entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
sequencelengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
| pytorch_code
stringlengths 200
4.05k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
OcclusionAwareSimilarity | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/xx/cxx6d2okwgmfv6b6jhzohn4yeb4x2yciroznbxga3cupcdrdm6ck.py
# Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# setitem => full_default, index_put
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %index_put : [num_users=0] = call_function[target=torch.ops.aten.index_put_.default](args = (%arg0_1, [%le], %full_default), kwargs = {})
triton_poi_fused_index_put_lift_fresh_0 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 4.0
tmp2 = tmp0 <= tmp1
tmp3 = 0.0
tmp4 = tl.where(tmp2, tmp3, tmp0)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.lift_fresh, aten.index_put]
stream0 = get_raw_stream(0)
triton_poi_fused_index_put_lift_fresh_0.run(arg0_1, arg0_1, 256, grid=grid(256), stream=stream0)
return (arg0_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class OcclusionAwareSimilarity(nn.Module):
def __init__(self, threshold):
super(OcclusionAwareSimilarity, self).__init__()
self.threshold = threshold
def forward(self, similarity_matrix):
indicator_zero = similarity_matrix <= self.threshold
similarity_matrix[indicator_zero] = 0
return similarity_matrix
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'threshold': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_index_put_lift_fresh_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 4.0
tmp2 = tmp0 <= tmp1
tmp3 = 0.0
tmp4 = tl.where(tmp2, tmp3, tmp0)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
get_raw_stream(0)
triton_poi_fused_index_put_lift_fresh_0[grid(256)](arg0_1, arg0_1,
256, XBLOCK=256, num_warps=4, num_stages=1)
return arg0_1,
class OcclusionAwareSimilarityNew(nn.Module):
def __init__(self, threshold):
super(OcclusionAwareSimilarityNew, self).__init__()
self.threshold = threshold
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| nv-nguyen/template-pose | OcclusionAwareSimilarity | false | 4,095 | [
"MIT"
] | 0 | ce1ffead1887b54efc8031e8e2442ba884e512ec | https://github.com/nv-nguyen/template-pose/tree/ce1ffead1887b54efc8031e8e2442ba884e512ec | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, threshold):
super().__init__()
self.threshold = threshold
def forward(self, similarity_matrix):
indicator_zero = similarity_matrix <= self.threshold
similarity_matrix[indicator_zero] = 0
return similarity_matrix
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SpatialGatingUnit | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/m6/cm6bwhdk6ccdc7sc4qacfvqqjzmregk7iugudvoesmhwtekpv57y.py
# Topologically Sorted Source Nodes: [gate_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# gate_1 => clone, var_mean
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%getitem_1,), kwargs = {memory_format: torch.contiguous_format})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 2.0
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7o/c7ozkbbex2nfc3xpmmlvwtvharv4qtibxdb4x5nxjq7koht7kbmc.py
# Topologically Sorted Source Nodes: [gate_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# gate_1 => add, clone, mul, rsqrt, sub, var_mean
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%getitem_1,), kwargs = {memory_format: torch.contiguous_format})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-06), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %getitem_3), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 + x0 + (4*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp3 - tmp1
tmp5 = tmp4 * tmp4
tmp7 = tmp6 - tmp1
tmp8 = tmp7 * tmp7
tmp9 = tmp5 + tmp8
tmp10 = 2.0
tmp11 = tmp9 / tmp10
tmp12 = 1e-06
tmp13 = tmp11 + tmp12
tmp14 = libdevice.rsqrt(tmp13)
tmp15 = tmp2 * tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/55/c55p3d46aj7dwl47n5k3fdpeiir2g2pjah72qxa3hqg6raphz66q.py
# Topologically Sorted Source Nodes: [gate_3], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# gate_3 => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 2
y1 = (yindex // 2)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (2*x2) + (8*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/3r/c3r7d5gat72eaifir2cecpe7oerhjfddrpqjoty6h6ggoh4ikcmn.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul_2
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_2, %getitem), kwargs = {})
triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_3(in_out_ptr0, in_ptr0, in_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 2
y1 = (yindex // 2)
tmp0 = tl.load(in_out_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 * tmp3
tl.debug_barrier()
tl.store(in_out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (2, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [gate_1], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [gate_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, 32, grid=grid(32), stream=stream0)
del buf0
buf2 = empty_strided_cuda((4, 2, 4), (8, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gate_3], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf1, primals_2, primals_3, buf2, 8, 4, grid=grid(8, 4), stream=stream0)
del primals_2
del primals_3
buf3 = empty_strided_cuda((8, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gate_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf2, (8, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 2), (8, 1, 4), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_3.run(buf4, primals_5, primals_1, 8, 4, grid=grid(8, 4), stream=stream0)
del primals_5
return (buf4, reinterpret_tensor(primals_1, (4, 4, 2), (16, 4, 1), 0), buf1, reinterpret_tensor(buf2, (8, 4), (4, 1), 0), primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SpatialGatingUnit(nn.Module):
def __init__(self, dim_seq, dim_ff):
super().__init__()
self.proj = nn.Linear(dim_seq, dim_seq)
nn.init.zeros_(self.proj.weight)
nn.init.ones_(self.proj.bias)
self.norm = nn.LayerNorm(normalized_shape=dim_ff // 2, eps=1e-06)
self.dim_ff = dim_ff
self.activation = nn.GELU()
def forward(self, x):
res, gate = torch.split(tensor=x, split_size_or_sections=self.
dim_ff // 2, dim=2)
gate = self.norm(gate)
gate = torch.transpose(gate, 1, 2)
gate = self.proj(gate)
gate = torch.transpose(gate, 1, 2)
return gate * res
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim_seq': 4, 'dim_ff': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 2.0
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 + x0 + 4 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp3 - tmp1
tmp5 = tmp4 * tmp4
tmp7 = tmp6 - tmp1
tmp8 = tmp7 * tmp7
tmp9 = tmp5 + tmp8
tmp10 = 2.0
tmp11 = tmp9 / tmp10
tmp12 = 1e-06
tmp13 = tmp11 + tmp12
tmp14 = libdevice.rsqrt(tmp13)
tmp15 = tmp2 * tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 8
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 2
y1 = yindex // 2
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 2 * x2 + 8 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_mul_3(in_out_ptr0, in_ptr0, in_ptr1, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 8
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 2
y1 = yindex // 2
tmp0 = tl.load(in_out_ptr0 + (x2 + 4 * y3), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 * tmp3
tl.debug_barrier()
tl.store(in_out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (2,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(16)](primals_1, buf0, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(32)](primals_1, buf0,
buf1, 32, XBLOCK=32, num_warps=1, num_stages=1)
del buf0
buf2 = empty_strided_cuda((4, 2, 4), (8, 4, 1), torch.float32)
triton_poi_fused_clone_2[grid(8, 4)](buf1, primals_2, primals_3,
buf2, 8, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_2
del primals_3
buf3 = empty_strided_cuda((8, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (8, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 2), (8, 1, 4), 0)
del buf3
triton_poi_fused_mul_3[grid(8, 4)](buf4, primals_5, primals_1, 8, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_5
return buf4, reinterpret_tensor(primals_1, (4, 4, 2), (16, 4, 1), 0
), buf1, reinterpret_tensor(buf2, (8, 4), (4, 1), 0), primals_4
class SpatialGatingUnitNew(nn.Module):
def __init__(self, dim_seq, dim_ff):
super().__init__()
self.proj = nn.Linear(dim_seq, dim_seq)
nn.init.zeros_(self.proj.weight)
nn.init.ones_(self.proj.bias)
self.norm = nn.LayerNorm(normalized_shape=dim_ff // 2, eps=1e-06)
self.dim_ff = dim_ff
self.activation = nn.GELU()
def forward(self, input_0):
primals_4 = self.proj.weight
primals_5 = self.proj.bias
primals_2 = self.norm.weight
primals_3 = self.norm.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| nima1999nikkhah/SimCLR_gMLP | SpatialGatingUnit | false | 4,096 | [
"MIT"
] | 0 | 32cca4764d4266493cb7d141eb9ef01a91f63996 | https://github.com/nima1999nikkhah/SimCLR_gMLP/tree/32cca4764d4266493cb7d141eb9ef01a91f63996 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, dim_seq, dim_ff):
super().__init__()
self.proj = nn.Linear(dim_seq, dim_seq)
nn.init.zeros_(self.proj.weight)
nn.init.ones_(self.proj.bias)
self.norm = nn.LayerNorm(normalized_shape=dim_ff // 2, eps=1e-06)
self.dim_ff = dim_ff
self.activation = nn.GELU()
def forward(self, x):
res, gate = torch.split(tensor=x, split_size_or_sections=self.
dim_ff // 2, dim=2)
gate = self.norm(gate)
gate = torch.transpose(gate, 1, 2)
gate = self.proj(gate)
gate = torch.transpose(gate, 1, 2)
return gate * res
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
BasicModel_ConvNet_MaxPool3d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/oq/coqgjzgrzub35c4izbofdscqaryljafkxqir6ozro7547giqmpg6.py
# Topologically Sorted Source Nodes: [conv3d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv3d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1906624
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x2 = (xindex // 238328) % 2
x0 = xindex % 3844
x5 = (xindex // 3844)
tmp0 = tl.load(in_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + (3872*x5)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qg/cqgdgx6btoeiqhkbtgu3pvqpke3rmcspt2z2gwfwcyvb5jjt5upf.py
# Topologically Sorted Source Nodes: [conv3d_1, x_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv3d_1 => convolution_1
# x_2 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 390224
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 24389) % 4
x0 = xindex % 24389
x4 = (xindex // 24389)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + (24416*x4)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yk/cyk5bvk6vo3q5e3i77a57v3ypz4y6o6qt775lytgeooyezduf5tp.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_5 => relu_2
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 87808
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ww/cwwxdr6e3ruwusfymvqb6ti24bqsbo2po2ar4a4tqers4pjgvq6o.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_3 = async_compile.triton('triton_per_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16384, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 10976
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (10*x0)), tmp11, rmask & xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (2, 1, 3, 3, 3), (27, 27, 9, 3, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (4, 1, 64, 64, 64), (262144, 262144, 4096, 64, 1))
assert_size_stride(primals_4, (4, 2, 3, 3, 3), (54, 27, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (8, 4), (4, 1))
assert_size_stride(primals_7, (8, ), (1, ))
assert_size_stride(primals_8, (10, 8), (8, 1))
assert_size_stride(primals_9, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 62, 62, 62), (476656, 238328, 3844, 62, 1))
buf1 = empty_strided_cuda((4, 2, 62, 62, 62), (480128, 240064, 3872, 62, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv3d, x], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf0, primals_2, buf1, 1906624, grid=grid(1906624), stream=stream0)
del buf0
del primals_2
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool3d_with_indices]
buf2 = torch.ops.aten.max_pool3d_with_indices.default(buf1, [2, 2, 2], [2, 2, 2])
buf3 = buf2[0]
buf4 = buf2[1]
del buf2
# Topologically Sorted Source Nodes: [conv3d_1], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 29, 29, 29), (97556, 24389, 841, 29, 1))
buf6 = empty_strided_cuda((4, 4, 29, 29, 29), (97664, 24416, 841, 29, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv3d_1, x_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf5, primals_5, buf6, 390224, grid=grid(390224), stream=stream0)
del buf5
del primals_5
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool3d_with_indices]
buf7 = torch.ops.aten.max_pool3d_with_indices.default(buf6, [2, 2, 2], [2, 2, 2])
buf8 = buf7[0]
buf9 = buf7[1]
del buf7
buf10 = empty_strided_cuda((10976, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf8, (10976, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 8), (1, 4), 0), out=buf10)
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu]
triton_poi_fused_relu_2.run(buf11, primals_7, 87808, grid=grid(87808), stream=stream0)
del primals_7
buf12 = empty_strided_cuda((10976, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf11, reinterpret_tensor(primals_8, (8, 10), (1, 8), 0), alpha=1, beta=1, out=buf12)
del primals_9
buf15 = empty_strided_cuda((10976, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_per_fused__softmax_3.run(buf12, buf15, 10976, 10, grid=grid(10976), stream=stream0)
del buf12
return (buf15, primals_1, primals_3, primals_4, buf1, buf3, buf4, buf6, buf9, reinterpret_tensor(buf8, (10976, 4), (4, 1), 0), buf11, buf15, primals_8, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 1, 3, 3, 3), (27, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 64, 64, 64), (262144, 262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 2, 3, 3, 3), (54, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((10, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class BasicModel_ConvNet_MaxPool3d(nn.Module):
"""Same as above, but with the MaxPool1d replaced
with a MaxPool3d. This is useful because the MaxPool modules
behave differently to other modules from the perspective
of the DeepLift Attributions
"""
def __init__(self):
super().__init__()
self.conv1 = nn.Conv3d(1, 2, 3)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool3d(2)
self.conv2 = nn.Conv3d(2, 4, 3)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool3d(2)
self.fc1 = nn.Linear(4, 8)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(8, 10)
self.softmax = nn.Softmax(dim=1)
self.fc1.weight = nn.Parameter(torch.ones(8, 4))
self.fc2.weight = nn.Parameter(torch.ones(10, 8))
def forward(self, x):
x = self.relu1(self.conv1(x))
x = self.pool1(x)
x = self.relu2(self.conv2(x))
x = self.pool2(x)
x = x.view(-1, 4)
x = self.relu3(self.fc1(x))
x = self.fc2(x)
return self.softmax(x)
def get_inputs():
return [torch.rand([4, 1, 64, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1906624
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x2 = xindex // 238328 % 2
x0 = xindex % 3844
x5 = xindex // 3844
tmp0 = tl.load(in_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 3872 * x5), tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 390224
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 24389 % 4
x0 = xindex % 24389
x4 = xindex // 24389
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 24416 * x4), tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 87808
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_per_fused__softmax_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 10976
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 10 * x0), tmp11, rmask & xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (2, 1, 3, 3, 3), (27, 27, 9, 3, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (4, 1, 64, 64, 64), (262144, 262144, 4096,
64, 1))
assert_size_stride(primals_4, (4, 2, 3, 3, 3), (54, 27, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (8, 4), (4, 1))
assert_size_stride(primals_7, (8,), (1,))
assert_size_stride(primals_8, (10, 8), (8, 1))
assert_size_stride(primals_9, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 62, 62, 62), (476656, 238328, 3844,
62, 1))
buf1 = empty_strided_cuda((4, 2, 62, 62, 62), (480128, 240064, 3872,
62, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(1906624)](buf0, primals_2,
buf1, 1906624, XBLOCK=1024, num_warps=4, num_stages=1)
del buf0
del primals_2
buf2 = torch.ops.aten.max_pool3d_with_indices.default(buf1, [2, 2,
2], [2, 2, 2])
buf3 = buf2[0]
buf4 = buf2[1]
del buf2
buf5 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1, 1),
padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 29, 29, 29), (97556, 24389, 841, 29, 1)
)
buf6 = empty_strided_cuda((4, 4, 29, 29, 29), (97664, 24416, 841,
29, 1), torch.float32)
triton_poi_fused_convolution_relu_1[grid(390224)](buf5, primals_5,
buf6, 390224, XBLOCK=1024, num_warps=4, num_stages=1)
del buf5
del primals_5
buf7 = torch.ops.aten.max_pool3d_with_indices.default(buf6, [2, 2,
2], [2, 2, 2])
buf8 = buf7[0]
buf9 = buf7[1]
del buf7
buf10 = empty_strided_cuda((10976, 8), (8, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf8, (10976, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 8), (1, 4), 0), out=buf10)
buf11 = buf10
del buf10
triton_poi_fused_relu_2[grid(87808)](buf11, primals_7, 87808,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf12 = empty_strided_cuda((10976, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_9, buf11, reinterpret_tensor(primals_8,
(8, 10), (1, 8), 0), alpha=1, beta=1, out=buf12)
del primals_9
buf15 = empty_strided_cuda((10976, 10), (10, 1), torch.float32)
triton_per_fused__softmax_3[grid(10976)](buf12, buf15, 10976, 10,
XBLOCK=8, num_warps=2, num_stages=1)
del buf12
return (buf15, primals_1, primals_3, primals_4, buf1, buf3, buf4, buf6,
buf9, reinterpret_tensor(buf8, (10976, 4), (4, 1), 0), buf11, buf15,
primals_8, primals_6)
class BasicModel_ConvNet_MaxPool3dNew(nn.Module):
"""Same as above, but with the MaxPool1d replaced
with a MaxPool3d. This is useful because the MaxPool modules
behave differently to other modules from the perspective
of the DeepLift Attributions
"""
def __init__(self):
super().__init__()
self.conv1 = nn.Conv3d(1, 2, 3)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool3d(2)
self.conv2 = nn.Conv3d(2, 4, 3)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool3d(2)
self.fc1 = nn.Linear(4, 8)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(8, 10)
self.softmax = nn.Softmax(dim=1)
self.fc1.weight = nn.Parameter(torch.ones(8, 4))
self.fc2.weight = nn.Parameter(torch.ones(10, 8))
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.fc1.weight
primals_7 = self.fc1.bias
primals_8 = self.fc2.weight
primals_9 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| ngduduong/captum | BasicModel_ConvNet_MaxPool3d | false | 4,097 | [
"BSD-3-Clause"
] | 0 | 6fe5f0f23ea975e73e0c0dee79bdc01b4223d283 | https://github.com/ngduduong/captum/tree/6fe5f0f23ea975e73e0c0dee79bdc01b4223d283 | import torch
import torch.nn as nn
class Model(nn.Module):
"""Same as above, but with the MaxPool1d replaced
with a MaxPool3d. This is useful because the MaxPool modules
behave differently to other modules from the perspective
of the DeepLift Attributions
"""
def __init__(self):
super().__init__()
self.conv1 = nn.Conv3d(1, 2, 3)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool3d(2)
self.conv2 = nn.Conv3d(2, 4, 3)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool3d(2)
self.fc1 = nn.Linear(4, 8)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(8, 10)
self.softmax = nn.Softmax(dim=1)
self.fc1.weight = nn.Parameter(torch.ones(8, 4))
self.fc2.weight = nn.Parameter(torch.ones(10, 8))
def forward(self, x):
x = self.relu1(self.conv1(x))
x = self.pool1(x)
x = self.relu2(self.conv2(x))
x = self.pool2(x)
x = x.view(-1, 4)
x = self.relu3(self.fc1(x))
x = self.fc2(x)
return self.softmax(x)
def get_inputs():
return [torch.rand([4, 1, 64, 64, 64])]
def get_init_inputs():
return []
|
SelfMatch2 | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/in/cinpsvuoyhz6qmlmbhyhbylx7r2qwlmioevovcpj3suugwg3n5qo.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/4n/c4niw632n4yhpyujditwdc6ltobyms6fbgeunv2p433a6aknfhoj.py
# Topologically Sorted Source Nodes: [add, add_1, s, mul_1, sub, mul_2, masked_logits], Original ATen: [aten.add, aten.mul, aten.rsub]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# masked_logits => add_3
# mul_1 => mul_1
# mul_2 => mul_2
# s => add_2
# sub => sub
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, %expand_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %bmm), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %primals_6), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_8, %add_2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %primals_8), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, -1e+30), kwargs = {})
# %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
triton_poi_fused_add_mul_rsub_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = (xindex // 4)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_out_ptr0 + (x4), xmask)
tmp6 = tl.load(in_ptr3 + (0))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp8 = tmp5 + tmp7
tmp9 = tmp0 * tmp8
tmp10 = 1.0
tmp11 = tmp10 - tmp0
tmp12 = -1e+30
tmp13 = tmp11 * tmp12
tmp14 = tmp9 + tmp13
tl.store(in_out_ptr0 + (x4), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hg/chg3iq6bscxmmxv5f7tuzgwycb4mgrimwfhv2nauw5rj4tt5cmv2.py
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# probs => amax, exp, sub_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_3, [2], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/zu/czuvep3dmpmqmhiiliwubh4ghdt2qr27va67sszkua7trziinwov.py
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# probs => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2o/c2okiw5ut2ds5fiied7sv3owdjjtnjkockd7vplpsniugj4cnbae.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %bmm_1, %mul_3], 2), kwargs = {})
triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr0 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 * tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp11, tmp16, tmp17)
tmp19 = tl.where(tmp9, tmp10, tmp18)
tmp20 = tl.where(tmp4, tmp5, tmp19)
tl.store(out_ptr0 + (x2), tmp20, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 1), (1, 1))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_6, (1, ), (1, ))
assert_size_stride(primals_7, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_8, (4, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_3, out=buf0)
del primals_3
buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), primals_4, out=buf1)
del primals_4
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, primals_5, buf2, 64, grid=grid(64), stream=stream0)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, s2], Original ATen: [aten.mul, aten.bmm]
extern_kernels.bmm(buf2, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), out=buf3)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [add, add_1, s, mul_1, sub, mul_2, masked_logits], Original ATen: [aten.add, aten.mul, aten.rsub]
triton_poi_fused_add_mul_rsub_1.run(buf4, primals_8, buf0, buf1, primals_6, 64, grid=grid(64), stream=stream0)
del buf0
del buf1
del primals_6
buf5 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
buf7 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, primals_2, out=buf7)
buf8 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(primals_1, buf7, buf8, 192, grid=grid(192), stream=stream0)
del buf7
return (buf8, primals_1, primals_2, primals_8, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
def masked_softmax(logits, mask, dim=-1, log_softmax=False):
"""Take the softmax of `logits` over given dimension, and set
entries to 0 wherever `mask` is 0.
Args:
logits (torch.Tensor): Inputs to the softmax function.
mask (torch.Tensor): Same shape as `logits`, with 0 indicating
positions that should be assigned 0 probability in the output.
dim (int): Dimension over which to take softmax.
log_softmax (bool): Take log-softmax rather than regular softmax.
E.g., some PyTorch functions such as `F.nll_loss` expect log-softmax.
Returns:
probs (torch.Tensor): Result of taking masked softmax over the logits.
"""
mask = mask.type(torch.float32)
masked_logits = mask * logits + (1 - mask) * -1e+30
softmax_fn = F.log_softmax if log_softmax else F.softmax
probs = softmax_fn(masked_logits, dim)
return probs
class SelfMatch2(nn.Module):
"""General-purpose layer for encoding a sequence using a bidirectional RNN.
Encoded output is the RNN's hidden state at each position, which
has shape `(batch_size, seq_len, hidden_size * 2)`.
Args:
input_size (int): Size of a single timestep in the input.
hidden_size (int): Size of the RNN hidden state.
num_layers (int): Number of layers of RNN cells to use.
drop_prob (float): Probability of zero-ing out activations.
"""
def __init__(self, hidden_size, drop_prob=0.1):
super(SelfMatch2, self).__init__()
self.drop_prob = drop_prob
self.q_weight = nn.Parameter(torch.zeros(hidden_size, 1))
self.c_weight = nn.Parameter(torch.zeros(hidden_size, 1))
self.cq_weight = nn.Parameter(torch.zeros(1, 1, hidden_size))
for weight in (self.c_weight, self.q_weight, self.cq_weight):
nn.init.xavier_uniform_(weight)
self.bias = nn.Parameter(torch.zeros(1))
def forward(self, c, q, c_mask, q_mask):
batch_size, c_len, _ = c.size()
q_len = q.size(1)
s = self.get_similarity_matrix(c, q)
c_mask = c_mask.view(batch_size, c_len, 1)
q_mask = q_mask.view(batch_size, 1, q_len)
s1 = masked_softmax(s, q_mask, dim=2)
a = torch.bmm(s1, q)
return torch.cat([c, a, c * a], dim=2)
def get_similarity_matrix(self, c, q):
"""Get the "similarity matrix" between context and query (using the
terminology of the BiDAF paper).
A naive implementation as described in BiDAF would concatenate the
three vectors then project the result with a single weight matrix. This
method is a more memory-efficient implementation of the same operation.
