {}) # %clamp_min_5 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_23, 1.05), kwargs = {}) # %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_5, 21), kwargs = {}) # %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max_2, 0.5), kwargs = {}) # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_25, %convert_element_type_8), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, 1e-05), kwargs = {}) # %log_4 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_9,), kwargs = {}) # %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_26, %log_4), kwargs = {}) # %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max_2, 0.5), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max_2, 1), kwargs = {}) # %div_7 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_24, %sub_8), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %convert_element_type_8), kwargs = {}) # %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_7, %sub_9), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %view_3), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_10, 1e-05), kwargs = {}) # %log_5 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_10,), kwargs = {}) # %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_28, %log_5), kwargs = {}) # %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_27, %mul_29), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_11,), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean_2,), kwargs = {}) # %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %neg_1), kwargs = {}) # %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_12, 1.0), kwargs = {}) # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format}) # %mul : [num_users=8] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg2_1), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%mul, 0.7), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 0.3), kwargs = {}) # %bitwise_and : [num_users=1] = call_function[target=torch.ops.aten.bitwise_and.Tensor](args = (%le, %gt_1), kwargs = {}) # %convert_element_type_1 : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%bitwise_and, torch.float32), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, %rand), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 0.7), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div), kwargs = {}) # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%mul_2, %sub), kwargs = {}) # %convert_element_type_3 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt_3, torch.float32), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, %convert_element_type_3), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%mul, 0.3), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 0.0), kwargs = {}) # %bitwise_and_1 : [num_users=1] = call_function[target=torch.ops.aten.bitwise_and.Tensor](args = (%le_1, %gt_2), kwargs = {}) # %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%bitwise_and_1, torch.float32), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_2, %arg2_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %rand_1), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_3), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div_1), kwargs = {}) # %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%mul_3, %sub_1), kwargs = {}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt_4, torch.float32), kwargs = {}) # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %convert_element_type_4), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clone, %add_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_4, %mul_5), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, %full_default), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_6,), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, 0.5), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add_1,), kwargs = {}) # %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_7, %sum_5), kwargs = {}) # %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, 10.0), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_30, %mul_31), kwargs = {}) # %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 0.9), kwargs = {}) # %convert_element_type_5 : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt_5, torch.float32), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type_5,), kwargs = {}) # %clamp_min : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_6, 1), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%mul, 0.9), kwargs = {}) # %convert_element_type_6 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%le_2, torch.float32), kwargs = {}) # %mul_8 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_6, %arg2_1), kwargs = {}) # %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_8,), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_min, %sum_7), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, %clamp_min), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%div_3, 1.05), kwargs = {}) # %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 21), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 0.5), kwargs = {}) # %clone_1 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%select_1,), kwargs = {memory_format: torch.contiguous_format}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clone_1, 1e-05), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_3,), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_10, %log), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_11, %convert_element_type_5), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 0.5), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max, 1), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_9, %sub_3), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %clone_1), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_4, 1e-05), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_4,), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_4, %log_1), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_13, %mul_8), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_12, %mul_14), kwargs = {}) # %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add_5,), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_8, -1), kwargs = {}) # %div_5 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_15, %add_2), kwargs = {}) # %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_5, 1.0), kwargs = {}) # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_13, %mul_32), kwargs = {}) triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0 = async_compile.triton('triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: 'i32', 14: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {13: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14), equal_to_1=(13,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': True, 'num_load': 10, 'num_reduction': 13, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr12, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 16 r2 = (rindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (r0), None) tmp19 = tl.load(in_ptr1 + (r0), None) tmp36 = tl.load(in_ptr2 + (r0), None) tmp37 = tl.load(in_ptr3 + (r0), None) tmp62 = tl.load(in_ptr4 + (r0), None) tmp69 = tl.load(in_out_ptr0 + (r0), None) tmp76 = tl.load(in_ptr5 + (r1 + (64*r2)), None, eviction_policy='evict_last') tmp110 = tl.load(in_ptr5 + (16 + r1 + (64*r2)), None, eviction_policy='evict_last') tmp126 = tl.load(in_ptr6 + (r0), None) tmp139 = tl.load(in_ptr7 + (r0), None) tmp1 = 0.5 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 1.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp9 / tmp8 tmp11 = 256.0 tmp12 = tmp10 * tmp11 tmp13 = 1.05 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = 21.0 tmp16 = triton_helpers.minimum(tmp14, tmp15) tmp17 = tmp16 * tmp1 tmp18 = tmp17 * tmp3 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = tl_math.log(tmp21) tmp23 = tmp18 * tmp22 tmp24 = tmp16 - tmp7 tmp25 = tmp17 / tmp24 tmp26 = tmp7 - tmp3 tmp27 = tmp25 * tmp26 tmp28 = tmp7 - tmp19 tmp29 = tmp28 + tmp20 tmp30 = tl_math.log(tmp29) tmp31 = tmp27 * tmp30 tmp32 = tmp23 + tmp31 tmp33 = tl.broadcast_to(tmp32, [RBLOCK]) tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0)) tmp38 = tmp36 * tmp37 tmp39 = 0.7 tmp40 = tmp38 > tmp39 tmp41 = tmp40.to(tl.float32) tmp42 = tl.broadcast_to(tmp41, [RBLOCK]) tmp44 = triton_helpers.promote_to_tensor(tl.sum(tmp42, 0)) tmp45 = tmp38 <= tmp39 tmp46 = 0.3 tmp47 = tmp38 > tmp46 tmp48 = tmp45 & tmp47 tmp49 = tmp48.to(tl.float32) tmp50 = tl.broadcast_to(tmp49, [RBLOCK]) tmp52 = triton_helpers.promote_to_tensor(tl.sum(tmp50, 0)) tmp53 = tmp38 <= tmp46 tmp54 = 0.0 tmp55 = tmp38 > tmp54 tmp56 = tmp53 & tmp55 tmp57 = tmp56.to(tl.float32) tmp58 = tmp57 * tmp37 tmp59 = tl.broadcast_to(tmp58, [RBLOCK]) tmp61 = triton_helpers.promote_to_tensor(tl.sum(tmp59, 0)) tmp63 = tmp49 * tmp62 tmp64 = tmp44 / tmp52 tmp65 = tmp7 - tmp64 tmp66 = tmp63 > tmp65 tmp67 = tmp66.to(tl.float32) tmp68 = tmp41 + tmp67 tmp70 = tmp58 * tmp69 tmp71 = tmp44 / tmp61 tmp72 = tmp7 - tmp71 tmp73 = tmp70 > tmp72 tmp74 = tmp73.to(tl.float32) tmp75 = tmp68 + tmp74 tmp77 = tmp76 * tmp75 tmp78 = tmp38 * tmp75 tmp79 = tmp77 - tmp78 tmp80 = tmp79 * tmp79 tmp81 = tl.broadcast_to(tmp80, [RBLOCK]) tmp83 = triton_helpers.promote_to_tensor(tl.sum(tmp81, 0)) tmp84 = 0.9 tmp85 = tmp38 > tmp84 tmp86 = tmp85.to(tl.float32) tmp87 = tl.broadcast_to(tmp86, [RBLOCK]) tmp89 = triton_helpers.promote_to_tensor(tl.sum(tmp87, 0)) tmp90 = tmp38 <= tmp84 tmp91 = tmp90.to(tl.float32) tmp92 = tmp91 * tmp37 tmp93 = tl.broadcast_to(tmp92, [RBLOCK]) tmp95 = triton_helpers.promote_to_tensor(tl.sum(tmp93, 0)) tmp96 = tl.broadcast_to(tmp75, [RBLOCK]) tmp98 = triton_helpers.promote_to_tensor(tl.sum(tmp96, 0)) tmp99 = tmp83 / tmp11 tmp100 = tmp99 * tmp7 tmp101 = tl.broadcast_to(tmp100, [RBLOCK]) tmp103 = triton_helpers.promote_to_tensor(tl.sum(tmp101, 0)) tmp104 = triton_helpers.maximum(tmp89, tmp7) tmp105 = tmp104 + tmp95 tmp106 = tmp105 / tmp104 tmp107 = triton_helpers.maximum(tmp106, tmp13) tmp108 = triton_helpers.minimum(tmp107, tmp15) tmp109 = tmp108 * tmp1 tmp111 = tmp110 + tmp20 tmp112 = tl_math.log(tmp111) tmp113 = tmp109 * tmp112 tmp114 = tmp113 * tmp86 tmp115 = tmp108 - tmp7 tmp116 = tmp109 / tmp115 tmp117 = tmp7 - tmp110 tmp118 = tmp117 + tmp20 tmp119 = tl_math.log(tmp118) tmp120 = tmp116 * tmp119 tmp121 = tmp120 * tmp92 tmp122 = tmp114 + tmp121 tmp123 = tl.broadcast_to(tmp122, [RBLOCK]) tmp125 = triton_helpers.promote_to_tensor(tl.sum(tmp123, 0)) tmp127 = tmp126 > tmp1 tmp128 = tmp127.to(tl.float32) tmp129 = tl.broadcast_to(tmp128, [RBLOCK]) tmp131 = triton_helpers.promote_to_tensor(tl.sum(tmp129, 0)) tmp132 = triton_helpers.maximum(tmp131, tmp7) tmp133 = tmp9 / tmp132 tmp134 = tmp133 * tmp11 tmp135 = triton_helpers.maximum(tmp134, tmp13) tmp136 = triton_helpers.minimum(tmp135, tmp15) tmp137 = tmp136 * tmp1 tmp138 = tmp137 * tmp128 tmp140 = tmp139 + tmp20 tmp141 = tl_math.log(tmp140) tmp142 = tmp138 * tmp141 tmp143 = tmp136 - tmp7 tmp144 = tmp137 / tmp143 tmp145 = tmp7 - tmp128 tmp146 = tmp144 * tmp145 tmp147 = tmp7 - tmp139 tmp148 = tmp147 + tmp20 tmp149 = tl_math.log(tmp148) tmp150 = tmp146 * tmp149 tmp151 = tmp142 + tmp150 tmp152 = tl.broadcast_to(tmp151, [RBLOCK]) tmp154 = triton_helpers.promote_to_tensor(tl.sum(tmp152, 0)) tmp155 = tmp35 / tmp11 tmp156 = -tmp155 tmp157 = tmp154 / tmp11 tmp158 = -tmp157 tmp159 = tmp156 + tmp158 tmp160 = tmp103 * tmp1 tmp161 = tmp160 / tmp98 tmp162 = -1.0 tmp163 = tmp125 * tmp162 tmp164 = tmp163 / tmp105 tmp165 = tmp159 * tmp7 tmp166 = 10.0 tmp167 = tmp161 * tmp166 tmp168 = tmp165 + tmp167 tmp169 = tmp164 * tmp7 tmp170 = tmp168 + tmp169 tl.debug_barrier() tl.store(in_out_ptr2 + (tl.full([1], 0, tl.int32)), tmp159, None) tl.debug_barrier() tl.store(in_out_ptr1 + (tl.full([1], 0, tl.int32)), tmp161, None) tl.debug_barrier() tl.store(in_out_ptr3 + (tl.full([1], 0, tl.int32)), tmp164, None) tl.store(out_ptr12 + (tl.full([1], 0, tl.int32)), tmp170, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg5_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg6_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [u_slmask], Original ATen: [aten.rand_like] buf11 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf12 = buf11 del buf11 # Topologically Sorted Source Nodes: [u_smmask], Original ATen: [aten.rand_like] buf7 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf8 = buf7 del buf7 buf2 = empty_strided_cuda((), (), torch.float32) buf14 = buf12; del buf12 # reuse buf15 = empty_strided_cuda((), (), torch.float32) buf16 = buf15; del buf15 # reuse buf22 = empty_strided_cuda((), (), torch.float32) buf6 = buf2; del buf2 # reuse buf18 = buf16; del buf16 # reuse buf23 = buf22; del buf22 # reuse buf24 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [gt_6, pmask_1, sum_9, num_positive_1, ratio_2, clamp_3, ratio_3, coef_3, mul_18, add_6, log_2, mul_19, mul_16, sub_4, coef_2, sub_5, mul_20, sub_6, add_7, log_3, mul_21, loss_3, mean, loss_4, gt_7, pmask_2, sum_10, num_positive_2, ratio_4, clamp_6, ratio_5, coef_5, mul_24, add_9, log_4, mul_25, mul_22, sub_7, coef_4, sub_8, mul_26, sub_9, add_10, log_5, mul_27, loss_5, mean_1, loss_6, loss_7, mul_28, pred_bm_reg, gt_iou_map, le, gt_1, and_, u_mmask, u_smmask_1, gt, u_hmask, num_h, num_m, r_m, sub, gt_3, u_smmask_2, add, le_1, gt_2, and__1, u_lmask, u_lmask_1, u_slmask_1, num_l, r_l, sub_1, gt_4, u_slmask_2, weights, mul_4, mul_5, loss, ones_like, mul_6, sum_4, mul_7, sum_5, loss_1, mul_29, add_13, gt_5, pmask, sum_6, num_positive, le_2, nmask, nmask_1, sum_7, num_entries, ratio, ratio_1, coef_1, pred_bm_cls, add_3, log, mul_11, loss_pos, mul_9, sub_2, coef_0, sub_3, add_4, log_1, mul_13, loss_neg, add_5, sum_8, mul_15, loss_2, mul_30, loss_8], Original ATen: [aten.gt, aten._to_copy, aten.sum, aten.clamp, aten.reciprocal, aten.mul, aten.add, aten.log, aten.sub, aten.div, aten.rsub, aten.mean, aten.neg, aten.clone, aten.le, aten.bitwise_and, aten.mse_loss, aten.ones_like] stream0 = get_raw_stream(0) triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0.run(buf14, buf18, buf6, buf23, arg4_1, arg3_1, arg1_1, arg2_1, buf8, arg0_1, arg6_1, arg5_1, buf24, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 del arg4_1 del arg5_1 del arg6_1 del buf14 del buf8 return (buf24, buf6, buf18, buf23, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg4_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg5_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg6_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn def binary_logistic_regression_loss(reg_score, label, threshold=0.5, ratio_range=(1.05, 21), eps=1e-05): """Binary Logistic Regression Loss.""" label = label.view(-1) reg_score = reg_score.contiguous().view(-1) pmask = (label > threshold).float() num_positive = max(torch.sum(pmask), 1) num_entries = len(label) ratio = num_entries / num_positive ratio = min(max(ratio, ratio_range[0]), ratio_range[1]) coef_0 = 0.5 * ratio / (ratio - 1) coef_1 = 0.5 * ratio loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask ) * torch.log(1.0 - reg_score + eps) loss = -torch.mean(loss) return loss class BMNLoss(nn.Module): """BMN Loss. From paper https://arxiv.org/abs/1907.09702, code https://github.com/JJBOY/BMN-Boundary-Matching-Network. It will calculate loss for BMN Model. This loss is a weighted sum of 1) temporal evaluation loss based on confidence score of start and end positions. 2) proposal evaluation regression loss based on confidence scores of candidate proposals. 3) proposal evaluation classification loss based on classification results of candidate proposals. """ @staticmethod def tem_loss(pred_start, pred_end, gt_start, gt_end): """Calculate Temporal Evaluation Module Loss. This function calculate the binary_logistic_regression_loss for start and end respectively and returns the sum of their losses. Args: pred_start (torch.Tensor): Predicted start score by BMN model. pred_end (torch.Tensor): Predicted end score by BMN model. gt_start (torch.Tensor): Groundtruth confidence score for start. gt_end (torch.Tensor): Groundtruth confidence score for end. Returns: torch.Tensor: Returned binary logistic loss. """ loss_start = binary_logistic_regression_loss(pred_start, gt_start) loss_end = binary_logistic_regression_loss(pred_end, gt_end) loss = loss_start + loss_end return loss @staticmethod def pem_reg_loss(pred_score, gt_iou_map, mask, high_temporal_iou_threshold=0.7, low_temporal_iou_threshold=0.3): """Calculate Proposal Evaluation Module Regression Loss. Args: pred_score (torch.Tensor): Predicted temporal_iou score by BMN. gt_iou_map (torch.Tensor): Groundtruth temporal_iou score. mask (torch.Tensor): Boundary-Matching mask. high_temporal_iou_threshold (float): Higher threshold of temporal_iou. Default: 0.7. low_temporal_iou_threshold (float): Higher threshold of temporal_iou. Default: 0.3. Returns: torch.Tensor: Proposal evalutaion regression loss. """ u_hmask = (gt_iou_map > high_temporal_iou_threshold).float() u_mmask = ((gt_iou_map <= high_temporal_iou_threshold) & ( gt_iou_map > low_temporal_iou_threshold)).float() u_lmask = ((gt_iou_map <= low_temporal_iou_threshold) & (gt_iou_map > 0.0)).float() u_lmask = u_lmask * mask num_h = torch.sum(u_hmask) num_m = torch.sum(u_mmask) num_l = torch.sum(u_lmask) r_m = num_h / num_m u_smmask = torch.rand_like(gt_iou_map) u_smmask = u_mmask * u_smmask u_smmask = (u_smmask > 1.0 - r_m).float() r_l = num_h / num_l u_slmask = torch.rand_like(gt_iou_map) u_slmask = u_lmask * u_slmask u_slmask = (u_slmask > 1.0 - r_l).float() weights = u_hmask + u_smmask + u_slmask loss = F.mse_loss(pred_score * weights, gt_iou_map * weights) loss = 0.5 * torch.sum(loss * torch.ones_like(weights)) / torch.sum( weights) return loss @staticmethod def pem_cls_loss(pred_score, gt_iou_map, mask, threshold=0.9, ratio_range=(1.05, 21), eps=1e-05): """Calculate Proposal Evaluation Module Classification Loss. Args: pred_score (torch.Tensor): Predicted temporal_iou score by BMN. gt_iou_map (torch.Tensor): Groundtruth temporal_iou score. mask (torch.Tensor): Boundary-Matching mask. threshold (float): Threshold of temporal_iou for positive instances. Default: 0.9. ratio_range (tuple): Lower bound and upper bound for ratio. Default: (1.05, 21) eps (float): Epsilon for small value. Default: 1e-5 Returns: torch.Tensor: Proposal evalutaion classification loss. """ pmask = (gt_iou_map > threshold).float() nmask = (gt_iou_map <= threshold).float() nmask = nmask * mask num_positive = max(torch.sum(pmask), 1) num_entries = num_positive + torch.sum(nmask) ratio = num_entries / num_positive ratio = torch.clamp(ratio, ratio_range[0], ratio_range[1]) coef_0 = 0.5 * ratio / (ratio - 1) coef_1 = 0.5 * ratio loss_pos = coef_1 * torch.log(pred_score + eps) * pmask loss_neg = coef_0 * torch.log(1.0 - pred_score + eps) * nmask loss = -1 * torch.sum(loss_pos + loss_neg) / num_entries return loss def forward(self, pred_bm, pred_start, pred_end, gt_iou_map, gt_start, gt_end, bm_mask, weight_tem=1.0, weight_pem_reg=10.0, weight_pem_cls=1.0): """Calculate Boundary Matching Network Loss. Args: pred_bm (torch.Tensor): Predicted confidence score for boundary matching map. pred_start (torch.Tensor): Predicted confidence score for start. pred_end (torch.Tensor): Predicted confidence score for end. gt_iou_map (torch.Tensor): Groundtruth score for boundary matching map. gt_start (torch.Tensor): Groundtruth temporal_iou score for start. gt_end (torch.Tensor): Groundtruth temporal_iou score for end. bm_mask (torch.Tensor): Boundary-Matching mask. weight_tem (float): Weight for tem loss. Default: 1.0. weight_pem_reg (float): Weight for pem regression loss. Default: 10.0. weight_pem_cls (float): Weight for pem classification loss. Default: 1.0. Returns: tuple([torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]): (loss, tem_loss, pem_reg_loss, pem_cls_loss). Loss is the bmn loss, tem_loss is the temporal evaluation loss, pem_reg_loss is the proposal evaluation regression loss, pem_cls_loss is the proposal evaluation classification loss. """ pred_bm_reg = pred_bm[:, 0].contiguous() pred_bm_cls = pred_bm[:, 1].contiguous() gt_iou_map = gt_iou_map * bm_mask pem_reg_loss = self.pem_reg_loss(pred_bm_reg, gt_iou_map, bm_mask) pem_cls_loss = self.pem_cls_loss(pred_bm_cls, gt_iou_map, bm_mask) tem_loss = self.tem_loss(pred_start, pred_end, gt_start, gt_end) loss = (weight_tem * tem_loss + weight_pem_reg * pem_reg_loss + weight_pem_cls * pem_cls_loss) return loss, tem_loss, pem_reg_loss, pem_cls_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch import device import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn.functional as F import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0( in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr12, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 16 r2 = rindex // 16 % 4 tmp0 = tl.load(in_ptr0 + r0, None) tmp19 = tl.load(in_ptr1 + r0, None) tmp36 = tl.load(in_ptr2 + r0, None) tmp37 = tl.load(in_ptr3 + r0, None) tmp62 = tl.load(in_ptr4 + r0, None) tmp69 = tl.load(in_out_ptr0 + r0, None) tmp76 = tl.load(in_ptr5 + (r1 + 64 * r2), None, eviction_policy= 'evict_last') tmp110 = tl.load(in_ptr5 + (16 + r1 + 64 * r2), None, eviction_policy= 'evict_last') tmp126 = tl.load(in_ptr6 + r0, None) tmp139 = tl.load(in_ptr7 + r0, None) tmp1 = 0.5 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 1.