See Also:
Equation 1 in https://arxiv.org/abs/1611.01603
"""
c_len, q_len = c.size(1), q.size(1)
c = F.dropout(c, self.drop_prob, self.training)
q = F.dropout(q, self.drop_prob, self.training)
s0 = torch.matmul(c, self.c_weight).expand([-1, -1, q_len])
s1 = torch.matmul(q, self.q_weight).transpose(1, 2).expand([-1,
c_len, -1])
s2 = torch.matmul(c * self.cq_weight, q.transpose(1, 2))
s = s0 + s1 + s2 + self.bias
return s
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4,
1]), torch.rand([4, 1, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2,
in_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp4 = tl.load(in_out_ptr0 + x4, xmask)
tmp6 = tl.load(in_ptr3 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp8 = tmp5 + tmp7
tmp9 = tmp0 * tmp8
tmp10 = 1.0
tmp11 = tmp10 - tmp0
tmp12 = -1e+30
tmp13 = tmp11 * tmp12
tmp14 = tmp9 + tmp13
tl.store(in_out_ptr0 + x4, tmp14, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr0 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 * tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp11, tmp16, tmp17)
tmp19 = tl.where(tmp9, tmp10, tmp18)
tmp20 = tl.where(tmp4, tmp5, tmp19)
tl.store(out_ptr0 + x2, tmp20, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 1), (1, 1))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_6, (1,), (1,))
assert_size_stride(primals_7, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_8, (4, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
primals_3, out=buf0)
del primals_3
buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
primals_4, out=buf1)
del primals_4
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(64)](primals_1, primals_5, buf2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf2, reinterpret_tensor(primals_2, (4, 4, 4), (
16, 1, 4), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_add_mul_rsub_1[grid(64)](buf4, primals_8, buf0,
buf1, primals_6, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del buf1
del primals_6
buf5 = buf2
del buf2
triton_poi_fused__softmax_2[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused__softmax_3[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf7 = buf5
del buf5
extern_kernels.bmm(buf6, primals_2, out=buf7)
buf8 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.float32)
triton_poi_fused_cat_4[grid(192)](primals_1, buf7, buf8, 192,
XBLOCK=256, num_warps=4, num_stages=1)
del buf7
return buf8, primals_1, primals_2, primals_8, buf6
def masked_softmax(logits, mask, dim=-1, log_softmax=False):
"""Take the softmax of `logits` over given dimension, and set
entries to 0 wherever `mask` is 0.
Args:
logits (torch.Tensor): Inputs to the softmax function.
mask (torch.Tensor): Same shape as `logits`, with 0 indicating
positions that should be assigned 0 probability in the output.
dim (int): Dimension over which to take softmax.
log_softmax (bool): Take log-softmax rather than regular softmax.
E.g., some PyTorch functions such as `F.nll_loss` expect log-softmax.
Returns:
probs (torch.Tensor): Result of taking masked softmax over the logits.
"""
mask = mask.type(torch.float32)
masked_logits = mask * logits + (1 - mask) * -1e+30
softmax_fn = F.log_softmax if log_softmax else F.softmax
probs = softmax_fn(masked_logits, dim)
return probs
class SelfMatch2New(nn.Module):
"""General-purpose layer for encoding a sequence using a bidirectional RNN.
Encoded output is the RNN's hidden state at each position, which
has shape `(batch_size, seq_len, hidden_size * 2)`.
Args:
input_size (int): Size of a single timestep in the input.
hidden_size (int): Size of the RNN hidden state.
num_layers (int): Number of layers of RNN cells to use.
drop_prob (float): Probability of zero-ing out activations.
"""
def __init__(self, hidden_size, drop_prob=0.1):
super(SelfMatch2New, self).__init__()
self.drop_prob = drop_prob
self.q_weight = nn.Parameter(torch.zeros(hidden_size, 1))
self.c_weight = nn.Parameter(torch.zeros(hidden_size, 1))
self.cq_weight = nn.Parameter(torch.zeros(1, 1, hidden_size))
for weight in (self.c_weight, self.q_weight, self.cq_weight):
nn.init.xavier_uniform_(weight)
self.bias = nn.Parameter(torch.zeros(1))
def get_similarity_matrix(self, c, q):
"""Get the "similarity matrix" between context and query (using the
terminology of the BiDAF paper).
A naive implementation as described in BiDAF would concatenate the
three vectors then project the result with a single weight matrix. This
method is a more memory-efficient implementation of the same operation.
See Also:
Equation 1 in https://arxiv.org/abs/1611.01603
"""
c_len, q_len = c.size(1), q.size(1)
c = F.dropout(c, self.drop_prob, self.training)
q = F.dropout(q, self.drop_prob, self.training)
s0 = torch.matmul(c, self.c_weight).expand([-1, -1, q_len])
s1 = torch.matmul(q, self.q_weight).transpose(1, 2).expand([-1,
c_len, -1])
s2 = torch.matmul(c * self.cq_weight, q.transpose(1, 2))
s = s0 + s1 + s2 + self.bias
return s
def forward(self, input_0, input_1, input_2, input_3):
primals_3 = self.q_weight
primals_4 = self.c_weight
primals_5 = self.cq_weight
primals_6 = self.bias
primals_1 = input_0
primals_2 = input_1
primals_7 = input_2
primals_8 = input_3
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| nikcaryo/cs224n-squad | SelfMatch2 | false | 4,098 | [
"MIT"
] | 0 | 4bebca38f3cbaab8c80cd306863d6dca1d9cdf76 | https://github.com/nikcaryo/cs224n-squad/tree/4bebca38f3cbaab8c80cd306863d6dca1d9cdf76 | import torch
import torch.nn as nn
import torch.nn.functional as F
def masked_softmax(logits, mask, dim=-1, log_softmax=False):
"""Take the softmax of `logits` over given dimension, and set
entries to 0 wherever `mask` is 0.
Args:
logits (torch.Tensor): Inputs to the softmax function.
mask (torch.Tensor): Same shape as `logits`, with 0 indicating
positions that should be assigned 0 probability in the output.
dim (int): Dimension over which to take softmax.
log_softmax (bool): Take log-softmax rather than regular softmax.
E.g., some PyTorch functions such as `F.nll_loss` expect log-softmax.
Returns:
probs (torch.Tensor): Result of taking masked softmax over the logits.
"""
mask = mask.type(torch.float32)
masked_logits = mask * logits + (1 - mask) * -1e+30
softmax_fn = F.log_softmax if log_softmax else F.softmax
probs = softmax_fn(masked_logits, dim)
return probs
class Model(nn.Module):
"""General-purpose layer for encoding a sequence using a bidirectional RNN.
Encoded output is the RNN's hidden state at each position, which
has shape `(batch_size, seq_len, hidden_size * 2)`.
Args:
input_size (int): Size of a single timestep in the input.
hidden_size (int): Size of the RNN hidden state.
num_layers (int): Number of layers of RNN cells to use.
drop_prob (float): Probability of zero-ing out activations.
"""
def __init__(self, hidden_size, drop_prob=0.1):
super().__init__()
self.drop_prob = drop_prob
self.q_weight = nn.Parameter(torch.zeros(hidden_size, 1))
self.c_weight = nn.Parameter(torch.zeros(hidden_size, 1))
self.cq_weight = nn.Parameter(torch.zeros(1, 1, hidden_size))
for weight in (self.c_weight, self.q_weight, self.cq_weight):
nn.init.xavier_uniform_(weight)
self.bias = nn.Parameter(torch.zeros(1))
def forward(self, c, q, c_mask, q_mask):
batch_size, c_len, _ = c.size()
q_len = q.size(1)
s = self.get_similarity_matrix(c, q)
c_mask = c_mask.view(batch_size, c_len, 1)
q_mask = q_mask.view(batch_size, 1, q_len)
s1 = masked_softmax(s, q_mask, dim=2)
a = torch.bmm(s1, q)
return torch.cat([c, a, c * a], dim=2)
def get_similarity_matrix(self, c, q):
"""Get the "similarity matrix" between context and query (using the
terminology of the BiDAF paper).
A naive implementation as described in BiDAF would concatenate the
three vectors then project the result with a single weight matrix. This
method is a more memory-efficient implementation of the same operation.
See Also:
Equation 1 in https://arxiv.org/abs/1611.01603
"""
c_len, q_len = c.size(1), q.size(1)
c = F.dropout(c, self.drop_prob, self.training)
q = F.dropout(q, self.drop_prob, self.training)
s0 = torch.matmul(c, self.c_weight).expand([-1, -1, q_len])
s1 = torch.matmul(q, self.q_weight).transpose(1, 2).expand([-1,
c_len, -1])
s2 = torch.matmul(c * self.cq_weight, q.transpose(1, 2))
s = s0 + s1 + s2 + self.bias
return s
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4,
1]), torch.rand([4, 1, 4])]
def get_init_inputs():
return [4]
|
VAE | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/3q/c3qwr2d2rrpjzvnddomnmdy6cwva4hjlvrn2y5epemk4ak3k2m6c.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %add_tensor_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_4,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 400
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ie/cieolaaeqvsfv3mjzo6bw5nfa22ba2euubykpcpbed7pfeykyvy7.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_1 => relu_1
# Graph fragment:
# %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_5), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hb/chbjjrtszu6f3bhry7ireqcm3ie3twpz5s7g7owb3zuauqhiqcby.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# x_2 => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_13), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 784
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 784), (784, 1))
assert_size_stride(primals_2, (400, 784), (784, 1))
assert_size_stride(primals_3, (400, ), (1, ))
assert_size_stride(primals_4, (20, 400), (400, 1))
assert_size_stride(primals_5, (20, ), (1, ))
assert_size_stride(primals_6, (2, 20), (20, 1))
assert_size_stride(primals_7, (2, ), (1, ))
assert_size_stride(primals_8, (20, 2), (2, 1))
assert_size_stride(primals_9, (20, ), (1, ))
assert_size_stride(primals_10, (400, 20), (20, 1))
assert_size_stride(primals_11, (400, ), (1, ))
assert_size_stride(primals_12, (784, 400), (400, 1))
assert_size_stride(primals_13, (784, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 400), (1, 784), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 1600, grid=grid(1600), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (400, 20), (1, 400), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_5, 80, grid=grid(80), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (20, 2), (1, 20), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf4, reinterpret_tensor(primals_8, (2, 20), (1, 2), 0), out=buf5)
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [z_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf6, primals_9, 80, grid=grid(80), stream=stream0)
del primals_9
buf7 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf6, reinterpret_tensor(primals_10, (20, 400), (1, 20), 0), out=buf7)
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [z_2], Original ATen: [aten.relu]
triton_poi_fused_relu_0.run(buf8, primals_11, 1600, grid=grid(1600), stream=stream0)
del primals_11
buf9 = empty_strided_cuda((4, 784), (784, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf8, reinterpret_tensor(primals_12, (400, 784), (1, 400), 0), out=buf9)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf10, primals_13, 3136, grid=grid(3136), stream=stream0)
del primals_13
return (buf10, buf4, primals_1, buf1, buf3, buf4, buf6, buf8, buf10, primals_12, primals_10, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 784), (784, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((400, 784), (784, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((20, 400), (400, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2, 20), (20, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((20, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((400, 20), (20, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((784, 400), (400, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((784, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
from math import *
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc2 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 2)
self.fc4 = nn.Linear(2, 20)
self.fc5 = nn.Linear(20, 400)
self.fc6 = nn.Linear(400, 784)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def encode(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
z = self.fc3(x)
return z
def decode(self, z):
z = self.relu(self.fc4(z))
z = self.relu(self.fc5(z))
return self.sigmoid(self.fc6(z))
def forward(self, x):
z = self.encode(x.view(-1, 784))
x = self.decode(z)
return x, z
def get_inputs():
return [torch.rand([4, 784])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
from math import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 400
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 3136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 784
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 784), (784, 1))
assert_size_stride(primals_2, (400, 784), (784, 1))
assert_size_stride(primals_3, (400,), (1,))
assert_size_stride(primals_4, (20, 400), (400, 1))
assert_size_stride(primals_5, (20,), (1,))
assert_size_stride(primals_6, (2, 20), (20, 1))
assert_size_stride(primals_7, (2,), (1,))
assert_size_stride(primals_8, (20, 2), (2, 1))
assert_size_stride(primals_9, (20,), (1,))
assert_size_stride(primals_10, (400, 20), (20, 1))
assert_size_stride(primals_11, (400,), (1,))
assert_size_stride(primals_12, (784, 400), (400, 1))
assert_size_stride(primals_13, (784,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784,
400), (1, 784), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(1600)](buf1, primals_3, 1600, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (400, 20), (1,
400), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(80)](buf3, primals_5, 80, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6,
(20, 2), (1, 20), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
extern_kernels.mm(buf4, reinterpret_tensor(primals_8, (2, 20), (1,
2), 0), out=buf5)
buf6 = buf5
del buf5
triton_poi_fused_relu_1[grid(80)](buf6, primals_9, 80, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_9
buf7 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
extern_kernels.mm(buf6, reinterpret_tensor(primals_10, (20, 400), (
1, 20), 0), out=buf7)
buf8 = buf7
del buf7
triton_poi_fused_relu_0[grid(1600)](buf8, primals_11, 1600, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_11
buf9 = empty_strided_cuda((4, 784), (784, 1), torch.float32)
extern_kernels.mm(buf8, reinterpret_tensor(primals_12, (400, 784),
(1, 400), 0), out=buf9)
buf10 = buf9
del buf9
triton_poi_fused_sigmoid_2[grid(3136)](buf10, primals_13, 3136,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_13
return (buf10, buf4, primals_1, buf1, buf3, buf4, buf6, buf8, buf10,
primals_12, primals_10, primals_8, primals_6, primals_4)
class VAENew(nn.Module):
def __init__(self):
super(VAENew, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc2 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 2)
self.fc4 = nn.Linear(2, 20)
self.fc5 = nn.Linear(20, 400)
self.fc6 = nn.Linear(400, 784)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def encode(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
z = self.fc3(x)
return z
def decode(self, z):
z = self.relu(self.fc4(z))
z = self.relu(self.fc5(z))
return self.sigmoid(self.fc6(z))
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_8 = self.fc4.weight
primals_9 = self.fc4.bias
primals_10 = self.fc5.weight
primals_11 = self.fc5.bias
primals_12 = self.fc6.weight
primals_13 = self.fc6.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0], output[1]
| niujinshuchong/stochastic_processes | VAE | false | 4,099 | [
"MIT"
] | 0 | ea2538d2f09c39bec1834df5addd37e0699a88bf | https://github.com/niujinshuchong/stochastic_processes/tree/ea2538d2f09c39bec1834df5addd37e0699a88bf | import torch
import torch.nn as nn
import torch.utils.data
from math import *
class Model(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 400)
self.fc2 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 2)
self.fc4 = nn.Linear(2, 20)
self.fc5 = nn.Linear(20, 400)
self.fc6 = nn.Linear(400, 784)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def encode(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
z = self.fc3(x)
return z
def decode(self, z):
z = self.relu(self.fc4(z))
z = self.relu(self.fc5(z))
return self.sigmoid(self.fc6(z))
def forward(self, x):
z = self.encode(x.view(-1, 784))
x = self.decode(z)
return x, z
def get_inputs():
return [torch.rand([4, 784])]
def get_init_inputs():
return []
|
ScaleNorm | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/mu/cmuarwm3vlq4gs3oeozy5j6shatofmj5llavjlhtsvzgkuhhxzyp.py
# Topologically Sorted Source Nodes: [norm, clamp, norm_1, mul], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.reciprocal, aten.mul]
# Source node to ATen node mapping:
# clamp => clamp_min
# mul => mul_1
# norm => pow_1, pow_2, sum_1
# norm_1 => mul, reciprocal
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-05), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%clamp_min,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %mul), kwargs = {})
triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0 = async_compile.triton('triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-05
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tl.full([1], 1, tl.int32)
tmp16 = tmp15 / tmp14
tmp17 = 1.0
tmp18 = tmp16 * tmp17
tmp19 = tmp0 * tmp18
tl.store(out_ptr0 + (x3), tmp19, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm, clamp, norm_1, mul], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.reciprocal, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ScaleNorm(nn.Module):
"""ScaleNorm"""
def __init__(self, scale, eps=1e-05):
super(ScaleNorm, self).__init__()
self.scale = scale
self.eps = eps
def forward(self, x):
norm = self.scale / torch.norm(x, dim=1, keepdim=True).clamp(min=
self.eps)
return x * norm
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'scale': 1.0}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0(in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-05
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tl.full([1], 1, tl.int32)
tmp16 = tmp15 / tmp14
tmp17 = 1.0
tmp18 = tmp16 * tmp17
tmp19 = tmp0 * tmp18
tl.store(out_ptr0 + x3, tmp19, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0[grid(256)](
arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ScaleNormNew(nn.Module):
"""ScaleNorm"""
def __init__(self, scale, eps=1e-05):
super(ScaleNormNew, self).__init__()
self.scale = scale
self.eps = eps
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| nvski/ST-TR | ScaleNorm | false | 4,100 | [
"MIT"
] | 0 | 75aa9fb872af217f8616c01cee7ca6548846260b | https://github.com/nvski/ST-TR/tree/75aa9fb872af217f8616c01cee7ca6548846260b | import torch
import torch.nn as nn
class Model(nn.Module):
"""ScaleNorm"""
def __init__(self, scale, eps=1e-05):
super().__init__()
self.scale = scale
self.eps = eps
def forward(self, x):
norm = self.scale / torch.norm(x, dim=1, keepdim=True).clamp(min=
self.eps)
return x * norm
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [1.0]
|
MTFullyConnected | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/xx/cxxhxzeisdha6lseml3xbmn4swjnr2242wdaitskbwmzmjdh5mi6.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# y => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 4000
x1 = (xindex // 4000)
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x0 + (4096*x1)), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ga/cgalp2f5yff5rnzv5p47lfgfg67vffoad353wh4dwaqcgcwq4xv3.py
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# y_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2000
x1 = (xindex // 2000)
tmp0 = tl.load(in_out_ptr0 + (x0 + (2016*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x0 + (2016*x1)), tmp4, xmask)
tl.store(out_ptr0 + (x0 + (2048*x1)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ua/cuakpm3ttx5zlma7nnvonftzmojmirfj4xxufltek7inabiouoi4.py
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# y_2 => relu_2
# Graph fragment:
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 1000
x2 = xindex % 4000
x3 = (xindex // 4000)
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr0 + (x2 + (4096*x3)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xp/cxpqywcqam7evubfwwa5zmt733w2zov6otomgqgpramgjdsnjg5k.py
# Topologically Sorted Source Nodes: [y_3], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# y_3 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_7,), kwargs = {})
triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4000, 4), (4, 1))
assert_size_stride(primals_2, (4000, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2000, 4000), (4000, 1))
assert_size_stride(primals_5, (2000, ), (1, ))
assert_size_stride(primals_6, (1000, 2000), (2000, 1))
assert_size_stride(primals_7, (1000, ), (1, ))
assert_size_stride(primals_8, (4, 1000), (1000, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4000), (4000, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4000), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4000), (64000, 16000, 4000, 1), 0); del buf0 # reuse
buf10 = empty_strided_cuda((4, 4, 4, 4000), (65536, 16384, 4096, 1), torch.bool)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf10, 256000, grid=grid(256000), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 2000), (2016, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4000), (4000, 1), 0), reinterpret_tensor(primals_4, (4000, 2000), (1, 4000), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2000), (32256, 8064, 2016, 1), 0); del buf2 # reuse
buf9 = empty_strided_cuda((4, 4, 4, 2000), (32768, 8192, 2048, 1), torch.bool)
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf9, 128000, grid=grid(128000), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 1000), (1000, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 2000), (2016, 1), 0), reinterpret_tensor(primals_6, (2000, 1000), (1, 2000), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1000), (16000, 4000, 1000, 1), 0); del buf4 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 1000), (16384, 4096, 1000, 1), torch.bool)
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf8, 64000, grid=grid(64000), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 1000), (1000, 1), 0), reinterpret_tensor(primals_8, (1000, 4), (1, 1000), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [y_3], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_3.run(buf7, primals_9, 256, grid=grid(256), stream=stream0)
del primals_9
return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4000), (4000, 1), 0), reinterpret_tensor(buf3, (64, 2000), (2016, 1), 0), reinterpret_tensor(buf5, (64, 1000), (1000, 1), 0), buf7, primals_8, buf8, primals_6, buf9, primals_4, buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4000, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4000, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2000, 4000), (4000, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2000, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1000, 2000), (2000, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1000, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 1000), (1000, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import time
import torch
import numpy as np
from torch import nn
from torch import optim
from torch.nn import functional as F
class Base(nn.Module):
""" This class is the base structure for all of classification/regression DNN models.
Mainly, it provides the general methods for training, evaluating model and predcting the given data.
"""
def fit(self, train_loader, valid_loader, out, epochs=100, lr=0.0001):
"""Training the DNN model, similar to the scikit-learn or Keras style.
In the end, the optimal value of parameters will also be persisted on the hard drive.
Arguments:
train_loader (DataLoader): Data loader for training set,
including m X n target FloatTensor and m X l label FloatTensor
(m is the No. of sample, n is the No. of features, l is the No. of classes or tasks)
valid_loader (DataLoader): Data loader for validation set.
The data structure is as same as loader_train.
out (str): the file path for the model file (suffix with '.pkg')
and log file (suffix with '.log').
epochs(int, optional): The maximum of training epochs (default: 100)
lr (float, optional): learning rate (default: 1e-4)
"""
if 'optim' in self.__dict__:
optimizer = self.optim
else:
optimizer = optim.Adam(self.parameters(), lr=lr)
best_loss = np.inf
last_save = 0
if not os.path.exists(out):
try:
os.makedirs(out)
except PermissionError:
None
log = open(file=out + '.log', mode='w+')
for epoch in range(epochs):
time.time()
for param_group in optimizer.param_groups:
param_group['lr'] = lr * (1 - 1 / epochs) ** (epoch * 10)
for i, (Xb, yb) in enumerate(train_loader):
Xb, yb = Xb, yb
optimizer.zero_grad()
y_ = self(Xb, istrain=True)
ix = yb == yb
yb, y_ = yb[ix], y_[ix]
wb = torch.Tensor(yb.size())
wb[yb == 3.99] = 0.1
wb[yb != 3.99] = 1
loss = self.criterion(y_ * wb, yb * wb)
loss.backward()
optimizer.step()
loss_valid = self.evaluate(valid_loader)
None
if loss_valid < best_loss:
torch.save(self.state_dict(), out + '.pkg')
None
best_loss = loss_valid
last_save = epoch
else:
None
if epoch - last_save > 100:
break
log.close()
self.load_state_dict(torch.load(out + '.pkg'))
def evaluate(self, loader):
"""Evaluating the performance of the DNN model.
Arguments:
loader (torch.util.data.DataLoader): data loader for test set,
including m X n target FloatTensor and l X n label FloatTensor
(m is the No. of sample, n is the No. of features, l is the No. of classes or tasks)
Return:
loss (float): the average loss value based on the calculation of loss function with given test set.
"""
loss = 0
for Xb, yb in loader:
Xb, yb = Xb, yb
y_ = self.forward(Xb)
ix = yb == yb
yb, y_ = yb[ix], y_[ix]
wb = torch.Tensor(yb.size())
wb[yb == 3.99] = 0.1
wb[yb != 3.99] = 1
loss += self.criterion(y_ * wb, yb * wb).item()
loss = loss / len(loader)
return loss
def predict(self, loader):
"""Predicting the probability of each sample in the given dataset.
Arguments:
loader (torch.util.data.DataLoader): data loader for test set,
only including m X n target FloatTensor
(m is the No. of sample, n is the No. of features)
Return:
score (ndarray): probability of each sample in the given dataset,
it is a m X l FloatTensor (m is the No. of sample, l is the No. of classes or tasks.)
"""
score = []
for Xb, yb in loader:
Xb = Xb
y_ = self.forward(Xb)
score.append(y_.detach().cpu())
score = torch.cat(score, dim=0).numpy()
return score
class MTFullyConnected(Base):
"""Multi-task DNN classification/regression model. It contains four fully connected layers
between which are dropout layer for robustness.
Arguments:
n_dim (int): the No. of columns (features) for input tensor
n_task (int): the No. of columns (tasks) for output tensor.
is_reg (bool, optional): Regression model (True) or Classification model (False)
"""
def __init__(self, n_dim, n_task, is_reg=False):
super(MTFullyConnected, self).__init__()
self.n_task = n_task
self.dropout = nn.Dropout(0.25)
self.fc0 = nn.Linear(n_dim, 4000)
self.fc1 = nn.Linear(4000, 2000)
self.fc2 = nn.Linear(2000, 1000)
self.output = nn.Linear(1000, n_task)
self.is_reg = is_reg
if is_reg:
self.criterion = nn.MSELoss()
else:
self.criterion = nn.BCELoss()
self.activation = nn.Sigmoid()
self
def forward(self, X, istrain=False):
"""Invoke the class directly as a function
Arguments:
X (FloatTensor): m X n FloatTensor, m is the No. of samples, n is the No. of features.
istrain (bool, optional): is it invoked during training process (True)
or just for prediction (False)
Return:
y (FloatTensor): m X l FloatTensor, m is the No. of samples, n is the No. of tasks
"""
y = F.relu(self.fc0(X))
if istrain:
y = self.dropout(y)
y = F.relu(self.fc1(y))
if istrain:
y = self.dropout(y)
y = F.relu(self.fc2(y))
if istrain:
y = self.dropout(y)
if self.is_reg:
y = self.output(y)
else:
y = self.activation(self.output(y))
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_dim': 4, 'n_task': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import time
import numpy as np
from torch import nn
from torch import optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 4000
x1 = xindex // 4000
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + (x0 + 4096 * x1), tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2000
x1 = xindex // 2000
tmp0 = tl.load(in_out_ptr0 + (x0 + 2016 * x1), xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x0 + 2016 * x1), tmp4, xmask)
tl.store(out_ptr0 + (x0 + 2048 * x1), tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 1000
x2 = xindex % 4000
x3 = xindex // 4000
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + (x2 + 4096 * x3), tmp6, xmask)
@triton.jit
def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4000, 4), (4, 1))
assert_size_stride(primals_2, (4000,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2000, 4000), (4000, 1))
assert_size_stride(primals_5, (2000,), (1,))
assert_size_stride(primals_6, (1000, 2000), (2000, 1))
assert_size_stride(primals_7, (1000,), (1,))
assert_size_stride(primals_8, (4, 1000), (1000, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4000), (4000, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4000), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4000), (64000, 16000,
4000, 1), 0)
del buf0
buf10 = empty_strided_cuda((4, 4, 4, 4000), (65536, 16384, 4096, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256000)](buf1,
primals_2, buf10, 256000, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 2000), (2016, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4000), (4000, 1), 0
), reinterpret_tensor(primals_4, (4000, 2000), (1, 4000), 0),
out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2000), (32256, 8064, 2016,
1), 0)
del buf2
buf9 = empty_strided_cuda((4, 4, 4, 2000), (32768, 8192, 2048, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(128000)](buf3,
primals_5, buf9, 128000, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 1000), (1000, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 2000), (2016, 1), 0
), reinterpret_tensor(primals_6, (2000, 1000), (1, 2000), 0),
out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1000), (16000, 4000, 1000,
1), 0)
del buf4
buf8 = empty_strided_cuda((4, 4, 4, 1000), (16384, 4096, 1000, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(64000)](buf5,
primals_7, buf8, 64000, XBLOCK=512, num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (64, 1000), (1000, 1), 0
), reinterpret_tensor(primals_8, (1000, 4), (1, 1000), 0), out=buf6
)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
triton_poi_fused_sigmoid_3[grid(256)](buf7, primals_9, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_9
return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4000), (4000, 1), 0
), reinterpret_tensor(buf3, (64, 2000), (2016, 1), 0
), reinterpret_tensor(buf5, (64, 1000), (1000, 1), 0
), buf7, primals_8, buf8, primals_6, buf9, primals_4, buf10
class Base(nn.Module):
""" This class is the base structure for all of classification/regression DNN models.
Mainly, it provides the general methods for training, evaluating model and predcting the given data.
"""
def fit(self, train_loader, valid_loader, out, epochs=100, lr=0.0001):
"""Training the DNN model, similar to the scikit-learn or Keras style.
In the end, the optimal value of parameters will also be persisted on the hard drive.
Arguments:
train_loader (DataLoader): Data loader for training set,
including m X n target FloatTensor and m X l label FloatTensor
(m is the No. of sample, n is the No. of features, l is the No. of classes or tasks)
valid_loader (DataLoader): Data loader for validation set.
The data structure is as same as loader_train.
out (str): the file path for the model file (suffix with '.pkg')
and log file (suffix with '.log').
epochs(int, optional): The maximum of training epochs (default: 100)
lr (float, optional): learning rate (default: 1e-4)
"""
if 'optim' in self.__dict__:
optimizer = self.optim
else:
optimizer = optim.Adam(self.parameters(), lr=lr)
best_loss = np.inf
last_save = 0
if not os.path.exists(out):
try:
os.makedirs(out)
except PermissionError:
None
log = open(file=out + '.log', mode='w+')
for epoch in range(epochs):
time.time()
for param_group in optimizer.param_groups:
param_group['lr'] = lr * (1 - 1 / epochs) ** (epoch * 10)
for i, (Xb, yb) in enumerate(train_loader):
Xb, yb = Xb, yb
optimizer.zero_grad()
y_ = self(Xb, istrain=True)
ix = yb == yb
yb, y_ = yb[ix], y_[ix]
wb = torch.Tensor(yb.size())
wb[yb == 3.99] = 0.1
wb[yb != 3.99] = 1
loss = self.criterion(y_ * wb, yb * wb)
loss.backward()
optimizer.step()
loss_valid = self.evaluate(valid_loader)
None
if loss_valid < best_loss:
torch.save(self.state_dict(), out + '.pkg')
None
best_loss = loss_valid
last_save = epoch
else:
None
if epoch - last_save > 100:
break
log.close()
self.load_state_dict(torch.load(out + '.pkg'))
def evaluate(self, loader):
"""Evaluating the performance of the DNN model.
Arguments:
loader (torch.util.data.DataLoader): data loader for test set,
including m X n target FloatTensor and l X n label FloatTensor
(m is the No. of sample, n is the No. of features, l is the No. of classes or tasks)
Return:
loss (float): the average loss value based on the calculation of loss function with given test set.
"""
loss = 0
for Xb, yb in loader:
Xb, yb = Xb, yb
y_ = self.forward(Xb)
ix = yb == yb
yb, y_ = yb[ix], y_[ix]
wb = torch.Tensor(yb.size())
wb[yb == 3.99] = 0.1
wb[yb != 3.99] = 1
loss += self.criterion(y_ * wb, yb * wb).item()
loss = loss / len(loader)
return loss
def predict(self, loader):
"""Predicting the probability of each sample in the given dataset.
Arguments:
loader (torch.util.data.DataLoader): data loader for test set,
only including m X n target FloatTensor
(m is the No. of sample, n is the No. of features)
Return:
score (ndarray): probability of each sample in the given dataset,
it is a m X l FloatTensor (m is the No. of sample, l is the No. of classes or tasks.)
"""
score = []
for Xb, yb in loader:
Xb = Xb
y_ = self.forward(Xb)
score.append(y_.detach().cpu())
score = torch.cat(score, dim=0).numpy()
return score
class MTFullyConnectedNew(Base):
"""Multi-task DNN classification/regression model. It contains four fully connected layers
between which are dropout layer for robustness.
Arguments:
n_dim (int): the No. of columns (features) for input tensor
n_task (int): the No. of columns (tasks) for output tensor.
is_reg (bool, optional): Regression model (True) or Classification model (False)
"""
def __init__(self, n_dim, n_task, is_reg=False):
super(MTFullyConnectedNew, self).__init__()
self.n_task = n_task
self.dropout = nn.Dropout(0.25)
self.fc0 = nn.Linear(n_dim, 4000)
self.fc1 = nn.Linear(4000, 2000)
self.fc2 = nn.Linear(2000, 1000)
self.output = nn.Linear(1000, n_task)
self.is_reg = is_reg
if is_reg:
self.criterion = nn.MSELoss()
else:
self.criterion = nn.BCELoss()
self.activation = nn.Sigmoid()
self
def forward(self, input_0):
primals_1 = self.fc0.weight
primals_2 = self.fc0.bias
primals_4 = self.fc1.weight
primals_5 = self.fc1.bias
primals_6 = self.fc2.weight
primals_7 = self.fc2.bias
primals_8 = self.output.weight
primals_9 = self.output.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| naisuu/DrugEx | MTFullyConnected | false | 4,101 | [
"MIT"
] | 0 | 8708c98a137473f11990d70e43a46018806b6f39 | https://github.com/naisuu/DrugEx/tree/8708c98a137473f11990d70e43a46018806b6f39 | import time
import torch
import numpy as np
from torch import nn
from torch import optim
from torch.nn import functional as F
class Base(nn.Module):
""" This class is the base structure for all of classification/regression DNN models.
Mainly, it provides the general methods for training, evaluating model and predcting the given data.
"""
def fit(self, train_loader, valid_loader, out, epochs=100, lr=0.0001):
"""Training the DNN model, similar to the scikit-learn or Keras style.
In the end, the optimal value of parameters will also be persisted on the hard drive.
Arguments:
train_loader (DataLoader): Data loader for training set,
including m X n target FloatTensor and m X l label FloatTensor
(m is the No. of sample, n is the No. of features, l is the No. of classes or tasks)
valid_loader (DataLoader): Data loader for validation set.
The data structure is as same as loader_train.
out (str): the file path for the model file (suffix with '.pkg')
and log file (suffix with '.log').
epochs(int, optional): The maximum of training epochs (default: 100)
lr (float, optional): learning rate (default: 1e-4)
"""
if 'optim' in self.__dict__:
optimizer = self.optim
else:
optimizer = optim.Adam(self.parameters(), lr=lr)
best_loss = np.inf
last_save = 0
if not os.path.exists(out):
try:
os.makedirs(out)
except PermissionError:
None
log = open(file=out + '.log', mode='w+')
for epoch in range(epochs):
time.time()
for param_group in optimizer.param_groups:
param_group['lr'] = lr * (1 - 1 / epochs) ** (epoch * 10)
for i, (Xb, yb) in enumerate(train_loader):
Xb, yb = Xb, yb
optimizer.zero_grad()
y_ = self(Xb, istrain=True)
ix = yb == yb
yb, y_ = yb[ix], y_[ix]
wb = torch.Tensor(yb.size())
wb[yb == 3.99] = 0.1
wb[yb != 3.99] = 1
loss = self.criterion(y_ * wb, yb * wb)
loss.backward()
optimizer.step()
loss_valid = self.evaluate(valid_loader)
None
if loss_valid < best_loss:
torch.save(self.state_dict(), out + '.pkg')
None
best_loss = loss_valid
last_save = epoch
else:
None
if epoch - last_save > 100:
break
log.close()
self.load_state_dict(torch.load(out + '.pkg'))
def evaluate(self, loader):
"""Evaluating the performance of the DNN model.
Arguments:
loader (torch.util.data.DataLoader): data loader for test set,
including m X n target FloatTensor and l X n label FloatTensor
(m is the No. of sample, n is the No. of features, l is the No. of classes or tasks)
Return:
loss (float): the average loss value based on the calculation of loss function with given test set.
"""
loss = 0
for Xb, yb in loader:
Xb, yb = Xb, yb
y_ = self.forward(Xb)
ix = yb == yb
yb, y_ = yb[ix], y_[ix]
wb = torch.Tensor(yb.size())
wb[yb == 3.99] = 0.1
wb[yb != 3.99] = 1
loss += self.criterion(y_ * wb, yb * wb).item()
loss = loss / len(loader)
return loss
def predict(self, loader):
"""Predicting the probability of each sample in the given dataset.
Arguments:
loader (torch.util.data.DataLoader): data loader for test set,
only including m X n target FloatTensor
(m is the No. of sample, n is the No.
# ... truncated (>4000 chars) for memory efficiency |
ModuloMapIDList | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ln/clnui2qdwrmy7ay6oc5iefngkbx5t3jxibzv5sg3njmui3ca5mfb.py
# Topologically Sorted Source Nodes: [remainder], Original ATen: [aten.remainder]
# Source node to ATen node mapping:
# remainder => remainder
# Graph fragment:
# %remainder : [num_users=1] = call_function[target=torch.ops.aten.remainder.Scalar](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_remainder_0 = async_compile.triton('triton_poi_fused_remainder_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_remainder_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_remainder_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 4.0
tmp2 = tmp0 % tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = tmp2 != tmp3
tmp5 = libdevice.signbit(tmp2) if (tmp2).dtype is tl.float32 else tmp2 < 0
tmp6 = libdevice.signbit(tmp1) if (tmp1).dtype is tl.float32 else tmp1 < 0
tmp7 = tmp5 != tmp6
tmp8 = tmp4 & tmp7
tmp9 = tmp2 + tmp1
tmp10 = tl.where(tmp8, tmp9, tmp2)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [remainder], Original ATen: [aten.remainder]
stream0 = get_raw_stream(0)
triton_poi_fused_remainder_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import abc
import torch
import torch.nn
import torch.optim
class MapIDList(torch.nn.Module):
@abc.abstractmethod
def forward(self, raw_values: 'torch.Tensor') ->torch.Tensor:
pass
class ModuloMapIDList(MapIDList):
def __init__(self, modulo: 'int'):
super().__init__()
self.modulo = modulo
def forward(self, raw_values: 'torch.Tensor') ->torch.Tensor:
return torch.remainder(raw_values, self.modulo)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'modulo': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import abc
import torch.nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_remainder_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 4.0
tmp2 = tmp0 % tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = tmp2 != tmp3
tmp5 = libdevice.signbit(tmp2) if tmp2.dtype is tl.float32 else tmp2 < 0
tmp6 = libdevice.signbit(tmp1) if tmp1.dtype is tl.float32 else tmp1 < 0
tmp7 = tmp5 != tmp6
tmp8 = tmp4 & tmp7
tmp9 = tmp2 + tmp1
tmp10 = tl.where(tmp8, tmp9, tmp2)
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_remainder_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MapIDList(torch.nn.Module):
@abc.abstractmethod
def forward(self, raw_values: 'torch.Tensor') ->torch.Tensor:
pass
class ModuloMapIDListNew(MapIDList):
def __init__(self, modulo: 'int'):
super().__init__()
self.modulo = modulo
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| mcx/ReAgent | ModuloMapIDList | false | 4,102 | [
"BSD-3-Clause"
] | 0 | 57b58a8b3a6b74bb87a197b73a6cd108ddad895e | https://github.com/mcx/ReAgent/tree/57b58a8b3a6b74bb87a197b73a6cd108ddad895e | import abc
import torch
import torch.nn
import torch.optim
class MapIDList(torch.nn.Module):
@abc.abstractmethod
def forward(self, raw_values: 'torch.Tensor') ->torch.Tensor:
pass
class Model(MapIDList):
def __init__(self, modulo: 'int'):
super().__init__()
self.modulo = modulo
def forward(self, raw_values: 'torch.Tensor') ->torch.Tensor:
return torch.remainder(raw_values, self.modulo)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
gMLPBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/pr/cprvpkk3hngzhz62wg4ev55l6oqjwyanu6xmn7qt2xudr35r3lwm.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.gelu]
# Source node to ATen node mapping:
# x_1 => add, erf, mul, mul_1, mul_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_gelu_0 = async_compile.triton('triton_poi_fused_gelu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ji/cjihxjrk7fvrt3gfr5hfu2vlrhftdw4fpdgrrsamnvqgxqyfkcoo.py
# Topologically Sorted Source Nodes: [gate_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# gate_1 => clone
# Graph fragment:
# %clone : [num_users=3] = call_function[target=torch.ops.aten.clone.default](args = (%getitem_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 + x0 + (4*x1)), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/66/c66t5qyqzj5cenbnuukwam7z27azjxwb5ur6pgglzpz666nf4hgs.py
# Topologically Sorted Source Nodes: [gate_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# gate_1 => var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_native_layer_norm_2 = async_compile.triton('triton_poi_fused_native_layer_norm_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (2*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 2.0
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/vv/cvvmi4kywjybo2vgvz6gjsqxs36us4zac7t434qvotutc6w6eknn.py
# Topologically Sorted Source Nodes: [gate_3], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# gate_3 => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 2
y1 = (yindex // 2)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (2*x2) + (8*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + (4*y1)), xmask & ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + ((2*x2) + (8*y1)), xmask & ymask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (2*x2) + (8*y1)), xmask & ymask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (y0), ymask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr3 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp3 - tmp1
tmp5 = tmp4 * tmp4
tmp7 = tmp6 - tmp1
tmp8 = tmp7 * tmp7
tmp9 = tmp5 + tmp8
tmp10 = 2.0
tmp11 = tmp9 / tmp10
tmp12 = 1e-06
tmp13 = tmp11 + tmp12
tmp14 = libdevice.rsqrt(tmp13)
tmp15 = tmp2 * tmp14
tmp17 = tmp15 * tmp16
tmp19 = tmp17 + tmp18
tl.store(out_ptr0 + (x2 + (4*y3)), tmp19, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/26/c263gj4vjspqhtqqwosdekdpcaimexzzctgixnoe3xy7t6lisais.py
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.mul, aten.clone]
# Source node to ATen node mapping:
# x_2 => mul_5
# x_3 => clone_2
# Graph fragment:
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, %getitem), kwargs = {})
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%mul_5,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_mul_4 = async_compile.triton('triton_poi_fused_clone_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 2], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_mul_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 2
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (8*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + (2*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/sz/csz5twnkhe2zz3eaafwmgidmezpgvs3favuuva73uud6rs7ouhj6.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x_3 => add_4
# Graph fragment:
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %primals_9), kwargs = {})
triton_poi_fused_add_5 = async_compile.triton('triton_poi_fused_add_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (2, ), (1, ))
assert_size_stride(primals_5, (2, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 2), (2, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.gelu]
stream0 = get_raw_stream(0)
triton_poi_fused_gelu_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [gate_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(buf1, buf2, 32, grid=grid(32), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [gate_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_2.run(buf2, buf3, 16, grid=grid(16), stream=stream0)
buf4 = empty_strided_cuda((4, 2, 4), (8, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gate_3], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf2, buf3, primals_4, primals_5, buf4, 8, 4, grid=grid(8, 4), stream=stream0)
del buf3
del primals_5
buf5 = empty_strided_cuda((8, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gate_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf4, (8, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.mul, aten.clone]
triton_poi_fused_clone_mul_4.run(buf5, primals_7, buf1, buf6, 16, 2, grid=grid(16, 2), stream=stream0)
buf7 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf6, (16, 2), (2, 1), 0), reinterpret_tensor(primals_8, (2, 4), (1, 2), 0), out=buf7)
buf8 = reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.add]
triton_poi_fused_add_5.run(buf8, primals_9, 64, grid=grid(64), stream=stream0)
del primals_9
return (buf8, primals_4, primals_7, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (4, 4, 2), (16, 4, 1), 0), buf2, reinterpret_tensor(buf4, (8, 4), (4, 1), 0), buf5, reinterpret_tensor(buf6, (16, 2), (2, 1), 0), primals_8, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SpatialGatingUnit(nn.Module):
def __init__(self, dim_seq, dim_ff):
super().__init__()
self.proj = nn.Linear(dim_seq, dim_seq)
nn.init.zeros_(self.proj.weight)
nn.init.ones_(self.proj.bias)
self.norm = nn.LayerNorm(normalized_shape=dim_ff // 2, eps=1e-06)
self.dim_ff = dim_ff
self.activation = nn.GELU()
def forward(self, x):
res, gate = torch.split(tensor=x, split_size_or_sections=self.
dim_ff // 2, dim=2)
gate = self.norm(gate)
gate = torch.transpose(gate, 1, 2)
gate = self.proj(gate)
gate = torch.transpose(gate, 1, 2)
return gate * res
class gMLPBlock(nn.Module):
def __init__(self, dim, dim_ff, seq_len):
super().__init__()
self.proj_in = nn.Linear(dim, dim_ff)
self.activation = nn.GELU()
self.sgu = SpatialGatingUnit(seq_len, dim_ff)
self.proj_out = nn.Linear(dim_ff // 2, dim)
def forward(self, x):
x = self.proj_in(x)
x = self.activation(x)
x = self.sgu(x)
x = self.proj_out(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4, 'dim_ff': 4, 'seq_len': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 + x0 + 4 * x1), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_2(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 2.0
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 8
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 2
y1 = yindex // 2
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 2 * x2 + 8 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + 4 * y1), xmask & ymask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (2 * x2 + 8 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 2 * x2 + 8 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + y0, ymask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr3 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp3 - tmp1
tmp5 = tmp4 * tmp4
tmp7 = tmp6 - tmp1
tmp8 = tmp7 * tmp7
tmp9 = tmp5 + tmp8
tmp10 = 2.0
tmp11 = tmp9 / tmp10
tmp12 = 1e-06
tmp13 = tmp11 + tmp12
tmp14 = libdevice.rsqrt(tmp13)
tmp15 = tmp2 * tmp14
tmp17 = tmp15 * tmp16
tmp19 = tmp17 + tmp18
tl.store(out_ptr0 + (x2 + 4 * y3), tmp19, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_mul_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 2
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 8 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2 + 4 * y3), xmask & ymask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + 2 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (2,), (1,))
assert_size_stride(primals_5, (2,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 2), (2, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_gelu_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(32)](buf1, buf2, 32,
XBLOCK=32, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused_native_layer_norm_2[grid(16)](buf2, buf3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 2, 4), (8, 4, 1), torch.float32)
triton_poi_fused_clone_3[grid(8, 4)](buf2, buf3, primals_4,
primals_5, buf4, 8, 4, XBLOCK=4, YBLOCK=8, num_warps=1,
num_stages=1)
del buf3
del primals_5
buf5 = empty_strided_cuda((8, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf4, (8, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
triton_poi_fused_clone_mul_4[grid(16, 2)](buf5, primals_7, buf1,
buf6, 16, 2, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
buf7 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf6, (16, 2), (2, 1), 0),
reinterpret_tensor(primals_8, (2, 4), (1, 2), 0), out=buf7)
buf8 = reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0)
del buf7
triton_poi_fused_add_5[grid(64)](buf8, primals_9, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_9
return buf8, primals_4, primals_7, reinterpret_tensor(primals_3, (16, 4
), (4, 1), 0), buf0, reinterpret_tensor(buf1, (4, 4, 2), (16, 4, 1), 0
), buf2, reinterpret_tensor(buf4, (8, 4), (4, 1), 0
), buf5, reinterpret_tensor(buf6, (16, 2), (2, 1), 0
), primals_8, primals_6
class SpatialGatingUnit(nn.Module):
def __init__(self, dim_seq, dim_ff):
super().__init__()
self.proj = nn.Linear(dim_seq, dim_seq)
nn.init.zeros_(self.proj.weight)
nn.init.ones_(self.proj.bias)
self.norm = nn.LayerNorm(normalized_shape=dim_ff // 2, eps=1e-06)
self.dim_ff = dim_ff
self.activation = nn.GELU()
def forward(self, x):
res, gate = torch.split(tensor=x, split_size_or_sections=self.
dim_ff // 2, dim=2)
gate = self.norm(gate)
gate = torch.transpose(gate, 1, 2)
gate = self.proj(gate)
gate = torch.transpose(gate, 1, 2)
return gate * res
class gMLPBlockNew(nn.Module):
def __init__(self, dim, dim_ff, seq_len):
super().__init__()
self.proj_in = nn.Linear(dim, dim_ff)
self.activation = nn.GELU()
self.sgu = SpatialGatingUnit(seq_len, dim_ff)
self.proj_out = nn.Linear(dim_ff // 2, dim)
def forward(self, input_0):
primals_1 = self.proj_in.weight
primals_2 = self.proj_in.bias
primals_6 = self.sgu.proj.weight
primals_7 = self.sgu.proj.bias
primals_4 = self.sgu.norm.weight
primals_5 = self.sgu.norm.bias
primals_8 = self.proj_out.weight
primals_9 = self.proj_out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| nima1999nikkhah/SimSiam_gMLP | gMLPBlock | false | 4,103 | [
"MIT"
] | 0 | 9cccd1092c02267951d39ae77c0fe5a91d735903 | https://github.com/nima1999nikkhah/SimSiam_gMLP/tree/9cccd1092c02267951d39ae77c0fe5a91d735903 | import torch
import torch.nn as nn
class SpatialGatingUnit(nn.Module):
def __init__(self, dim_seq, dim_ff):
super().__init__()
self.proj = nn.Linear(dim_seq, dim_seq)
nn.init.zeros_(self.proj.weight)
nn.init.ones_(self.proj.bias)
self.norm = nn.LayerNorm(normalized_shape=dim_ff // 2, eps=1e-06)
self.dim_ff = dim_ff
self.activation = nn.GELU()
def forward(self, x):
res, gate = torch.split(tensor=x, split_size_or_sections=self.