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp9 / tmp8 tmp11 = 256.0 tmp12 = tmp10 * tmp11 tmp13 = 1.05 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = 21.0 tmp16 = triton_helpers.minimum(tmp14, tmp15) tmp17 = tmp16 * tmp1 tmp18 = tmp17 * tmp3 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = tl_math.log(tmp21) tmp23 = tmp18 * tmp22 tmp24 = tmp16 - tmp7 tmp25 = tmp17 / tmp24 tmp26 = tmp7 - tmp3 tmp27 = tmp25 * tmp26 tmp28 = tmp7 - tmp19 tmp29 = tmp28 + tmp20 tmp30 = tl_math.log(tmp29) tmp31 = tmp27 * tmp30 tmp32 = tmp23 + tmp31 tmp33 = tl.broadcast_to(tmp32, [RBLOCK]) tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0)) tmp38 = tmp36 * tmp37 tmp39 = 0.7 tmp40 = tmp38 > tmp39 tmp41 = tmp40.to(tl.float32) tmp42 = tl.broadcast_to(tmp41, [RBLOCK]) tmp44 = triton_helpers.promote_to_tensor(tl.sum(tmp42, 0)) tmp45 = tmp38 <= tmp39 tmp46 = 0.3 tmp47 = tmp38 > tmp46 tmp48 = tmp45 & tmp47 tmp49 = tmp48.to(tl.float32) tmp50 = tl.broadcast_to(tmp49, [RBLOCK]) tmp52 = triton_helpers.promote_to_tensor(tl.sum(tmp50, 0)) tmp53 = tmp38 <= tmp46 tmp54 = 0.0 tmp55 = tmp38 > tmp54 tmp56 = tmp53 & tmp55 tmp57 = tmp56.to(tl.float32) tmp58 = tmp57 * tmp37 tmp59 = tl.broadcast_to(tmp58, [RBLOCK]) tmp61 = triton_helpers.promote_to_tensor(tl.sum(tmp59, 0)) tmp63 = tmp49 * tmp62 tmp64 = tmp44 / tmp52 tmp65 = tmp7 - tmp64 tmp66 = tmp63 > tmp65 tmp67 = tmp66.to(tl.float32) tmp68 = tmp41 + tmp67 tmp70 = tmp58 * tmp69 tmp71 = tmp44 / tmp61 tmp72 = tmp7 - tmp71 tmp73 = tmp70 > tmp72 tmp74 = tmp73.to(tl.float32) tmp75 = tmp68 + tmp74 tmp77 = tmp76 * tmp75 tmp78 = tmp38 * tmp75 tmp79 = tmp77 - tmp78 tmp80 = tmp79 * tmp79 tmp81 = tl.broadcast_to(tmp80, [RBLOCK]) tmp83 = triton_helpers.promote_to_tensor(tl.sum(tmp81, 0)) tmp84 = 0.9 tmp85 = tmp38 > tmp84 tmp86 = tmp85.to(tl.float32) tmp87 = tl.broadcast_to(tmp86, [RBLOCK]) tmp89 = triton_helpers.promote_to_tensor(tl.sum(tmp87, 0)) tmp90 = tmp38 <= tmp84 tmp91 = tmp90.to(tl.float32) tmp92 = tmp91 * tmp37 tmp93 = tl.broadcast_to(tmp92, [RBLOCK]) tmp95 = triton_helpers.promote_to_tensor(tl.sum(tmp93, 0)) tmp96 = tl.broadcast_to(tmp75, [RBLOCK]) tmp98 = triton_helpers.promote_to_tensor(tl.sum(tmp96, 0)) tmp99 = tmp83 / tmp11 tmp100 = tmp99 * tmp7 tmp101 = tl.broadcast_to(tmp100, [RBLOCK]) tmp103 = triton_helpers.promote_to_tensor(tl.sum(tmp101, 0)) tmp104 = triton_helpers.maximum(tmp89, tmp7) tmp105 = tmp104 + tmp95 tmp106 = tmp105 / tmp104 tmp107 = triton_helpers.maximum(tmp106, tmp13) tmp108 = triton_helpers.minimum(tmp107, tmp15) tmp109 = tmp108 * tmp1 tmp111 = tmp110 + tmp20 tmp112 = tl_math.log(tmp111) tmp113 = tmp109 * tmp112 tmp114 = tmp113 * tmp86 tmp115 = tmp108 - tmp7 tmp116 = tmp109 / tmp115 tmp117 = tmp7 - tmp110 tmp118 = tmp117 + tmp20 tmp119 = tl_math.log(tmp118) tmp120 = tmp116 * tmp119 tmp121 = tmp120 * tmp92 tmp122 = tmp114 + tmp121 tmp123 = tl.broadcast_to(tmp122, [RBLOCK]) tmp125 = triton_helpers.promote_to_tensor(tl.sum(tmp123, 0)) tmp127 = tmp126 > tmp1 tmp128 = tmp127.to(tl.float32) tmp129 = tl.broadcast_to(tmp128, [RBLOCK]) tmp131 = triton_helpers.promote_to_tensor(tl.sum(tmp129, 0)) tmp132 = triton_helpers.maximum(tmp131, tmp7) tmp133 = tmp9 / tmp132 tmp134 = tmp133 * tmp11 tmp135 = triton_helpers.maximum(tmp134, tmp13) tmp136 = triton_helpers.minimum(tmp135, tmp15) tmp137 = tmp136 * tmp1 tmp138 = tmp137 * tmp128 tmp140 = tmp139 + tmp20 tmp141 = tl_math.log(tmp140) tmp142 = tmp138 * tmp141 tmp143 = tmp136 - tmp7 tmp144 = tmp137 / tmp143 tmp145 = tmp7 - tmp128 tmp146 = tmp144 * tmp145 tmp147 = tmp7 - tmp139 tmp148 = tmp147 + tmp20 tmp149 = tl_math.log(tmp148) tmp150 = tmp146 * tmp149 tmp151 = tmp142 + tmp150 tmp152 = tl.broadcast_to(tmp151, [RBLOCK]) tmp154 = triton_helpers.promote_to_tensor(tl.sum(tmp152, 0)) tmp155 = tmp35 / tmp11 tmp156 = -tmp155 tmp157 = tmp154 / tmp11 tmp158 = -tmp157 tmp159 = tmp156 + tmp158 tmp160 = tmp103 * tmp1 tmp161 = tmp160 / tmp98 tmp162 = -1.0 tmp163 = tmp125 * tmp162 tmp164 = tmp163 / tmp105 tmp165 = tmp159 * tmp7 tmp166 = 10.0 tmp167 = tmp161 * tmp166 tmp168 = tmp165 + tmp167 tmp169 = tmp164 * tmp7 tmp170 = tmp168 + tmp169 tl.debug_barrier() tl.store(in_out_ptr2 + tl.full([1], 0, tl.int32), tmp159, None) tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([1], 0, tl.int32), tmp161, None) tl.debug_barrier() tl.store(in_out_ptr3 + tl.full([1], 0, tl.int32), tmp164, None) tl.store(out_ptr12 + tl.full([1], 0, tl.int32), tmp170, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg5_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg6_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf11 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch. float32, device=device(type='cuda', index=0), pin_memory=False) buf12 = buf11 del buf11 buf7 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch. float32, device=device(type='cuda', index=0), pin_memory=False) buf8 = buf7 del buf7 buf2 = empty_strided_cuda((), (), torch.float32) buf14 = buf12 del buf12 buf15 = empty_strided_cuda((), (), torch.float32) buf16 = buf15 del buf15 buf22 = empty_strided_cuda((), (), torch.float32) buf6 = buf2 del buf2 buf18 = buf16 del buf16 buf23 = buf22 del buf22 buf24 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0[ grid(1)](buf14, buf18, buf6, buf23, arg4_1, arg3_1, arg1_1, arg2_1, buf8, arg0_1, arg6_1, arg5_1, buf24, 1, 256, num_warps= 2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 del arg4_1 del arg5_1 del arg6_1 del buf14 del buf8 return buf24, buf6, buf18, buf23 def binary_logistic_regression_loss(reg_score, label, threshold=0.5, ratio_range=(1.05, 21), eps=1e-05): """Binary Logistic Regression Loss.""" label = label.view(-1) reg_score = reg_score.contiguous().view(-1) pmask = (label > threshold).float() num_positive = max(torch.sum(pmask), 1) num_entries = len(label) ratio = num_entries / num_positive ratio = min(max(ratio, ratio_range[0]), ratio_range[1]) coef_0 = 0.5 * ratio / (ratio - 1) coef_1 = 0.5 * ratio loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask ) * torch.log(1.0 - reg_score + eps) loss = -torch.mean(loss) return loss class BMNLossNew(nn.Module): """BMN Loss. From paper https://arxiv.org/abs/1907.09702, code https://github.com/JJBOY/BMN-Boundary-Matching-Network. It will calculate loss for BMN Model. This loss is a weighted sum of 1) temporal evaluation loss based on confidence score of start and end positions. 2) proposal evaluation regression loss based on confidence scores of candidate proposals. 3) proposal evaluation classification loss based on classification results of candidate proposals. """ @staticmethod def tem_loss(pred_start, pred_end, gt_start, gt_end): """Calculate Temporal Evaluation Module Loss. This function calculate the binary_logistic_regression_loss for start and end respectively and returns the sum of their losses. Args: pred_start (torch.Tensor): Predicted start score by BMN model. pred_end (torch.Tensor): Predicted end score by BMN model. gt_start (torch.Tensor): Groundtruth confidence score for start. gt_end (torch.Tensor): Groundtruth confidence score for end. Returns: torch.Tensor: Returned binary logistic loss. """ loss_start = binary_logistic_regression_loss(pred_start, gt_start) loss_end = binary_logistic_regression_loss(pred_end, gt_end) loss = loss_start + loss_end return loss @staticmethod def pem_reg_loss(pred_score, gt_iou_map, mask, high_temporal_iou_threshold=0.7, low_temporal_iou_threshold=0.3): """Calculate Proposal Evaluation Module Regression Loss. Args: pred_score (torch.Tensor): Predicted temporal_iou score by BMN. gt_iou_map (torch.Tensor): Groundtruth temporal_iou score. mask (torch.Tensor): Boundary-Matching mask. high_temporal_iou_threshold (float): Higher threshold of temporal_iou. Default: 0.7. low_temporal_iou_threshold (float): Higher threshold of temporal_iou. Default: 0.3. Returns: torch.Tensor: Proposal evalutaion regression loss. """ u_hmask = (gt_iou_map > high_temporal_iou_threshold).float() u_mmask = ((gt_iou_map <= high_temporal_iou_threshold) & ( gt_iou_map > low_temporal_iou_threshold)).float() u_lmask = ((gt_iou_map <= low_temporal_iou_threshold) & (gt_iou_map > 0.0)).float() u_lmask = u_lmask * mask num_h = torch.sum(u_hmask) num_m = torch.sum(u_mmask) num_l = torch.sum(u_lmask) r_m = num_h / num_m u_smmask = torch.rand_like(gt_iou_map) u_smmask = u_mmask * u_smmask u_smmask = (u_smmask > 1.0 - r_m).float() r_l = num_h / num_l u_slmask = torch.rand_like(gt_iou_map) u_slmask = u_lmask * u_slmask u_slmask = (u_slmask > 1.0 - r_l).float() weights = u_hmask + u_smmask + u_slmask loss = F.mse_loss(pred_score * weights, gt_iou_map * weights) loss = 0.5 * torch.sum(loss * torch.ones_like(weights)) / torch.sum( weights) return loss @staticmethod def pem_cls_loss(pred_score, gt_iou_map, mask, threshold=0.9, ratio_range=(1.05, 21), eps=1e-05): """Calculate Proposal Evaluation Module Classification Loss. Args: pred_score (torch.Tensor): Predicted temporal_iou score by BMN. gt_iou_map (torch.Tensor): Groundtruth temporal_iou score. mask (torch.Tensor): Boundary-Matching mask. threshold (float): Threshold of temporal_iou for positive instances. Default: 0.9. ratio_range (tuple): Lower bound and upper bound for ratio. Default: (1.05, 21) eps (float): Epsilon for small value. Default: 1e-5 Returns: torch.Tensor: Proposal evalutaion classification loss. """ pmask = (gt_iou_map > threshold).float() nmask = (gt_iou_map <= threshold).float() nmask = nmask * mask num_positive = max(torch.sum(pmask), 1) num_entries = num_positive + torch.sum(nmask) ratio = num_entries / num_positive ratio = torch.clamp(ratio, ratio_range[0], ratio_range[1]) coef_0 = 0.5 * ratio / (ratio - 1) coef_1 = 0.5 * ratio loss_pos = coef_1 * torch.log(pred_score + eps) * pmask loss_neg = coef_0 * torch.log(1.0 - pred_score + eps) * nmask loss = -1 * torch.sum(loss_pos + loss_neg) / num_entries return loss def forward(self, input_0, input_1, input_2, input_3, input_4, input_5, input_6): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 arg4_1 = input_4 arg5_1 = input_5 arg6_1 = input_6 output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1]) return output[0], output[1], output[2], output[3]
scenarios/dev
BMNLoss
false
4,471
[ "Apache-2.0" ]
0
9f91ebc142cea1c31231d233571ad59460ab6fba
https://github.com/scenarios/dev/tree/9f91ebc142cea1c31231d233571ad59460ab6fba
import torch import torch.nn.functional as F import torch.nn as nn def binary_logistic_regression_loss(reg_score, label, threshold=0.5, ratio_range=(1.05, 21), eps=1e-05): """Binary Logistic Regression Loss.""" label = label.view(-1) reg_score = reg_score.contiguous().view(-1) pmask = (label > threshold).float() num_positive = max(torch.sum(pmask), 1) num_entries = len(label) ratio = num_entries / num_positive ratio = min(max(ratio, ratio_range[0]), ratio_range[1]) coef_0 = 0.5 * ratio / (ratio - 1) coef_1 = 0.5 * ratio loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask ) * torch.log(1.0 - reg_score + eps) loss = -torch.mean(loss) return loss class Model(nn.Module): """BMN Loss. From paper https://arxiv.org/abs/1907.09702, code https://github.com/JJBOY/BMN-Boundary-Matching-Network. It will calculate loss for BMN Model. This loss is a weighted sum of 1) temporal evaluation loss based on confidence score of start and end positions. 2) proposal evaluation regression loss based on confidence scores of candidate proposals. 3) proposal evaluation classification loss based on classification results of candidate proposals. """ @staticmethod def tem_loss(pred_start, pred_end, gt_start, gt_end): """Calculate Temporal Evaluation Module Loss. This function calculate the binary_logistic_regression_loss for start and end respectively and returns the sum of their losses. Args: pred_start (torch.Tensor): Predicted start score by BMN model. pred_end (torch.Tensor): Predicted end score by BMN model. gt_start (torch.Tensor): Groundtruth confidence score for start. gt_end (torch.Tensor): Groundtruth confidence score for end. Returns: torch.Tensor: Returned binary logistic loss. """ loss_start = binary_logistic_regression_loss(pred_start, gt_start) loss_end = binary_logistic_regression_loss(pred_end, gt_end) loss = loss_start + loss_end return loss @staticmethod def pem_reg_loss(pred_score, gt_iou_map, mask, high_temporal_iou_threshold=0.7, low_temporal_iou_threshold=0.3): """Calculate Proposal Evaluation Module Regression Loss. Args: pred_score (torch.Tensor): Predicted temporal_iou score by BMN. gt_iou_map (torch.Tensor): Groundtruth temporal_iou score. mask (torch.Tensor): Boundary-Matching mask. high_temporal_iou_threshold (float): Higher threshold of temporal_iou. Default: 0.7. low_temporal_iou_threshold (float): Higher threshold of temporal_iou. Default: 0.3. Returns: torch.Tensor: Proposal evalutaion regression loss. """ u_hmask = (gt_iou_map > high_temporal_iou_threshold).float() u_mmask = ((gt_iou_map <= high_temporal_iou_threshold) & ( gt_iou_map > low_temporal_iou_threshold)).float() u_lmask = ((gt_iou_map <= low_temporal_iou_threshold) & (gt_iou_map > 0.0)).float() u_lmask = u_lmask * mask num_h = torch.sum(u_hmask) num_m = torch.sum(u_mmask) num_l = torch.sum(u_lmask) r_m = num_h / num_m u_smmask = torch.rand_like(gt_iou_map) u_smmask = u_mmask * u_smmask u_smmask = (u_smmask > 1.0 - r_m).float() r_l = num_h / num_l u_slmask = torch.rand_like(gt_iou_map) u_slmask = u_lmask * u_slmask u_slmask = (u_slmask > 1.0 - r_l).float() weights = u_hmask + u_smmask + u_slmask loss = F.mse_loss(pred_score * weights, gt_iou_map * weights) loss = 0.5 * torch.sum(loss * torch.ones_like(weights)) / torch.sum( weights) return loss @staticmethod def pem_cls_loss(pred_score, gt_iou_map, mask, thresho # ... truncated (>4000 chars) for memory efficiency
MaxPPVPool1d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/hs/chs6rworymmsphasi4epzz4rygyx3xcuzjt5l7gvyfayi5fiz3ba.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %div], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x0) + (16*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (1 + (4*x0) + (16*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tl.load(in_ptr0 + (2 + (4*x0) + (16*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tl.load(in_ptr0 + (3 + (4*x0) + (16*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 8, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr0 + ((4*((-4) + x0)) + (16*x1)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = 0.0 tmp19 = tmp17 > tmp18 tmp20 = tmp19.to(tl.int64) tmp21 = tl.load(in_ptr0 + (1 + (4*((-4) + x0)) + (16*x1)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp21 > tmp18 tmp23 = tmp22.to(tl.int64) tmp24 = tmp20 + tmp23 tmp25 = tl.load(in_ptr0 + (2 + (4*((-4) + x0)) + (16*x1)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tmp25 > tmp18 tmp27 = tmp26.to(tl.int64) tmp28 = tmp24 + tmp27 tmp29 = tl.load(in_ptr0 + (3 + (4*((-4) + x0)) + (16*x1)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tmp29 > tmp18 tmp31 = tmp30.to(tl.int64) tmp32 = tmp28 + tmp31 tmp33 = tmp32.to(tl.float32) tmp34 = 0.25 tmp35 = tmp33 * tmp34 tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype) tmp37 = tl.where(tmp14, tmp35, tmp36) tmp38 = tl.where(tmp4, tmp13, tmp37) tl.store(out_ptr0 + (x2), tmp38, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 128, grid=grid(128), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4, 1, 8), (32, 8, 8, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.multiprocessing import torch class MaxPPVPool1d(Module): """Drop-in replacement for AdaptiveConcatPool1d - multiplies nf by 2""" def forward(self, x): _max = x.max(dim=-1).values _ppv = torch.gt(x, 0).sum(dim=-1).float() / x.shape[-1] return torch.cat((_max, _ppv), dim=-1).unsqueeze(2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module import torch.multiprocessing import torch assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp17 = tl.load(in_ptr0 + (4 * (-4 + x0) + 16 * x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = 0.0 tmp19 = tmp17 > tmp18 tmp20 = tmp19.to(tl.int64) tmp21 = tl.load(in_ptr0 + (1 + 4 * (-4 + x0) + 16 * x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp21 > tmp18 tmp23 = tmp22.to(tl.int64) tmp24 = tmp20 + tmp23 tmp25 = tl.load(in_ptr0 + (2 + 4 * (-4 + x0) + 16 * x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tmp25 > tmp18 tmp27 = tmp26.to(tl.int64) tmp28 = tmp24 + tmp27 tmp29 = tl.load(in_ptr0 + (3 + 4 * (-4 + x0) + 16 * x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tmp29 > tmp18 tmp31 = tmp30.to(tl.int64) tmp32 = tmp28 + tmp31 tmp33 = tmp32.to(tl.float32) tmp34 = 0.25 tmp35 = tmp33 * tmp34 tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype) tmp37 = tl.where(tmp14, tmp35, tmp36) tmp38 = tl.where(tmp4, tmp13, tmp37) tl.store(out_ptr0 + x2, tmp38, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](arg0_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4, 1, 8), (32, 8, 8, 1), 0), class MaxPPVPool1dNew(Module): """Drop-in replacement for AdaptiveConcatPool1d - multiplies nf by 2""" def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
sjdlloyd/tsai
MaxPPVPool1d
false
4,472
[ "Apache-2.0" ]
0
98d9c02b8429708819d373b475deb9e99f0ab7df
https://github.com/sjdlloyd/tsai/tree/98d9c02b8429708819d373b475deb9e99f0ab7df
from torch.nn import Module import torch import torch.multiprocessing import torch class Model(Module): """Drop-in replacement for AdaptiveConcatPool1d - multiplies nf by 2""" def forward(self, x): _max = x.max(dim=-1).values _ppv = torch.gt(x, 0).sum(dim=-1).float() / x.shape[-1] return torch.cat((_max, _ppv), dim=-1).unsqueeze(2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ScoringFunction
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ps/cpsypcj54vlvwxescfz5tnn62zwx7pnm2flnavcb4wuyhw2ysjyl.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.sigmoid, aten.sigmoid_backward] # Source node to ATen node mapping: # x => convolution # x_1 => sigmoid # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub), kwargs = {}) triton_poi_fused_convolution_sigmoid_sigmoid_backward_0 = async_compile.triton('triton_poi_fused_convolution_sigmoid_sigmoid_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_sigmoid_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_sigmoid_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = 1.0 tmp6 = tmp5 - tmp4 tmp7 = tmp4 * tmp6 tl.store(in_out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 1, 4, 4), (16, 1, 4, 1), 0); del buf0 # reuse buf2 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.sigmoid, aten.sigmoid_backward] stream0 = get_raw_stream(0) triton_poi_fused_convolution_sigmoid_sigmoid_backward_0.run(buf1, primals_2, buf2, 64, grid=grid(64), stream=stream0) del primals_2 return (reinterpret_tensor(buf1, (4, 16), (16, 1), 0), primals_1, primals_3, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Conv2dAct(nn.Module): def __init__(self, in_channels, out_channels, ksize=1, activation='relu'): super(Conv2dAct, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, ksize) if activation == 'sigmoid': self.act = nn.Sigmoid() elif activation == 'relu': self.act = nn.ReLU() elif activation == 'tanh': self.act = nn.Tanh() def forward(self, x): x = self.conv(x) x = self.act(x) return x class VarianceC(nn.Module): def __init__(self): super(VarianceC, self).__init__() def forward(self, x): mean_x = torch.mean(x, dim=1, keepdim=True) sub_x = x.sub(mean_x) x = torch.mean(torch.mul(sub_x, sub_x), dim=1, keepdim=True) return x class ScoringFunction(nn.Module): def __init__(self, in_channels, var=False): super(ScoringFunction, self).__init__() if var: self.reduce_channel = VarianceC() else: self.reduce_channel = Conv2dAct(in_channels, 1, 1, 'sigmoid') def forward(self, x): x = self.reduce_channel(x) x = x.view(x.size(0), -1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_sigmoid_sigmoid_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = 1.0 tmp6 = tmp5 - tmp4 tmp7 = tmp4 * tmp6 tl.store(in_out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 1, 4, 4), (16, 1, 4, 1), 0) del buf0 buf2 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_sigmoid_sigmoid_backward_0[grid(64)](buf1, primals_2, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 return reinterpret_tensor(buf1, (4, 16), (16, 1), 0 ), primals_1, primals_3, buf2 class Conv2dAct(nn.Module): def __init__(self, in_channels, out_channels, ksize=1, activation='relu'): super(Conv2dAct, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, ksize) if activation == 'sigmoid': self.act = nn.Sigmoid() elif activation == 'relu': self.act = nn.ReLU() elif activation == 'tanh': self.act = nn.Tanh() def forward(self, x): x = self.conv(x) x = self.act(x) return x class VarianceC(nn.Module): def __init__(self): super(VarianceC, self).__init__() def forward(self, x): mean_x = torch.mean(x, dim=1, keepdim=True) sub_x = x.sub(mean_x) x = torch.mean(torch.mul(sub_x, sub_x), dim=1, keepdim=True) return x class ScoringFunctionNew(nn.Module): def __init__(self, in_channels, var=False): super(ScoringFunctionNew, self).__init__() if var: self.reduce_channel = VarianceC() else: self.reduce_channel = Conv2dAct(in_channels, 1, 1, 'sigmoid') def forward(self, input_0): primals_1 = self.reduce_channel.conv.weight primals_2 = self.reduce_channel.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sunwhawhang/headpose-fsanet-pytorch
ScoringFunction
false
4,473
[ "MIT" ]
0
d37d39dbff649b2f607367f35d9eadba2fea18f7
https://github.com/sunwhawhang/headpose-fsanet-pytorch/tree/d37d39dbff649b2f607367f35d9eadba2fea18f7
import torch import torch.nn as nn class Conv2dAct(nn.Module): def __init__(self, in_channels, out_channels, ksize=1, activation='relu'): super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, ksize) if activation == 'sigmoid': self.act = nn.Sigmoid() elif activation == 'relu': self.act = nn.ReLU() elif activation == 'tanh': self.act = nn.Tanh() def forward(self, x): x = self.conv(x) x = self.act(x) return x class VarianceC(nn.Module): def __init__(self): super().__init__() def forward(self, x): mean_x = torch.mean(x, dim=1, keepdim=True) sub_x = x.sub(mean_x) x = torch.mean(torch.mul(sub_x, sub_x), dim=1, keepdim=True) return x class Model(nn.Module): def __init__(self, in_channels, var=False): super().__init__() if var: self.reduce_channel = VarianceC() else: self.reduce_channel = Conv2dAct(in_channels, 1, 1, 'sigmoid') def forward(self, x): x = self.reduce_channel(x) x = x.view(x.size(0), -1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
CrossEntropy