dim_ff // 2, dim=2)
gate = self.norm(gate)
gate = torch.transpose(gate, 1, 2)
gate = self.proj(gate)
gate = torch.transpose(gate, 1, 2)
return gate * res
class Model(nn.Module):
def __init__(self, dim, dim_ff, seq_len):
super().__init__()
self.proj_in = nn.Linear(dim, dim_ff)
self.activation = nn.GELU()
self.sgu = SpatialGatingUnit(seq_len, dim_ff)
self.proj_out = nn.Linear(dim_ff // 2, dim)
def forward(self, x):
x = self.proj_in(x)
x = self.activation(x)
x = self.sgu(x)
x = self.proj_out(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
GlobalConvBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/wu/cwu3ze25mbukaa3mrd6swwkuh6vcngueaov4bvtueedbb4fnybo7.py
# Topologically Sorted Source Nodes: [x_l], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_l => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 12) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5c/c5carxzxmk5ojmz7f5r4vdimoqgyabzcdctk7n4nv6t35zniylle.py
# Topologically Sorted Source Nodes: [x_l_1, x_r_1, x], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# x => add
# x_l_1 => convolution_1
# x_r_1 => convolution_3
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [0, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_2, %primals_8, %primals_9, [1, 1], [1, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %convolution_3), kwargs = {})
triton_poi_fused_add_convolution_1 = async_compile.triton('triton_poi_fused_add_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 9) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x_l], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 3, 4), (48, 12, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_l], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 192, grid=grid(192), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_l_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 3, 3), (36, 9, 3, 1))
# Topologically Sorted Source Nodes: [x_r], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(primals_3, primals_6, stride=(1, 1), padding=(0, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 3), (48, 12, 3, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [x_r], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf4, primals_7, 192, grid=grid(192), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [x_r_1], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_8, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 3, 3), (36, 9, 3, 1))
buf6 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_l_1, x_r_1, x], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_1.run(buf6, primals_5, buf5, primals_9, 144, grid=grid(144), stream=stream0)
del buf5
del primals_5
del primals_9
return (buf6, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 4), (16, 4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 1, 4), (16, 4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
from math import sqrt
class GlobalConvBlock(nn.Module):
def __init__(self, in_dim, out_dim, kernel_size):
super(GlobalConvBlock, self).__init__()
pad0 = int((kernel_size[0] - 1) / 2)
pad1 = int((kernel_size[1] - 1) / 2)
self.conv_l1 = nn.Conv2d(in_dim, out_dim, kernel_size=(kernel_size[
0], 1), padding=(pad0, 0))
self.conv_l2 = nn.Conv2d(out_dim, out_dim, kernel_size=(1,
kernel_size[1]), padding=(0, pad1))
self.conv_r1 = nn.Conv2d(in_dim, out_dim, kernel_size=(1,
kernel_size[1]), padding=(0, pad1))
self.conv_r2 = nn.Conv2d(out_dim, out_dim, kernel_size=(kernel_size
[0], 1), padding=(pad0, 0))
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, sqrt(2.0 / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def forward(self, x):
x_l = self.conv_l1(x)
x_l = self.conv_l2(x_l)
x_r = self.conv_r1(x)
x_r = self.conv_r2(x_r)
x = x_l + x_r
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_dim': 4, 'out_dim': 4, 'kernel_size': [4, 4]}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
from math import sqrt
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 12 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_convolution_1(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 9 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + x3, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 3, 4), (48, 12, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(192)](buf1, primals_2, 192,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 3, 3), (36, 9, 3, 1))
buf3 = extern_kernels.convolution(primals_3, primals_6, stride=(1,
1), padding=(0, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 3), (48, 12, 3, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_0[grid(192)](buf4, primals_7, 192,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf5 = extern_kernels.convolution(buf4, primals_8, stride=(1, 1),
padding=(1, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 3, 3), (36, 9, 3, 1))
buf6 = buf2
del buf2
triton_poi_fused_add_convolution_1[grid(144)](buf6, primals_5, buf5,
primals_9, 144, XBLOCK=256, num_warps=4, num_stages=1)
del buf5
del primals_5
del primals_9
return (buf6, primals_1, primals_3, primals_4, primals_6, primals_8,
buf1, buf4)
class GlobalConvBlockNew(nn.Module):
def __init__(self, in_dim, out_dim, kernel_size):
super(GlobalConvBlockNew, self).__init__()
pad0 = int((kernel_size[0] - 1) / 2)
pad1 = int((kernel_size[1] - 1) / 2)
self.conv_l1 = nn.Conv2d(in_dim, out_dim, kernel_size=(kernel_size[
0], 1), padding=(pad0, 0))
self.conv_l2 = nn.Conv2d(out_dim, out_dim, kernel_size=(1,
kernel_size[1]), padding=(0, pad1))
self.conv_r1 = nn.Conv2d(in_dim, out_dim, kernel_size=(1,
kernel_size[1]), padding=(0, pad1))
self.conv_r2 = nn.Conv2d(out_dim, out_dim, kernel_size=(kernel_size
[0], 1), padding=(pad0, 0))
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, sqrt(2.0 / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def forward(self, input_0):
primals_1 = self.conv_l1.weight
primals_2 = self.conv_l1.bias
primals_4 = self.conv_l2.weight
primals_5 = self.conv_l2.bias
primals_6 = self.conv_r1.weight
primals_7 = self.conv_r1.bias
primals_8 = self.conv_r2.weight
primals_9 = self.conv_r2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| odgiv/SegAN | GlobalConvBlock | false | 4,104 | [
"MIT"
] | 0 | d7a91fbc10139dc81c61737326649a3a758cdf94 | https://github.com/odgiv/SegAN/tree/d7a91fbc10139dc81c61737326649a3a758cdf94 | import torch
from torch import nn
from math import sqrt
class Model(nn.Module):
def __init__(self, in_dim, out_dim, kernel_size):
super().__init__()
pad0 = int((kernel_size[0] - 1) / 2)
pad1 = int((kernel_size[1] - 1) / 2)
self.conv_l1 = nn.Conv2d(in_dim, out_dim, kernel_size=(kernel_size[
0], 1), padding=(pad0, 0))
self.conv_l2 = nn.Conv2d(out_dim, out_dim, kernel_size=(1,
kernel_size[1]), padding=(0, pad1))
self.conv_r1 = nn.Conv2d(in_dim, out_dim, kernel_size=(1,
kernel_size[1]), padding=(0, pad1))
self.conv_r2 = nn.Conv2d(out_dim, out_dim, kernel_size=(kernel_size
[0], 1), padding=(pad0, 0))
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, sqrt(2.0 / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def forward(self, x):
x_l = self.conv_l1(x)
x_l = self.conv_l2(x_l)
x_r = self.conv_r1(x)
x_r = self.conv_r2(x_r)
x = x_l + x_r
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
EdgeFeaturesLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/3u/c3ub52l73zdv4klgqzgxmtzrzxvztuyczv2jksnvrjr7erq7guxd.py
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# linear => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/lx/clxenpwkl4qtcky22cudzrb6ruwgm2vjfzwtegj2siml77dc4lga.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%permute_2,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 1, 4, 4), (16, 1, 4, 1), 0); del buf1 # reuse
buf3 = empty_strided_cuda((4, 1, 4, 4), (16, 1, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf2, buf3, 64, grid=grid(64), stream=stream0)
return (buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class EdgeFeaturesLayer(nn.Module):
def __init__(self, d_model, d_edge, h, dropout):
super(EdgeFeaturesLayer, self).__init__()
assert d_model % h == 0
d_model // h
self.linear = nn.Linear(d_edge, 1, bias=False)
with torch.no_grad():
self.linear.weight.fill_(0.25)
def forward(self, x):
p_edge = x.permute(0, 2, 3, 1)
p_edge = self.linear(p_edge).permute(0, 3, 1, 2)
return torch.relu(p_edge)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'd_edge': 4, 'h': 4, 'dropout': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64, 4)](primals_1, buf0, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 1, 4, 4), (16, 1, 4, 1), 0)
del buf1
buf3 = empty_strided_cuda((4, 1, 4, 4), (16, 1, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(64)](buf2, buf3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
return buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf3
class EdgeFeaturesLayerNew(nn.Module):
def __init__(self, d_model, d_edge, h, dropout):
super(EdgeFeaturesLayerNew, self).__init__()
assert d_model % h == 0
d_model // h
self.linear = nn.Linear(d_edge, 1, bias=False)
with torch.no_grad():
self.linear.weight.fill_(0.25)
def forward(self, input_0):
primals_2 = self.linear.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| odb9402/MAT | EdgeFeaturesLayer | false | 4,106 | [
"MIT"
] | 0 | 95d8083170da2c8ce1f5898b3a556bcf54eac8cc | https://github.com/odb9402/MAT/tree/95d8083170da2c8ce1f5898b3a556bcf54eac8cc | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, d_model, d_edge, h, dropout):
super().__init__()
assert d_model % h == 0
d_model // h
self.linear = nn.Linear(d_edge, 1, bias=False)
with torch.no_grad():
self.linear.weight.fill_(0.25)
def forward(self, x):
p_edge = x.permute(0, 2, 3, 1)
p_edge = self.linear(p_edge).permute(0, 3, 1, 2)
return torch.relu(p_edge)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4, 0.5]
|
Generator | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/pj/cpjtaps4dusmzrrvkgal3gobvvp6pxqqx5zvwpjyzgdjffmdihfr.py
# Topologically Sorted Source Nodes: [out_masked, out_sum, mask_sum, out_avg_pooling], Original ATen: [aten.mul, aten.sum, aten.div]
# Source node to ATen node mapping:
# mask_sum => sum_2
# out_avg_pooling => div
# out_masked => mul
# out_sum => sum_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %unsqueeze), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%unsqueeze, [1]), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {})
triton_poi_fused_div_mul_sum_0 = async_compile.triton('triton_poi_fused_div_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 64
x1 = (xindex // 4) % 16
x2 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x1 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (16 + x1 + (64*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (128 + x3), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x1 + (64*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (192 + x3), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (48 + x1 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = tmp1 + tmp4
tmp16 = tmp15 + tmp8
tmp17 = tmp16 + tmp12
tmp18 = tmp14 / tmp17
tl.store(out_ptr0 + (x4), tmp18, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 4), (4, 1))
assert_size_stride(primals_4, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_masked, out_sum, mask_sum, out_avg_pooling], Original ATen: [aten.mul, aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_mul_sum_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [projected], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_3
del primals_4
return (reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
class LayerNorm(nn.Module):
"""Construct a layernorm module (See citation for details)."""
def __init__(self, features, eps=1e-06):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class ScaleNorm(nn.Module):
"""ScaleNorm"""
"""All g’s in SCALE NORM are initialized to sqrt(d)"""
def __init__(self, scale, eps=1e-05):
super(ScaleNorm, self).__init__()
self.scale = nn.Parameter(torch.tensor(math.sqrt(scale)))
self.eps = eps
def forward(self, x):
norm = self.scale / torch.norm(x, dim=-1, keepdim=True).clamp(min=
self.eps)
return x * norm
class Generator(nn.Module):
"""Define standard linear + softmax generation step."""
def __init__(self, d_model, aggregation_type='mean', n_output=1,
n_layers=1, leaky_relu_slope=0.01, dropout=0.0, scale_norm=False):
super(Generator, self).__init__()
if n_layers == 1:
self.proj = nn.Linear(d_model, n_output)
else:
self.proj = []
for i in range(n_layers - 1):
self.proj.append(nn.Linear(d_model, d_model))
self.proj.append(nn.LeakyReLU(leaky_relu_slope))
self.proj.append(ScaleNorm(d_model) if scale_norm else
LayerNorm(d_model))
self.proj.append(nn.Dropout(dropout))
self.proj.append(nn.Linear(d_model, n_output))
self.proj = torch.nn.Sequential(*self.proj)
self.aggregation_type = aggregation_type
def forward(self, x, mask):
mask = mask.unsqueeze(-1).float()
out_masked = x * mask
if self.aggregation_type == 'mean':
out_sum = out_masked.sum(dim=1)
mask_sum = mask.sum(dim=1)
out_avg_pooling = out_sum / mask_sum
elif self.aggregation_type == 'sum':
out_sum = out_masked.sum(dim=1)
out_avg_pooling = out_sum
elif self.aggregation_type == 'dummy_node':
out_avg_pooling = out_masked[:, 0]
projected = self.proj(out_avg_pooling)
return projected
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 64
x1 = xindex // 4 % 16
x2 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x1 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (16 + x1 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr0 + (128 + x3), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x1 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr0 + (192 + x3), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (48 + x1 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = tmp1 + tmp4
tmp16 = tmp15 + tmp8
tmp17 = tmp16 + tmp12
tmp18 = tmp14 / tmp17
tl.store(out_ptr0 + x4, tmp18, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 4), (4, 1))
assert_size_stride(primals_4, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_mul_sum_0[grid(256)](primals_2, primals_1,
buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_3, (4, 1), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_3
del primals_4
return reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(buf0, (64, 4), (4, 1), 0)
class LayerNorm(nn.Module):
"""Construct a layernorm module (See citation for details)."""
def __init__(self, features, eps=1e-06):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class ScaleNorm(nn.Module):
"""ScaleNorm"""
"""All g’s in SCALE NORM are initialized to sqrt(d)"""
def __init__(self, scale, eps=1e-05):
super(ScaleNorm, self).__init__()
self.scale = nn.Parameter(torch.tensor(math.sqrt(scale)))
self.eps = eps
def forward(self, x):
norm = self.scale / torch.norm(x, dim=-1, keepdim=True).clamp(min=
self.eps)
return x * norm
class GeneratorNew(nn.Module):
"""Define standard linear + softmax generation step."""
def __init__(self, d_model, aggregation_type='mean', n_output=1,
n_layers=1, leaky_relu_slope=0.01, dropout=0.0, scale_norm=False):
super(GeneratorNew, self).__init__()
if n_layers == 1:
self.proj = nn.Linear(d_model, n_output)
else:
self.proj = []
for i in range(n_layers - 1):
self.proj.append(nn.Linear(d_model, d_model))
self.proj.append(nn.LeakyReLU(leaky_relu_slope))
self.proj.append(ScaleNorm(d_model) if scale_norm else
LayerNorm(d_model))
self.proj.append(nn.Dropout(dropout))
self.proj.append(nn.Linear(d_model, n_output))
self.proj = torch.nn.Sequential(*self.proj)
self.aggregation_type = aggregation_type
def forward(self, input_0, input_1):
primals_3 = self.proj.weight
primals_4 = self.proj.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| odb9402/MAT | Generator | false | 4,107 | [
"MIT"
] | 0 | 95d8083170da2c8ce1f5898b3a556bcf54eac8cc | https://github.com/odb9402/MAT/tree/95d8083170da2c8ce1f5898b3a556bcf54eac8cc | import math
import torch
import torch.nn as nn
class LayerNorm(nn.Module):
"""Construct a layernorm module (See citation for details)."""
def __init__(self, features, eps=1e-06):
super().__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class ScaleNorm(nn.Module):
"""ScaleNorm"""
"""All g’s in SCALE NORM are initialized to sqrt(d)"""
def __init__(self, scale, eps=1e-05):
super().__init__()
self.scale = nn.Parameter(torch.tensor(math.sqrt(scale)))
self.eps = eps
def forward(self, x):
norm = self.scale / torch.norm(x, dim=-1, keepdim=True).clamp(min=
self.eps)
return x * norm
class Model(nn.Module):
"""Define standard linear + softmax generation step."""
def __init__(self, d_model, aggregation_type='mean', n_output=1,
n_layers=1, leaky_relu_slope=0.01, dropout=0.0, scale_norm=False):
super().__init__()
if n_layers == 1:
self.proj = nn.Linear(d_model, n_output)
else:
self.proj = []
for i in range(n_layers - 1):
self.proj.append(nn.Linear(d_model, d_model))
self.proj.append(nn.LeakyReLU(leaky_relu_slope))
self.proj.append(ScaleNorm(d_model) if scale_norm else
LayerNorm(d_model))
self.proj.append(nn.Dropout(dropout))
self.proj.append(nn.Linear(d_model, n_output))
self.proj = torch.nn.Sequential(*self.proj)
self.aggregation_type = aggregation_type
def forward(self, x, mask):
mask = mask.unsqueeze(-1).float()
out_masked = x * mask
if self.aggregation_type == 'mean':
out_sum = out_masked.sum(dim=1)
mask_sum = mask.sum(dim=1)
out_avg_pooling = out_sum / mask_sum
elif self.aggregation_type == 'sum':
out_sum = out_masked.sum(dim=1)
out_avg_pooling = out_sum
elif self.aggregation_type == 'dummy_node':
out_avg_pooling = out_masked[:, 0]
projected = self.proj(out_avg_pooling)
return projected
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
Concat | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %arg1_1], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, arg1_1, buf0, 512, grid=grid(512), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn
import torch.optim
class Concat(nn.Module):
def forward(self, state: 'torch.Tensor', action: 'torch.Tensor'):
return torch.cat((state, action), dim=-1)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](arg0_1, arg1_1, buf0, 512, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class ConcatNew(nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| mcx/ReAgent | Concat | false | 4,108 | [
"BSD-3-Clause"
] | 0 | 57b58a8b3a6b74bb87a197b73a6cd108ddad895e | https://github.com/mcx/ReAgent/tree/57b58a8b3a6b74bb87a197b73a6cd108ddad895e | import torch
from torch import nn
import torch.nn
import torch.optim
class Model(nn.Module):
def forward(self, state: 'torch.Tensor', action: 'torch.Tensor'):
return torch.cat((state, action), dim=-1)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Quantization | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/od/codpy52rvc5askcobcgimowe6roz5jcvkndhmvmghsacnld6obn2.py
# Topologically Sorted Source Nodes: [input_1, mul, round_1, output], Original ATen: [aten.clamp, aten.mul, aten.round, aten.div]
# Source node to ATen node mapping:
# input_1 => clamp_max, clamp_min
# mul => mul
# output => div
# round_1 => round_1
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 255.0), kwargs = {})
# %round_1 : [num_users=1] = call_function[target=torch.ops.aten.round.default](args = (%mul,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%round_1, 255.0), kwargs = {})
triton_poi_fused_clamp_div_mul_round_0 = async_compile.triton('triton_poi_fused_clamp_div_mul_round_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_mul_round_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_mul_round_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 1.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tmp5 = 255.0
tmp6 = tmp4 * tmp5
tmp7 = libdevice.nearbyint(tmp6)
tmp8 = 0.00392156862745098
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1, mul, round_1, output], Original ATen: [aten.clamp, aten.mul, aten.round, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_div_mul_round_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn as nn
class Quant(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
input = torch.clamp(input, 0, 1)
output = (input * 255.0).round() / 255.0
return output
@staticmethod
def backward(ctx, grad_output):
return grad_output
class Quantization(nn.Module):
def __init__(self):
super(Quantization, self).__init__()
def forward(self, input):
return Quant.apply(input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_div_mul_round_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 1.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tmp5 = 255.0
tmp6 = tmp4 * tmp5
tmp7 = libdevice.nearbyint(tmp6)
tmp8 = 0.00392156862745098
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_div_mul_round_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class Quant(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
input = torch.clamp(input, 0, 1)
output = (input * 255.0).round() / 255.0
return output
@staticmethod
def backward(ctx, grad_output):
return grad_output
class QuantizationNew(nn.Module):
def __init__(self):
super(QuantizationNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| peterhan91/Invertible-Image-Rescaling | Quantization | false | 4,109 | [
"Apache-2.0"
] | 0 | b92162f5e9be2cff2f5dba379914fcded4e04f4c | https://github.com/peterhan91/Invertible-Image-Rescaling/tree/b92162f5e9be2cff2f5dba379914fcded4e04f4c | import torch
import torch.utils.data
import torch.nn as nn
class Quant(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
input = torch.clamp(input, 0, 1)
output = (input * 255.0).round() / 255.0
return output
@staticmethod
def backward(ctx, grad_output):
return grad_output
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
return Quant.apply(input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SpatialMeanAndStd | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/xe/cxeocopnfqr23dmrrhhvz3ddzisb5tsd2zsarlz55lr3nu2vgh2c.py
# Topologically Sorted Source Nodes: [mul, mean, diff, diff_squared, mul_2, sum_2, add, std], Original ATen: [aten.mul, aten.sum, aten.sub, aten.add, aten.sqrt]
# Source node to ATen node mapping:
# add => add
# diff => sub
# diff_squared => mul_1
# mean => sum_1
# mul => mul
# mul_2 => mul_2
# std => sqrt
# sum_2 => sum_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {})
# %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2, 3]), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze_2, %unsqueeze_4), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_5, %mul_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [2, 3]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 0.0001), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
triton_per_fused_add_mul_sqrt_sub_sum_0 = async_compile.triton('triton_per_fused_add_mul_sqrt_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[8, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_sqrt_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_sqrt_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 8
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x1 = (xindex // 2)
x0 = xindex % 2
x3 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + (16*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + (r2 + (16*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = tmp1 - tmp6
tmp8 = tmp7 * tmp7
tmp9 = tmp0 * tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp14 = 0.0001
tmp15 = tmp13 + tmp14
tmp16 = libdevice.sqrt(tmp15)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x3), tmp16, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (2, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
buf1 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [mul, mean, diff, diff_squared, mul_2, sum_2, add, std], Original ATen: [aten.mul, aten.sum, aten.sub, aten.add, aten.sqrt]
stream0 = get_raw_stream(0)
triton_per_fused_add_mul_sqrt_sub_sum_0.run(buf2, arg0_1, arg1_1, buf0, 8, 16, grid=grid(8), stream=stream0)
del arg0_1
del arg1_1
return (buf0, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((2, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional
import torch.nn as nn
import torch.nn.init
import torch.onnx
class SpatialMeanAndStd(nn.Module):
def __init__(self, shape, eps=0.0001, half_size=1.0):
super(SpatialMeanAndStd, self).__init__()
p = torch.empty((2, shape[0], shape[1]), dtype=torch.float32)
p[0, ...] = torch.linspace(-half_size, half_size, shape[1])[None, :]
p[1, ...] = torch.linspace(-half_size, half_size, shape[0])[:, None]
self.position_code = nn.Parameter(p)
self.position_code.requires_grad = False
self._shape = shape
self._eps = eps
def forward(self, x):
assert x.shape[1] == self._shape[0
], f'input shape {x.shape} vs expected {self._shape}'
assert x.shape[2] == self._shape[1
], f'input shape {x.shape} vs expected {self._shape}'
mean = torch.sum(x[:, None, :, :] * self.position_code[None, ...],
dim=[2, 3])
diff = self.position_code[None, ...] - mean[..., None, None]
diff_squared = diff * diff
std = torch.sqrt(torch.sum(x[:, None, :, :] * diff_squared, dim=[2,
3]) + self._eps)
return mean, std
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'shape': [4, 4]}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn.functional
import torch.nn as nn
import torch.nn.init
import torch.onnx
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mul_sqrt_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 8
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x1 = xindex // 2
x0 = xindex % 2
x3 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + 16 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + (r2 + 16 * x0), xmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = tmp1 - tmp6
tmp8 = tmp7 * tmp7
tmp9 = tmp0 * tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp14 = 0.0001
tmp15 = tmp13 + tmp14
tmp16 = libdevice.sqrt(tmp15)
tl.debug_barrier()
tl.store(in_out_ptr0 + x3, tmp16, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (2, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
buf1 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_per_fused_add_mul_sqrt_sub_sum_0[grid(8)](buf2, arg0_1,
arg1_1, buf0, 8, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf0, buf2
class SpatialMeanAndStdNew(nn.Module):
def __init__(self, shape, eps=0.0001, half_size=1.0):
super(SpatialMeanAndStdNew, self).__init__()
p = torch.empty((2, shape[0], shape[1]), dtype=torch.float32)
p[0, ...] = torch.linspace(-half_size, half_size, shape[1])[None, :]
p[1, ...] = torch.linspace(-half_size, half_size, shape[0])[:, None]
self.position_code = nn.Parameter(p)
self.position_code.requires_grad = False
self._shape = shape
self._eps = eps
def forward(self, input_0):
arg1_1 = self.position_code
arg0_1 = input_0
output = call([arg0_1, arg1_1])
return output[0], output[1]
| opentrack/neuralnet-tracker-traincode | SpatialMeanAndStd | false | 4,110 | [
"ISC",
"CC0-1.0",
"Unlicense"
] | 0 | 688ada0f46cb407d1809b50c11a136a239290123 | https://github.com/opentrack/neuralnet-tracker-traincode/tree/688ada0f46cb407d1809b50c11a136a239290123 | import torch
import torch.nn.functional
import torch.nn as nn
import torch.nn.init
import torch.onnx
class Model(nn.Module):
def __init__(self, shape, eps=0.0001, half_size=1.0):
super().__init__()
p = torch.empty((2, shape[0], shape[1]), dtype=torch.float32)
p[0, ...] = torch.linspace(-half_size, half_size, shape[1])[None, :]
p[1, ...] = torch.linspace(-half_size, half_size, shape[0])[:, None]
self.position_code = nn.Parameter(p)
self.position_code.requires_grad = False
self._shape = shape
self._eps = eps
def forward(self, x):
assert x.shape[1] == self._shape[0
], f'input shape {x.shape} vs expected {self._shape}'
assert x.shape[2] == self._shape[1
], f'input shape {x.shape} vs expected {self._shape}'
mean = torch.sum(x[:, None, :, :] * self.position_code[None, ...],
dim=[2, 3])
diff = self.position_code[None, ...] - mean[..., None, None]
diff_squared = diff * diff
std = torch.sqrt(torch.sum(x[:, None, :, :] * diff_squared, dim=[2,
3]) + self._eps)
return mean, std
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return []
|
PositionGenerator | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/df/cdfcie57v6pcdd6oeaz4mvlgksxgyuxzmlv5bklwemyulqhtcxta.py
# Topologically Sorted Source Nodes: [mean, std, sub, mul, add, truediv, add_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mean => mean
# mul => mul
# std => sqrt, var
# sub => sub
# truediv => div
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_2, [-1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_2, [-1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %mean), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_4), kwargs = {})
triton_poi_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp0 * tmp11
tmp13 = tmp2 - tmp10
tmp14 = tmp13 * tmp13
tmp15 = tmp3 - tmp10
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp5 - tmp10
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = tmp7 - tmp10
tmp22 = tmp21 * tmp21
tmp23 = tmp20 + tmp22
tmp24 = 3.0
tmp25 = tmp23 / tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = 1e-06
tmp28 = tmp26 + tmp27
tmp29 = tmp12 / tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + (x2), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/tt/ctttzgnguystw446sgeisgiema54yz5d5wmngsz4pinf7chzr4i7.py
# Topologically Sorted Source Nodes: [out_masked], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# out_masked => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %unsqueeze), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 256
x4 = (xindex // 4)
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x5), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (3, 4), (4, 1))
assert_size_stride(primals_6, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, std, sub, mul, add, truediv, add_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mean_mul_std_sub_0.run(primals_3, primals_2, primals_4, buf0, 256, grid=grid(256), stream=stream0)
del primals_3
del primals_4
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_masked], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(buf0, primals_1, buf1, 1024, grid=grid(1024), stream=stream0)
del buf0
buf2 = empty_strided_cuda((256, 3), (3, 1), torch.float32)
# Topologically Sorted Source Nodes: [projected], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(buf1, (256, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 3), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_6
return (reinterpret_tensor(buf2, (4, 4, 4, 4, 3), (192, 48, 12, 3, 1), 0), primals_1, primals_2, reinterpret_tensor(buf1, (256, 4), (4, 1), 0), primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((3, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class LayerNorm(nn.Module):
"""Construct a layernorm module (See citation for details)."""
def __init__(self, features, eps=1e-06):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class PositionGenerator(nn.Module):
"""Define standard linear + softmax generation step."""
def __init__(self, d_model):
super(PositionGenerator, self).__init__()
self.norm = LayerNorm(d_model)
self.proj = nn.Linear(d_model, 3)
def forward(self, x, mask):
mask = mask.unsqueeze(-1).float()
out_masked = self.norm(x) * mask
projected = self.proj(out_masked)
return projected
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp0 * tmp11
tmp13 = tmp2 - tmp10
tmp14 = tmp13 * tmp13
tmp15 = tmp3 - tmp10
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp5 - tmp10
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = tmp7 - tmp10
tmp22 = tmp21 * tmp21
tmp23 = tmp20 + tmp22
tmp24 = 3.0
tmp25 = tmp23 / tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = 1e-06
tmp28 = tmp26 + tmp27
tmp29 = tmp12 / tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 256
x4 = xindex // 4
x5 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x5, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (3, 4), (4, 1))
assert_size_stride(primals_6, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mean_mul_std_sub_0[grid(256)](primals_3,
primals_2, primals_4, buf0, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_3
del primals_4
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_mul_1[grid(1024)](buf0, primals_1, buf1, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del buf0
buf2 = empty_strided_cuda((256, 3), (3, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(buf1, (256, 4),
(4, 1), 0), reinterpret_tensor(primals_5, (4, 3), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_6
return reinterpret_tensor(buf2, (4, 4, 4, 4, 3), (192, 48, 12, 3, 1), 0
), primals_1, primals_2, reinterpret_tensor(buf1, (256, 4), (4, 1), 0
), primals_5
class LayerNorm(nn.Module):
"""Construct a layernorm module (See citation for details)."""
def __init__(self, features, eps=1e-06):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class PositionGeneratorNew(nn.Module):
"""Define standard linear + softmax generation step."""
def __init__(self, d_model):
super(PositionGeneratorNew, self).__init__()
self.norm = LayerNorm(d_model)
self.proj = nn.Linear(d_model, 3)
def forward(self, input_0, input_1):
primals_3 = self.norm.a_2
primals_4 = self.norm.b_2
primals_5 = self.proj.weight
primals_6 = self.proj.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| odb9402/MAT | PositionGenerator | false | 4,111 | [
"MIT"
] | 0 | 95d8083170da2c8ce1f5898b3a556bcf54eac8cc | https://github.com/odb9402/MAT/tree/95d8083170da2c8ce1f5898b3a556bcf54eac8cc | import torch
import torch.nn as nn
class LayerNorm(nn.Module):
"""Construct a layernorm module (See citation for details)."""
def __init__(self, features, eps=1e-06):
super().__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class Model(nn.Module):
"""Define standard linear + softmax generation step."""
def __init__(self, d_model):
super().__init__()
self.norm = LayerNorm(d_model)
self.proj = nn.Linear(d_model, 3)
def forward(self, x, mask):
mask = mask.unsqueeze(-1).float()
out_masked = self.norm(x) * mask
projected = self.proj(out_masked)
return projected
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SoftmaxOutputLayer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/wx/cwxwvlntewdrqi2r4caciy5ht4jdvafnhtiqncr4lo4aegcb4imz.py
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# probs => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/4f/c4fohylrkpmotjodbcxka53btdcdzxeig62kpjpo2l45ahnmgqpg.py
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
# Source node to ATen node mapping:
# max_1 => getitem_1
# Graph fragment:
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%max_1, 1), kwargs = {})
triton_poi_fused_max_1 = async_compile.triton('triton_poi_fused_max_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tmp0 / tmp6
tmp8 = tmp1 / tmp6
tmp9 = tmp7 > tmp8
tmp10 = tmp7 == tmp8
tmp11 = tmp7 != tmp7
tmp12 = tmp8 != tmp8
tmp13 = tmp11 > tmp12
tmp14 = tmp9 | tmp13
tmp15 = tmp11 & tmp12
tmp16 = tmp10 | tmp15
tmp17 = tl.full([1], 0, tl.int64)
tmp18 = tl.full([1], 1, tl.int64)
tmp19 = tmp17 < tmp18
tmp20 = tmp16 & tmp19
tmp21 = tmp14 | tmp20
tmp22 = tl.where(tmp21, tmp7, tmp8)
tmp23 = tl.where(tmp21, tmp17, tmp18)
tmp24 = tmp3 / tmp6
tmp25 = tmp22 > tmp24
tmp26 = tmp22 == tmp24
tmp27 = tmp22 != tmp22
tmp28 = tmp24 != tmp24
tmp29 = tmp27 > tmp28
tmp30 = tmp25 | tmp29
tmp31 = tmp27 & tmp28
tmp32 = tmp26 | tmp31
tmp33 = tl.full([1], 2, tl.int64)
tmp34 = tmp23 < tmp33
tmp35 = tmp32 & tmp34
tmp36 = tmp30 | tmp35
tmp37 = tl.where(tmp36, tmp22, tmp24)
tmp38 = tl.where(tmp36, tmp23, tmp33)
tmp39 = tmp5 / tmp6
tmp40 = tmp37 > tmp39
tmp41 = tmp37 == tmp39
tmp42 = tmp37 != tmp37
tmp43 = tmp39 != tmp39
tmp44 = tmp42 > tmp43
tmp45 = tmp40 | tmp44
tmp46 = tmp42 & tmp43
tmp47 = tmp41 | tmp46
tmp48 = tl.full([1], 3, tl.int64)
tmp49 = tmp38 < tmp48
tmp50 = tmp47 & tmp49
tmp51 = tmp45 | tmp50
tmp52 = tl.where(tmp51, tmp37, tmp39)
tmp53 = tl.where(tmp51, tmp38, tmp48)
tl.store(out_ptr0 + (x0), tmp53, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, ), (1, ))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm]
extern_kernels.addmm(arg1_1, reinterpret_tensor(arg2_1, (64, 4), (4, 1), 0), reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del arg0_1
del arg1_1
del arg2_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
del buf0
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
triton_poi_fused_max_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
del buf1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class OutputLayer(nn.Module):
"""
Abstract base class for output layer.
Handles projection to output labels
"""
def __init__(self, hidden_size, output_size):
super(OutputLayer, self).__init__()
self.output_size = output_size
self.output_projection = nn.Linear(hidden_size, output_size)
def loss(self, hidden, labels):
raise NotImplementedError('Must implement {}.loss'.format(self.
__class__.__name__))
class SoftmaxOutputLayer(OutputLayer):
"""
Implements a softmax based output layer
"""
def forward(self, hidden):
logits = self.output_projection(hidden)
probs = F.softmax(logits, -1)
_, predictions = torch.max(probs, dim=-1)
return predictions
def loss(self, hidden, labels):
logits = self.output_projection(hidden)
log_probs = F.log_softmax(logits, -1)
return F.nll_loss(log_probs.view(-1, self.output_size), labels.view(-1)
)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_max_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tmp0 / tmp6
tmp8 = tmp1 / tmp6
tmp9 = tmp7 > tmp8
tmp10 = tmp7 == tmp8
tmp11 = tmp7 != tmp7
tmp12 = tmp8 != tmp8
tmp13 = tmp11 > tmp12
tmp14 = tmp9 | tmp13
tmp15 = tmp11 & tmp12
tmp16 = tmp10 | tmp15
tmp17 = tl.full([1], 0, tl.int64)
tmp18 = tl.full([1], 1, tl.int64)
tmp19 = tmp17 < tmp18
tmp20 = tmp16 & tmp19
tmp21 = tmp14 | tmp20
tmp22 = tl.where(tmp21, tmp7, tmp8)
tmp23 = tl.where(tmp21, tmp17, tmp18)
tmp24 = tmp3 / tmp6
tmp25 = tmp22 > tmp24
tmp26 = tmp22 == tmp24
tmp27 = tmp22 != tmp22
tmp28 = tmp24 != tmp24
tmp29 = tmp27 > tmp28
tmp30 = tmp25 | tmp29
tmp31 = tmp27 & tmp28
tmp32 = tmp26 | tmp31
tmp33 = tl.full([1], 2, tl.int64)
tmp34 = tmp23 < tmp33
tmp35 = tmp32 & tmp34
tmp36 = tmp30 | tmp35
tmp37 = tl.where(tmp36, tmp22, tmp24)
tmp38 = tl.where(tmp36, tmp23, tmp33)
tmp39 = tmp5 / tmp6
tmp40 = tmp37 > tmp39
tmp41 = tmp37 == tmp39
tmp42 = tmp37 != tmp37
tmp43 = tmp39 != tmp39
tmp44 = tmp42 > tmp43
tmp45 = tmp40 | tmp44
tmp46 = tmp42 & tmp43
tmp47 = tmp41 | tmp46
tmp48 = tl.full([1], 3, tl.int64)
tmp49 = tmp38 < tmp48
tmp50 = tmp47 & tmp49
tmp51 = tmp45 | tmp50
tl.where(tmp51, tmp37, tmp39)
tmp53 = tl.where(tmp51, tmp38, tmp48)
tl.store(out_ptr0 + x0, tmp53, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4,), (1,))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(arg1_1, reinterpret_tensor(arg2_1, (64, 4), (4,
1), 0), reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), alpha=1,
beta=1, out=buf0)
del arg0_1
del arg1_1
del arg2_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf0
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
triton_poi_fused_max_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf1
return buf2,
class OutputLayer(nn.Module):
"""
Abstract base class for output layer.
Handles projection to output labels
"""
def __init__(self, hidden_size, output_size):
super(OutputLayer, self).__init__()
self.output_size = output_size
self.output_projection = nn.Linear(hidden_size, output_size)
def loss(self, hidden, labels):
raise NotImplementedError('Must implement {}.loss'.format(self.
__class__.__name__))
class SoftmaxOutputLayerNew(OutputLayer):
"""
Implements a softmax based output layer
"""
def loss(self, hidden, labels):
logits = self.output_projection(hidden)
log_probs = F.log_softmax(logits, -1)
return F.nll_loss(log_probs.view(-1, self.output_size), labels.view(-1)
)
def forward(self, input_0):
arg0_1 = self.output_projection.weight
arg1_1 = self.output_projection.bias
arg2_1 = input_0
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| oya163/torchnlp | SoftmaxOutputLayer | false | 4,112 | [
"Apache-2.0"
] | 0 | 361caa24d741e47b8bd92af122ae281d6ad72d9d | https://github.com/oya163/torchnlp/tree/361caa24d741e47b8bd92af122ae281d6ad72d9d | import torch
import torch.nn as nn
import torch.nn.functional as F
class OutputLayer(nn.Module):
"""
Abstract base class for output layer.
Handles projection to output labels
"""
def __init__(self, hidden_size, output_size):
super().__init__()
self.output_size = output_size
self.output_projection = nn.Linear(hidden_size, output_size)
def loss(self, hidden, labels):
raise NotImplementedError('Must implement {}.loss'.format(self.
__class__.__name__))
class Model(OutputLayer):
"""
Implements a softmax based output layer
"""
def forward(self, hidden):
logits = self.output_projection(hidden)
probs = F.softmax(logits, -1)
_, predictions = torch.max(probs, dim=-1)
return predictions
def loss(self, hidden, labels):
logits = self.output_projection(hidden)
log_probs = F.log_softmax(logits, -1)
return F.nll_loss(log_probs.view(-1, self.output_size), labels.view(-1)
)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
ScoreCap | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/za/czaizrxepsjwum46f5wjjnkukgwbslz6g3hqdk3kbhdi3m42uypn.py
# Topologically Sorted Source Nodes: [clip], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clip => clamp_max
# Graph fragment:
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 4.0
tmp2 = triton_helpers.minimum(tmp0, tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clip], Original ATen: [aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn
import torch.optim
class ScoreCap(nn.Module):
def __init__(self, cap: 'float'):
super().__init__()
self.cap = cap
def forward(self, input):
return torch.clip(input, max=self.cap)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'cap': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 4.0
tmp2 = triton_helpers.minimum(tmp0, tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ScoreCapNew(nn.Module):
def __init__(self, cap: 'float'):
super().__init__()
self.cap = cap
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| mcx/ReAgent | ScoreCap | false | 4,113 | [
"BSD-3-Clause"
] | 0 | 57b58a8b3a6b74bb87a197b73a6cd108ddad895e | https://github.com/mcx/ReAgent/tree/57b58a8b3a6b74bb87a197b73a6cd108ddad895e | import torch
from torch import nn
import torch.nn
import torch.optim
class Model(nn.Module):
def __init__(self, cap: 'float'):
super().__init__()
self.cap = cap
def forward(self, input):
return torch.clip(input, max=self.cap)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SelfGating | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/32/c32gpnu7y6kwawwiknabqcyafcipv27fjg22cpx6wzdxmd52bm4o.py
# Topologically Sorted Source Nodes: [spatiotemporal_average], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# spatiotemporal_average => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [2, 3, 4]), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/c2/cc26hd4oq32vrxgrqqakqqnzwxv6d6ovzdl26r33utpsmw442x3p.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_2, %primals_1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 64)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (x2), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [spatiotemporal_average], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 64, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, buf1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(buf2, primals_1, buf3, 1024, grid=grid(1024), stream=stream0)
return (buf3, primals_1, buf1, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SelfGating(nn.Module):
def __init__(self, input_dim):
super(SelfGating, self).__init__()
self.fc = nn.Linear(input_dim, input_dim)
def forward(self, input_tensor):
"""Feature gating as used in S3D-G"""
spatiotemporal_average = torch.mean(input_tensor, dim=[2, 3, 4])
weights = self.fc(spatiotemporal_average)
weights = torch.sigmoid(weights)
return weights[:, :, None, None, None] * input_tensor
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + x2, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 64, XBLOCK=8,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, buf1, reinterpret_tensor(primals_2,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_mul_1[grid(1024)](buf2, primals_1, buf3, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
return buf3, primals_1, buf1, buf2
class SelfGatingNew(nn.Module):
def __init__(self, input_dim):
super(SelfGatingNew, self).__init__()
self.fc = nn.Linear(input_dim, input_dim)
def forward(self, input_0):
primals_2 = self.fc.weight
primals_3 = self.fc.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| necla-ml/CPR | SelfGating | false | 4,114 | [
"BSD-3-Clause"
] | 0 | 101023c587a35b254ea640b4501167a6830856af | https://github.com/necla-ml/CPR/tree/101023c587a35b254ea640b4501167a6830856af | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.fc = nn.Linear(input_dim, input_dim)
def forward(self, input_tensor):
"""Feature gating as used in S3D-G"""
spatiotemporal_average = torch.mean(input_tensor, dim=[2, 3, 4])
weights = self.fc(spatiotemporal_average)
weights = torch.sigmoid(weights)
return weights[:, :, None, None, None] * input_tensor
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SharpenedCosineSimilarity | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/mb/cmbfb43iymo2jb2srmgr7hae3y37bqflfj3wrihlrjlmhb33mlpk.py
# Topologically Sorted Source Nodes: [out, out_1, ones_like, norm], Original ATen: [aten.pow, aten.sum, aten.ones_like, aten.convolution]
# Source node to ATen node mapping:
# norm => convolution
# ones_like => full_default
# out => pow_1
# out_1 => sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1, 1, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%sum_1, %full_default, None, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_ones_like_pow_sum_0 = async_compile.triton('triton_poi_fused_convolution_ones_like_pow_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_ones_like_pow_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_ones_like_pow_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp8 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/j7/cj73aqsbb35sktpndjl2h4bp2q3r2mtzl2ahq3tg56cbgykvpzdx.py
# Topologically Sorted Source Nodes: [out, out_1, ones_like, norm], Original ATen: [aten.pow, aten.sum, aten.ones_like, aten.convolution]
# Source node to ATen node mapping:
# norm => convolution
# ones_like => full_default
# out => pow_1
# out_1 => sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1, 1, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%sum_1, %full_default, None, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_ones_like_pow_sum_1 = async_compile.triton('triton_poi_fused_convolution_ones_like_pow_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_ones_like_pow_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_ones_like_pow_sum_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 1.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2i/c2ioqypkkpd7imw74zurye5it7p2mkwxd6hrhzx2apuyslwclmld.py
# Topologically Sorted Source Nodes: [square_1, sum_2, sqrt, weight], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# sqrt => sqrt
# square_1 => pow_2
# sum_2 => sum_2
# weight => div_1
# Graph fragment:
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [1, 2, 3], True), kwargs = {})
# %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_2,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_3, %sqrt), kwargs = {})
triton_per_fused_div_pow_sqrt_sum_2 = async_compile.triton('triton_per_fused_div_pow_sqrt_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_pow_sqrt_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_pow_sqrt_sum_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tmp6 = libdevice.sqrt(tmp5)
tmp7 = tmp0 / tmp6
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
tl.store(out_ptr0 + (r1 + (64*x0)), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/bh/cbhevdbkvcnrnkcsrexk6bxenen7fkefkpkqbhd3c4ghkofpljxi.py
# Topologically Sorted Source Nodes: [neg, truediv, q, add, norm_1, sqrt_1, out_2, abs_1, magnitude, sign, out_3, out_4], Original ATen: [aten.neg, aten.div, aten.exp, aten.add, aten.sqrt, aten.abs, aten.sign, aten.pow, aten.mul]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# magnitude => add_2
# neg => neg
# norm_1 => add_1
# out_2 => div_2
# out_3 => pow_3
# out_4 => mul
# q => exp
# sign => sign
# sqrt_1 => sqrt_1
# truediv => div
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%primals_2,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, 0.3), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp, 1e-06), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %add), kwargs = {})
# %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {})
# %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%convolution_1, %sqrt_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%div_2,), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, 1e-06), kwargs = {})
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%div_2,), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%add_2, %view), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_3, %sign), kwargs = {})
triton_poi_fused_abs_add_div_exp_mul_neg_pow_sign_sqrt_3 = async_compile.triton('triton_poi_fused_abs_add_div_exp_mul_neg_pow_sign_sqrt_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_div_exp_mul_neg_pow_sign_sqrt_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_div_exp_mul_neg_pow_sign_sqrt_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 9
x2 = (xindex // 36)
x1 = (xindex // 9) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (9*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp15 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp4 = -tmp3
tmp5 = 3.3333333333333335
tmp6 = tmp4 * tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = 1e-06
tmp9 = tmp7 + tmp8
tmp10 = tmp1 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp12 = tmp0 / tmp11
tmp13 = tl_math.abs(tmp12)
tmp14 = tmp13 + tmp8
tmp16 = 0.2
tmp17 = tmp15 * tmp16
tmp18 = tl_math.exp(tmp17)
tmp19 = libdevice.pow(tmp14, tmp18)
tmp20 = tl.full([1], 0, tl.int32)
tmp21 = tmp20 < tmp12
tmp22 = tmp21.to(tl.int8)
tmp23 = tmp12 < tmp20
tmp24 = tmp23.to(tl.int8)
tmp25 = tmp22 - tmp24
tmp26 = tmp25.to(tmp12.dtype)
tmp27 = tmp19 * tmp26
tl.store(out_ptr0 + (x3), tmp27, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out, out_1, ones_like, norm], Original ATen: [aten.pow, aten.sum, aten.ones_like, aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_ones_like_pow_sum_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
buf1 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out, out_1, ones_like, norm], Original ATen: [aten.pow, aten.sum, aten.ones_like, aten.convolution]
triton_poi_fused_convolution_ones_like_pow_sum_1.run(buf1, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [out, out_1, ones_like, norm], Original ATen: [aten.pow, aten.sum, aten.ones_like, aten.convolution]
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 3, 3), (9, 9, 3, 1))
del buf0
del buf1
buf3 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf4 = reinterpret_tensor(buf3, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [square_1, sum_2, sqrt, weight], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.div]
triton_per_fused_div_pow_sqrt_sum_2.run(buf4, primals_3, buf5, 4, 64, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(primals_1, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 3, 3), (36, 9, 3, 1))
buf7 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [neg, truediv, q, add, norm_1, sqrt_1, out_2, abs_1, magnitude, sign, out_3, out_4], Original ATen: [aten.neg, aten.div, aten.exp, aten.add, aten.sqrt, aten.abs, aten.sign, aten.pow, aten.mul]
triton_poi_fused_abs_add_div_exp_mul_neg_pow_sign_sqrt_3.run(buf6, buf2, primals_2, primals_4, buf7, 144, grid=grid(144), stream=stream0)
return (buf7, primals_1, primals_2, primals_3, primals_4, buf2, buf4, buf5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class SharpenedCosineSimilarity(nn.Conv2d):
def __init__(self, in_channels: 'int', out_channels: 'int', kernel_size,
stride=1, padding=None, dilation=1, groups: 'int'=1, bias: 'bool'=
False, q_init: 'float'=10, p_init: 'float'=1.0, q_scale: 'float'=
0.3, p_scale: 'float'=5, eps: 'float'=1e-06):
if padding is None:
if int(torch.__version__.split('.')[1]) >= 10:
padding = 'same'
else:
padding = (stride - 1 + dilation * (kernel_size - 1)) // 2
if isinstance(kernel_size, int):
kernel_size = kernel_size, kernel_size
bias = False
assert dilation == 1, 'Dilation has to be 1 to use AvgPool2d as L2-Norm backend.'