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # cross_entropy => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/x6/cx6zqrxmcyv5ocpxdnu4bm3ja2qtsm6l7476r5bdkkbd6pzhjuyn.py # Topologically Sorted Source Nodes: [argmax, cross_entropy], Original ATen: [aten.argmax, aten.nll_loss2d_forward] # Source node to ATen node mapping: # argmax => argmax # cross_entropy => convert_element_type, div, full_default_1, ne_1, ne_2, neg, sum_2, sum_3, where_1 # Graph fragment: # %argmax : [num_users=4] = call_function[target=torch.ops.aten.argmax.default](args = (%arg0_1, -1), kwargs = {}) # %ne_1 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%argmax, -100), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ne_1, %neg, %full_default_1), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where_1,), kwargs = {}) # %ne_2 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%argmax, -100), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne_2,), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_2, torch.float32), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %convert_element_type), kwargs = {}) triton_per_fused_argmax_nll_loss2d_forward_1 = async_compile.triton('triton_per_fused_argmax_nll_loss2d_forward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_argmax_nll_loss2d_forward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_argmax_nll_loss2d_forward_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 16 r2 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr1 + (r1 + (64*r2)), None) tmp58 = tl.load(in_ptr1 + (16 + r1 + (64*r2)), None) tmp61 = tl.load(in_ptr1 + (32 + r1 + (64*r2)), None) tmp64 = tl.load(in_ptr1 + (48 + r1 + (64*r2)), None) tmp2 = tmp0 > tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1, 1], 0, tl.int64) tmp11 = tl.full([1, 1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 > tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1, 1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 > tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1, 1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tmp45 = tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tmp47 = tl.full([1, 1], -100, tl.int64) tmp48 = tmp46 != tmp47 tmp49 = tl.where(tmp48, tmp46, tmp10) tmp50 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp51 = tmp49 + tmp50 tmp52 = tmp49 < 0 tmp53 = tl.where(tmp52, tmp51, tmp49) tl.device_assert((0 <= tmp53) & (tmp53 < 4), "index out of bounds: 0 <= tmp53 < 4") tmp55 = tl.load(in_ptr1 + (r1 + (16*tmp53) + (64*r2)), None) tmp57 = tl_math.exp(tmp56) tmp59 = tl_math.exp(tmp58) tmp60 = tmp57 + tmp59 tmp62 = tl_math.exp(tmp61) tmp63 = tmp60 + tmp62 tmp65 = tl_math.exp(tmp64) tmp66 = tmp63 + tmp65 tmp67 = tl_math.log(tmp66) tmp68 = tmp55 - tmp67 tmp69 = -tmp68 tmp70 = 0.0 tmp71 = tl.where(tmp48, tmp69, tmp70) tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK]) tmp74 = tl.sum(tmp72, 1)[:, None] tmp75 = tmp48.to(tl.int64) tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK]) tmp78 = tl.sum(tmp76, 1)[:, None] tmp79 = tmp78.to(tl.float32) tmp80 = tmp74 / tmp79 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp80, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg1_1, buf1, 256, grid=grid(256), stream=stream0) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [argmax, cross_entropy], Original ATen: [aten.argmax, aten.nll_loss2d_forward] triton_per_fused_argmax_nll_loss2d_forward_1.run(buf4, arg0_1, buf1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del buf1 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torchvision.transforms.functional as F import torch.nn as nn import torch.nn.functional as F class CrossEntropy(nn.Module): def forward(self, x, y): return F.cross_entropy(x, torch.argmax(y, -1)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused_argmax_nll_loss2d_forward_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 16 r2 = rindex // 16 tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr1 + (r1 + 64 * r2), None) tmp58 = tl.load(in_ptr1 + (16 + r1 + 64 * r2), None) tmp61 = tl.load(in_ptr1 + (32 + r1 + 64 * r2), None) tmp64 = tl.load(in_ptr1 + (48 + r1 + 64 * r2), None) tmp2 = tmp0 > tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1, 1], 0, tl.int64) tmp11 = tl.full([1, 1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 > tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1, 1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 > tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1, 1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tmp47 = tl.full([1, 1], -100, tl.int64) tmp48 = tmp46 != tmp47 tmp49 = tl.where(tmp48, tmp46, tmp10) tmp50 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp51 = tmp49 + tmp50 tmp52 = tmp49 < 0 tmp53 = tl.where(tmp52, tmp51, tmp49) tl.device_assert((0 <= tmp53) & (tmp53 < 4), 'index out of bounds: 0 <= tmp53 < 4') tmp55 = tl.load(in_ptr1 + (r1 + 16 * tmp53 + 64 * r2), None) tmp57 = tl_math.exp(tmp56) tmp59 = tl_math.exp(tmp58) tmp60 = tmp57 + tmp59 tmp62 = tl_math.exp(tmp61) tmp63 = tmp60 + tmp62 tmp65 = tl_math.exp(tmp64) tmp66 = tmp63 + tmp65 tmp67 = tl_math.log(tmp66) tmp68 = tmp55 - tmp67 tmp69 = -tmp68 tmp70 = 0.0 tmp71 = tl.where(tmp48, tmp69, tmp70) tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK]) tmp74 = tl.sum(tmp72, 1)[:, None] tmp75 = tmp48.to(tl.int64) tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK]) tmp78 = tl.sum(tmp76, 1)[:, None] tmp79 = tmp78.to(tl.float32) tmp80 = tmp74 / tmp79 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp80, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) buf4 = buf2 del buf2 triton_per_fused_argmax_nll_loss2d_forward_1[grid(1)](buf4, arg0_1, buf1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del buf1 return buf4, class CrossEntropyNew(nn.Module): def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
tgxs002/1-stage-wseg
CrossEntropy
false
4,474
[ "Apache-2.0" ]
0
de16c51cc6cf8cd0ef248145980434d5f6104910
https://github.com/tgxs002/1-stage-wseg/tree/de16c51cc6cf8cd0ef248145980434d5f6104910
import torch import torchvision.transforms.functional as F import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def forward(self, x, y): return F.cross_entropy(x, torch.argmax(y, -1)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Gaussian
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xy/cxyihybmsq7xwo2wrbnvzqwqarrlq4dewztvjbqcuwagvtqygeqt.py # Topologically Sorted Source Nodes: [var, add, std, mul, z], Original ATen: [aten.softplus, aten.add, aten.sqrt, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # std => sqrt # var => exp, gt, log1p, where # z => add_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%view_3,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 20), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_3, %log1p), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, 1e-10), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%randn, %sqrt), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %mul), kwargs = {}) triton_poi_fused_add_mul_softplus_sqrt_0 = async_compile.triton('triton_poi_fused_add_mul_softplus_sqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_softplus_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_softplus_sqrt_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp6 = tl.load(in_ptr1 + (x0), xmask) tmp7 = tl.load(in_ptr2 + (x0), xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp8 = 1e-10 tmp9 = tmp5 + tmp8 tmp10 = libdevice.sqrt(tmp9) tmp11 = tmp7 * tmp10 tmp12 = tmp6 + tmp11 tl.store(out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr1 + (x0), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 # Topologically Sorted Source Nodes: [noise], Original ATen: [aten.randn_like] buf3 = torch.ops.aten.randn.default([4, 4, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf4 = buf3 del buf3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [var, add, std, mul, z], Original ATen: [aten.softplus, aten.add, aten.sqrt, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_softplus_sqrt_0.run(buf1, buf0, buf4, buf2, buf5, 256, grid=grid(256), stream=stream0) return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2, buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F import torch.utils.data class Gaussian(nn.Module): def __init__(self, in_dim, z_dim): super(Gaussian, self).__init__() self.mu = nn.Linear(in_dim, z_dim) self.var = nn.Linear(in_dim, z_dim) def reparameterize(self, mu, var): std = torch.sqrt(var + 1e-10) noise = torch.randn_like(std) z = mu + noise * std return z def forward(self, x): mu = self.mu(x) var = F.softplus(self.var(x)) z = self.reparameterize(mu, var) return mu, var, z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'z_dim': 4}]
import torch from torch import device from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_softplus_sqrt_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp6 = tl.load(in_ptr1 + x0, xmask) tmp7 = tl.load(in_ptr2 + x0, xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp8 = 1e-10 tmp9 = tmp5 + tmp8 tmp10 = libdevice.sqrt(tmp9) tmp11 = tmp7 * tmp10 tmp12 = tmp6 + tmp11 tl.store(out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr1 + x0, tmp12, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf3 = torch.ops.aten.randn.default([4, 4, 4, 4], dtype=torch. float32, device=device(type='cuda', index=0), pin_memory=False) buf4 = buf3 del buf3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_softplus_sqrt_0[grid(256)](buf1, buf0, buf4, buf2, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf2, buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf2, buf4 class GaussianNew(nn.Module): def __init__(self, in_dim, z_dim): super(GaussianNew, self).__init__() self.mu = nn.Linear(in_dim, z_dim) self.var = nn.Linear(in_dim, z_dim) def reparameterize(self, mu, var): std = torch.sqrt(var + 1e-10) noise = torch.randn_like(std) z = mu + noise * std return z def forward(self, input_0): primals_1 = self.mu.weight primals_2 = self.mu.bias primals_4 = self.var.weight primals_5 = self.var.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1], output[2]
userVector/GMVAE
Gaussian
false
4,475
[ "MIT" ]
0
2d0330c4174aa614f3817888798f88798313e01f
https://github.com/userVector/GMVAE/tree/2d0330c4174aa614f3817888798f88798313e01f
import torch from torch import nn from torch.nn import functional as F import torch.utils.data class Model(nn.Module): def __init__(self, in_dim, z_dim): super().__init__() self.mu = nn.Linear(in_dim, z_dim) self.var = nn.Linear(in_dim, z_dim) def reparameterize(self, mu, var): std = torch.sqrt(var + 1e-10) noise = torch.randn_like(std) z = mu + noise * std return z def forward(self, x): mu = self.mu(x) var = F.softplus(self.var(x)) z = self.reparameterize(mu, var) return mu, var, z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
VarianceC
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/4f/c4fxn76mohifb2jk7b5g6obnv7yu74nc2psuptse7q6htokknm5w.py # Topologically Sorted Source Nodes: [mean_x, sub_x, mul, x], Original ATen: [aten.mean, aten.sub, aten.mul] # Source node to ATen node mapping: # mean_x => mean # mul => mul # sub_x => sub # x => mean_1 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul, [1], True), kwargs = {}) triton_poi_fused_mean_mul_sub_0 = async_compile.triton('triton_poi_fused_mean_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tl.store(out_ptr0 + (x2), tmp20, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean_x, sub_x, mul, x], Original ATen: [aten.mean, aten.sub, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mean_mul_sub_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class VarianceC(nn.Module): def __init__(self): super(VarianceC, self).__init__() def forward(self, x): mean_x = torch.mean(x, dim=1, keepdim=True) sub_x = x.sub(mean_x) x = torch.mean(torch.mul(sub_x, sub_x), dim=1, keepdim=True) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tl.store(out_ptr0 + x2, tmp20, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_mul_sub_0[grid(64)](arg0_1, buf0, 64, XBLOCK= 64, num_warps=1, num_stages=1) del arg0_1 return buf0, class VarianceCNew(nn.Module): def __init__(self): super(VarianceCNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
sunwhawhang/headpose-fsanet-pytorch
VarianceC
false
4,476
[ "MIT" ]
0
d37d39dbff649b2f607367f35d9eadba2fea18f7
https://github.com/sunwhawhang/headpose-fsanet-pytorch/tree/d37d39dbff649b2f607367f35d9eadba2fea18f7
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x): mean_x = torch.mean(x, dim=1, keepdim=True) sub_x = x.sub(mean_x) x = torch.mean(torch.mul(sub_x, sub_x), dim=1, keepdim=True) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ToyRes
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ea/cea5xwkv2zmyfbl6jdy2duyd5kuioefl27gqqd3ihr3qg52nrd4o.py # Topologically Sorted Source Nodes: [pow_1, mul, sub, pow_2, mul_1, add, w, mul_3], Original ATen: [aten.pow, aten.mul, aten.sub, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # mul_1 => mul_1 # mul_3 => mul_3 # pow_1 => pow_1 # pow_2 => pow_2 # sub => sub # w => mul_2 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 3), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 3), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mul), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 3), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, 27), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %add), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %mul_2), kwargs = {}) triton_poi_fused_add_mul_pow_sub_0 = async_compile.triton('triton_poi_fused_add_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp5 = tl.load(in_ptr2 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp3 = tmp2 * tmp2 tmp4 = tmp3 * tmp2 tmp7 = 3.0 tmp8 = tmp6 * tmp7 tmp9 = tmp2 - tmp8 tmp10 = tmp6 * tmp6 tmp11 = tmp10 * tmp6 tmp12 = 27.0 tmp13 = tmp11 * tmp12 tmp14 = tmp9 + tmp13 tmp15 = tmp4 * tmp14 tmp16 = tmp0 * tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, ), (1, )) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, mul, sub, pow_2, mul_1, add, w, mul_3], Original ATen: [aten.pow, aten.mul, aten.sub, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_pow_sub_0.run(primals_3, primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) return (buf0, primals_1, primals_2, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.multiprocessing class ToyResLayer(nn.Module): """ Custom Linear layer but mimics a standard linear layer """ def __init__(self): super().__init__() aprime = torch.Tensor(1) bprime = torch.Tensor(1) self.aprime = nn.Parameter(aprime) self.bprime = nn.Parameter(bprime) nn.init.uniform_(self.aprime) nn.init.uniform_(self.bprime) def forward(self, x): w = self.aprime ** 3 * (self.aprime - 3 * self.bprime + 27 * self. bprime ** 3) return x * w class ToyRes(nn.Module): def __init__(self): super().__init__() self.ToyResLayer = ToyResLayer() def forward(self, x): return self.ToyResLayer(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.multiprocessing assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp5 = tl.load(in_ptr2 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp3 = tmp2 * tmp2 tmp4 = tmp3 * tmp2 tmp7 = 3.0 tmp8 = tmp6 * tmp7 tmp9 = tmp2 - tmp8 tmp10 = tmp6 * tmp6 tmp11 = tmp10 * tmp6 tmp12 = 27.0 tmp13 = tmp11 * tmp12 tmp14 = tmp9 + tmp13 tmp15 = tmp4 * tmp14 tmp16 = tmp0 * tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1,), (1,)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_pow_sub_0[grid(256)](primals_3, primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf0, primals_1, primals_2, primals_3 class ToyResLayer(nn.Module): """ Custom Linear layer but mimics a standard linear layer """ def __init__(self): super().__init__() aprime = torch.Tensor(1) bprime = torch.Tensor(1) self.aprime = nn.Parameter(aprime) self.bprime = nn.Parameter(bprime) nn.init.uniform_(self.aprime) nn.init.uniform_(self.bprime) def forward(self, x): w = self.aprime ** 3 * (self.aprime - 3 * self.bprime + 27 * self. bprime ** 3) return x * w class ToyResNew(nn.Module): def __init__(self): super().__init__() self.ToyResLayer = ToyResLayer() def forward(self, input_0): primals_1 = self.ToyResLayer.aprime primals_2 = self.ToyResLayer.bprime primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
suswei/RLCT
ToyRes
false
4,477
[ "MIT" ]
0
e9e04ca5e64250dfbb94134ec5283286dcdc4358
https://github.com/suswei/RLCT/tree/e9e04ca5e64250dfbb94134ec5283286dcdc4358
import torch import torch.nn as nn import torch.multiprocessing class ToyResLayer(nn.Module): """ Custom Linear layer but mimics a standard linear layer """ def __init__(self): super().__init__() aprime = torch.Tensor(1) bprime = torch.Tensor(1) self.aprime = nn.Parameter(aprime) self.bprime = nn.Parameter(bprime) nn.init.uniform_(self.aprime) nn.init.uniform_(self.bprime) def forward(self, x): w = self.aprime ** 3 * (self.aprime - 3 * self.bprime + 27 * self. bprime ** 3) return x * w class Model(nn.Module): def __init__(self): super().__init__() self.ToyResLayer = ToyResLayer() def forward(self, x): return self.ToyResLayer(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Tanh
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/57/c573a4hlcoyaeelwjewekgzjf7nzwzjciuw3u5mprmmqs2dns2jx.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf2) return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.multiprocessing class Tanh(nn.Module): def __init__(self, input_dim, output_dim, H): super(Tanh, self).__init__() self.fc1 = nn.Linear(input_dim, H, bias=False) self.fc2 = nn.Linear(H, output_dim, bias=False) def forward(self, x): x = torch.tanh(self.fc1(x)) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4, 'H': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.multiprocessing assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, 256, XBLOCK=128, num_warps =4, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf2) return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf1, primals_3 class TanhNew(nn.Module): def __init__(self, input_dim, output_dim, H): super(TanhNew, self).__init__() self.fc1 = nn.Linear(input_dim, H, bias=False) self.fc2 = nn.Linear(H, output_dim, bias=False) def forward(self, input_0): primals_1 = self.fc1.weight primals_3 = self.fc2.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
suswei/RLCT
Tanh
false
4,478
[ "MIT" ]
0
e9e04ca5e64250dfbb94134ec5283286dcdc4358
https://github.com/suswei/RLCT/tree/e9e04ca5e64250dfbb94134ec5283286dcdc4358
import torch import torch.nn as nn import torch.multiprocessing class Model(nn.Module): def __init__(self, input_dim, output_dim, H): super().__init__() self.fc1 = nn.Linear(input_dim, H, bias=False) self.fc2 = nn.Linear(H, output_dim, bias=False) def forward(self, x): x = torch.tanh(self.fc1(x)) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
GaussianMixtureReconstructionLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py # Topologically Sorted Source Nodes: [mixture_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # mixture_weights => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/gf/cgftkgna6f5ymcweuriktu5f2pj7nbxnhujfdm6jhofpyxwgvp35.py # Topologically Sorted Source Nodes: [sub, sigma_x, truediv, x, sub_1, sigma_y, truediv_1, y, add, rho_xy, mul_2, sub_2, sub_3, mul, mul_1, xy, mul_3, arg, neg, pow_3, sub_5, mul_4, truediv_3, pdf, mul_5, mul_6, pow_4, sub_6, sqrt, norm, pdfs, mixture_weights, mul_8], Original ATen: [aten.sub, aten.exp, aten.div, aten.pow, aten.add, aten.tanh, aten.mul, aten.neg, aten.rsub, aten.sqrt, aten._softmax] # Source node to ATen node mapping: # add => add # arg => sub_5 # mixture_weights => div, sum_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # mul_6 => mul_6 # mul_8 => mul_8 # neg => neg # norm => mul_7 # pdf => exp_3 # pdfs => div_5 # pow_3 => pow_3 # pow_4 => pow_4 # rho_xy => tanh # sigma_x => exp_1 # sigma_y => exp_2 # sqrt => sqrt # sub => sub_1 # sub_1 => sub_2 # sub_2 => sub_3 # sub_3 => sub_4 # sub_5 => sub_6 # sub_6 => sub_7 # truediv => div_1 # truediv_1 => div_2 # truediv_3 => div_4 # x => pow_1 # xy => div_3 # y => pow_2 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %select_3), kwargs = {}) # %exp_1 : [num_users=3] = call_function[target=torch.ops.aten.exp.default](args = (%select_5,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %exp_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div_1, 2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze_1, %select_4), kwargs = {}) # %exp_2 : [num_users=3] = call_function[target=torch.ops.aten.exp.default](args = (%select_6,), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, %exp_2), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div_2, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %pow_2), kwargs = {}) # %tanh : [num_users=3] = call_function[target=torch.ops.aten.tanh.default](args = (%select_7,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 2.0), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %select_3), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze_1, %select_4), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %sub_4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_1, %exp_2), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %div_3), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mul_3), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sub_5,), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%tanh, 2), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %pow_3), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, 2), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, %mul_4), kwargs = {}) # %exp_3 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_4,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_1, 6.283185307179586), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %exp_2), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%tanh, 2), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %pow_4), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sub_7,), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, %sqrt), kwargs = {}) # %div_5 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_3, %mul_7), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_5, %div), kwargs = {}) triton_poi_fused__softmax_add_div_exp_mul_neg_pow_rsub_sqrt_sub_tanh_1 = async_compile.triton('triton_poi_fused__softmax_add_div_exp_mul_neg_pow_rsub_sqrt_sub_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_exp_mul_neg_pow_rsub_sqrt_sub_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_div_exp_mul_neg_pow_rsub_sqrt_sub_tanh_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (5*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (2 + (5*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1 + (5*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (5*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (4 + (5*x0)), xmask, eviction_policy='evict_last') tmp37 = tl.load(in_ptr2 + (x2), xmask) tmp38 = tl.load(in_ptr2 + (4*x1), xmask, eviction_policy='evict_last') tmp39 = tl.load(in_ptr2 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr2 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp43 = tl.load(in_ptr2 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 / tmp4 tmp6 = tmp5 * tmp5 tmp9 = tmp7 - tmp8 tmp11 = tl_math.exp(tmp10) tmp12 = tmp9 / tmp11 tmp13 = tmp12 * tmp12 tmp14 = tmp6 + tmp13 tmp16 = libdevice.tanh(tmp15) tmp17 = 2.0 tmp18 = tmp16 * tmp17 tmp19 = tmp2 * tmp9 tmp20 = tmp4 * tmp11 tmp21 = tmp19 / tmp20 tmp22 = tmp18 * tmp21 tmp23 = tmp14 - tmp22 tmp24 = -tmp23 tmp25 = tmp16 * tmp16 tmp26 = 1.0 tmp27 = tmp26 - tmp25 tmp28 = tmp27 * tmp17 tmp29 = tmp24 / tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = 6.283185307179586 tmp32 = tmp4 * tmp31 tmp33 = tmp32 * tmp11 tmp34 = libdevice.sqrt(tmp27) tmp35 = tmp33 * tmp34 tmp36 = tmp30 / tmp35 tmp40 = tmp38 + tmp39 tmp42 = tmp40 + tmp41 tmp44 = tmp42 + tmp43 tmp45 = tmp37 / tmp44 tmp46 = tmp36 * tmp45 tl.store(in_out_ptr0 + (x2), tmp46, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zo/czoofsklsepvakticzs2madlnyiefc3vzpufz622fhzso3ktudkd.py # Topologically Sorted Source Nodes: [sum_1, add_1, log, position_loss, ne, valid_stroke, mul_9, sum_2, sum_3, position_loss_1, pen_state, view_1, pen_loss, add_2], Original ATen: [aten.sum, aten.add, aten.log, aten.neg, aten.ne, aten._to_copy, aten.mul, aten.div, aten.argmax, aten.view, aten.nll_loss_forward, aten._log_softmax] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # log => log # mul_9 => mul_9 # ne => ne # pen_loss => amax_1, convert_element_type_1, div_7, exp_4, full_default_1, gather, log_1, ne_2, ne_3, neg_2, sub_8, sub_9, sum_5, sum_6, sum_7, where_1 # pen_state => argmax # position_loss => neg_1 # position_loss_1 => div_6 # sum_1 => sum_2 # sum_2 => sum_3 # sum_3 => sum_4 # valid_stroke => convert_element_type # view_1 => view_1 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_8, [-1]), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 1e-05), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log,), kwargs = {}) # %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%select_2, 1.0), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ne, torch.float32), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg_1, %convert_element_type), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_9,), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) # %div_6 