assert groups == in_channels or groups == 1, 'Either depthwise or full convolution. Grouped not supported'
super(SharpenedCosineSimilarity, self).__init__(in_channels,
out_channels, kernel_size, stride, padding, dilation, groups, bias)
self.p_scale = p_scale
self.q_scale = q_scale
self.p = torch.nn.Parameter(torch.full((out_channels,), float(
p_init * self.p_scale)))
self.q = torch.nn.Parameter(torch.full((1,), float(q_init * self.
q_scale)))
self.eps = eps
def forward(self, inp: 'torch.Tensor') ->torch.Tensor:
out = inp.square()
if self.groups == 1:
out = out.sum(1, keepdim=True)
q = torch.exp(-self.q / self.q_scale)
norm = F.conv2d(out, torch.ones_like(self.weight[:1, :1]), None,
self.stride, self.padding, self.dilation)
norm = norm + (q + self.eps)
weight = self.weight / self.weight.square().sum(dim=(1, 2, 3),
keepdim=True).sqrt()
out = F.conv2d(inp, weight, self.bias, self.stride, self.padding,
self.dilation, self.groups) / norm.sqrt()
magnitude = out.abs() + self.eps
sign = out.sign()
p = torch.exp(self.p / self.p_scale)
out = magnitude.pow(p.view(1, -1, 1, 1))
out = out * sign
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_ones_like_pow_sum_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp8 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_convolution_ones_like_pow_sum_1(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 1.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_per_fused_div_pow_sqrt_sum_2(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tmp6 = libdevice.sqrt(tmp5)
tmp7 = tmp0 / tmp6
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
tl.store(out_ptr0 + (r1 + 64 * x0), tmp7, xmask)
@triton.jit
def triton_poi_fused_abs_add_div_exp_mul_neg_pow_sign_sqrt_3(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 9
x2 = xindex // 36
x1 = xindex // 9 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 9 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tl.load(in_ptr2 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp15 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp4 = -tmp3
tmp5 = 3.3333333333333335
tmp6 = tmp4 * tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = 1e-06
tmp9 = tmp7 + tmp8
tmp10 = tmp1 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp12 = tmp0 / tmp11
tmp13 = tl_math.abs(tmp12)
tmp14 = tmp13 + tmp8
tmp16 = 0.2
tmp17 = tmp15 * tmp16
tmp18 = tl_math.exp(tmp17)
tmp19 = libdevice.pow(tmp14, tmp18)
tmp20 = tl.full([1], 0, tl.int32)
tmp21 = tmp20 < tmp12
tmp22 = tmp21.to(tl.int8)
tmp23 = tmp12 < tmp20
tmp24 = tmp23.to(tl.int8)
tmp25 = tmp22 - tmp24
tmp26 = tmp25.to(tmp12.dtype)
tmp27 = tmp19 * tmp26
tl.store(out_ptr0 + x3, tmp27, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_ones_like_pow_sum_0[grid(64)](primals_1,
buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.float32)
triton_poi_fused_convolution_ones_like_pow_sum_1[grid(16)](buf1, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 3, 3), (9, 9, 3, 1))
del buf0
del buf1
buf3 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf4 = reinterpret_tensor(buf3, (4, 1, 1, 1), (1, 1, 1, 1), 0)
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused_div_pow_sqrt_sum_2[grid(4)](buf4, primals_3, buf5,
4, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf6 = extern_kernels.convolution(primals_1, buf5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 3, 3), (36, 9, 3, 1))
buf7 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
triton_poi_fused_abs_add_div_exp_mul_neg_pow_sign_sqrt_3[grid(144)](
buf6, buf2, primals_2, primals_4, buf7, 144, XBLOCK=128,
num_warps=4, num_stages=1)
return (buf7, primals_1, primals_2, primals_3, primals_4, buf2, buf4,
buf5, buf6)
class SharpenedCosineSimilarityNew(nn.Conv2d):
def __init__(self, in_channels: 'int', out_channels: 'int', kernel_size,
stride=1, padding=None, dilation=1, groups: 'int'=1, bias: 'bool'=
False, q_init: 'float'=10, p_init: 'float'=1.0, q_scale: 'float'=
0.3, p_scale: 'float'=5, eps: 'float'=1e-06):
if padding is None:
if int(torch.__version__.split('.')[1]) >= 10:
padding = 'same'
else:
padding = (stride - 1 + dilation * (kernel_size - 1)) // 2
if isinstance(kernel_size, int):
kernel_size = kernel_size, kernel_size
bias = False
assert dilation == 1, 'Dilation has to be 1 to use AvgPool2d as L2-Norm backend.'
assert groups == in_channels or groups == 1, 'Either depthwise or full convolution. Grouped not supported'
super(SharpenedCosineSimilarityNew, self).__init__(in_channels,
out_channels, kernel_size, stride, padding, dilation, groups, bias)
self.p_scale = p_scale
self.q_scale = q_scale
self.p = torch.nn.Parameter(torch.full((out_channels,), float(
p_init * self.p_scale)))
self.q = torch.nn.Parameter(torch.full((1,), float(q_init * self.
q_scale)))
self.eps = eps
def forward(self, input_0):
primals_1 = self.weight
primals_4 = self.p
primals_2 = self.q
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| p-sodmann/sharpened_cosine_similarity_torch | SharpenedCosineSimilarity | false | 4,115 | [
"MIT"
] | 0 | 0562e54f6494f365e321da9ae91edaba8595e3aa | https://github.com/p-sodmann/sharpened_cosine_similarity_torch/tree/0562e54f6494f365e321da9ae91edaba8595e3aa | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Conv2d):
def __init__(self, in_channels: 'int', out_channels: 'int', kernel_size,
stride=1, padding=None, dilation=1, groups: 'int'=1, bias: 'bool'=
False, q_init: 'float'=10, p_init: 'float'=1.0, q_scale: 'float'=
0.3, p_scale: 'float'=5, eps: 'float'=1e-06):
if padding is None:
if int(torch.__version__.split('.')[1]) >= 10:
padding = 'same'
else:
padding = (stride - 1 + dilation * (kernel_size - 1)) // 2
if isinstance(kernel_size, int):
kernel_size = kernel_size, kernel_size
bias = False
assert dilation == 1, 'Dilation has to be 1 to use AvgPool2d as L2-Norm backend.'
assert groups == in_channels or groups == 1, 'Either depthwise or full convolution. Grouped not supported'
super().__init__(in_channels,
out_channels, kernel_size, stride, padding, dilation, groups, bias)
self.p_scale = p_scale
self.q_scale = q_scale
self.p = torch.nn.Parameter(torch.full((out_channels,), float(
p_init * self.p_scale)))
self.q = torch.nn.Parameter(torch.full((1,), float(q_init * self.
q_scale)))
self.eps = eps
def forward(self, inp: 'torch.Tensor') ->torch.Tensor:
out = inp.square()
if self.groups == 1:
out = out.sum(1, keepdim=True)
q = torch.exp(-self.q / self.q_scale)
norm = F.conv2d(out, torch.ones_like(self.weight[:1, :1]), None,
self.stride, self.padding, self.dilation)
norm = norm + (q + self.eps)
weight = self.weight / self.weight.square().sum(dim=(1, 2, 3),
keepdim=True).sqrt()
out = F.conv2d(inp, weight, self.bias, self.stride, self.padding,
self.dilation, self.groups) / norm.sqrt()
magnitude = out.abs() + self.eps
sign = out.sign()
p = torch.exp(self.p / self.p_scale)
out = magnitude.pow(p.view(1, -1, 1, 1))
out = out * sign
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
GaussianParamNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/hp/chpdwpegv6lvistek2wqgimtufecqvfp6grp5rpblk5yjicjzqd2.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_1, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/tf/ctfthsznnangz7ikxf5rzs2ffhvj5acaberufhli4svcfzmjxwgj.py
# Topologically Sorted Source Nodes: [layer_norm, relu], Original ATen: [aten.native_layer_norm, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# layer_norm => add, mul, rsqrt, sub, var_mean
# relu => relu
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_1, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%mul,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_native_layer_norm_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_native_layer_norm_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_relu_threshold_backward_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = 0.0
tmp8 = tmp6 <= tmp7
tl.store(out_ptr0 + (x2), tmp6, xmask)
tl.store(out_ptr1 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ve/cve42436gxbhtfz23vmbdm7ktzrehdnnfufbdijpmlguqoegkw44.py
# Topologically Sorted Source Nodes: [add, softplus, sigma_1], Original ATen: [aten.add, aten.softplus, aten.softplus_backward]
# Source node to ATen node mapping:
# add => add_1
# sigma_1 => add_2
# softplus => exp, gt, log1p, where
# Graph fragment:
# %add_1 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_3, 0.5), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%add_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_1, 20), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_1, %log1p), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, 1e-08), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 1), kwargs = {})
triton_poi_fused_add_softplus_softplus_backward_2 = async_compile.triton('triton_poi_fused_add_softplus_softplus_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_softplus_softplus_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_softplus_softplus_backward_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 + x0 + (4*x1)), xmask)
tmp1 = 0.5
tmp2 = tmp0 + tmp1
tmp3 = 20.0
tmp4 = tmp2 > tmp3
tmp5 = tl_math.exp(tmp2)
tmp6 = libdevice.log1p(tmp5)
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = 1e-08
tmp9 = tmp7 + tmp8
tmp10 = 1.0
tmp11 = tmp2 * tmp10
tl.store(out_ptr0 + (x2), tmp9, xmask)
tl.store(out_ptr1 + (x2), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(buf0, buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [layer_norm, relu], Original ATen: [aten.native_layer_norm, aten.relu, aten.threshold_backward]
triton_poi_fused_native_layer_norm_relu_threshold_backward_1.run(buf0, buf1, buf2, buf3, buf7, 256, grid=grid(256), stream=stream0)
del buf1
del buf2
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_4
buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, softplus, sigma_1], Original ATen: [aten.add, aten.softplus, aten.softplus_backward]
triton_poi_fused_add_softplus_softplus_backward_2.run(buf4, buf5, buf6, 128, grid=grid(128), stream=stream0)
return (reinterpret_tensor(buf4, (4, 4, 4, 2), (64, 16, 4, 1), 0), buf5, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf6, primals_3, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class GaussianParamNet(nn.Module):
"""
Parameterise a Gaussian distributions.
"""
def __init__(self, input_dim, output_dim):
super(GaussianParamNet, self).__init__()
self.fc1 = nn.Linear(input_dim, input_dim, bias=False)
self.layer_nml = nn.LayerNorm(input_dim, elementwise_affine=False)
self.fc2 = nn.Linear(input_dim, output_dim)
def forward(self, x):
"""
x: input image with shape [B, K, 2*D]
"""
x = self.fc2(F.relu(self.layer_nml(self.fc1(x))))
mu, sigma = x.chunk(2, dim=-1)
sigma = F.softplus(sigma + 0.5) + 1e-08
return mu, sigma
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_relu_threshold_backward_1(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = 0.0
tmp8 = tmp6 <= tmp7
tl.store(out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr1 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_softplus_softplus_backward_2(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 + x0 + 4 * x1), xmask)
tmp1 = 0.5
tmp2 = tmp0 + tmp1
tmp3 = 20.0
tmp4 = tmp2 > tmp3
tmp5 = tl_math.exp(tmp2)
tmp6 = libdevice.log1p(tmp5)
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = 1e-08
tmp9 = tmp7 + tmp8
tmp10 = 1.0
tmp11 = tmp2 * tmp10
tl.store(out_ptr0 + x2, tmp9, xmask)
tl.store(out_ptr1 + x2, tmp11, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(64)](buf0, buf1, buf2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_native_layer_norm_relu_threshold_backward_1[grid(256)
](buf0, buf1, buf2, buf3, buf7, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del buf1
del buf2
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_4
buf5 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
triton_poi_fused_add_softplus_softplus_backward_2[grid(128)](buf4,
buf5, buf6, 128, XBLOCK=128, num_warps=4, num_stages=1)
return reinterpret_tensor(buf4, (4, 4, 4, 2), (64, 16, 4, 1), 0
), buf5, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0
), buf0, reinterpret_tensor(buf3, (64, 4), (4, 1), 0
), buf6, primals_3, buf7
class GaussianParamNetNew(nn.Module):
"""
Parameterise a Gaussian distributions.
"""
def __init__(self, input_dim, output_dim):
super(GaussianParamNetNew, self).__init__()
self.fc1 = nn.Linear(input_dim, input_dim, bias=False)
self.layer_nml = nn.LayerNorm(input_dim, elementwise_affine=False)
self.fc2 = nn.Linear(input_dim, output_dim)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_3 = self.fc2.weight
primals_4 = self.fc2.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0], output[1]
| pemami4911/MulMON | GaussianParamNet | false | 4,116 | [
"MIT"
] | 0 | e01438e7a9a1259dc473e7ffd20a005eeaea87cb | https://github.com/pemami4911/MulMON/tree/e01438e7a9a1259dc473e7ffd20a005eeaea87cb | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""
Parameterise a Gaussian distributions.
"""
def __init__(self, input_dim, output_dim):
super().__init__()
self.fc1 = nn.Linear(input_dim, input_dim, bias=False)
self.layer_nml = nn.LayerNorm(input_dim, elementwise_affine=False)
self.fc2 = nn.Linear(input_dim, output_dim)
def forward(self, x):
"""
x: input image with shape [B, K, 2*D]
"""
x = self.fc2(F.relu(self.layer_nml(self.fc1(x))))
mu, sigma = x.chunk(2, dim=-1)
sigma = F.softplus(sigma + 0.5) + 1e-08
return mu, sigma
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
VectorQuantizer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/wl/cwlmzdml5clk5iil2q4q6fjhya6lrvd7iuogvmgj3xnzorhofxzo.py
# Topologically Sorted Source Nodes: [pow_1, sum_1, pow_2, sum_2, add, mul, dist], Original ATen: [aten.pow, aten.sum, aten.add, aten.mul, aten.sub]
# Source node to ATen node mapping:
# add => add
# dist => sub
# mul => mul
# pow_1 => pow_1
# pow_2 => pow_2
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [1]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mul), kwargs = {})
triton_poi_fused_add_mul_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_add_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp14 = tmp13 * tmp13
tmp15 = tmp12 + tmp14
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp10 + tmp21
tmp24 = 2.0
tmp25 = tmp23 * tmp24
tmp26 = tmp22 - tmp25
tl.store(in_out_ptr0 + (x2), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ih/cihsi7xrtp35va4xu6k3ccmlvqibe633zl3j2u26zdxz5ymjheod.py
# Topologically Sorted Source Nodes: [argmin], Original ATen: [aten.argmin]
# Source node to ATen node mapping:
# argmin => argmin
# Graph fragment:
# %argmin : [num_users=1] = call_function[target=torch.ops.aten.argmin.default](args = (%sub, 1), kwargs = {})
triton_poi_fused_argmin_1 = async_compile.triton('triton_poi_fused_argmin_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_argmin_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_argmin_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 < tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 < tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 < tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tl.store(out_ptr0 + (x0), tmp46, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ii/cii57h7vnnkm7hvgwxkorlno7l6llti4mednsdwozlk7f6v2l56v.py
# Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter]
# Source node to ATen node mapping:
# scatter_ => scatter_upon_const_tensor
# Graph fragment:
# %scatter_upon_const_tensor : [num_users=3] = call_function[target=torch._inductor.fx_passes.post_grad.scatter_upon_const_tensor](args = (), kwargs = {shape: [64, 4], background_val: 0, dtype: torch.float32, dim: 1, selector: %unsqueeze, val: 1})
triton_poi_fused_scatter_2 = async_compile.triton('triton_poi_fused_scatter_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_scatter_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_scatter_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = x0
tmp2 = tmp0 == tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2x/c2xtc2rqsstpg77zfmaf3c7ukep7zd2kajvzz2cic6sfloogynwq.py
# Topologically Sorted Source Nodes: [commitment_loss, mul_1, vq_loss, quantized_latents_2], Original ATen: [aten.mse_loss, aten.mul, aten.add, aten.mse_loss_backward]
# Source node to ATen node mapping:
# commitment_loss => mean, pow_3, sub_1
# mul_1 => mul_1
# quantized_latents_2 => add_2
# vq_loss => add_1
# Graph fragment:
# %sub_1 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %primals_1), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.25), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mean), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %sub_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 0.0078125), kwargs = {})
triton_per_fused_add_mse_loss_mse_loss_backward_mul_3 = async_compile.triton('triton_per_fused_add_mse_loss_mse_loss_backward_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mse_loss_mse_loss_backward_mul_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mse_loss_mse_loss_backward_mul_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = tmp1 + tmp2
tmp8 = 0.0078125
tmp9 = tmp2 * tmp8
tmp10 = 256.0
tmp11 = tmp6 / tmp10
tmp12 = 0.25
tmp13 = tmp11 * tmp12
tmp14 = tmp13 + tmp11
tl.store(out_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp7, None)
tl.store(out_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp9, None)
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp14, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hi/chimm4h7ipd7d6ztjs52qdn5pts5oe2wekrp2nrfq35np354fggm.py
# Topologically Sorted Source Nodes: [avg_probs], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# avg_probs => mean_2
# Graph fragment:
# %mean_2 : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%scatter_upon_const_tensor, [0]), kwargs = {})
triton_per_fused_mean_4 = async_compile.triton('triton_per_fused_mean_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.OUTER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_4(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*r1)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/oh/cohn2cyrn2nvqjiznt54pgksb6eqnk2sohcs2r4ypixnijg2p7gq.py
# Topologically Sorted Source Nodes: [avg_probs, add_3, log, mul_2, sum_3, neg, perplexity], Original ATen: [aten.mean, aten.add, aten.log, aten.mul, aten.sum, aten.neg, aten.exp]
# Source node to ATen node mapping:
# add_3 => add_3
# avg_probs => mean_2
# log => log
# mul_2 => mul_2
# neg => neg
# perplexity => exp
# sum_3 => sum_3
# Graph fragment:
# %mean_2 : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%scatter_upon_const_tensor, [0]), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_2, 1e-10), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_3,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, %log), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_3,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
triton_per_fused_add_exp_log_mean_mul_neg_sum_5 = async_compile.triton('triton_per_fused_add_exp_log_mean_mul_neg_sum_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_exp_log_mean_mul_neg_sum_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_exp_log_mean_mul_neg_sum_5(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = 64.0
tmp2 = tmp0 / tmp1
tmp3 = 1e-10
tmp4 = tmp2 + tmp3
tmp5 = tl_math.log(tmp4)
tmp6 = tmp2 * tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp10 = -tmp9
tmp11 = tl_math.exp(tmp10)
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [pow_1, sum_1, pow_2, sum_2, add, mul, dist], Original ATen: [aten.pow, aten.sum, aten.add, aten.mul, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_pow_sub_sum_0.run(buf1, primals_1, primals_2, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [argmin], Original ATen: [aten.argmin]
triton_poi_fused_argmin_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter]
triton_poi_fused_scatter_2.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
del buf2
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [quantized_latents], Original ATen: [aten.mm]
extern_kernels.mm(buf3, primals_2, out=buf4)
del primals_2
buf5 = empty_strided_cuda((), (), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf10 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [commitment_loss, mul_1, vq_loss, quantized_latents_2], Original ATen: [aten.mse_loss, aten.mul, aten.add, aten.mse_loss_backward]
triton_per_fused_add_mse_loss_mse_loss_backward_mul_3.run(buf10, buf4, primals_1, buf6, buf9, 1, 256, grid=grid(1), stream=stream0)
del buf4
del primals_1
buf7 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [avg_probs], Original ATen: [aten.mean]
triton_per_fused_mean_4.run(buf3, buf7, 4, 64, grid=grid(4), stream=stream0)
buf8 = empty_strided_cuda((), (), torch.float32)
buf11 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [avg_probs, add_3, log, mul_2, sum_3, neg, perplexity], Original ATen: [aten.mean, aten.add, aten.log, aten.mul, aten.sum, aten.neg, aten.exp]
triton_per_fused_add_exp_log_mean_mul_neg_sum_5.run(buf11, buf7, 1, 4, grid=grid(1), stream=stream0)
del buf7
return (buf6, buf10, buf11, buf9, reinterpret_tensor(buf3, (4, 64), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
from torch import nn
from torch.nn import functional as F
class VectorQuantizer(nn.Module):
"""
Tensorflow original: https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py
Based on: https://github.com/AntixK/PyTorch-VAE/blob/master/models/vq_vae.py
"""
def __init__(self, num_embeddings: 'int', embedding_dim: 'int', beta:
'float'=0.25):
super(VectorQuantizer, self).__init__()
self.K = num_embeddings
self.D = embedding_dim
self.beta = beta
self.embedding = nn.Embedding(self.K, self.D)
self.embedding.weight.data.uniform_(-1 / self.K, 1 / self.K)
def forward(self, latents):
flat_latents = latents.view(-1, self.D)
dist = torch.sum(flat_latents ** 2, dim=1, keepdim=True) + torch.sum(
self.embedding.weight ** 2, dim=1) - 2 * torch.matmul(flat_latents,
self.embedding.weight.t())
encoding_inds = torch.argmin(dist, dim=1).unsqueeze(1)
device = latents.device
encoding_one_hot = torch.zeros(encoding_inds.size(0), self.K,
device=device)
encoding_one_hot.scatter_(1, encoding_inds, 1)
quantized_latents = torch.matmul(encoding_one_hot, self.embedding.
weight)
quantized_latents = quantized_latents.view(latents.shape)
commitment_loss = F.mse_loss(quantized_latents.detach(), latents)
embedding_loss = F.mse_loss(quantized_latents, latents.detach())
vq_loss = commitment_loss * self.beta + embedding_loss
quantized_latents = latents + (quantized_latents - latents).detach()
avg_probs = torch.mean(encoding_one_hot, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs +
1e-10)))
return quantized_latents.contiguous(), vq_loss, perplexity
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_embeddings': 4, 'embedding_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp23 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp14 = tmp13 * tmp13
tmp15 = tmp12 + tmp14
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp10 + tmp21
tmp24 = 2.0
tmp25 = tmp23 * tmp24
tmp26 = tmp22 - tmp25
tl.store(in_out_ptr0 + x2, tmp26, xmask)
@triton.jit
def triton_poi_fused_argmin_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 < tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 < tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 < tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tl.store(out_ptr0 + x0, tmp46, xmask)
@triton.jit
def triton_poi_fused_scatter_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = x0
tmp2 = tmp0 == tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + x2, tmp5, xmask)
@triton.jit
def triton_per_fused_add_mse_loss_mse_loss_backward_mul_3(in_out_ptr0,
in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = tmp1 + tmp2
tmp8 = 0.0078125
tmp9 = tmp2 * tmp8
tmp10 = 256.0
tmp11 = tmp6 / tmp10
tmp12 = 0.25
tmp13 = tmp11 * tmp12
tmp14 = tmp13 + tmp11
tl.store(out_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp7, None)
tl.store(out_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp9, None)
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp14, None)
@triton.jit
def triton_per_fused_mean_4(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * r1), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_per_fused_add_exp_log_mean_mul_neg_sum_5(in_out_ptr0, in_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = 64.0
tmp2 = tmp0 / tmp1
tmp3 = 1e-10
tmp4 = tmp2 + tmp3
tmp5 = tl_math.log(tmp4)
tmp6 = tmp2 * tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp10 = -tmp9
tmp11 = tl_math.exp(tmp10)
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_mul_pow_sub_sum_0[grid(256)](buf1, primals_1,
primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_argmin_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = buf1
del buf1
triton_poi_fused_scatter_2[grid(256)](buf2, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf2
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(buf3, primals_2, out=buf4)
del primals_2
buf5 = empty_strided_cuda((), (), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf10 = buf5
del buf5
triton_per_fused_add_mse_loss_mse_loss_backward_mul_3[grid(1)](buf10,
buf4, primals_1, buf6, buf9, 1, 256, num_warps=2, num_stages=1)
del buf4
del primals_1
buf7 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused_mean_4[grid(4)](buf3, buf7, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
buf8 = empty_strided_cuda((), (), torch.float32)
buf11 = buf8
del buf8
triton_per_fused_add_exp_log_mean_mul_neg_sum_5[grid(1)](buf11,
buf7, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf7
return buf6, buf10, buf11, buf9, reinterpret_tensor(buf3, (4, 64), (1,
4), 0)
class VectorQuantizerNew(nn.Module):
"""
Tensorflow original: https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py
Based on: https://github.com/AntixK/PyTorch-VAE/blob/master/models/vq_vae.py
"""
def __init__(self, num_embeddings: 'int', embedding_dim: 'int', beta:
'float'=0.25):
super(VectorQuantizerNew, self).__init__()
self.K = num_embeddings
self.D = embedding_dim
self.beta = beta
self.embedding = nn.Embedding(self.K, self.D)
self.embedding.weight.data.uniform_(-1 / self.K, 1 / self.K)
def forward(self, input_0):
primals_2 = self.embedding.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0], output[1], output[2]
| ltschmitt/RecGen | VectorQuantizer | false | 4,117 | [
"MIT"
] | 0 | 7f69b76b4213c823a3ff05c0e754face8b179896 | https://github.com/ltschmitt/RecGen/tree/7f69b76b4213c823a3ff05c0e754face8b179896 | import torch
import torch.utils.data
from torch import nn
from torch.nn import functional as F
class Model(nn.Module):
"""
Tensorflow original: https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py
Based on: https://github.com/AntixK/PyTorch-VAE/blob/master/models/vq_vae.py
"""
def __init__(self, num_embeddings: 'int', embedding_dim: 'int', beta:
'float'=0.25):
super().__init__()
self.K = num_embeddings
self.D = embedding_dim
self.beta = beta
self.embedding = nn.Embedding(self.K, self.D)
self.embedding.weight.data.uniform_(-1 / self.K, 1 / self.K)
def forward(self, latents):
flat_latents = latents.view(-1, self.D)
dist = torch.sum(flat_latents ** 2, dim=1, keepdim=True) + torch.sum(
self.embedding.weight ** 2, dim=1) - 2 * torch.matmul(flat_latents,
self.embedding.weight.t())
encoding_inds = torch.argmin(dist, dim=1).unsqueeze(1)
device = latents.device
encoding_one_hot = torch.zeros(encoding_inds.size(0), self.K,
device=device)
encoding_one_hot.scatter_(1, encoding_inds, 1)
quantized_latents = torch.matmul(encoding_one_hot, self.embedding.