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %sum_4), kwargs = {}) # %argmax : [num_users=1] = call_function[target=torch.ops.aten.argmax.default](args = (%slice_1, -1), kwargs = {}) # %view_1 : [num_users=4] = call_function[target=torch.ops.aten.reshape.default](args = (%argmax, [-1]), kwargs = {}) # %ne_2 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%view_1, -100), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {}) # %sub_8 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax_1), kwargs = {}) # %exp_4 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_8,), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_4, [1], True), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_5,), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_8, %log_1), kwargs = {}) # %gather : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%sub_9, 1, %unsqueeze_2), kwargs = {}) # %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ne_2, %neg_2, %full_default_1), kwargs = {}) # %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where_1,), kwargs = {}) # %ne_3 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%view_1, -100), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne_3,), kwargs = {}) # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_6, torch.float32), kwargs = {}) # %div_7 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_7, %convert_element_type_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_6, %div_7), kwargs = {}) triton_per_fused__log_softmax__to_copy_add_argmax_div_log_mul_ne_neg_nll_loss_forward_sum_view_2 = async_compile.triton('triton_per_fused__log_softmax__to_copy_add_argmax_div_log_mul_ne_neg_nll_loss_forward_sum_view_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax__to_copy_add_argmax_div_log_mul_ne_neg_nll_loss_forward_sum_view_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax__to_copy_add_argmax_div_log_mul_ne_neg_nll_loss_forward_sum_view_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (3*r0), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (3*r0)), None, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (3*r0)), None, eviction_policy='evict_last') tmp42 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last') tmp43 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp45 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp2 = tmp0 > tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1, 1], 0, tl.int64) tmp11 = tl.full([1, 1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp17 = tl.full([1, 1], -100, tl.int64) tmp18 = tmp16 != tmp17 tmp19 = tl.where(tmp18, tmp16, tmp10) tmp20 = tl.full([XBLOCK, RBLOCK], 3, tl.int32) tmp21 = tmp19 + tmp20 tmp22 = tmp19 < 0 tmp23 = tl.where(tmp22, tmp21, tmp19) tl.device_assert((0 <= tmp23) & (tmp23 < 3), "index out of bounds: 0 <= tmp23 < 3") tmp25 = tl.load(in_ptr1 + (tmp23 + (3*r0)), None, eviction_policy='evict_last') tmp28 = triton_helpers.maximum(tmp26, tmp27) tmp30 = triton_helpers.maximum(tmp28, tmp29) tmp31 = tmp25 - tmp30 tmp32 = tmp26 - tmp30 tmp33 = tl_math.exp(tmp32) tmp34 = tmp27 - tmp30 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp29 - tmp30 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp40 = tl_math.log(tmp39) tmp41 = tmp31 - tmp40 tmp44 = tmp42 + tmp43 tmp46 = tmp44 + tmp45 tmp48 = tmp46 + tmp47 tmp49 = 1e-05 tmp50 = tmp48 + tmp49 tmp51 = tl_math.log(tmp50) tmp52 = -tmp51 tmp53 = 1.0 tmp54 = tmp1 != tmp53 tmp55 = tmp54.to(tl.float32) tmp56 = tmp52 * tmp55 tmp57 = tl.broadcast_to(tmp56, [XBLOCK, RBLOCK]) tmp59 = tl.sum(tmp57, 1)[:, None] tmp60 = tl.broadcast_to(tmp55, [XBLOCK, RBLOCK]) tmp62 = tl.sum(tmp60, 1)[:, None] tmp63 = -tmp41 tmp64 = 0.0 tmp65 = tl.where(tmp18, tmp63, tmp64) tmp66 = tl.broadcast_to(tmp65, [XBLOCK, RBLOCK]) tmp68 = tl.sum(tmp66, 1)[:, None] tmp69 = tmp18.to(tl.int64) tmp70 = tl.broadcast_to(tmp69, [XBLOCK, RBLOCK]) tmp72 = tl.sum(tmp70, 1)[:, None] tmp73 = tmp59 / tmp62 tmp74 = tmp72.to(tl.float32) tmp75 = tmp68 / tmp74 tmp76 = tmp73 + tmp75 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp76, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 5), (5, 1)) assert_size_stride(arg3_1, (4, 3), (3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mixture_weights], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(arg1_1, buf1, 16, grid=grid(16), stream=stream0) del arg1_1 buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, sigma_x, truediv, x, sub_1, sigma_y, truediv_1, y, add, rho_xy, mul_2, sub_2, sub_3, mul, mul_1, xy, mul_3, arg, neg, pow_3, sub_5, mul_4, truediv_3, pdf, mul_5, mul_6, pow_4, sub_6, sqrt, norm, pdfs, mixture_weights, mul_8], Original ATen: [aten.sub, aten.exp, aten.div, aten.pow, aten.add, aten.tanh, aten.mul, aten.neg, aten.rsub, aten.sqrt, aten._softmax] triton_poi_fused__softmax_add_div_exp_mul_neg_pow_rsub_sqrt_sub_tanh_1.run(buf2, arg0_1, arg2_1, buf1, 16, grid=grid(16), stream=stream0) del arg2_1 del buf1 buf3 = empty_strided_cuda((), (), torch.float32) buf8 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [sum_1, add_1, log, position_loss, ne, valid_stroke, mul_9, sum_2, sum_3, position_loss_1, pen_state, view_1, pen_loss, add_2], Original ATen: [aten.sum, aten.add, aten.log, aten.neg, aten.ne, aten._to_copy, aten.mul, aten.div, aten.argmax, aten.view, aten.nll_loss_forward, aten._log_softmax] triton_per_fused__log_softmax__to_copy_add_argmax_div_log_mul_ne_neg_nll_loss_forward_sum_view_2.run(buf8, arg0_1, arg3_1, buf2, 1, 4, grid=grid(1), stream=stream0) del arg0_1 del arg3_1 del buf2 return (buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 5), (5, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 3), (3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch as th def gaussian_pdfs(dx, dy, params): """Returns the pdf at (dx, dy) for each Gaussian in the mixture. """ dx = dx.unsqueeze(-1) dy = dy.unsqueeze(-1) mu_x = params[..., 0] mu_y = params[..., 1] sigma_x = params[..., 2].exp() sigma_y = params[..., 3].exp() rho_xy = th.tanh(params[..., 4]) x = ((dx - mu_x) / sigma_x).pow(2) y = ((dy - mu_y) / sigma_y).pow(2) xy = (dx - mu_x) * (dy - mu_y) / (sigma_x * sigma_y) arg = x + y - 2.0 * rho_xy * xy pdf = th.exp(-arg / (2 * (1.0 - rho_xy.pow(2)))) norm = 2.0 * np.pi * sigma_x * sigma_y * (1.0 - rho_xy.pow(2)).sqrt() return pdf / norm class GaussianMixtureReconstructionLoss(th.nn.Module): """ Args: """ def __init__(self, eps=1e-05): super(GaussianMixtureReconstructionLoss, self).__init__() self.eps = eps def forward(self, pen_logits, mixture_logits, gaussian_params, targets): dx = targets[..., 0] dy = targets[..., 1] pen_state = targets[..., 2:].argmax(-1) valid_stroke = (targets[..., -1] != 1.0).float() mixture_weights = th.nn.functional.softmax(mixture_logits, -1) pdfs = gaussian_pdfs(dx, dy, gaussian_params) position_loss = -th.log(self.eps + (pdfs * mixture_weights).sum(-1)) position_loss = (position_loss * valid_stroke).sum( ) / valid_stroke.sum() pen_loss = th.nn.functional.cross_entropy(pen_logits.view(-1, 3), pen_state.view(-1)) return position_loss + pen_loss def get_inputs(): return [torch.rand([4, 3]), torch.rand([4, 4]), torch.rand([4, 5]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import numpy as np import torch as th assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_add_div_exp_mul_neg_pow_rsub_sqrt_sub_tanh_1( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 5 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (2 + 5 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1 + 5 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 5 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr1 + (4 + 5 * x0), xmask, eviction_policy='evict_last' ) tmp37 = tl.load(in_ptr2 + x2, xmask) tmp38 = tl.load(in_ptr2 + 4 * x1, xmask, eviction_policy='evict_last') tmp39 = tl.load(in_ptr2 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp41 = tl.load(in_ptr2 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp43 = tl.load(in_ptr2 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 - tmp1 tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 / tmp4 tmp6 = tmp5 * tmp5 tmp9 = tmp7 - tmp8 tmp11 = tl_math.exp(tmp10) tmp12 = tmp9 / tmp11 tmp13 = tmp12 * tmp12 tmp14 = tmp6 + tmp13 tmp16 = libdevice.tanh(tmp15) tmp17 = 2.0 tmp18 = tmp16 * tmp17 tmp19 = tmp2 * tmp9 tmp20 = tmp4 * tmp11 tmp21 = tmp19 / tmp20 tmp22 = tmp18 * tmp21 tmp23 = tmp14 - tmp22 tmp24 = -tmp23 tmp25 = tmp16 * tmp16 tmp26 = 1.0 tmp27 = tmp26 - tmp25 tmp28 = tmp27 * tmp17 tmp29 = tmp24 / tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = 6.283185307179586 tmp32 = tmp4 * tmp31 tmp33 = tmp32 * tmp11 tmp34 = libdevice.sqrt(tmp27) tmp35 = tmp33 * tmp34 tmp36 = tmp30 / tmp35 tmp40 = tmp38 + tmp39 tmp42 = tmp40 + tmp41 tmp44 = tmp42 + tmp43 tmp45 = tmp37 / tmp44 tmp46 = tmp36 * tmp45 tl.store(in_out_ptr0 + x2, tmp46, xmask) @triton.jit def triton_per_fused__log_softmax__to_copy_add_argmax_div_log_mul_ne_neg_nll_loss_forward_sum_view_2( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl. constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + 3 * r0, None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 3 * r0), None, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + 3 * r0), None, eviction_policy='evict_last') tmp42 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last') tmp43 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp45 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 > tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1, 1], 0, tl.int64) tmp11 = tl.full([1, 1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp17 = tl.full([1, 1], -100, tl.int64) tmp18 = tmp16 != tmp17 tmp19 = tl.where(tmp18, tmp16, tmp10) tmp20 = tl.full([XBLOCK, RBLOCK], 3, tl.int32) tmp21 = tmp19 + tmp20 tmp22 = tmp19 < 0 tmp23 = tl.where(tmp22, tmp21, tmp19) tl.device_assert((0 <= tmp23) & (tmp23 < 3), 'index out of bounds: 0 <= tmp23 < 3') tmp25 = tl.load(in_ptr1 + (tmp23 + 3 * r0), None, eviction_policy= 'evict_last') tmp28 = triton_helpers.maximum(tmp26, tmp27) tmp30 = triton_helpers.maximum(tmp28, tmp29) tmp31 = tmp25 - tmp30 tmp32 = tmp26 - tmp30 tmp33 = tl_math.exp(tmp32) tmp34 = tmp27 - tmp30 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp29 - tmp30 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp40 = tl_math.log(tmp39) tmp41 = tmp31 - tmp40 tmp44 = tmp42 + tmp43 tmp46 = tmp44 + tmp45 tmp48 = tmp46 + tmp47 tmp49 = 1e-05 tmp50 = tmp48 + tmp49 tmp51 = tl_math.log(tmp50) tmp52 = -tmp51 tmp53 = 1.0 tmp54 = tmp1 != tmp53 tmp55 = tmp54.to(tl.float32) tmp56 = tmp52 * tmp55 tmp57 = tl.broadcast_to(tmp56, [XBLOCK, RBLOCK]) tmp59 = tl.sum(tmp57, 1)[:, None] tmp60 = tl.broadcast_to(tmp55, [XBLOCK, RBLOCK]) tmp62 = tl.sum(tmp60, 1)[:, None] tmp63 = -tmp41 tmp64 = 0.0 tmp65 = tl.where(tmp18, tmp63, tmp64) tmp66 = tl.broadcast_to(tmp65, [XBLOCK, RBLOCK]) tmp68 = tl.sum(tmp66, 1)[:, None] tmp69 = tmp18.to(tl.int64) tmp70 = tl.broadcast_to(tmp69, [XBLOCK, RBLOCK]) tmp72 = tl.sum(tmp70, 1)[:, None] tmp73 = tmp59 / tmp62 tmp74 = tmp72.to(tl.float32) tmp75 = tmp68 / tmp74 tmp76 = tmp73 + tmp75 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp76, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 5), (5, 1)) assert_size_stride(arg3_1, (4, 3), (3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(16)](arg1_1, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg1_1 buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = buf0 del buf0 triton_poi_fused__softmax_add_div_exp_mul_neg_pow_rsub_sqrt_sub_tanh_1[ grid(16)](buf2, arg0_1, arg2_1, buf1, 16, XBLOCK=16, num_warps= 1, num_stages=1) del arg2_1 del buf1 buf3 = empty_strided_cuda((), (), torch.float32) buf8 = buf3 del buf3 triton_per_fused__log_softmax__to_copy_add_argmax_div_log_mul_ne_neg_nll_loss_forward_sum_view_2[ grid(1)](buf8, arg0_1, arg3_1, buf2, 1, 4, XBLOCK=1, num_warps= 2, num_stages=1) del arg0_1 del arg3_1 del buf2 return buf8, def gaussian_pdfs(dx, dy, params): """Returns the pdf at (dx, dy) for each Gaussian in the mixture. """ dx = dx.unsqueeze(-1) dy = dy.unsqueeze(-1) mu_x = params[..., 0] mu_y = params[..., 1] sigma_x = params[..., 2].exp() sigma_y = params[..., 3].exp() rho_xy = th.tanh(params[..., 4]) x = ((dx - mu_x) / sigma_x).pow(2) y = ((dy - mu_y) / sigma_y).pow(2) xy = (dx - mu_x) * (dy - mu_y) / (sigma_x * sigma_y) arg = x + y - 2.0 * rho_xy * xy pdf = th.exp(-arg / (2 * (1.0 - rho_xy.pow(2)))) norm = 2.0 * np.pi * sigma_x * sigma_y * (1.0 - rho_xy.pow(2)).sqrt() return pdf / norm class GaussianMixtureReconstructionLossNew(th.nn.Module): """ Args: """ def __init__(self, eps=1e-05): super(GaussianMixtureReconstructionLossNew, self).__init__() self.eps = eps def forward(self, input_0, input_1, input_2, input_3): arg3_1 = input_0 arg0_1 = input_1 arg2_1 = input_2 arg1_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0]
v-a-s-a/diffvg
GaussianMixtureReconstructionLoss
false
4,479
[ "Apache-2.0" ]
0
3685f3d47a5a4e5c76c68643ebf383f809ba59ed
https://github.com/v-a-s-a/diffvg/tree/3685f3d47a5a4e5c76c68643ebf383f809ba59ed
import torch import numpy as np import torch as th def gaussian_pdfs(dx, dy, params): """Returns the pdf at (dx, dy) for each Gaussian in the mixture. """ dx = dx.unsqueeze(-1) dy = dy.unsqueeze(-1) mu_x = params[..., 0] mu_y = params[..., 1] sigma_x = params[..., 2].exp() sigma_y = params[..., 3].exp() rho_xy = th.tanh(params[..., 4]) x = ((dx - mu_x) / sigma_x).pow(2) y = ((dy - mu_y) / sigma_y).pow(2) xy = (dx - mu_x) * (dy - mu_y) / (sigma_x * sigma_y) arg = x + y - 2.0 * rho_xy * xy pdf = th.exp(-arg / (2 * (1.0 - rho_xy.pow(2)))) norm = 2.0 * np.pi * sigma_x * sigma_y * (1.0 - rho_xy.pow(2)).sqrt() return pdf / norm class Model(th.nn.Module): """ Args: """ def __init__(self, eps=1e-05): super().__init__() self.eps = eps def forward(self, pen_logits, mixture_logits, gaussian_params, targets): dx = targets[..., 0] dy = targets[..., 1] pen_state = targets[..., 2:].argmax(-1) valid_stroke = (targets[..., -1] != 1.0).float() mixture_weights = th.nn.functional.softmax(mixture_logits, -1) pdfs = gaussian_pdfs(dx, dy, gaussian_params) position_loss = -th.log(self.eps + (pdfs * mixture_weights).sum(-1)) position_loss = (position_loss * valid_stroke).sum( ) / valid_stroke.sum() pen_loss = th.nn.functional.cross_entropy(pen_logits.view(-1, 3), pen_state.view(-1)) return position_loss + pen_loss def get_inputs(): return [torch.rand([4, 3]), torch.rand([4, 4]), torch.rand([4, 5]), torch.rand([4, 4])] def get_init_inputs(): return []
PixelNorm
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/3y/c3yj3uv4zmall6nhbux75yxx3yjlc7ewdnsuwtybfwl3jcvn3myy.py # Topologically Sorted Source Nodes: [pow_1, mean, add, rsqrt, mul], Original ATen: [aten.pow, aten.mean, aten.add, aten.rsqrt, aten.mul] # Source node to ATen node mapping: # add => add # mean => mean # mul => mul # pow_1 => pow_1 # rsqrt => rsqrt # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [2], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 1e-08), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %rsqrt), kwargs = {}) triton_poi_fused_add_mean_mul_pow_rsqrt_0 = async_compile.triton('triton_poi_fused_add_mean_mul_pow_rsqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_mul_pow_rsqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_mul_pow_rsqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.rsqrt(tmp15) tmp17 = tmp0 * tmp16 tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, mean, add, rsqrt, mul], Original ATen: [aten.pow, aten.mean, aten.add, aten.rsqrt, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_mean_mul_pow_rsqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.cpp_extension import torch.utils.data.distributed class PixelNorm(nn.Module): def __init__(self, dim): super().__init__() def forward(self, input): return input * torch.rsqrt(torch.mean(input ** 2, dim=2, keepdim= True) + 1e-08) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.cpp_extension import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mean_mul_pow_rsqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.rsqrt(tmp15) tmp17 = tmp0 * tmp16 tl.store(out_ptr0 + x3, tmp17, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mean_mul_pow_rsqrt_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class PixelNormNew(nn.Module): def __init__(self, dim): super().__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Pragyanstha/SummerCamp2021
PixelNorm
false
4,480
[ "MIT" ]
0
caa8bba64020ba52bdef2b23a7a54de93e93b8af
https://github.com/Pragyanstha/SummerCamp2021/tree/caa8bba64020ba52bdef2b23a7a54de93e93b8af
import torch import torch.nn as nn import torch.utils.cpp_extension import torch.utils.data.distributed class Model(nn.Module): def __init__(self, dim): super().__init__() def forward(self, input): return input * torch.rsqrt(torch.mean(input ** 2, dim=2, keepdim= True) + 1e-08) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
UpsampleConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 16, 16), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 16, grid=grid(16), stream=stream0) del primals_2 return (reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import math import torch from torchvision.datasets import * import torch.nn.functional as F from torch.nn import Parameter from torch.nn.modules.utils import _pair from torchvision.transforms import * class UpsampleConv2d(Module): """ To avoid the checkerboard artifacts of standard Fractionally-strided Convolution, we adapt an integer stride convolution but producing a :math:`2\\times 2` outputs for each convolutional window. .. image:: _static/img/upconv.png :width: 50% :align: center Reference: Hang Zhang and Kristin Dana. "Multi-style Generative Network for Real-time Transfer." *arXiv preprint arXiv:1703.06953 (2017)* Args: in_channels (int): Number of channels in the input image out_channels (int): Number of channels produced by the convolution kernel_size (int or tuple): Size of the convolving kernel stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 output_padding (int or tuple, optional): Zero-padding added to one side of the output. Default: 0 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 bias (bool, optional): If True, adds a learnable bias to the output. Default: True dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 scale_factor (int): scaling factor for upsampling convolution. Default: 1 Shape: - Input: :math:`(N, C_{in}, H_{in}, W_{in})` - Output: :math:`(N, C_{out}, H_{out}, W_{out})` where :math:`H_{out} = scale * (H_{in} - 1) * stride[0] - 2 * padding[0] + kernel\\_size[0] + output\\_padding[0]` :math:`W_{out} = scale * (W_{in} - 1) * stride[1] - 2 * padding[1] + kernel\\_size[1] + output\\_padding[1]` Attributes: weight (Tensor): the learnable weights of the module of shape (in_channels, scale * scale * out_channels, kernel_size[0], kernel_size[1]) bias (Tensor): the learnable bias of the module of shape (scale * scale * out_channels) Examples: >>> # With square kernels and equal stride >>> m = nn.UpsampleCov2d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.UpsampleCov2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) >>> input = autograd.Variable(torch.randn(20, 16, 50, 100)) >>> output = m(input) >>> # exact output size can be also specified as an argument >>> input = autograd.Variable(torch.randn(1, 16, 12, 12)) >>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1) >>> upsample = nn.UpsampleCov2d(16, 16, 3, stride=2, padding=1) >>> h = downsample(input) >>> h.size() torch.Size([1, 16, 6, 6]) >>> output = upsample(h, output_size=input.size()) >>> output.size() torch.Size([1, 16, 12, 12]) """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, scale_factor=1, bias=True): super(UpsampleConv2d, self).__init__() kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.scale_factor = scale_factor self.weight = Parameter(torch.Tensor(out_channels * scale_factor * scale_factor, in_channels // groups, *kernel_size)) if bias: self.bias = Parameter(torch.Tensor(out_channels * scale_factor * scale_factor)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1.0 / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input): out = F.conv2d(input, self.weight, self.bias, self.stride, self. padding, self.dilation, self.groups) return F.pixel_shuffle(out, self.scale_factor) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module import math from torchvision.datasets import * from torch.nn import Parameter from torch.nn.modules.utils import _pair from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 16, 16), 0) del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16)](buf1, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0 ), primals_1, primals_3 class UpsampleConv2dNew(Module): """ To avoid the checkerboard artifacts of standard Fractionally-strided Convolution, we adapt an integer stride convolution but producing a :math:`2\\times 2` outputs for each convolutional window. .. image:: _static/img/upconv.png :width: 50% :align: center Reference: Hang Zhang and Kristin Dana. "Multi-style Generative Network for Real-time Transfer." *arXiv preprint arXiv:1703.06953 (2017)* Args: in_channels (int): Number of channels in the input image out_channels (int): Number of channels produced by the convolution kernel_size (int or tuple): Size of the convolving kernel stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 output_padding (int or tuple, optional): Zero-padding added to one side of the output. Default: 0 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 bias (bool, optional): If True, adds a learnable bias to the output. Default: True dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 scale_factor (int): scaling factor for upsampling convolution. Default: 1 Shape: - Input: :math:`(N, C_{in}, H_{in}, W_{in})` - Output: :math:`(N, C_{out}, H_{out}, W_{out})` where :math:`H_{out} = scale * (H_{in} - 1) * stride[0] - 2 * padding[0] + kernel\\_size[0] + output\\_padding[0]` :math:`W_{out} = scale * (W_{in} - 1) * stride[1] - 2 * padding[1] + kernel\\_size[1] + output\\_padding[1]` Attributes: weight (Tensor): the learnable weights of the module of shape (in_channels, scale * scale * out_channels, kernel_size[0], kernel_size[1]) bias (Tensor): the learnable bias of the module of shape (scale * scale * out_channels) Examples: >>> # With square kernels and equal stride >>> m = nn.UpsampleCov2d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.UpsampleCov2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) >>> input = autograd.Variable(torch.randn(20, 16, 50, 100)) >>> output = m(input) >>> # exact output size can be also specified as an argument >>> input = autograd.Variable(torch.randn(1, 16, 12, 12)) >>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1) >>> upsample = nn.UpsampleCov2d(16, 16, 3, stride=2, padding=1) >>> h = downsample(input) >>> h.size() torch.Size([1, 16, 6, 6]) >>> output = upsample(h, output_size=input.size()) >>> output.size() torch.Size([1, 16, 12, 12]) """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, scale_factor=1, bias=True): super(UpsampleConv2dNew, self).__init__() kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.scale_factor = scale_factor self.weight = Parameter(torch.Tensor(out_channels * scale_factor * scale_factor, in_channels // groups, *kernel_size)) if bias: self.bias = Parameter(torch.Tensor(out_channels * scale_factor * scale_factor)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1.0 / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
tousifulhaque/DANet
UpsampleConv2d
false
4,481
[ "MIT" ]
0
1a0c91f0e551a071b5e335b4157313780a8a1b1a
https://github.com/tousifulhaque/DANet/tree/1a0c91f0e551a071b5e335b4157313780a8a1b1a
from torch.nn import Module import math import torch from torchvision.datasets import * import torch.nn.functional as F from torch.nn import Parameter from torch.nn.modules.utils import _pair from torchvision.transforms import * class Model(Module): """ To avoid the checkerboard artifacts of standard Fractionally-strided Convolution, we adapt an integer stride convolution but producing a :math:`2\\times 2` outputs for each convolutional window. .. image:: _static/img/upconv.png :width: 50% :align: center Reference: Hang Zhang and Kristin Dana. "Multi-style Generative Network for Real-time Transfer." *arXiv preprint arXiv:1703.06953 (2017)* Args: in_channels (int): Number of channels in the input image out_channels (int): Number of channels produced by the convolution kernel_size (int or tuple): Size of the convolving kernel stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 output_padding (int or tuple, optional): Zero-padding added to one side of the output. Default: 0 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 bias (bool, optional): If True, adds a learnable bias to the output. Default: True dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 scale_factor (int): scaling factor for upsampling convolution. Default: 1 Shape: - Input: :math:`(N, C_{in}, H_{in}, W_{in})` - Output: :math:`(N, C_{out}, H_{out}, W_{out})` where :math:`H_{out} = scale * (H_{in} - 1) * stride[0] - 2 * padding[0] + kernel\\_size[0] + output\\_padding[0]` :math:`W_{out} = scale * (W_{in} - 1) * stride[1] - 2 * padding[1] + kernel\\_size[1] + output\\_padding[1]` Attributes: weight (Tensor): the learnable weights of the module of shape (in_channels, scale * scale * out_channels, kernel_size[0], kernel_size[1]) bias (Tensor): the learnable bias of the module of shape (scale * scale * out_channels) Examples: >>> # With square kernels and equal stride >>> m = nn.UpsampleCov2d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.UpsampleCov2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) >>> input = autograd.Variable(torch.randn(20, 16, 50, 100)) >>> output = m(input) >>> # exact output size can be also specified as an argument >>> input = autograd.Variable(torch.randn(1, 16, 12, 12)) >>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1) >>> upsample = nn.UpsampleCov2d(16, 16, 3, stride=2, padding=1) >>> h = downsample(input) >>> h.size() torch.Size([1, 16, 6, 6]) >>> output = upsample(h, output_size=input.size()) >>> output.size() torch.Size([1, 16, 12, 12]) """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, scale_factor=1, bias=True): super().__init__() kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.scale_factor = scale_factor self.weight = Parameter(torch.Tensor(out_channels * scale_facto # ... truncated (>4000 chars) for memory efficiency
Quantize
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6y/c6yvzqbpyn5vix7hadlwnxr75nuskq2vkdx4ixu6ce2ey7bkrxzz.py # Topologically Sorted Source Nodes: [pow_1, sum_1, mul, sub, pow_2, sum_2, dist], Original ATen: [aten.pow, aten.sum, aten.mul, aten.sub, aten.add] # Source node to ATen node mapping: # dist => add # mul => mul # pow_1 => pow_1 # pow_2 => pow_2 # sub => sub # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %mul), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %sum_2), kwargs = {}) triton_poi_fused_add_mul_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_add_mul_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_out_ptr0 + (x2), xmask) tmp15 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = 2.0 tmp13 = tmp11 * tmp12 tmp14 = tmp10 - tmp13 tmp16 = tmp15 * tmp15 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp24 = tmp23 * tmp23 tmp25 = tmp22 + tmp24 tmp26 = tmp14 + tmp25 tl.store(in_out_ptr0 + (x2), tmp26, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/eh/cehlfyvu6yw77i7mnfgzxkmpagwvmxzisbf3nrbnws4gpjvdc4fy.py # Topologically Sorted Source Nodes: [argmin], Original ATen: [aten.argmin] # Source node to ATen node mapping: # argmin => argmin # Graph fragment: # %argmin : [num_users=1] = call_function[target=torch.ops.aten.argmin.default](args = (%add, 1), kwargs = {}) triton_poi_fused_argmin_1 = async_compile.triton('triton_poi_fused_argmin_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_argmin_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_argmin_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 < tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 < tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 < tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tmp45 = tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + (x0), tmp46, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/w3/cw3ogz6lm3x3ozhnrjpkqo7ukzyo7zms52hhnh4ucnym5yxkjasm.py # Topologically Sorted Source Nodes: [quantized_onehot, float_1, embed_idx], Original ATen: [aten.arange, aten.eq, aten._to_copy, aten.view] # Source node to ATen node mapping: # embed_idx => view_2 # float_1 => convert_element_type_1 # quantized_onehot => convert_element_type, eq, iota # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%unsqueeze, %iota), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq, torch.int64), kwargs = {}) # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%convert_element_type, torch.float32), kwargs = {}) # %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%convert_element_type_1, [16, 4]), kwargs = {}) triton_poi_fused__to_copy_arange_eq_view_2 = async_compile.triton('triton_poi_fused__to_copy_arange_eq_view_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_eq_view_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_arange_eq_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = tmp2.to(tl.int64) tmp4 = tmp3.to(tl.float32) tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/t6/ct6wk43su5wom3isy5ondkevam2de3id7iz2wlfkoforbtz4gxal.py # Topologically Sorted Source Nodes: [sub_1, embed_idx_qx], Original ATen: [aten.sub, aten.add] # Source node to ATen node mapping: # embed_idx_qx => add_1 # sub_1 => sub_1 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %sub_1), kwargs = {}) triton_poi_fused_add_sub_3 = async_compile.triton('triton_poi_fused_add_sub_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sub_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_sub_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp1 - tmp0 tmp3 = tmp0 + tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [pow_1, sum_1, mul, sub, pow_2, sum_2, dist], Original ATen: [aten.pow, aten.sum, aten.mul, aten.sub, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_pow_sub_sum_0.run(buf1, primals_2, primals_1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [argmin], Original ATen: [aten.argmin] triton_poi_fused_argmin_1.run(buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [quantized_onehot, float_1, embed_idx], Original ATen: [aten.arange, aten.eq, aten._to_copy, aten.view] triton_poi_fused__to_copy_arange_eq_view_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [embed_idx], Original ATen: [aten.mm] extern_kernels.mm(buf3, primals_2, out=buf4) del primals_2 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub_1, embed_idx_qx], Original ATen: [aten.sub, aten.add] triton_poi_fused_add_sub_3.run(primals_1, buf4, buf5, 64, grid=grid(64), stream=stream0) del primals_1 return (reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0), buf5, reinterpret_tensor(buf2, (4, 4), (4, 1), 0), reinterpret_tensor(buf3, (4, 16), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Quantize(nn.Module): def __init__(self, emb_dim, emb_size, decay=0.99, eps=1e-05, ema_flag= False, bdt_flag=False): super().__init__() self.emb_dim = emb_dim self.emb_size = emb_size self.ema_flag = ema_flag self.bdt_flag = bdt_flag self.embedding = nn.Embedding(emb_size, emb_dim) self.embedding.weight.data.uniform_(-1.0 / self.emb_size, 1.0 / self.emb_size) if self.ema_flag: self.decay = decay self.eps = eps embed = torch.randn(emb_dim, emb_size) self.register_buffer('ema_size', torch.zeros(emb_size)) self.register_buffer('ema_w', embed.clone()) def forward(self, x, use_ema=True): if self.bdt_flag: x = x.transpose(1, 2) quantized_idx, quantized_onehot = self.vq(x) embed_idx = torch.matmul(quantized_onehot.float(), self.embedding. weight) if self.training and self.ema_flag and use_ema: self.ema_size = self.decay * self.ema_size + (1 - self.decay ) * torch.sum(quantized_onehot.view(-1, self.emb_size), 0) embed_sum = torch.sum(torch.matmul(x.transpose(1, 2), quantized_onehot.float()), dim=0) self.ema_w.data = self.decay * self.ema_w.data + (1 - self.decay ) * embed_sum n = torch.sum(self.ema_size) self.ema_size = (self.ema_size + self.eps) / (n + self.emb_size * self.eps) * n embed_normalized = self.ema_w / self.ema_size.unsqueeze(0) self.embedding.weight.data.copy_(embed_normalized.transpose(0, 1)) embed_idx_qx = x + (embed_idx - x).detach() if self.bdt_flag: embed_idx_qx = embed_idx_qx.transpose(1, 2) return embed_idx, embed_idx_qx, quantized_idx def vq(self, x): flatten_x = x.reshape(-1, self.emb_dim) dist = torch.sum(torch.pow(self.embedding.weight, 2), dim=1 ) - 2 * torch.matmul(flatten_x, self.embedding.weight.T ) + torch.sum(torch.pow(flatten_x, 2), dim=1, keepdim=True) quantized_idx = torch.argmin(dist, dim=1).view(x.size(0), x.size(1)) quantized_onehot = F.one_hot(quantized_idx, self.emb_size) return quantized_idx, quantized_onehot def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'emb_dim': 4, 'emb_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_out_ptr0 + x2, xmask) tmp15 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = 2.0 tmp13 = tmp11 * tmp12 tmp14 = tmp10 - tmp13 tmp16 = tmp15 * tmp15 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp24 = tmp23 * tmp23 tmp25 = tmp22 + tmp24 tmp26 = tmp14 + tmp25 tl.store(in_out_ptr0 + x2, tmp26, xmask) @triton.jit def triton_poi_fused_argmin_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 < tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 < tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 < tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + x0, tmp46, xmask) @triton.jit def triton_poi_fused__to_copy_arange_eq_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = tmp2.to(tl.int64) tmp4 = tmp3.to(tl.float32) tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_sub_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp1 - tmp0 tmp3 = tmp0 + tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_mul_pow_sub_sum_0[grid(64)](buf1, primals_2, primals_1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused_argmin_1[grid(16)](buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = buf1 del buf1 triton_poi_fused__to_copy_arange_eq_view_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(buf3, primals_2, out=buf4) del primals_2 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_sub_3[grid(64)](primals_1, buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 return reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0 ), buf5, reinterpret_tensor(buf2, (4, 4), (4, 1), 0 ), reinterpret_tensor(buf3, (4, 16), (1, 4), 0) class QuantizeNew(nn.Module): def __init__(self, emb_dim, emb_size, decay=0.99, eps=1e-05, ema_flag= False, bdt_flag=False): super().__init__() self.emb_dim = emb_dim self.emb_size = emb_size self.ema_flag = ema_flag self.bdt_flag = bdt_flag self.embedding = nn.Embedding(emb_size, emb_dim) self.embedding.weight.data.uniform_(-1.0 / self.emb_size, 1.0 / self.emb_size) if self.ema_flag: self.decay = decay self.eps = eps embed = torch.randn(emb_dim, emb_size) self.register_buffer('ema_size', torch.zeros(emb_size)) self.register_buffer('ema_w', embed.clone()) def vq(self, x): flatten_x = x.reshape(-1, self.emb_dim) dist = torch.sum(torch.pow(self.embedding.weight, 2), dim=1 ) - 2 * torch.matmul(flatten_x, self.embedding.weight.T ) + torch.sum(torch.pow(flatten_x, 2), dim=1, keepdim=True) quantized_idx = torch.argmin(dist, dim=1).view(x.size(0), x.size(1)) quantized_onehot = F.one_hot(quantized_idx, self.emb_size) return quantized_idx, quantized_onehot def forward(self, input_0): primals_2 = self.embedding.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0], output[1], output[2]
unilight/crank
Quantize
false
4,482
[ "MIT" ]
0
0dc5d9df17f3186155b1c9583ab604ff218ad9a6
https://github.com/unilight/crank/tree/0dc5d9df17f3186155b1c9583ab604ff218ad9a6
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, emb_dim, emb_size, decay=0.99, eps=1e-05, ema_flag= False, bdt_flag=False): super().__init__() self.emb_dim = emb_dim self.emb_size = emb_size self.ema_flag = ema_flag self.bdt_flag = bdt_flag self.embedding = nn.Embedding(emb_size, emb_dim) self.embedding.weight.data.uniform_(-1.0 / self.emb_size, 1.0 / self.emb_size) if self.ema_flag: self.decay = decay self.eps = eps embed = torch.randn(emb_dim, emb_size) self.register_buffer('ema_size', torch.zeros(emb_size)) self.register_buffer('ema_w', embed.clone()) def forward(self, x, use_ema=True): if self.bdt_flag: x = x.transpose(1, 2) quantized_idx, quantized_onehot = self.vq(x) embed_idx = torch.matmul(quantized_onehot.float(), self.embedding. weight) if self.training and self.ema_flag and use_ema: self.ema_size = self.decay * self.ema_size + (1 - self.decay ) * torch.sum(quantized_onehot.view(-1, self.emb_size), 0) embed_sum = torch.sum(torch.matmul(x.transpose(1, 2), quantized_onehot.float()), dim=0) self.ema_w.data = self.decay * self.ema_w.data + (1 - self.decay ) * embed_sum n = torch.sum(self.ema_size) self.ema_size = (self.ema_size + self.eps) / (n + self.emb_size * self.eps) * n embed_normalized = self.ema_w / self.ema_size.unsqueeze(0) self.embedding.weight.data.copy_(embed_normalized.transpose(0, 1)) embed_idx_qx = x + (embed_idx - x).detach() if self.bdt_flag: embed_idx_qx = embed_idx_qx.transpose(1, 2) return embed_idx, embed_idx_qx, quantized_idx def vq(self, x): flatten_x = x.reshape(-1, self.emb_dim) dist = torch.sum(torch.pow(self.embedding.weight, 2), dim=1 ) - 2 * torch.matmul(flatten_x, self.embedding.weight.T ) + torch.sum(torch.pow(flatten_x, 2), dim=1, keepdim=True) quantized_idx = torch.argmin(dist, dim=1).view(x.size(0), x.size(1)) quantized_onehot = F.one_hot(quantized_idx, self.emb_size) return quantized_idx, quantized_onehot def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4]
ConvPlus
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/g6/cg6ggbgmjcrpyy6skkvmdrhjstximmnocghnc7q5sven6g5bhojo.py # Topologically Sorted Source Nodes: [conv2d, conv2d_1, add], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # add => add # conv2d => convolution # conv2d_1 => convolution_1 # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %convolution_1), kwargs = {}) triton_poi_fused_add_convolution_0 = async_compile.triton('triton_poi_fused_add_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 1), (12, 3, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 3), (12, 3, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, conv2d_1, add], Original ATen: [aten.convolution, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_convolution_0.run(buf2, primals_2, buf1, primals_5, 256, grid=grid(256), stream=stream0) del buf1 del primals_2 del primals_5 return (buf2, primals_1, primals_3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 1), (12, 3, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 3), (12, 3, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class ConvPlus(nn.Module): def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): super(ConvPlus, self).__init__() self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias =bias) self.cv2 = nn.Conv2d(c1, c2, (1, k), s, (0, k // 2), groups=g, bias =bias) def forward(self, x): return self.cv1(x) + self.cv2(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'c1': 4, 'c2': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x3, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 1), (12, 3, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 3), (12, 3, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_convolution_0[grid(256)](buf2, primals_2, buf1, primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_2 del primals_5 return buf2, primals_1, primals_3, primals_4 class ConvPlusNew(nn.Module): def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): super(ConvPlusNew, self).__init__() self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias =bias) self.cv2 = nn.Conv2d(c1, c2, (1, k), s, (0, k // 2), groups=g, bias =bias) def forward(self, input_0): primals_1 = self.cv1.weight primals_2 = self.cv1.bias primals_4 = self.cv2.weight primals_5 = self.cv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
verchable/GenderDiversityCalc
ConvPlus
false
4,483
[ "Apache-2.0" ]
0
eb07fbc9d13e567de4efd8ea2a0aae793a06bf1d
https://github.com/verchable/GenderDiversityCalc/tree/eb07fbc9d13e567de4efd8ea2a0aae793a06bf1d
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): super().__init__() self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias =bias) self.cv2 = nn.Conv2d(c1, c2, (1, k), s, (0, k // 2), groups=g, bias =bias) def forward(self, x): return self.cv1(x) + self.cv2(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Mean
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/k7/ck7f3e36x4bp7ysaeucdkbkabvflugky7lt72frthtbqzwdsmcfq.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [4]), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torchvision.datasets import * import torch.nn as nn from torchvision.transforms import * class Mean(nn.Module): def __init__(self, dim, keep_dim=False): super(Mean, self).__init__() self.dim = dim self.keep_dim = keep_dim def forward(self, input): return input.mean(self.dim, self.keep_dim) def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torchvision.datasets import * import torch.nn as nn from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class MeanNew(nn.Module): def __init__(self, dim, keep_dim=False): super(MeanNew, self).__init__() self.dim = dim self.keep_dim = keep_dim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
tousifulhaque/DANet
Mean
false
4,484
[ "MIT" ]
0
1a0c91f0e551a071b5e335b4157313780a8a1b1a
https://github.com/tousifulhaque/DANet/tree/1a0c91f0e551a071b5e335b4157313780a8a1b1a
import torch from torchvision.datasets import * import torch.nn as nn from torchvision.transforms import * class Model(nn.Module): def __init__(self, dim, keep_dim=False): super().__init__() self.dim = dim self.keep_dim = keep_dim def forward(self, input): return input.mean(self.dim, self.keep_dim) def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [4]
cheap_cnn
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/lg/clgnkdclmu24adiu7cbx7ybrhsind74uypy3cvuihzwv4hxzyjlf.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 492032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3844) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qs/cqs5g6gbeoosrredhz7g7iw7v246syyqjwkjn2w2y4jmhidspzti.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 921600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 3600) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/gl/cgl6ves5ty3jwlbi6fjlzhdf377vzaqjlefere5arwdb454puopk.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 430592 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3364) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ou/coue73fehzdklaz7a6ztexduyiq3tasj7cg3tildgvdruybr4b42.py # Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x_3 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25088 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x1 = (xindex // 3136) % 2 x0 = xindex % 3136 x3 = (xindex // 3136) tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x0 + (3200*x3)), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (32, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_3, (32, ), (1, )) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (32, ), (1, )) assert_size_stride(primals_8, (2, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 62, 62), (123008, 3844, 62, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 492032, grid=grid(492032), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 60, 60), (230400, 3600, 60, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 921600, grid=grid(921600), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 58, 58), (107648, 3364, 58, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_7, 430592, grid=grid(430592), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 2, 56, 56), (6272, 3136, 56, 1)) buf7 = buf6; del buf6 # reuse buf8 = empty_strided_cuda((4, 2, 56, 56), (6400, 3200, 56, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_3.run(buf7, primals_9, buf8, 25088, grid=grid(25088), stream=stream0) del primals_9 return (reinterpret_tensor(buf7, (4, 6272), (6272, 1), 0), primals_1, primals_2, primals_4, primals_6, primals_8, buf1, buf3, buf5, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((2, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class cheap_cnn(nn.Module): def __init__(self): super(cheap_cnn, self).__init__() self.cnn1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3) self.cnn2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3) self.cnn3 = nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3) self.cnn4 = nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3) self.flatten = nn.Flatten() def forward(self, x): x.size(0) x = F.relu(self.cnn1(x)) x = F.relu(self.cnn2(x)) x = F.relu(self.cnn3(x)) x = F.relu(self.cnn4(x)) return self.flatten(x) def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 492032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3844 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 3600 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 430592 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3364 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25088 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x1 = xindex // 3136 % 2 x0 = xindex % 3136 x3 = xindex // 3136 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + (x0 + 3200 * x3), tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (32, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_3, (32,), (1,)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (2, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 62, 62), (123008, 3844, 62, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(492032)](buf1, primals_3, 492032, XBLOCK=1024, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 60, 60), (230400, 3600, 60, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(921600)](buf3, primals_5, 921600, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 58, 58), (107648, 3364, 58, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(430592)](buf5, primals_7, 430592, XBLOCK=512, num_warps=8, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 2, 56, 56), (6272, 3136, 56, 1)) buf7 = buf6 del buf6 buf8 = empty_strided_cuda((4, 2, 56, 56), (6400, 3200, 56, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_3[grid(25088)]( buf7, primals_9, buf8, 25088, XBLOCK=256, num_warps=4, num_stages=1 ) del primals_9 return (reinterpret_tensor(buf7, (4, 6272), (6272, 1), 0), primals_1, primals_2, primals_4, primals_6, primals_8, buf1, buf3, buf5, buf8) class cheap_cnnNew(nn.Module): def __init__(self): super(cheap_cnnNew, self).__init__() self.cnn1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3) self.cnn2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3) self.cnn3 = nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3) self.cnn4 = nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3) self.flatten = nn.Flatten() def forward(self, input_0): primals_2 = self.cnn1.weight primals_3 = self.cnn1.bias primals_4 = self.cnn2.weight primals_5 = self.cnn2.bias primals_6 = self.cnn3.weight primals_7 = self.cnn3.bias primals_8 = self.cnn4.weight primals_9 = self.cnn4.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