weight)
quantized_latents = quantized_latents.view(latents.shape)
commitment_loss = F.mse_loss(quantized_latents.detach(), latents)
embedding_loss = F.mse_loss(quantized_latents, latents.detach())
vq_loss = commitment_loss * self.beta + embedding_loss
quantized_latents = latents + (quantized_latents - latents).detach()
avg_probs = torch.mean(encoding_one_hot, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs +
1e-10)))
return quantized_latents.contiguous(), vq_loss, perplexity
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
CRFOutputLayer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/dw/cdwmqu743nczlvrj7tkipbzih5kt2cf52yjyk66x6qqwoxzqkwcu.py
# Topologically Sorted Source Nodes: [add_1, max_1], Original ATen: [aten.add, aten.max]
# Source node to ATen node mapping:
# add_1 => add_1
# max_1 => max_1
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze_2, %unsqueeze_1), kwargs = {})
# %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%add_1, 1), kwargs = {})
triton_poi_fused_add_max_0 = async_compile.triton('triton_poi_fused_add_max_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_max_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (16*x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + (0))
tmp5 = tl.broadcast_to(tmp4, [XBLOCK])
tmp7 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (1 + (16*x1)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (1))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp13 = tl.load(in_ptr2 + (1))
tmp14 = tl.broadcast_to(tmp13, [XBLOCK])
tmp16 = tl.load(in_ptr3 + (4 + x0), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (2 + (16*x1)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr1 + (2))
tmp21 = tl.broadcast_to(tmp20, [XBLOCK])
tmp23 = tl.load(in_ptr2 + (2))
tmp24 = tl.broadcast_to(tmp23, [XBLOCK])
tmp26 = tl.load(in_ptr3 + (8 + x0), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (3 + (16*x1)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr1 + (3))
tmp31 = tl.broadcast_to(tmp30, [XBLOCK])
tmp33 = tl.load(in_ptr2 + (3))
tmp34 = tl.broadcast_to(tmp33, [XBLOCK])
tmp36 = tl.load(in_ptr3 + (12 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp0 + tmp2
tmp6 = tmp3 + tmp5
tmp8 = tmp6 + tmp7
tmp12 = tmp9 + tmp11
tmp15 = tmp12 + tmp14
tmp17 = tmp15 + tmp16
tmp18 = triton_helpers.maximum(tmp8, tmp17)
tmp22 = tmp19 + tmp21
tmp25 = tmp22 + tmp24
tmp27 = tmp25 + tmp26
tmp28 = triton_helpers.maximum(tmp18, tmp27)
tmp32 = tmp29 + tmp31
tmp35 = tmp32 + tmp34
tmp37 = tmp35 + tmp36
tmp38 = triton_helpers.maximum(tmp28, tmp37)
tmp39 = tmp8 > tmp17
tmp40 = tmp8 == tmp17
tmp41 = tmp8 != tmp8
tmp42 = tmp17 != tmp17
tmp43 = tmp41 > tmp42
tmp44 = tmp39 | tmp43
tmp45 = tmp41 & tmp42
tmp46 = tmp40 | tmp45
tmp47 = tl.full([1], 0, tl.int64)
tmp48 = tl.full([1], 1, tl.int64)
tmp49 = tmp47 < tmp48
tmp50 = tmp46 & tmp49
tmp51 = tmp44 | tmp50
tmp52 = tl.where(tmp51, tmp8, tmp17)
tmp53 = tl.where(tmp51, tmp47, tmp48)
tmp54 = tmp52 > tmp27
tmp55 = tmp52 == tmp27
tmp56 = tmp52 != tmp52
tmp57 = tmp27 != tmp27
tmp58 = tmp56 > tmp57
tmp59 = tmp54 | tmp58
tmp60 = tmp56 & tmp57
tmp61 = tmp55 | tmp60
tmp62 = tl.full([1], 2, tl.int64)
tmp63 = tmp53 < tmp62
tmp64 = tmp61 & tmp63
tmp65 = tmp59 | tmp64
tmp66 = tl.where(tmp65, tmp52, tmp27)
tmp67 = tl.where(tmp65, tmp53, tmp62)
tmp68 = tmp66 > tmp37
tmp69 = tmp66 == tmp37
tmp70 = tmp66 != tmp66
tmp71 = tmp37 != tmp37
tmp72 = tmp70 > tmp71
tmp73 = tmp68 | tmp72
tmp74 = tmp70 & tmp71
tmp75 = tmp69 | tmp74
tmp76 = tl.full([1], 3, tl.int64)
tmp77 = tmp67 < tmp76
tmp78 = tmp75 & tmp77
tmp79 = tmp73 | tmp78
tmp80 = tl.where(tmp79, tmp66, tmp37)
tmp81 = tl.where(tmp79, tmp67, tmp76)
tl.store(out_ptr0 + (x2), tmp38, xmask)
tl.store(out_ptr1 + (x2), tmp81, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ho/cho3kyyvvlfzvcgnxvqbk6afqxqu2eee4bblrr2c4njpbeom6354.py
# Topologically Sorted Source Nodes: [add_3, max_2], Original ATen: [aten.add, aten.max]
# Source node to ATen node mapping:
# add_3 => add_3
# max_2 => max_2
# Graph fragment:
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze_3, %unsqueeze_1), kwargs = {})
# %max_2 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%add_3, 1), kwargs = {})
triton_poi_fused_add_max_1 = async_compile.triton('triton_poi_fused_add_max_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_max_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_max_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4 + (16*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp6 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (5 + (16*x1)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (1))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp14 = tl.load(in_ptr3 + (4 + x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (6 + (16*x1)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr2 + (2))
tmp20 = tl.broadcast_to(tmp19, [XBLOCK])
tmp23 = tl.load(in_ptr3 + (8 + x0), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (7 + (16*x1)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (3))
tmp29 = tl.broadcast_to(tmp28, [XBLOCK])
tmp32 = tl.load(in_ptr3 + (12 + x0), xmask, eviction_policy='evict_last')
tmp4 = tmp1 + tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp12 = tmp9 + tmp11
tmp13 = tmp8 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = triton_helpers.maximum(tmp7, tmp15)
tmp21 = tmp18 + tmp20
tmp22 = tmp17 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = triton_helpers.maximum(tmp16, tmp24)
tmp30 = tmp27 + tmp29
tmp31 = tmp26 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = triton_helpers.maximum(tmp25, tmp33)
tmp35 = tmp7 > tmp15
tmp36 = tmp7 == tmp15
tmp37 = tmp7 != tmp7
tmp38 = tmp15 != tmp15
tmp39 = tmp37 > tmp38
tmp40 = tmp35 | tmp39
tmp41 = tmp37 & tmp38
tmp42 = tmp36 | tmp41
tmp43 = tl.full([1], 0, tl.int64)
tmp44 = tl.full([1], 1, tl.int64)
tmp45 = tmp43 < tmp44
tmp46 = tmp42 & tmp45
tmp47 = tmp40 | tmp46
tmp48 = tl.where(tmp47, tmp7, tmp15)
tmp49 = tl.where(tmp47, tmp43, tmp44)
tmp50 = tmp48 > tmp24
tmp51 = tmp48 == tmp24
tmp52 = tmp48 != tmp48
tmp53 = tmp24 != tmp24
tmp54 = tmp52 > tmp53
tmp55 = tmp50 | tmp54
tmp56 = tmp52 & tmp53
tmp57 = tmp51 | tmp56
tmp58 = tl.full([1], 2, tl.int64)
tmp59 = tmp49 < tmp58
tmp60 = tmp57 & tmp59
tmp61 = tmp55 | tmp60
tmp62 = tl.where(tmp61, tmp48, tmp24)
tmp63 = tl.where(tmp61, tmp49, tmp58)
tmp64 = tmp62 > tmp33
tmp65 = tmp62 == tmp33
tmp66 = tmp62 != tmp62
tmp67 = tmp33 != tmp33
tmp68 = tmp66 > tmp67
tmp69 = tmp64 | tmp68
tmp70 = tmp66 & tmp67
tmp71 = tmp65 | tmp70
tmp72 = tl.full([1], 3, tl.int64)
tmp73 = tmp63 < tmp72
tmp74 = tmp71 & tmp73
tmp75 = tmp69 | tmp74
tmp76 = tl.where(tmp75, tmp62, tmp33)
tmp77 = tl.where(tmp75, tmp63, tmp72)
tl.store(out_ptr0 + (x2), tmp34, xmask)
tl.store(out_ptr1 + (x2), tmp77, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/i2/ci2s3onbganqcbrkqgul24aydnipaukm6yf5o2l7jzdixgeapo6p.py
# Topologically Sorted Source Nodes: [add_5, max_3], Original ATen: [aten.add, aten.max]
# Source node to ATen node mapping:
# add_5 => add_5
# max_3 => max_3
# Graph fragment:
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze_4, %unsqueeze_1), kwargs = {})
# %max_3 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%add_5, 1), kwargs = {})
triton_poi_fused_add_max_2 = async_compile.triton('triton_poi_fused_add_max_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_max_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_max_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (8 + (16*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp6 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (9 + (16*x1)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (1))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp14 = tl.load(in_ptr3 + (4 + x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (10 + (16*x1)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr2 + (2))
tmp20 = tl.broadcast_to(tmp19, [XBLOCK])
tmp23 = tl.load(in_ptr3 + (8 + x0), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (11 + (16*x1)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (3))
tmp29 = tl.broadcast_to(tmp28, [XBLOCK])
tmp32 = tl.load(in_ptr3 + (12 + x0), xmask, eviction_policy='evict_last')
tmp4 = tmp1 + tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp12 = tmp9 + tmp11
tmp13 = tmp8 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = triton_helpers.maximum(tmp7, tmp15)
tmp21 = tmp18 + tmp20
tmp22 = tmp17 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = triton_helpers.maximum(tmp16, tmp24)
tmp30 = tmp27 + tmp29
tmp31 = tmp26 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = triton_helpers.maximum(tmp25, tmp33)
tmp35 = tmp7 > tmp15
tmp36 = tmp7 == tmp15
tmp37 = tmp7 != tmp7
tmp38 = tmp15 != tmp15
tmp39 = tmp37 > tmp38
tmp40 = tmp35 | tmp39
tmp41 = tmp37 & tmp38
tmp42 = tmp36 | tmp41
tmp43 = tl.full([1], 0, tl.int64)
tmp44 = tl.full([1], 1, tl.int64)
tmp45 = tmp43 < tmp44
tmp46 = tmp42 & tmp45
tmp47 = tmp40 | tmp46
tmp48 = tl.where(tmp47, tmp7, tmp15)
tmp49 = tl.where(tmp47, tmp43, tmp44)
tmp50 = tmp48 > tmp24
tmp51 = tmp48 == tmp24
tmp52 = tmp48 != tmp48
tmp53 = tmp24 != tmp24
tmp54 = tmp52 > tmp53
tmp55 = tmp50 | tmp54
tmp56 = tmp52 & tmp53
tmp57 = tmp51 | tmp56
tmp58 = tl.full([1], 2, tl.int64)
tmp59 = tmp49 < tmp58
tmp60 = tmp57 & tmp59
tmp61 = tmp55 | tmp60
tmp62 = tl.where(tmp61, tmp48, tmp24)
tmp63 = tl.where(tmp61, tmp49, tmp58)
tmp64 = tmp62 > tmp33
tmp65 = tmp62 == tmp33
tmp66 = tmp62 != tmp62
tmp67 = tmp33 != tmp33
tmp68 = tmp66 > tmp67
tmp69 = tmp64 | tmp68
tmp70 = tmp66 & tmp67
tmp71 = tmp65 | tmp70
tmp72 = tl.full([1], 3, tl.int64)
tmp73 = tmp63 < tmp72
tmp74 = tmp71 & tmp73
tmp75 = tmp69 | tmp74
tmp76 = tl.where(tmp75, tmp62, tmp33)
tmp77 = tl.where(tmp75, tmp63, tmp72)
tl.store(out_ptr0 + (x2), tmp34, xmask)
tl.store(out_ptr1 + (x2), tmp77, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/cj/ccjggvguunan7bokqtiojzjz3sm3gwnc263uehtysgzmly66krb4.py
# Topologically Sorted Source Nodes: [v_6, add_7, max_4, tag_1, tag_2, tag_3], Original ATen: [aten.add, aten.max, aten.gather]
# Source node to ATen node mapping:
# add_7 => add_7
# max_4 => max_4
# tag_1 => gather
# tag_2 => gather_1
# tag_3 => gather_2
# v_6 => add_6
# Graph fragment:
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, %select_3), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %unsqueeze_5), kwargs = {})
# %max_4 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%add_7, 1, True), kwargs = {})
# %gather : [num_users=2] = call_function[target=torch.ops.aten.gather.default](args = (%getitem_5, 1, %getitem_7), kwargs = {})
# %gather_1 : [num_users=2] = call_function[target=torch.ops.aten.gather.default](args = (%getitem_3, 1, %gather), kwargs = {})
# %gather_2 : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%getitem_1, 1, %gather_1), kwargs = {})
triton_poi_fused_add_gather_max_3 = async_compile.triton('triton_poi_fused_add_gather_max_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*i64', 6: '*i64', 7: '*i64', 8: '*i64', 9: '*i64', 10: '*i64', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_gather_max_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_gather_max_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp6 = tl.load(in_ptr3 + (0))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp9 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (1))
tmp12 = tl.broadcast_to(tmp11, [XBLOCK])
tmp15 = tl.load(in_ptr3 + (1))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp33 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr1 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr2 + (2))
tmp36 = tl.broadcast_to(tmp35, [XBLOCK])
tmp39 = tl.load(in_ptr3 + (2))
tmp40 = tl.broadcast_to(tmp39, [XBLOCK])
tmp56 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp57 = tl.load(in_ptr1 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr2 + (3))
tmp59 = tl.broadcast_to(tmp58, [XBLOCK])
tmp62 = tl.load(in_ptr3 + (3))
tmp63 = tl.broadcast_to(tmp62, [XBLOCK])
tmp4 = tmp1 + tmp3
tmp5 = tmp0 + tmp4
tmp8 = tmp5 + tmp7
tmp13 = tmp10 + tmp12
tmp14 = tmp9 + tmp13
tmp17 = tmp14 + tmp16
tmp18 = tmp8 > tmp17
tmp19 = tmp8 == tmp17
tmp20 = tmp8 != tmp8
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 0, tl.int64)
tmp27 = tl.full([1], 1, tl.int64)
tmp28 = tmp26 < tmp27
tmp29 = tmp25 & tmp28
tmp30 = tmp23 | tmp29
tmp31 = tl.where(tmp30, tmp8, tmp17)
tmp32 = tl.where(tmp30, tmp26, tmp27)
tmp37 = tmp34 + tmp36
tmp38 = tmp33 + tmp37
tmp41 = tmp38 + tmp40
tmp42 = tmp31 > tmp41
tmp43 = tmp31 == tmp41
tmp44 = tmp31 != tmp31
tmp45 = tmp41 != tmp41
tmp46 = tmp44 > tmp45
tmp47 = tmp42 | tmp46
tmp48 = tmp44 & tmp45
tmp49 = tmp43 | tmp48
tmp50 = tl.full([1], 2, tl.int64)
tmp51 = tmp32 < tmp50
tmp52 = tmp49 & tmp51
tmp53 = tmp47 | tmp52
tmp54 = tl.where(tmp53, tmp31, tmp41)
tmp55 = tl.where(tmp53, tmp32, tmp50)
tmp60 = tmp57 + tmp59
tmp61 = tmp56 + tmp60
tmp64 = tmp61 + tmp63
tmp65 = tmp54 > tmp64
tmp66 = tmp54 == tmp64
tmp67 = tmp54 != tmp54
tmp68 = tmp64 != tmp64
tmp69 = tmp67 > tmp68
tmp70 = tmp65 | tmp69
tmp71 = tmp67 & tmp68
tmp72 = tmp66 | tmp71
tmp73 = tl.full([1], 3, tl.int64)
tmp74 = tmp55 < tmp73
tmp75 = tmp72 & tmp74
tmp76 = tmp70 | tmp75
tmp77 = tl.where(tmp76, tmp54, tmp64)
tmp78 = tl.where(tmp76, tmp55, tmp73)
tmp79 = tl.full([XBLOCK], 4, tl.int32)
tmp80 = tmp78 + tmp79
tmp81 = tmp78 < 0
tmp82 = tl.where(tmp81, tmp80, tmp78)
tl.device_assert(((0 <= tmp82) & (tmp82 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp82 < 4")
tmp84 = tl.load(in_ptr4 + (tmp82 + (4*x0)), xmask, eviction_policy='evict_last')
tmp85 = tmp84 + tmp79
tmp86 = tmp84 < 0
tmp87 = tl.where(tmp86, tmp85, tmp84)
tl.device_assert(((0 <= tmp87) & (tmp87 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp87 < 4")
tmp89 = tl.load(in_ptr5 + (tmp87 + (4*x0)), xmask, eviction_policy='evict_last')
tmp90 = tmp89 + tmp79
tmp91 = tmp89 < 0
tmp92 = tl.where(tmp91, tmp90, tmp89)
tl.device_assert(((0 <= tmp92) & (tmp92 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp92 < 4")
tmp94 = tl.load(in_ptr6 + (tmp92 + (4*x0)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (4*x0), tmp78, xmask)
tl.store(out_ptr1 + (4*x0), tmp94, xmask)
tl.store(out_ptr2 + (4*x0), tmp89, xmask)
tl.store(out_ptr3 + (4*x0), tmp84, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, ), (1, ))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg3_1, (4, ), (1, ))
assert_size_stride(arg4_1, (4, 4), (4, 1))
assert_size_stride(arg5_1, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(arg2_1, (16, 4), (4, 1), 0), reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), out=buf0)
del arg0_1
del arg2_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
# Topologically Sorted Source Nodes: [add_1, max_1], Original ATen: [aten.add, aten.max]
stream0 = get_raw_stream(0)
triton_poi_fused_add_max_0.run(buf0, arg1_1, arg3_1, arg4_1, buf1, buf2, 16, grid=grid(16), stream=stream0)
del arg3_1
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
# Topologically Sorted Source Nodes: [add_3, max_2], Original ATen: [aten.add, aten.max]
triton_poi_fused_add_max_1.run(buf1, buf0, arg1_1, arg4_1, buf3, buf4, 16, grid=grid(16), stream=stream0)
buf5 = buf1; del buf1 # reuse
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
# Topologically Sorted Source Nodes: [add_5, max_3], Original ATen: [aten.add, aten.max]
triton_poi_fused_add_max_2.run(buf3, buf0, arg1_1, arg4_1, buf5, buf6, 16, grid=grid(16), stream=stream0)
del arg4_1
del buf3
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
buf7 = reinterpret_tensor(buf11, (4, 1), (4, 1), 3) # alias
buf8 = reinterpret_tensor(buf11, (4, 1), (4, 1), 0) # alias
buf9 = reinterpret_tensor(buf11, (4, 1), (4, 1), 1) # alias
buf10 = reinterpret_tensor(buf11, (4, 1), (4, 1), 2) # alias
# Topologically Sorted Source Nodes: [v_6, add_7, max_4, tag_1, tag_2, tag_3], Original ATen: [aten.add, aten.max, aten.gather]
triton_poi_fused_add_gather_max_3.run(buf5, buf0, arg1_1, arg5_1, buf6, buf4, buf2, buf7, buf8, buf9, buf10, 4, grid=grid(4), stream=stream0)
del arg1_1
del arg5_1
del buf0
del buf2
del buf4
del buf5
del buf6
return (buf11, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
arg4_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg5_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class CRF(nn.Module):
"""
Implements Conditional Random Fields that can be trained via
backpropagation.
"""
def __init__(self, num_tags):
super(CRF, self).__init__()
self.num_tags = num_tags
self.transitions = nn.Parameter(torch.Tensor(num_tags, num_tags))
self.start_transitions = nn.Parameter(torch.randn(num_tags))
self.stop_transitions = nn.Parameter(torch.randn(num_tags))
nn.init.xavier_normal_(self.transitions)
def forward(self, feats):
if len(feats.shape) != 3:
raise ValueError('feats must be 3-d got {}-d'.format(feats.shape))
return self._viterbi(feats)
def loss(self, feats, tags):
"""
Computes negative log likelihood between features and tags.
Essentially difference between individual sequence scores and
sum of all possible sequence scores (partition function)
Parameters:
feats: Input features [batch size, sequence length, number of tags]
tags: Target tag indices [batch size, sequence length]. Should be between
0 and num_tags
Returns:
Negative log likelihood [a scalar]
"""
if len(feats.shape) != 3:
raise ValueError('feats must be 3-d got {}-d'.format(feats.shape))
if len(tags.shape) != 2:
raise ValueError('tags must be 2-d but got {}-d'.format(tags.shape)
)
if feats.shape[:2] != tags.shape:
raise ValueError(
'First two dimensions of feats and tags must match')
sequence_score = self._sequence_score(feats, tags)
partition_function = self._partition_function(feats)
log_probability = sequence_score - partition_function
return -log_probability.mean()
def _sequence_score(self, feats, tags):
"""
Parameters:
feats: Input features [batch size, sequence length, number of tags]
tags: Target tag indices [batch size, sequence length]. Should be between
0 and num_tags
Returns: Sequence score of shape [batch size]
"""
feats.shape[0]
feat_score = feats.gather(2, tags.unsqueeze(-1)).squeeze(-1).sum(dim=-1
)
tags_pairs = tags.unfold(1, 2, 1)
indices = tags_pairs.permute(2, 0, 1).chunk(2)
trans_score = self.transitions[indices].squeeze(0).sum(dim=-1)
start_score = self.start_transitions[tags[:, 0]]
stop_score = self.stop_transitions[tags[:, -1]]
return feat_score + start_score + trans_score + stop_score
def _partition_function(self, feats):
"""
Computes the partitition function for CRF using the forward algorithm.
Basically calculate scores for all possible tag sequences for
the given feature vector sequence
Parameters:
feats: Input features [batch size, sequence length, number of tags]
Returns:
Total scores of shape [batch size]
"""
_, seq_size, num_tags = feats.shape
if self.num_tags != num_tags:
raise ValueError('num_tags should be {} but got {}'.format(self
.num_tags, num_tags))
a = feats[:, 0] + self.start_transitions.unsqueeze(0)
transitions = self.transitions.unsqueeze(0)
for i in range(1, seq_size):
feat = feats[:, i].unsqueeze(1)
a = self._log_sum_exp(a.unsqueeze(-1) + transitions + feat, 1)
return self._log_sum_exp(a + self.stop_transitions.unsqueeze(0), 1)
def _viterbi(self, feats):
"""
Uses Viterbi algorithm to predict the best sequence
Parameters:
feats: Input features [batch size, sequence length, number of tags]
Returns: Best tag sequence [batch size, sequence length]
"""
_, seq_size, num_tags = feats.shape
if self.num_tags != num_tags:
raise ValueError('num_tags should be {} but got {}'.format(self
.num_tags, num_tags))
v = feats[:, 0] + self.start_transitions.unsqueeze(0)
transitions = self.transitions.unsqueeze(0)
paths = []
for i in range(1, seq_size):
feat = feats[:, i]
v, idx = (v.unsqueeze(-1) + transitions).max(1)
paths.append(idx)
v = v + feat
v, tag = (v + self.stop_transitions.unsqueeze(0)).max(1, True)
tags = [tag]
for idx in reversed(paths):
tag = idx.gather(1, tag)
tags.append(tag)
tags.reverse()
return torch.cat(tags, 1)
def _log_sum_exp(self, logits, dim):
"""
Computes log-sum-exp in a stable way
"""
max_val, _ = logits.max(dim)
return max_val + (logits - max_val.unsqueeze(dim)).exp().sum(dim).log()
class OutputLayer(nn.Module):
"""
Abstract base class for output layer.
Handles projection to output labels
"""
def __init__(self, hidden_size, output_size):
super(OutputLayer, self).__init__()
self.output_size = output_size
self.output_projection = nn.Linear(hidden_size, output_size)
def loss(self, hidden, labels):
raise NotImplementedError('Must implement {}.loss'.format(self.
__class__.__name__))
class CRFOutputLayer(OutputLayer):
"""
Implements a CRF based output layer
"""
def __init__(self, hidden_size, output_size):
super(CRFOutputLayer, self).__init__(hidden_size, output_size)
self.crf = CRF(output_size)
def forward(self, hidden):
feats = self.output_projection(hidden)
return self.crf(feats)
def loss(self, hidden, labels):
feats = self.output_projection(hidden)
return self.crf.loss(feats, labels)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_max_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + 0)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK])
tmp7 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (1 + 16 * x1), xmask, eviction_policy='evict_last'
)
tmp10 = tl.load(in_ptr1 + 1)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp13 = tl.load(in_ptr2 + 1)
tmp14 = tl.broadcast_to(tmp13, [XBLOCK])
tmp16 = tl.load(in_ptr3 + (4 + x0), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (2 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr1 + 2)
tmp21 = tl.broadcast_to(tmp20, [XBLOCK])
tmp23 = tl.load(in_ptr2 + 2)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK])
tmp26 = tl.load(in_ptr3 + (8 + x0), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (3 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp30 = tl.load(in_ptr1 + 3)
tmp31 = tl.broadcast_to(tmp30, [XBLOCK])
tmp33 = tl.load(in_ptr2 + 3)
tmp34 = tl.broadcast_to(tmp33, [XBLOCK])
tmp36 = tl.load(in_ptr3 + (12 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp0 + tmp2
tmp6 = tmp3 + tmp5
tmp8 = tmp6 + tmp7
tmp12 = tmp9 + tmp11
tmp15 = tmp12 + tmp14
tmp17 = tmp15 + tmp16
tmp18 = triton_helpers.maximum(tmp8, tmp17)
tmp22 = tmp19 + tmp21
tmp25 = tmp22 + tmp24
tmp27 = tmp25 + tmp26
tmp28 = triton_helpers.maximum(tmp18, tmp27)
tmp32 = tmp29 + tmp31
tmp35 = tmp32 + tmp34
tmp37 = tmp35 + tmp36
tmp38 = triton_helpers.maximum(tmp28, tmp37)
tmp39 = tmp8 > tmp17
tmp40 = tmp8 == tmp17
tmp41 = tmp8 != tmp8
tmp42 = tmp17 != tmp17
tmp43 = tmp41 > tmp42
tmp44 = tmp39 | tmp43
tmp45 = tmp41 & tmp42
tmp46 = tmp40 | tmp45
tmp47 = tl.full([1], 0, tl.int64)
tmp48 = tl.full([1], 1, tl.int64)
tmp49 = tmp47 < tmp48
tmp50 = tmp46 & tmp49
tmp51 = tmp44 | tmp50
tmp52 = tl.where(tmp51, tmp8, tmp17)
tmp53 = tl.where(tmp51, tmp47, tmp48)
tmp54 = tmp52 > tmp27
tmp55 = tmp52 == tmp27
tmp56 = tmp52 != tmp52
tmp57 = tmp27 != tmp27
tmp58 = tmp56 > tmp57
tmp59 = tmp54 | tmp58
tmp60 = tmp56 & tmp57
tmp61 = tmp55 | tmp60
tmp62 = tl.full([1], 2, tl.int64)
tmp63 = tmp53 < tmp62
tmp64 = tmp61 & tmp63
tmp65 = tmp59 | tmp64
tmp66 = tl.where(tmp65, tmp52, tmp27)
tmp67 = tl.where(tmp65, tmp53, tmp62)
tmp68 = tmp66 > tmp37
tmp69 = tmp66 == tmp37
tmp70 = tmp66 != tmp66
tmp71 = tmp37 != tmp37
tmp72 = tmp70 > tmp71
tmp73 = tmp68 | tmp72
tmp74 = tmp70 & tmp71
tmp75 = tmp69 | tmp74
tmp76 = tl.full([1], 3, tl.int64)
tmp77 = tmp67 < tmp76
tmp78 = tmp75 & tmp77
tmp79 = tmp73 | tmp78
tl.where(tmp79, tmp66, tmp37)
tmp81 = tl.where(tmp79, tmp67, tmp76)
tl.store(out_ptr0 + x2, tmp38, xmask)
tl.store(out_ptr1 + x2, tmp81, xmask)
@triton.jit
def triton_poi_fused_add_max_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4 + 16 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tl.load(in_ptr2 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp6 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (5 + 16 * x1), xmask, eviction_policy='evict_last'
)
tmp10 = tl.load(in_ptr2 + 1)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp14 = tl.load(in_ptr3 + (4 + x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr1 + (6 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr2 + 2)
tmp20 = tl.broadcast_to(tmp19, [XBLOCK])
tmp23 = tl.load(in_ptr3 + (8 + x0), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp27 = tl.load(in_ptr1 + (7 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr2 + 3)
tmp29 = tl.broadcast_to(tmp28, [XBLOCK])
tmp32 = tl.load(in_ptr3 + (12 + x0), xmask, eviction_policy='evict_last')
tmp4 = tmp1 + tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp12 = tmp9 + tmp11
tmp13 = tmp8 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = triton_helpers.maximum(tmp7, tmp15)
tmp21 = tmp18 + tmp20
tmp22 = tmp17 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = triton_helpers.maximum(tmp16, tmp24)
tmp30 = tmp27 + tmp29
tmp31 = tmp26 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = triton_helpers.maximum(tmp25, tmp33)
tmp35 = tmp7 > tmp15
tmp36 = tmp7 == tmp15
tmp37 = tmp7 != tmp7
tmp38 = tmp15 != tmp15
tmp39 = tmp37 > tmp38
tmp40 = tmp35 | tmp39
tmp41 = tmp37 & tmp38
tmp42 = tmp36 | tmp41
tmp43 = tl.full([1], 0, tl.int64)
tmp44 = tl.full([1], 1, tl.int64)
tmp45 = tmp43 < tmp44
tmp46 = tmp42 & tmp45
tmp47 = tmp40 | tmp46
tmp48 = tl.where(tmp47, tmp7, tmp15)
tmp49 = tl.where(tmp47, tmp43, tmp44)
tmp50 = tmp48 > tmp24
tmp51 = tmp48 == tmp24
tmp52 = tmp48 != tmp48
tmp53 = tmp24 != tmp24
tmp54 = tmp52 > tmp53
tmp55 = tmp50 | tmp54
tmp56 = tmp52 & tmp53
tmp57 = tmp51 | tmp56
tmp58 = tl.full([1], 2, tl.int64)
tmp59 = tmp49 < tmp58
tmp60 = tmp57 & tmp59
tmp61 = tmp55 | tmp60
tmp62 = tl.where(tmp61, tmp48, tmp24)
tmp63 = tl.where(tmp61, tmp49, tmp58)
tmp64 = tmp62 > tmp33
tmp65 = tmp62 == tmp33
tmp66 = tmp62 != tmp62
tmp67 = tmp33 != tmp33
tmp68 = tmp66 > tmp67
tmp69 = tmp64 | tmp68
tmp70 = tmp66 & tmp67
tmp71 = tmp65 | tmp70
tmp72 = tl.full([1], 3, tl.int64)
tmp73 = tmp63 < tmp72
tmp74 = tmp71 & tmp73
tmp75 = tmp69 | tmp74
tl.where(tmp75, tmp62, tmp33)
tmp77 = tl.where(tmp75, tmp63, tmp72)
tl.store(out_ptr0 + x2, tmp34, xmask)
tl.store(out_ptr1 + x2, tmp77, xmask)
@triton.jit
def triton_poi_fused_add_max_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (8 + 16 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tl.load(in_ptr2 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp6 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (9 + 16 * x1), xmask, eviction_policy='evict_last'
)
tmp10 = tl.load(in_ptr2 + 1)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp14 = tl.load(in_ptr3 + (4 + x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr1 + (10 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr2 + 2)
tmp20 = tl.broadcast_to(tmp19, [XBLOCK])
tmp23 = tl.load(in_ptr3 + (8 + x0), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp27 = tl.load(in_ptr1 + (11 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr2 + 3)
tmp29 = tl.broadcast_to(tmp28, [XBLOCK])
tmp32 = tl.load(in_ptr3 + (12 + x0), xmask, eviction_policy='evict_last')
tmp4 = tmp1 + tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp12 = tmp9 + tmp11
tmp13 = tmp8 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = triton_helpers.maximum(tmp7, tmp15)
tmp21 = tmp18 + tmp20
tmp22 = tmp17 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = triton_helpers.maximum(tmp16, tmp24)
tmp30 = tmp27 + tmp29
tmp31 = tmp26 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = triton_helpers.maximum(tmp25, tmp33)
tmp35 = tmp7 > tmp15
tmp36 = tmp7 == tmp15
tmp37 = tmp7 != tmp7
tmp38 = tmp15 != tmp15
tmp39 = tmp37 > tmp38
tmp40 = tmp35 | tmp39
tmp41 = tmp37 & tmp38
tmp42 = tmp36 | tmp41
tmp43 = tl.full([1], 0, tl.int64)
tmp44 = tl.full([1], 1, tl.int64)
tmp45 = tmp43 < tmp44
tmp46 = tmp42 & tmp45
tmp47 = tmp40 | tmp46
tmp48 = tl.where(tmp47, tmp7, tmp15)
tmp49 = tl.where(tmp47, tmp43, tmp44)
tmp50 = tmp48 > tmp24
tmp51 = tmp48 == tmp24
tmp52 = tmp48 != tmp48
tmp53 = tmp24 != tmp24
tmp54 = tmp52 > tmp53
tmp55 = tmp50 | tmp54
tmp56 = tmp52 & tmp53
tmp57 = tmp51 | tmp56
tmp58 = tl.full([1], 2, tl.int64)
tmp59 = tmp49 < tmp58
tmp60 = tmp57 & tmp59
tmp61 = tmp55 | tmp60
tmp62 = tl.where(tmp61, tmp48, tmp24)
tmp63 = tl.where(tmp61, tmp49, tmp58)
tmp64 = tmp62 > tmp33
tmp65 = tmp62 == tmp33
tmp66 = tmp62 != tmp62
tmp67 = tmp33 != tmp33
tmp68 = tmp66 > tmp67
tmp69 = tmp64 | tmp68
tmp70 = tmp66 & tmp67
tmp71 = tmp65 | tmp70
tmp72 = tl.full([1], 3, tl.int64)
tmp73 = tmp63 < tmp72
tmp74 = tmp71 & tmp73
tmp75 = tmp69 | tmp74
tl.where(tmp75, tmp62, tmp33)
tmp77 = tl.where(tmp75, tmp63, tmp72)
tl.store(out_ptr0 + x2, tmp34, xmask)
tl.store(out_ptr1 + x2, tmp77, xmask)
@triton.jit
def triton_poi_fused_add_gather_max_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, in_ptr6, out_ptr0, out_ptr1, out_ptr2, out_ptr3,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr2 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp6 = tl.load(in_ptr3 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp9 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr2 + 1)
tmp12 = tl.broadcast_to(tmp11, [XBLOCK])
tmp15 = tl.load(in_ptr3 + 1)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp33 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp34 = tl.load(in_ptr1 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp35 = tl.load(in_ptr2 + 2)
tmp36 = tl.broadcast_to(tmp35, [XBLOCK])
tmp39 = tl.load(in_ptr3 + 2)
tmp40 = tl.broadcast_to(tmp39, [XBLOCK])
tmp56 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp57 = tl.load(in_ptr1 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp58 = tl.load(in_ptr2 + 3)
tmp59 = tl.broadcast_to(tmp58, [XBLOCK])
tmp62 = tl.load(in_ptr3 + 3)
tmp63 = tl.broadcast_to(tmp62, [XBLOCK])
tmp4 = tmp1 + tmp3
tmp5 = tmp0 + tmp4
tmp8 = tmp5 + tmp7
tmp13 = tmp10 + tmp12
tmp14 = tmp9 + tmp13
tmp17 = tmp14 + tmp16
tmp18 = tmp8 > tmp17
tmp19 = tmp8 == tmp17
tmp20 = tmp8 != tmp8
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 0, tl.int64)
tmp27 = tl.full([1], 1, tl.int64)
tmp28 = tmp26 < tmp27
tmp29 = tmp25 & tmp28
tmp30 = tmp23 | tmp29
tmp31 = tl.where(tmp30, tmp8, tmp17)
tmp32 = tl.where(tmp30, tmp26, tmp27)
tmp37 = tmp34 + tmp36
tmp38 = tmp33 + tmp37
tmp41 = tmp38 + tmp40
tmp42 = tmp31 > tmp41
tmp43 = tmp31 == tmp41
tmp44 = tmp31 != tmp31
tmp45 = tmp41 != tmp41
tmp46 = tmp44 > tmp45
tmp47 = tmp42 | tmp46
tmp48 = tmp44 & tmp45
tmp49 = tmp43 | tmp48
tmp50 = tl.full([1], 2, tl.int64)
tmp51 = tmp32 < tmp50
tmp52 = tmp49 & tmp51
tmp53 = tmp47 | tmp52
tmp54 = tl.where(tmp53, tmp31, tmp41)
tmp55 = tl.where(tmp53, tmp32, tmp50)
tmp60 = tmp57 + tmp59
tmp61 = tmp56 + tmp60
tmp64 = tmp61 + tmp63
tmp65 = tmp54 > tmp64
tmp66 = tmp54 == tmp64
tmp67 = tmp54 != tmp54
tmp68 = tmp64 != tmp64
tmp69 = tmp67 > tmp68
tmp70 = tmp65 | tmp69
tmp71 = tmp67 & tmp68
tmp72 = tmp66 | tmp71
tmp73 = tl.full([1], 3, tl.int64)
tmp74 = tmp55 < tmp73
tmp75 = tmp72 & tmp74
tmp76 = tmp70 | tmp75
tl.where(tmp76, tmp54, tmp64)
tmp78 = tl.where(tmp76, tmp55, tmp73)
tmp79 = tl.full([XBLOCK], 4, tl.int32)
tmp80 = tmp78 + tmp79
tmp81 = tmp78 < 0
tmp82 = tl.where(tmp81, tmp80, tmp78)
tl.device_assert((0 <= tmp82) & (tmp82 < 4) | ~xmask,
'index out of bounds: 0 <= tmp82 < 4')
tmp84 = tl.load(in_ptr4 + (tmp82 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp85 = tmp84 + tmp79
tmp86 = tmp84 < 0
tmp87 = tl.where(tmp86, tmp85, tmp84)
tl.device_assert((0 <= tmp87) & (tmp87 < 4) | ~xmask,
'index out of bounds: 0 <= tmp87 < 4')
tmp89 = tl.load(in_ptr5 + (tmp87 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp90 = tmp89 + tmp79
tmp91 = tmp89 < 0
tmp92 = tl.where(tmp91, tmp90, tmp89)
tl.device_assert((0 <= tmp92) & (tmp92 < 4) | ~xmask,
'index out of bounds: 0 <= tmp92 < 4')
tmp94 = tl.load(in_ptr6 + (tmp92 + 4 * x0), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + 4 * x0, tmp78, xmask)
tl.store(out_ptr1 + 4 * x0, tmp94, xmask)
tl.store(out_ptr2 + 4 * x0, tmp89, xmask)
tl.store(out_ptr3 + 4 * x0, tmp84, xmask)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4,), (1,))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg3_1, (4,), (1,))
assert_size_stride(arg4_1, (4, 4), (4, 1))
assert_size_stride(arg5_1, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(arg2_1, (16, 4), (4, 1), 0),
reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), out=buf0)
del arg0_1
del arg2_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
get_raw_stream(0)
triton_poi_fused_add_max_0[grid(16)](buf0, arg1_1, arg3_1, arg4_1,
buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
del arg3_1
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
triton_poi_fused_add_max_1[grid(16)](buf1, buf0, arg1_1, arg4_1,
buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf5 = buf1
del buf1
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
triton_poi_fused_add_max_2[grid(16)](buf3, buf0, arg1_1, arg4_1,
buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1)
del arg4_1
del buf3
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
buf7 = reinterpret_tensor(buf11, (4, 1), (4, 1), 3)
buf8 = reinterpret_tensor(buf11, (4, 1), (4, 1), 0)
buf9 = reinterpret_tensor(buf11, (4, 1), (4, 1), 1)
buf10 = reinterpret_tensor(buf11, (4, 1), (4, 1), 2)
triton_poi_fused_add_gather_max_3[grid(4)](buf5, buf0, arg1_1,
arg5_1, buf6, buf4, buf2, buf7, buf8, buf9, buf10, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del arg1_1
del arg5_1
del buf0
del buf2
del buf4
del buf5
del buf6
return buf11,
class CRF(nn.Module):
"""
Implements Conditional Random Fields that can be trained via
backpropagation.
"""
def __init__(self, num_tags):
super(CRF, self).__init__()
self.num_tags = num_tags
self.transitions = nn.Parameter(torch.Tensor(num_tags, num_tags))
self.start_transitions = nn.Parameter(torch.randn(num_tags))
self.stop_transitions = nn.Parameter(torch.randn(num_tags))
nn.init.xavier_normal_(self.transitions)
def forward(self, feats):
if len(feats.shape) != 3:
raise ValueError('feats must be 3-d got {}-d'.format(feats.shape))
return self._viterbi(feats)
def loss(self, feats, tags):
"""
Computes negative log likelihood between features and tags.
Essentially difference between individual sequence scores and
sum of all possible sequence scores (partition function)
Parameters:
feats: Input features [batch size, sequence length, number of tags]
tags: Target tag indices [batch size, sequence length]. Should be between
0 and num_tags
Returns:
Negative log likelihood [a scalar]
"""
if len(feats.shape) != 3:
raise ValueError('feats must be 3-d got {}-d'.format(feats.shape))
if len(tags.shape) != 2:
raise ValueError('tags must be 2-d but got {}-d'.format(tags.shape)
)
if feats.shape[:2] != tags.shape:
raise ValueError(
'First two dimensions of feats and tags must match')
sequence_score = self._sequence_score(feats, tags)
partition_function = self._partition_function(feats)
log_probability = sequence_score - partition_function
return -log_probability.mean()
def _sequence_score(self, feats, tags):
"""
Parameters:
feats: Input features [batch size, sequence length, number of tags]
tags: Target tag indices [batch size, sequence length]. Should be between
0 and num_tags
Returns: Sequence score of shape [batch size]
"""
feats.shape[0]
feat_score = feats.gather(2, tags.unsqueeze(-1)).squeeze(-1).sum(dim=-1
)
tags_pairs = tags.unfold(1, 2, 1)
indices = tags_pairs.permute(2, 0, 1).chunk(2)
trans_score = self.transitions[indices].squeeze(0).sum(dim=-1)
start_score = self.start_transitions[tags[:, 0]]
stop_score = self.stop_transitions[tags[:, -1]]
return feat_score + start_score + trans_score + stop_score
def _partition_function(self, feats):
"""
Computes the partitition function for CRF using the forward algorithm.
Basically calculate scores for all possible tag sequences for
the given feature vector sequence
Parameters:
feats: Input features [batch size, sequence length, number of tags]
Returns:
Total scores of shape [batch size]
"""
_, seq_size, num_tags = feats.shape
if self.num_tags != num_tags:
raise ValueError('num_tags should be {} but got {}'.format(self
.num_tags, num_tags))
a = feats[:, 0] + self.start_transitions.unsqueeze(0)
transitions = self.transitions.unsqueeze(0)
for i in range(1, seq_size):
feat = feats[:, i].unsqueeze(1)
a = self._log_sum_exp(a.unsqueeze(-1) + transitions + feat, 1)
return self._log_sum_exp(a + self.stop_transitions.unsqueeze(0), 1)
def _viterbi(self, feats):
"""
Uses Viterbi algorithm to predict the best sequence
Parameters:
feats: Input features [batch size, sequence length, number of tags]
Returns: Best tag sequence [batch size, sequence length]
"""
_, seq_size, num_tags = feats.shape
if self.num_tags != num_tags:
raise ValueError('num_tags should be {} but got {}'.format(self
.num_tags, num_tags))
v = feats[:, 0] + self.start_transitions.unsqueeze(0)
transitions = self.transitions.unsqueeze(0)
paths = []
for i in range(1, seq_size):
feat = feats[:, i]
v, idx = (v.unsqueeze(-1) + transitions).max(1)
paths.append(idx)
v = v + feat
v, tag = (v + self.stop_transitions.unsqueeze(0)).max(1, True)
tags = [tag]
for idx in reversed(paths):
tag = idx.gather(1, tag)
tags.append(tag)
tags.reverse()
return torch.cat(tags, 1)
def _log_sum_exp(self, logits, dim):
"""
Computes log-sum-exp in a stable way
"""
max_val, _ = logits.max(dim)
return max_val + (logits - max_val.unsqueeze(dim)).exp().sum(dim).log()
class OutputLayer(nn.Module):
"""
Abstract base class for output layer.
Handles projection to output labels
"""
def __init__(self, hidden_size, output_size):
super(OutputLayer, self).__init__()
self.output_size = output_size
self.output_projection = nn.Linear(hidden_size, output_size)
def loss(self, hidden, labels):
raise NotImplementedError('Must implement {}.loss'.format(self.
__class__.__name__))
class CRFOutputLayerNew(OutputLayer):
"""
Implements a CRF based output layer
"""
def __init__(self, hidden_size, output_size):
super(CRFOutputLayerNew, self).__init__(hidden_size, output_size)
self.crf = CRF(output_size)
def loss(self, hidden, labels):
feats = self.output_projection(hidden)
return self.crf.loss(feats, labels)
def forward(self, input_0):
arg0_1 = self.output_projection.weight
arg1_1 = self.output_projection.bias
arg4_1 = self.crf.transitions
arg3_1 = self.crf.start_transitions
arg5_1 = self.crf.stop_transitions
arg2_1 = input_0
output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1])
return output[0]
| oya163/torchnlp | CRFOutputLayer | false | 4,118 | [
"Apache-2.0"
] | 0 | 361caa24d741e47b8bd92af122ae281d6ad72d9d | https://github.com/oya163/torchnlp/tree/361caa24d741e47b8bd92af122ae281d6ad72d9d | import torch
import torch.nn as nn
class CRF(nn.Module):
"""
Implements Conditional Random Fields that can be trained via
backpropagation.
"""
def __init__(self, num_tags):
super().__init__()
self.num_tags = num_tags
self.transitions = nn.Parameter(torch.Tensor(num_tags, num_tags))
self.start_transitions = nn.Parameter(torch.randn(num_tags))
self.stop_transitions = nn.Parameter(torch.randn(num_tags))
nn.init.xavier_normal_(self.transitions)
def forward(self, feats):
if len(feats.shape) != 3:
raise ValueError('feats must be 3-d got {}-d'.format(feats.shape))
return self._