vaibhav117/sim2real4real
cheap_cnn
false
4,485
[ "MIT" ]
0
b1f253ef359eda0c7e3b594f89c8a35f0cf925bf
https://github.com/vaibhav117/sim2real4real/tree/b1f253ef359eda0c7e3b594f89c8a35f0cf925bf
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.cnn1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3) self.cnn2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3) self.cnn3 = nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3) self.cnn4 = nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3) self.flatten = nn.Flatten() def forward(self, x): x.size(0) x = F.relu(self.cnn1(x)) x = F.relu(self.cnn2(x)) x = F.relu(self.cnn3(x)) x = F.relu(self.cnn4(x)) return self.flatten(x) def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
ZeroCenter
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/wq/cwqbv34bbuhhwqixqqy22qjvbskqx7bhoe7duzgenp46ms2gungm.py # Topologically Sorted Source Nodes: [mean, sub_], Original ATen: [aten.mean, aten.sub] # Source node to ATen node mapping: # mean => mean # sub_ => sub # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %unsqueeze_1), kwargs = {}) # %copy_ : [num_users=1] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %sub), kwargs = {}) triton_per_fused_mean_sub_0 = async_compile.triton('triton_per_fused_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_sub_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr2'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 64.0 tmp6 = tmp4 / tmp5 tmp7 = tmp0 - tmp6 tl.store(out_ptr2 + (r1 + (64*x0)), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [mean, sub_], Original ATen: [aten.mean, aten.sub] stream0 = get_raw_stream(0) triton_per_fused_mean_sub_0.run(arg0_1, arg0_1, 4, 64, grid=grid(4), stream=stream0) return (arg0_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ZeroCenter(nn.Module): def __init__(self): super().__init__() def forward(self, x): """x : [B, C, H, W]""" return x.sub_(x.flatten(1).mean(1, keepdim=True).unsqueeze(-1). unsqueeze(-1)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_per_fused_mean_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 64.0 tmp6 = tmp4 / tmp5 tmp7 = tmp0 - tmp6 tl.store(out_ptr2 + (r1 + 64 * x0), tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) get_raw_stream(0) triton_per_fused_mean_sub_0[grid(4)](arg0_1, arg0_1, 4, 64, XBLOCK= 1, num_warps=2, num_stages=1) return arg0_1, class ZeroCenterNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vinnamkim/segmentation_models.pytorch
ZeroCenter
false
4,486
[ "MIT" ]
0
f967ded34df6fb536e8e8cba9b6491ae63b939f5
https://github.com/vinnamkim/segmentation_models.pytorch/tree/f967ded34df6fb536e8e8cba9b6491ae63b939f5
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x): """x : [B, C, H, W]""" return x.sub_(x.flatten(1).mean(1, keepdim=True).unsqueeze(-1). unsqueeze(-1)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
EnsembleDense
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/jv/cjvcsredzlnp5p23u3wgkkflope6kvqewy3nepikau7sddqcldfj.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%bmm, %primals_3), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(primals_2, primals_1, out=buf0) del primals_1 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn class EnsembleDense(nn.Module): __constants__ = ['num_ensembles', 'in_features', 'out_features'] in_features: 'int' out_features: 'int' weight: 'torch.Tensor' def __init__(self, num_ensembles: 'int', in_features: 'int', out_features: 'int', bias: 'bool'=True) ->None: super(EnsembleDense, self).__init__() self.num_ensembles = num_ensembles self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.Tensor(num_ensembles, in_features, out_features)) if bias: self.bias = nn.Parameter(torch.Tensor(num_ensembles, 1, out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) ->None: fan = self.in_features gain = nn.init.calculate_gain('leaky_relu', param=math.sqrt(5)) std = gain / math.sqrt(fan) bound = math.sqrt(3.0) * std with torch.no_grad(): nn.init.uniform_(self.weight, -bound, bound) if self.bias is not None: fan_in = self.in_features bound = 1 / math.sqrt(fan_in) nn.init.uniform_(self.bias, -bound, bound) def forward(self, input: 'torch.Tensor') ->torch.Tensor: return torch.bmm(input, self.weight) + self.bias def extra_repr(self) ->str: return ('num_ensembles={}, in_features={}, out_features={}, bias={}' .format(self.num_ensembles, self.in_features, self.out_features, self.bias is not None)) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'num_ensembles': 4, 'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_2, primals_1, out=buf0) del primals_1 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(64)](buf1, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0) class EnsembleDenseNew(nn.Module): __constants__ = ['num_ensembles', 'in_features', 'out_features'] in_features: 'int' out_features: 'int' weight: 'torch.Tensor' def __init__(self, num_ensembles: 'int', in_features: 'int', out_features: 'int', bias: 'bool'=True) ->None: super(EnsembleDenseNew, self).__init__() self.num_ensembles = num_ensembles self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.Tensor(num_ensembles, in_features, out_features)) if bias: self.bias = nn.Parameter(torch.Tensor(num_ensembles, 1, out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) ->None: fan = self.in_features gain = nn.init.calculate_gain('leaky_relu', param=math.sqrt(5)) std = gain / math.sqrt(fan) bound = math.sqrt(3.0) * std with torch.no_grad(): nn.init.uniform_(self.weight, -bound, bound) if self.bias is not None: fan_in = self.in_features bound = 1 / math.sqrt(fan_in) nn.init.uniform_(self.bias, -bound, bound) def extra_repr(self) ->str: return ('num_ensembles={}, in_features={}, out_features={}, bias={}' .format(self.num_ensembles, self.in_features, self.out_features, self.bias is not None)) def forward(self, input_0): primals_1 = self.weight primals_3 = self.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
vermouth1992/rlutils
EnsembleDense
false
4,487
[ "Apache-2.0" ]
0
a326373b9e39dbf147c6c4261b82a688d4dc3e78
https://github.com/vermouth1992/rlutils/tree/a326373b9e39dbf147c6c4261b82a688d4dc3e78
import math import torch from torch import nn class Model(nn.Module): __constants__ = ['num_ensembles', 'in_features', 'out_features'] in_features: 'int' out_features: 'int' weight: 'torch.Tensor' def __init__(self, num_ensembles: 'int', in_features: 'int', out_features: 'int', bias: 'bool'=True) ->None: super().__init__() self.num_ensembles = num_ensembles self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.Tensor(num_ensembles, in_features, out_features)) if bias: self.bias = nn.Parameter(torch.Tensor(num_ensembles, 1, out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) ->None: fan = self.in_features gain = nn.init.calculate_gain('leaky_relu', param=math.sqrt(5)) std = gain / math.sqrt(fan) bound = math.sqrt(3.0) * std with torch.no_grad(): nn.init.uniform_(self.weight, -bound, bound) if self.bias is not None: fan_in = self.in_features bound = 1 / math.sqrt(fan_in) nn.init.uniform_(self.bias, -bound, bound) def forward(self, input: 'torch.Tensor') ->torch.Tensor: return torch.bmm(input, self.weight) + self.bias def extra_repr(self) ->str: return ('num_ensembles={}, in_features={}, out_features={}, bias={}' .format(self.num_ensembles, self.in_features, self.out_features, self.bias is not None)) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [logp], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # logp => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jw/cjwpmepxdrhjkf3qqr4e6qwmehd4cbfk26molvzkvgaoyj3su3bt.py # Topologically Sorted Source Nodes: [logp, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.exp, aten.rsub, aten.pow, aten.mean] # Source node to ATen node mapping: # logp => div, exp, log, mul, neg, sub_1, sum_1, sum_2 # loss => mul_1 # mean => mean # neg => neg_1 # p => exp_1 # pow_1 => pow_1 # sub => sub_2 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%div,), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %div), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {}) triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1 = async_compile.triton('triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (r3), None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = -tmp18 tmp20 = 0.015625 tmp21 = tmp19 * tmp20 tmp22 = -tmp21 tmp23 = tl_math.exp(tmp22) tmp24 = 1.0 tmp25 = tmp24 - tmp23 tmp26 = tmp24 * tmp21 tmp27 = tmp26 / tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp27, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [logp], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [logp, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.exp, aten.rsub, aten.pow, aten.mean] triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1.run(buf2, buf0, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torchvision.datasets.folder import * class FocalLoss(nn.Module): def __init__(self, gamma=0, eps=1e-07): super(FocalLoss, self).__init__() self.gamma = gamma self.eps = eps self.ce = torch.nn.CrossEntropyLoss() def forward(self, input, target): logp = self.ce(input, target) p = torch.exp(-logp) loss = (1 - p) ** self.gamma * logp return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn from torchvision.datasets.folder import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr1 + r3, None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = -tmp18 tmp20 = 0.015625 tmp21 = tmp19 * tmp20 tmp22 = -tmp21 tmp23 = tl_math.exp(tmp22) tmp24 = 1.0 tmp24 - tmp23 tmp26 = tmp24 * tmp21 tmp27 = tmp26 / tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp27, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1[grid (1)](buf2, buf0, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf2, class FocalLossNew(nn.Module): def __init__(self, gamma=0, eps=1e-07): super(FocalLossNew, self).__init__() self.gamma = gamma self.eps = eps self.ce = torch.nn.CrossEntropyLoss() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
tks1998/Pytorch-Face-recongition-state-of-the-art-Qmul-surveface-
FocalLoss
false
4,488
[ "MIT" ]
0
e4068db0c53a4c6b8e81127191687662806af8d8
https://github.com/tks1998/Pytorch-Face-recongition-state-of-the-art-Qmul-surveface-/tree/e4068db0c53a4c6b8e81127191687662806af8d8
import torch from torch import nn from torchvision.datasets.folder import * class Model(nn.Module): def __init__(self, gamma=0, eps=1e-07): super().__init__() self.gamma = gamma self.eps = eps self.ce = torch.nn.CrossEntropyLoss() def forward(self, input, target): logp = self.ce(input, target) p = torch.exp(-logp) loss = (1 - p) ** self.gamma * logp return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Simple_AUG
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ne/cnek2kyc2lfmkak6sjslhuyr57jc2v2swdxke5dohb5z6hxy62jr.py # Topologically Sorted Source Nodes: [conv2d, fea], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # fea => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 81920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 5 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nl/cnl55idjy3jxmf6ziqbi4hwv66dhs7wbnteaco2wcjjslpb7sotx.py # Topologically Sorted Source Nodes: [fea_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # fea_2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 20480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tf/ctfdh7q6f3aguweuhcrsnbjpoahxxgpzsirapc6nnwpshknn6ssq.py # Topologically Sorted Source Nodes: [conv2d_2, fea_3], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # fea_3 => gt_2, mul_2, where_2 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.2), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 5 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ck/cckwfhtqauwarijbf4oktcmecw4wco65vxa4nvz67izghpx6mo43.py # Topologically Sorted Source Nodes: [fea_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # fea_5 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 5120 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/av/cavvwsblj4eesengjnj5x3ztl252eca4k6bzjzafwfdlc6u6vu5o.py # Topologically Sorted Source Nodes: [conv2d_4, fea_6], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # fea_6 => gt_4, mul_4, where_4 # Graph fragment: # %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.2), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_4, %mul_4), kwargs = {}) triton_poi_fused_convolution_leaky_relu_4 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 5120 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 256) % 5 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2c/c2cjdygl6kofnyyqymxlec7j6uzfn2remgsunuqhhzwahloe5u4g.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_12, %primals_13, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 256) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (5, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (5, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (5, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_5, (5, ), (1, )) assert_size_stride(primals_6, (5, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_7, (5, ), (1, )) assert_size_stride(primals_8, (5, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_9, (5, ), (1, )) assert_size_stride(primals_10, (5, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_11, (5, ), (1, )) assert_size_stride(primals_12, (3, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_13, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 5, 64, 64), (20480, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, fea], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf1, primals_2, 81920, grid=grid(81920), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 5, 64, 64), (20480, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, fea_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf3, primals_5, 81920, grid=grid(81920), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 5, 32, 32), (5120, 1024, 32, 1), torch.float32) buf5 = empty_strided_cuda((4, 5, 32, 32), (5120, 1024, 32, 1), torch.int8) # Topologically Sorted Source Nodes: [fea_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf3, buf4, buf5, 20480, grid=grid(20480), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 5, 32, 32), (5120, 1024, 32, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [conv2d_2, fea_3], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf7, primals_7, 20480, grid=grid(20480), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 5, 32, 32), (5120, 1024, 32, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [conv2d_3, fea_4], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf9, primals_9, 20480, grid=grid(20480), stream=stream0) del primals_9 buf10 = empty_strided_cuda((4, 5, 16, 16), (1280, 256, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 5, 16, 16), (1280, 256, 16, 1), torch.int8) # Topologically Sorted Source Nodes: [fea_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf9, buf10, buf11, 5120, grid=grid(5120), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 5, 16, 16), (1280, 256, 16, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [conv2d_4, fea_6], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_4.run(buf13, primals_11, 5120, grid=grid(5120), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 3, 16, 16), (768, 256, 16, 1)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] triton_poi_fused_convolution_5.run(buf15, primals_13, 3072, grid=grid(3072), stream=stream0) del primals_13 return (buf15, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((5, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((5, 5, 3, 3), (45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((5, 5, 3, 3), (45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((5, 5, 3, 3), (45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((5, 5, 3, 3), (45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((3, 5, 3, 3), (45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch import autograd as autograd import torch.fft from itertools import product as product class Simple_AUG(nn.Module): def __init__(self, in_nc=3, out_nc=3, nf=5): super(Simple_AUG, self).__init__() self.c1 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) self.c2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.c3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.c4 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.c5 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.c6 = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) self.mp = nn.MaxPool2d(2) def forward(self, x): fea = self.lrelu(self.c1(x)) fea = self.lrelu(self.c2(fea)) fea = self.mp(fea) fea = self.lrelu(self.c3(fea)) fea = self.lrelu(self.c4(fea)) fea = self.mp(fea) fea = self.lrelu(self.c5(fea)) out = self.c6(fea) return out def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from torch import autograd as autograd import torch.fft from itertools import product as product assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 5 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 5 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 5120 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 5120 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 256 % 5 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 256 % 3 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (5, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (5,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (5, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_5, (5,), (1,)) assert_size_stride(primals_6, (5, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_7, (5,), (1,)) assert_size_stride(primals_8, (5, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_9, (5,), (1,)) assert_size_stride(primals_10, (5, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_11, (5,), (1,)) assert_size_stride(primals_12, (3, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_13, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 5, 64, 64), (20480, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(81920)](buf1, primals_2, 81920, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 5, 64, 64), (20480, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_leaky_relu_0[grid(81920)](buf3, primals_5, 81920, XBLOCK=512, num_warps=8, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 5, 32, 32), (5120, 1024, 32, 1), torch.float32) buf5 = empty_strided_cuda((4, 5, 32, 32), (5120, 1024, 32, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(20480)](buf3, buf4, buf5, 20480, XBLOCK=256, num_warps=4, num_stages=1) buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 5, 32, 32), (5120, 1024, 32, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_leaky_relu_2[grid(20480)](buf7, primals_7, 20480, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 5, 32, 32), (5120, 1024, 32, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_leaky_relu_2[grid(20480)](buf9, primals_9, 20480, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf10 = empty_strided_cuda((4, 5, 16, 16), (1280, 256, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 5, 16, 16), (1280, 256, 16, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(5120)](buf9, buf10, buf11, 5120, XBLOCK=256, num_warps=4, num_stages=1) buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 5, 16, 16), (1280, 256, 16, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_leaky_relu_4[grid(5120)](buf13, primals_11, 5120, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 3, 16, 16), (768, 256, 16, 1)) buf15 = buf14 del buf14 triton_poi_fused_convolution_5[grid(3072)](buf15, primals_13, 3072, XBLOCK=256, num_warps=4, num_stages=1) del primals_13 return (buf15, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13) class Simple_AUGNew(nn.Module): def __init__(self, in_nc=3, out_nc=3, nf=5): super(Simple_AUGNew, self).__init__() self.c1 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) self.c2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.c3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.c4 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.c5 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.c6 = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) self.mp = nn.MaxPool2d(2) def forward(self, input_0): primals_1 = self.c1.weight primals_2 = self.c1.bias primals_4 = self.c2.weight primals_5 = self.c2.bias primals_6 = self.c3.weight primals_7 = self.c3.bias primals_8 = self.c4.weight primals_9 = self.c4.bias primals_10 = self.c5.weight primals_11 = self.c5.bias primals_12 = self.c6.weight primals_13 = self.c6.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
varun-jois/KAIR
Simple_AUG
false
4,489
[ "MIT" ]
0
90c04671c6eb32a6765edfec94f7db3ba1f53f1e
https://github.com/varun-jois/KAIR/tree/90c04671c6eb32a6765edfec94f7db3ba1f53f1e
import torch import torch.nn as nn from torch import autograd as autograd import torch.fft from itertools import product as product class Model(nn.Module): def __init__(self, in_nc=3, out_nc=3, nf=5): super().__init__() self.c1 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) self.c2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.c3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.c4 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.c5 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.c6 = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) self.mp = nn.MaxPool2d(2) def forward(self, x): fea = self.lrelu(self.c1(x)) fea = self.lrelu(self.c2(fea)) fea = self.mp(fea) fea = self.lrelu(self.c3(fea)) fea = self.lrelu(self.c4(fea)) fea = self.mp(fea) fea = self.lrelu(self.c5(fea)) out = self.c6(fea) return out def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
Normalize
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/u5/cu5tw77lfvkyaaiztkarkuj2qevbj2pou7betimkhsx76oqn2hav.py # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.div] # Source node to ATen node mapping: # outputs => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %expand), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp5 * tmp5 tmp7 = tmp3 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp7 + tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp11 + tmp14 tmp16 = 0.25 tmp17 = libdevice.pow(tmp15, tmp16) tmp18 = 1e-12 tmp19 = triton_helpers.maximum(tmp17, tmp18) tmp20 = tmp0 / tmp19 tl.store(out_ptr0 + (x2), tmp20, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as functional class Normalize(nn.Module): def __init__(self, dim: 'int', p: 'int'): super().__init__() self.dim = dim self.p = p def forward(self, inputs): outputs = functional.normalize(inputs, dim=self.dim, p=self.p) return outputs def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4, 'p': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp2 = tmp1 * tmp1 tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp5 * tmp5 tmp7 = tmp3 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp7 + tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp11 + tmp14 tmp16 = 0.25 tmp17 = libdevice.pow(tmp15, tmp16) tmp18 = 1e-12 tmp19 = triton_helpers.maximum(tmp17, tmp18) tmp20 = tmp0 / tmp19 tl.store(out_ptr0 + x2, tmp20, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(1024)](arg0_1, buf0, 1024, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class NormalizeNew(nn.Module): def __init__(self, dim: 'int', p: 'int'): super().__init__() self.dim = dim self.p = p def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
uripatish/torchup
Normalize
false
4,490
[ "MIT" ]
0
0b7bee031fc99e536342331ba567c523a790d742
https://github.com/uripatish/torchup/tree/0b7bee031fc99e536342331ba567c523a790d742
import torch import torch.nn as nn import torch.nn.functional as functional class Model(nn.Module): def __init__(self, dim: 'int', p: 'int'): super().__init__() self.dim = dim self.p = p def forward(self, inputs): outputs = functional.normalize(inputs, dim=self.dim, p=self.p) return outputs def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ProteinBertPooler
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/hh/chh6c5w5qa6uf7vojzls7kg4by5riqn4sgtlt67ukhrqv4nd6zcl.py # Topologically Sorted Source Nodes: [mean_token_tensor], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean_token_tensor => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1]), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/lz/clzc7c4rqtr7ky6jrepxpu2dlmeo4y66gzcis5bqhwixpt7ktopj.py # Topologically Sorted Source Nodes: [pooled_output_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # pooled_output_1 => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean_token_tensor], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [pooled_output_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class ProteinBertPooler(nn.Module): def __init__(self, config): super().__init__() self.trainable_encoder = config.trainable_encoder if self.trainable_encoder: self.dense = nn.Linear(config.hidden_size, config.hidden_size) else: self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): if self.trainable_encoder: first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) else: mean_token_tensor = hidden_states.mean(dim=1) pooled_output = self.dense(mean_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(trainable_encoder=False, hidden_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused_tanh_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2 class ProteinBertPoolerNew(nn.Module): def __init__(self, config): super().__init__() self.trainable_encoder = config.trainable_encoder if self.trainable_encoder: self.dense = nn.Linear(config.hidden_size, config.hidden_size) else: self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, input_0): primals_2 = self.dense.weight primals_3 = self.dense.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
StephanHeijl/tape
ProteinBertPooler
false
4,491
[ "BSD-3-Clause" ]
0
ec631ca53217686605477cf31af4fb8846ff660f
https://github.com/StephanHeijl/tape/tree/ec631ca53217686605477cf31af4fb8846ff660f
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class Model(nn.Module): def __init__(self, config): super().__init__() self.trainable_encoder = config.trainable_encoder if self.trainable_encoder: self.dense = nn.Linear(config.hidden_size, config.hidden_size) else: self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): if self.trainable_encoder: first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) else: mean_token_tensor = hidden_states.mean(dim=1) pooled_output = self.dense(mean_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(trainable_encoder=False, hidden_size=4)}]
Q
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/sb/csbqfhl3tbhobxxibww6rnv4q33jyajqsvetse4kiun22xct43oo.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (1, 4), (4, 1)) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf2, primals_4, 256, grid=grid(256), stream=stream0) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf4, primals_6, 256, grid=grid(256), stream=stream0) del primals_6 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_8 return (buf6, buf0, buf2, buf4, primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class Q(nn.Module): def __init__(self, state_dim, action_dim, hidden): super(Q, self).__init__() self.fc1 = nn.Linear(state_dim + action_dim, hidden) self.fc2 = nn.Linear(hidden, hidden) self.fc3 = nn.Linear(hidden, 1) self.state_dim = state_dim self.action_dim = action_dim def forward(self, s, a): s = s.reshape(-1, self.state_dim) a = a.reshape(-1, self.action_dim) x = torch.cat((s, a), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4, 'hidden': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (1, 4), (4, 1)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8 ), 0), out=buf1) del primals_3 buf2 = buf1 del buf1 triton_poi_fused_relu_1[grid(256)](buf2, primals_4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4 ), 0), out=buf3) buf4 = buf3 del buf3 triton_poi_fused_relu_1[grid(256)](buf4, primals_6, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_6 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_8 return buf6, buf0, buf2, buf4, primals_7, primals_5 class QNew(nn.Module): def __init__(self, state_dim, action_dim, hidden): super(QNew, self).__init__() self.fc1 = nn.Linear(state_dim + action_dim, hidden) self.fc2 = nn.Linear(hidden, hidden) self.fc3 = nn.Linear(hidden, 1) self.state_dim = state_dim self.action_dim = action_dim def forward(self, input_0, input_1): primals_3 = self.fc1.weight primals_4 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_7 = self.fc3.weight primals_8 = self.fc3.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
victorkich/agaragan
Q
false
4,492
[ "MIT" ]
0
64e312fc4fa42f5952f3ce997bafe674306a9419
https://github.com/victorkich/agaragan/tree/64e312fc4fa42f5952f3ce997bafe674306a9419
import torch import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): def __init__(self, state_dim, action_dim, hidden): super().__init__() self.fc1 = nn.Linear(state_dim + action_dim, hidden) self.fc2 = nn.Linear(hidden, hidden) self.fc3 = nn.Linear(hidden, 1) self.state_dim = state_dim self.action_dim = action_dim def forward(self, s, a): s = s.reshape(-1, self.state_dim) a = a.reshape(-1, self.action_dim) x = torch.cat((s, a), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
ActorSAC
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pc/cpcnody5vnribeimy5hcporemfogbisvqeissw53wnalfzawncvm.py # Topologically Sorted Source Nodes: [log_std_head, log_std_head_1], Original ATen: [aten.relu, aten.clamp, aten.ge, aten.le, aten.logical_and, aten.threshold_backward] # Source node to ATen node mapping: # log_std_head => relu_2 # log_std_head_1 => clamp_max, clamp_min # Graph fragment: # %relu_2 : [num_users=4] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%relu_2, -20), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 2), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%relu_2, -20), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 2), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %le), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_clamp_ge_le_logical_and_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_clamp_ge_le_logical_and_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_le_logical_and_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = -20.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 2.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tmp10 = tmp5 >= tmp6 tmp11 = tmp5 <= tmp8 tmp12 = tmp10 & tmp11 tmp13 = 0.0 tmp14 = tmp5 <= tmp13 tl.store(out_ptr0 + (x0), tmp9, xmask) tl.store(out_ptr1 + (x0), tmp12, xmask) tl.store(out_ptr2 + (x0), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1, ), (1, )) assert_size_stride(primals_8, (1, 4), (4, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf11, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf10, 256, grid=grid(256), stream=stream0) del primals_5 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 1), (1, 4), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [log_std_head, log_std_head_1], Original ATen: [aten.relu, aten.clamp, aten.ge, aten.le, aten.logical_and, aten.threshold_backward] triton_poi_fused_clamp_ge_le_logical_and_relu_threshold_backward_1.run(buf6, primals_9, buf7, buf8, buf9, 64, grid=grid(64), stream=stream0) del buf6 del primals_9 return (reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf8, buf9, primals_8, primals_6, buf10, primals_4, buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class ActorSAC(nn.Module): def __init__(self, state_dim, hidden, min_log_std=-20, max_log_std=2): super(ActorSAC, self).__init__() self.fc1 = nn.Linear(state_dim, hidden) self.fc2 = nn.Linear(hidden, hidden) self.mu_head = nn.Linear(hidden, 1) self.log_std_head = nn.Linear(hidden, 1) self.min_log_std = min_log_std self.max_log_std = max_log_std def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) mu = self.mu_head(x) log_std_head = F.relu(self.log_std_head(x)) log_std_head = torch.clamp(log_std_head, self.min_log_std, self. max_log_std) return mu, log_std_head def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'hidden': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = -20.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 2.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tmp10 = tmp5 >= tmp6 tmp11 = tmp5 <= tmp8 tmp12 = tmp10 & tmp11 tmp13 = 0.0 tmp14 = tmp5 <= tmp13 tl.store(out_ptr0 + x0, tmp9, xmask) tl.store(out_ptr1 + x0, tmp12, xmask) tl.store(out_ptr2 + x0, tmp14, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (1, 4), (4, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3, primals_5, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 1), (1, 4), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) triton_poi_fused_clamp_ge_le_logical_and_relu_threshold_backward_1[grid (64)](buf6, primals_9, buf7, buf8, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf6 del primals_9 return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0 ), buf8, buf9, primals_8, primals_6, buf10, primals_4, buf11 class ActorSACNew(nn.Module): def __init__(self, state_dim, hidden, min_log_std=-20, max_log_std=2): super(ActorSACNew, self).__init__() self.fc1 = nn.Linear(state_dim, hidden) self.fc2 = nn.Linear(hidden, hidden) self.mu_head = nn.Linear(hidden, 1) self.log_std_head = nn.Linear(hidden, 1) self.min_log_std = min_log_std self.max_log_std = max_log_std def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.mu_head.weight primals_7 = self.mu_head.bias primals_8 = self.log_std_head.weight primals_9 = self.log_std_head.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
victorkich/agaragan
ActorSAC
false
4,493
[ "MIT" ]
0
64e312fc4fa42f5952f3ce997bafe674306a9419
https://github.com/victorkich/agaragan/tree/64e312fc4fa42f5952f3ce997bafe674306a9419
import torch import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): def __init__(self, state_dim, hidden, min_log_std=-20, max_log_std=2): super().__init__() self.fc1 = nn.Linear(state_dim, hidden) self.fc2 = nn.Linear(hidden, hidden) self.mu_head = nn.Linear(hidden, 1) self.log_std_head = nn.Linear(hidden, 1) self.min_log_std = min_log_std self.max_log_std = max_log_std def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) mu = self.mu_head(x) log_std_head = F.relu(self.log_std_head(x)) log_std_head = torch.clamp(log_std_head, self.min_log_std, self. max_log_std) return mu, log_std_head def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
PAM_Module
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ko/ckow7ci7f3mygm6ujdzdisip6tet25h4hj6uestesqalhkarwrrw.py # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ei/ceid4re34lmuazxtcmv2cljn2v2emu56yzgps5z74exnddnidgi3.py # Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # mul => mul # out_2 => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_8, %view_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_1), kwargs = {}) triton_poi_fused_add_mul_2 = async_compile.triton('triton_poi_fused_add_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask) tmp3 = tmp1 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [energy], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf3, (4, 4, 16), (64, 16, 1), 0), out=buf4) buf7 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] triton_per_fused__softmax_1.run(buf4, buf7, 64, 16, grid=grid(64), stream=stream0) del buf4 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf9, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf9, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf7, (4, 16, 16), (256, 1, 16), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_2.run(primals_8, buf10, primals_1, buf11, 256, grid=grid(256), stream=stream0) return (buf11, primals_1, primals_2, primals_4, primals_6, primals_8, buf7, buf10, reinterpret_tensor(buf9, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf3, (4, 16, 4), (64, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.serialization import torch import torch.utils.data from torch.nn import Conv2d from torch.nn import Parameter from torch.nn import Softmax class PAM_Module(Module): """ Position attention module""" def __init__(self, in_dim): super(PAM_Module, self).__init__() self.chanel_in = in_dim self.query_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.key_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.value_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.gamma = Parameter(torch.zeros(1)) self.softmax = Softmax(dim=-1) def forward(self, x): """ inputs : x : input feature maps( B X C X H X W) returns : out : attention value + input feature attention: B X (HxW) X (HxW) """ m_batchsize, C, height, width = x.size() proj_query = self.query_conv(x).view(m_batchsize, -1, width * height ).permute(0, 2, 1) proj_key = self.key_conv(x).view(m_batchsize, -1, width * height) energy = torch.bmm(proj_query, proj_key) attention = self.softmax(energy) proj_value = self.value_conv(x).view(m_batchsize, -1, width * height) out = torch.bmm(proj_value, attention.permute(0, 2, 1)) out = out.view(m_batchsize, C, height, width) out = self.gamma * out + x return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module import torch.serialization import torch import torch.utils.data from torch.nn import Conv2d from torch.nn import Parameter from torch.nn import Softmax assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask) @triton.jit def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask) tmp3 = tmp1 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(256)](buf1, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_0[grid(256)](buf3, primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf3, (4, 4, 16), (64, 16, 1), 0), out=buf4) buf7 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) triton_per_fused__softmax_1[grid(64)](buf4, buf7, 64, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf4 buf8 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_0[grid(256)](buf9, primals_7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf9, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf7, (4, 16, 16), (256, 1, 16), 0), out =buf10) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_2[grid(256)](primals_8, buf10, primals_1, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1) return (buf11, primals_1, primals_2, primals_4, primals_6, primals_8, buf7, buf10, reinterpret_tensor(buf9, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf3, (4, 16, 4), (64, 1, 16), 0)) class PAM_ModuleNew(Module): """ Position attention module""" def __init__(self, in_dim): super(PAM_ModuleNew, self).__init__() self.chanel_in = in_dim self.query_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.key_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.value_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.gamma = Parameter(torch.zeros(1)) self.softmax = Softmax(dim=-1) def forward(self, input_0): primals_8 = self.gamma primals_2 = self.query_conv.weight primals_3 = self.query_conv.bias primals_4 = self.key_conv.weight primals_5 = self.key_conv.bias primals_6 = self.value_conv.weight primals_7 = self.value_conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
vis-opt-group/GTANet
PAM_Module
false
4,494
[ "MIT" ]
0
269ff4418ee5f0267987e1fa4c69bda13e5cb00d
https://github.com/vis-opt-group/GTANet/tree/269ff4418ee5f0267987e1fa4c69bda13e5cb00d
from torch.nn import Module import torch import torch.serialization import torch import torch.utils.data from torch.nn import Conv2d from torch.nn import Parameter from torch.nn import Softmax class Model(Module): """ Position attention module""" def __init__(self, in_dim): super().__init__() self.chanel_in = in_dim self.query_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.key_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.value_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.gamma = Parameter(torch.zeros(1)) self.softmax = Softmax(dim=-1) def forward(self, x): """ inputs : x : input feature maps( B X C X H X W) returns : out : attention value + input feature attention: B X (HxW) X (HxW) """ m_batchsize, C, height, width = x.size() proj_query = self.query_conv(x).view(m_batchsize, -1, width * height ).permute(0, 2, 1) proj_key = self.key_conv(x).view(m_batchsize, -1, width * height) energy = torch.bmm(proj_query, proj_key) attention = self.softmax(energy) proj_value = self.value_conv(x).view(m_batchsize, -1, width * height) out = torch.bmm(proj_value, attention.permute(0, 2, 1)) out = out.view(m_batchsize, C, height, width) out = self.gamma * out + x return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
SE_layer_3d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/32/c32gpnu7y6kwawwiknabqcyafcipv27fjg22cpx6wzdxmd52bm4o.py # Topologically Sorted Source Nodes: [adaptive_avg_pool3d], Original ATen: [aten.mean] # Source node to ATen node mapping: # adaptive_avg_pool3d => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2, -3], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 64.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/eb/cebpbupczy3a7z6yffgxybumq5trdt3jp5hxwuoo6w6cunzz7d7h.py # Topologically Sorted Source Nodes: [fc_out_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # fc_out_1 => relu # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/on/conqe4d4fnozzlhg2rifxtzl7xzm5x4mkw6bcinfe6ikluonjq5e.py # Topologically Sorted Source Nodes: [output_tensor], Original ATen: [aten.mul] # Source node to ATen node mapping: # output_tensor => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2, ), (1, )) assert_size_stride(primals_4, (4, 2), (2, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1, 1), (4, 1, 16, 16, 16), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [adaptive_avg_pool3d], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 64, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf2) del primals_2 buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [fc_out_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_3, 8, grid=grid(8), stream=stream0) del primals_3 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf4) del primals_5 buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_tensor], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(primals_1, buf4, buf5, 1024, grid=grid(1024), stream=stream0) return (buf5, primals_1, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf3, buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.multiprocessing class SE_layer_3d(nn.Module): def __init__(self, num_channels, reduction_ratio=2): super(SE_layer_3d, self).__init__() num_channels_reduced = num_channels // reduction_ratio self.reduction_ratio = reduction_ratio self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True) self.relu = nn.ReLU() self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True) self.sigmoid = nn.Sigmoid() self.globalAvgPool = nn.AdaptiveAvgPool3d(1) def forward(self, input_tensor): b, c, _d, _w, _h = input_tensor.size() squeeze_tensor = self.globalAvgPool(input_tensor).view(b, c).float() fc_out_1 = self.relu(self.fc1(squeeze_tensor)) fc_out_2 = self.sigmoid(self.fc2(fc_out_1)) output_tensor = torch.mul(input_tensor, fc_out_2.view(b, c, 1, 1, 1)) return output_tensor def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.multiprocessing assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 64.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2,), (1,)) assert_size_stride(primals_4, (4, 2), (2, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1, 1), (4, 1, 16, 16, 16), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 64, XBLOCK=8, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf2) del primals_2 buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(8)](buf3, primals_3, 8, XBLOCK=8, num_warps=1, num_stages=1) del primals_3 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf4) del primals_5 buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_mul_2[grid(1024)](primals_1, buf4, buf5, 1024, XBLOCK=256, num_warps=4, num_stages=1) return buf5, primals_1, reinterpret_tensor(buf1, (4, 4), (4, 1), 0 ), buf3, buf4, primals_4 class SE_layer_3dNew(nn.Module): def __init__(self, num_channels, reduction_ratio=2): super(SE_layer_3dNew, self).__init__() num_channels_reduced = num_channels // reduction_ratio self.reduction_ratio = reduction_ratio self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True) self.relu = nn.ReLU() self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True) self.sigmoid = nn.Sigmoid() self.globalAvgPool = nn.AdaptiveAvgPool3d(1) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
vinbigdata-medical/abdomen-phases
SE_layer_3d
false
4,495
[ "MIT" ]
0
4adf5b8bf13aec85247d74e3cd3789c52cb88b92
https://github.com/vinbigdata-medical/abdomen-phases/tree/4adf5b8bf13aec85247d74e3cd3789c52cb88b92
import torch import torch.nn as nn import torch.multiprocessing class Model(nn.Module): def __init__(self, num_channels, reduction_ratio=2): super().__init__() num_channels_reduced = num_channels // reduction_ratio self.reduction_ratio = reduction_ratio self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True) self.relu = nn.ReLU() self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True) self.sigmoid = nn.Sigmoid() self.globalAvgPool = nn.AdaptiveAvgPool3d(1) def forward(self, input_tensor): b, c, _d, _w, _h = input_tensor.size() squeeze_tensor = self.globalAvgPool(input_tensor).view(b, c).float() fc_out_1 = self.relu(self.fc1(squeeze_tensor)) fc_out_2 = self.sigmoid(self.fc2(fc_out_1)) output_tensor = torch.mul(input_tensor, fc_out_2.view(b, c, 1, 1, 1)) return output_tensor def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [4]
Mean
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/vz/cvzdeyzbjmguyc7weo3g2iu6knqdlesduaneomlvq4mxjrspo75o.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, []), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0)) tmp4 = 256.0 tmp5 = tmp3 / tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Mean(nn.Module): def __init__(self, *args): super(Mean, self).__init__() self.shape = args def forward(self, x): return x.mean(self.shape) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0)) tmp4 = 256.0 tmp5 = tmp3 / tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp5, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(1)](buf1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 return buf1, class MeanNew(nn.Module): def __init__(self, *args): super(MeanNew, self).__init__() self.shape = args def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vitskvara/shape-guided-anomaly-detection
Mean
false
4,496
[ "MIT" ]
0
6685b2e0b97968a6d0f478d2920486da107b277f
https://github.com/vitskvara/shape-guided-anomaly-detection/tree/6685b2e0b97968a6d0f478d2920486da107b277f
import torch from torch import nn class Model(nn.Module): def __init__(self, *args): super().__init__() self.shape = args def forward(self, x): return x.mean(self.shape) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
HighwayLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/qz/cqza6p5fjiie2hfiu5dfjqqugrnzziwuwxzlhzy2aa7khopxjbym.py # Topologically Sorted Source Nodes: [gate_output], Original ATen: [aten._softmax] # Source node to ATen node mapping: # gate_output => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3v/c3vcvf5mcfw3jy7grlk23jx64xlbsyodas33i5qo4yxxd3nicv2m.py # Topologically Sorted Source Nodes: [transform_output, gate_output, transformation_part, sub, carry_part, add], Original ATen: [aten.relu, aten._softmax, aten.mul, aten.rsub, aten.add] # Source node to ATen node mapping: # add => add # carry_part => mul_1 # gate_output => div, sum_1 # sub => sub_1 # transform_output => relu # transformation_part => mul # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %div), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %primals_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused__softmax_add_mul_relu_rsub_1 = async_compile.triton('triton_poi_fused__softmax_add_mul_relu_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_mul_relu_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_mul_relu_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (x3), xmask) tmp15 = tl.load(in_ptr2 + (x3), xmask) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp10 = tl.full([1], 0, tl.int32) tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp12 = tmp11 * tmp8 tmp13 = 1.0 tmp14 = tmp13 - tmp8 tmp16 = tmp14 * tmp15 tmp17 = tmp12 + tmp16 tl.store(in_out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [gate_output], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [transform_output, gate_output, transformation_part, sub, carry_part, add], Original ATen: [aten.relu, aten._softmax, aten.mul, aten.rsub, aten.add] triton_poi_fused__softmax_add_mul_relu_rsub_1.run(buf4, buf2, buf0, primals_3, 256, grid=grid(256), stream=stream0) del buf2 return (buf4, primals_3, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.onnx.operators class HighwayLayer(nn.Module): def __init__(self, input_dim, transform_activation=F.relu, gate_activation=F.softmax, gate_bias=-2): super().__init__() self.highway_transform_activation = transform_activation self.highway_gate_activation = gate_activation self.highway_transform = nn.Linear(input_dim, input_dim) self.highway_gate = nn.Linear(input_dim, input_dim) self.highway_gate.bias.data.fill_(gate_bias) def forward(self, x): transform_output = self.highway_transform_activation(self. highway_transform(x)) gate_output = self.highway_gate_activation(self.highway_gate(x)) transformation_part = torch.mul(transform_output, gate_output) carry_part = torch.mul(1 - gate_output, x) return torch.add(transformation_part, carry_part) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F import torch.onnx.operators assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_add_mul_relu_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr1 + x3, xmask) tmp15 = tl.load(in_ptr2 + x3, xmask) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp10 = tl.full([1], 0, tl.int32) tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp12 = tmp11 * tmp8 tmp13 = 1.0 tmp14 = tmp13 - tmp8 tmp16 = tmp14 * tmp15 tmp17 = tmp12 + tmp16 tl.store(in_out_ptr0 + x3, tmp17, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = buf3 del buf3 triton_poi_fused__softmax_add_mul_relu_rsub_1[grid(256)](buf4, buf2, buf0, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 return buf4, primals_3, buf0, buf1 class HighwayLayerNew(nn.Module): def __init__(self, input_dim, transform_activation=F.relu, gate_activation=F.softmax, gate_bias=-2): super().__init__() self.highway_transform_activation = transform_activation self.highway_gate_activation = gate_activation self.highway_transform = nn.Linear(input_dim, input_dim) self.highway_gate = nn.Linear(input_dim, input_dim) self.highway_gate.bias.data.fill_(gate_bias) def forward(self, input_0): primals_1 = self.highway_transform.weight primals_2 = self.highway_transform.bias primals_4 = self.highway_gate.weight primals_5 = self.highway_gate.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
vincentLiangBerkeley/translate
HighwayLayer
false
4,497
[ "BSD-3-Clause" ]
0
734ae1ad9dfb778935e4825b5ce2687e2df559ea
https://github.com/vincentLiangBerkeley/translate/tree/734ae1ad9dfb778935e4825b5ce2687e2df559ea
import torch import torch.nn as nn import torch.nn.functional as F import torch.onnx.operators class Model(nn.Module): def __init__(self, input_dim, transform_activation=F.relu, gate_activation=F.softmax, gate_bias=-2): super().__init__() self.highway_transform_activation = transform_activation self.highway_gate_activation = gate_activation self.highway_transform = nn.Linear(input_dim, input_dim) self.highway_gate = nn.Linear(input_dim, input_dim) self.highway_gate.bias.data.fill_(gate_bias) def forward(self, x): transform_output = self.highway_transform_activation(self. highway_transform(x)) gate_output = self.highway_gate_activation(self.highway_gate(x)) transformation_part = torch.mul(transform_output, gate_output) carry_part = torch.mul(1 - gate_output, x) return torch.add(transformation_part, carry_part) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Patch2Image
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/p6/cp6nyfaafsxcfmm4mebbxhlaqzowyfujb6qqkyme56by4eypktzr.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_1 => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) % 4 x3 = (xindex // 256) x4 = xindex tmp0 = tl.load(in_ptr0 + ((4*x1) + (16*x3) + (x0 % 4)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (x4), tmp0, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 16), (1024, 256, 64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 4096, grid=grid(4096), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4, 16, 16), (1024, 256, 16, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Patch2Image(nn.Module): """ take in patch and copy n_up times to form the full image""" def __init__(self, patch_sz, n_up): super(Patch2Image, self).__init__() self.patch_sz = patch_sz self.n_up = n_up def forward(self, x): assert x.shape[-1 ] == self.patch_sz, f'inp.patch_sz ({x.shape[-1]}): =/= self.patch_sz ({self.patch_sz})' x = torch.cat([x] * self.n_up, -1) x = torch.cat([x] * self.n_up, -2) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'patch_sz': 4, 'n_up': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 % 4 x3 = xindex // 256 x4 = xindex tmp0 = tl.load(in_ptr0 + (4 * x1 + 16 * x3 + x0 % 4), None, eviction_policy='evict_last') tl.store(out_ptr0 + x4, tmp0, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 16), (1024, 256, 64, 16, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(4096)](arg0_1, buf0, 4096, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4, 16, 16), (1024, 256, 16, 1), 0), class Patch2ImageNew(nn.Module): """ take in patch and copy n_up times to form the full image""" def __init__(self, patch_sz, n_up): super(Patch2ImageNew, self).__init__() self.patch_sz = patch_sz self.n_up = n_up def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vitskvara/shape-guided-anomaly-detection
Patch2Image
false
4,498
[ "MIT" ]
0
6685b2e0b97968a6d0f478d2920486da107b277f
https://github.com/vitskvara/shape-guided-anomaly-detection/tree/6685b2e0b97968a6d0f478d2920486da107b277f
import torch from torch import nn class Model(nn.Module): """ take in patch and copy n_up times to form the full image""" def __init__(self, patch_sz, n_up): super().__init__() self.patch_sz = patch_sz self.n_up = n_up def forward(self, x): assert x.shape[-1 ] == self.patch_sz, f'inp.patch_sz ({x.shape[-1]}): =/= self.patch_sz ({self.patch_sz})' x = torch.cat([x] * self.n_up, -1) x = torch.cat([x] * self.n_up, -2) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Feature
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ox/cox2ybkqjuarvohngrkwnqr4ehcw652sn4xc4nhy6qfdms3qyhfe.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/us/cusrll7pxpmm3esyc6vi5iyfdkk7oqmzx4mzxbsk3ry5fu4y7rpi.py # Topologically Sorted Source Nodes: [res, res_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # res => convolution_1 # res_1 => relu # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wz/cwz6ryhqp2bbstpstyefgl2vp4vkbxvfsl6tzybbgoxpegvbcuiu.py # Topologically Sorted Source Nodes: [res_2, x_1], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # res_2 => convolution_2 # x_1 => add # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %convolution_2), kwargs = {}) triton_poi_fused_add_convolution_2 = async_compile.triton('triton_poi_fused_add_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_out_ptr0 + (x3), None) tmp2 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nj/cnj7ngfxg4wls2ek6qzgezcue4gxuyxkxhdfv7emaldgy3ym5w4b.py # Topologically Sorted Source Nodes: [x_6, sub], Original ATen: [aten.convolution, aten.sub] # Source node to ATen node mapping: # sub => sub # x_6 => convolution_11 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_4, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %convolution_11), kwargs = {}) triton_poi_fused_convolution_sub_3 = async_compile.triton('triton_poi_fused_convolution_sub_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sub_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sub_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 3 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_out_ptr0 + (x3), None) tmp2 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 - tmp3 tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25 = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (64, ), (1, )) assert_size_stride(primals_12, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_13, (64, ), (1, )) assert_size_stride(primals_14, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_15, (64, ), (1, )) assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_17, (64, ), (1, )) assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (64, ), (1, )) assert_size_stride(primals_20, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_21, (64, ), (1, )) assert_size_stride(primals_22, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_23, (64, ), (1, )) assert_size_stride(primals_24, (3, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_25, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [res], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [res, res_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [res_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [res_2, x_1], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_2.run(buf5, buf1, primals_7, 1048576, grid=grid(1048576), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [res_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [res_3, res_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf7, primals_9, 1048576, grid=grid(1048576), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [res_5], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [res_5, x_2], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_2.run(buf9, buf5, primals_11, 1048576, grid=grid(1048576), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [res_6], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [res_6, res_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf11, primals_13, 1048576, grid=grid(1048576), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [res_8], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [res_8, x_3], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_2.run(buf13, buf9, primals_15, 1048576, grid=grid(1048576), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [res_9], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [res_9, res_10], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf15, primals_17, 1048576, grid=grid(1048576), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [res_11], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [res_11, x_4], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_2.run(buf17, buf13, primals_19, 1048576, grid=grid(1048576), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [res_12], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [res_12, res_13], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf19, primals_21, 1048576, grid=grid(1048576), stream=stream0) del primals_21 # Topologically Sorted Source Nodes: [res_14], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf19, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf21 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [res_14, x_5], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_2.run(buf21, buf17, primals_23, 1048576, grid=grid(1048576), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [x_6, sub], Original ATen: [aten.convolution, aten.sub] triton_poi_fused_convolution_sub_3.run(buf23, primals_3, primals_25, 49152, grid=grid(49152), stream=stream0) del primals_25 return (buf23, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, buf1, buf3, buf5, buf7, buf9, buf11, buf13, buf15, buf17, buf19, buf21, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((3, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.serialization import torch import torch.utils.data class ResBlock(torch.nn.Module): def __init__(self): super(ResBlock, self).__init__() self.conv1 = torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1) self.conv2 = torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1) def forward(self, frames): """ Args: frames: 1x64xHxW Returns: 1x64xHxW """ res = self.conv1(frames) res = torch.nn.functional.relu(res) res = self.conv2(res) return frames + res class Feature(torch.nn.Module): def __init__(self): super(Feature, self).__init__() self.preconv = torch.nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1) self.resblock_1 = ResBlock() self.resblock_2 = ResBlock() self.resblock_3 = ResBlock() self.resblock_4 = ResBlock() self.resblock_5 = ResBlock() self.conv1x1 = torch.nn.Conv2d(in_channels=64, out_channels=3, kernel_size=1) def forward(self, frame): """ Args: frame: 1x3xHxW Returns: 1x3xHxW """ x = self.preconv(frame) x = self.resblock_1(x) x = self.resblock_2(x) x = self.resblock_3(x) x = self.resblock_4(x) x = self.resblock_5(x) x = self.conv1x1(x) return frame - x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.serialization import torch import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_out_ptr0 + x3, None) tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_sub_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_out_ptr0 + x3, None) tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 - tmp3 tl.store(in_out_ptr0 + x3, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25) = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (64,), (1,)) assert_size_stride(primals_12, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_13, (64,), (1,)) assert_size_stride(primals_14, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_15, (64,), (1,)) assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_17, (64,), (1,)) assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (64,), (1,)) assert_size_stride(primals_20, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_21, (64,), (1,)) assert_size_stride(primals_22, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_23, (64,), (1,)) assert_size_stride(primals_24, (3, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_25, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(1048576)](buf1, primals_2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(1048576)](buf3, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf5 = buf4 del buf4 triton_poi_fused_add_convolution_2[grid(1048576)](buf5, buf1, primals_7, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_1[grid(1048576)](buf7, primals_9, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf9 = buf8 del buf8 triton_poi_fused_add_convolution_2[grid(1048576)](buf9, buf5, primals_11, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_11 buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_1[grid(1048576)](buf11, primals_13, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_13 buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf13 = buf12 del buf12 triton_poi_fused_add_convolution_2[grid(1048576)](buf13, buf9, primals_15, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_15 buf14 = extern_kernels.convolution(buf13, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_1[grid(1048576)](buf15, primals_17, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_17 buf16 = extern_kernels.convolution(buf15, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf17 = buf16 del buf16 triton_poi_fused_add_convolution_2[grid(1048576)](buf17, buf13, primals_19, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_19 buf18 = extern_kernels.convolution(buf17, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf19 = buf18 del buf18 triton_poi_fused_convolution_relu_1[grid(1048576)](buf19, primals_21, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_21 buf20 = extern_kernels.convolution(buf19, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf21 = buf20 del buf20 triton_poi_fused_add_convolution_2[grid(1048576)](buf21, buf17, primals_23, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_23 buf22 = extern_kernels.convolution(buf21, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf23 = buf22 del buf22 triton_poi_fused_convolution_sub_3[grid(49152)](buf23, primals_3, primals_25, 49152, XBLOCK=512, num_warps=4, num_stages=1) del primals_25 return (buf23, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, buf1, buf3, buf5, buf7, buf9, buf11, buf13, buf15, buf17, buf19, buf21) class ResBlock(torch.nn.Module): def __init__(self): super(ResBlock, self).__init__() self.conv1 = torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1) self.conv2 = torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1) def forward(self, frames): """ Args: frames: 1x64xHxW Returns: 1x64xHxW """ res = self.conv1(frames) res = torch.nn.functional.relu(res) res = self.conv2(res) return frames + res class FeatureNew(torch.nn.Module): def __init__(self): super(FeatureNew, self).__init__() self.preconv = torch.nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1) self.resblock_1 = ResBlock() self.resblock_2 = ResBlock() self.resblock_3 = ResBlock() self.resblock_4 = ResBlock() self.resblock_5 = ResBlock() self.conv1x1 = torch.nn.Conv2d(in_channels=64, out_channels=3, kernel_size=1) def forward(self, input_0): primals_1 = self.preconv.weight primals_2 = self.preconv.bias primals_4 = self.resblock_1.conv1.weight primals_5 = self.resblock_1.conv1.bias primals_6 = self.resblock_1.conv2.weight primals_7 = self.resblock_1.conv2.bias primals_8 = self.resblock_2.conv1.weight primals_9 = self.resblock_2.conv1.bias primals_10 = self.resblock_2.conv2.weight primals_11 = self.resblock_2.conv2.bias primals_12 = self.resblock_3.conv1.weight primals_13 = self.resblock_3.conv1.bias primals_14 = self.resblock_3.conv2.weight primals_15 = self.resblock_3.conv2.bias primals_16 = self.resblock_4.conv1.weight primals_17 = self.resblock_4.conv1.bias primals_18 = self.resblock_4.conv2.weight primals_19 = self.resblock_4.conv2.bias primals_20 = self.resblock_5.conv1.weight primals_21 = self.resblock_5.conv1.bias primals_22 = self.resblock_5.conv2.weight primals_23 = self.resblock_5.conv2.bias primals_24 = self.conv1x1.weight primals_25 = self.conv1x1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25]) return output[0]
vis-opt-group/GTANet
Feature
false
4,499
[ "MIT" ]
0
269ff4418ee5f0267987e1fa4c69bda13e5cb00d
https://github.com/vis-opt-group/GTANet/tree/269ff4418ee5f0267987e1fa4c69bda13e5cb00d
import torch import torch.serialization import torch import torch.utils.data class ResBlock(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1) self.conv2 = torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1) def forward(self, frames): """ Args: frames: 1x64xHxW Returns: 1x64xHxW """ res = self.conv1(frames) res = torch.nn.functional.relu(res) res = self.conv2(res) return frames + res class Model(torch.nn.Module): def __init__(self): super().__init__() self.preconv = torch.nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1) self.resblock_1 = ResBlock() self.resblock_2 = ResBlock() self.resblock_3 = ResBlock() self.resblock_4 = ResBlock() self.resblock_5 = ResBlock() self.conv1x1 = torch.nn.Conv2d(in_channels=64, out_channels=3, kernel_size=1) def forward(self, frame): """ Args: frame: 1x3xHxW Returns: 1x3xHxW """ x = self.preconv(frame) x = self.resblock_1(x) x = self.resblock_2(x) x = self.resblock_3(x) x = self.resblock_4(x) x = self.resblock_5(x) x = self.conv1x1(x) return frame - x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []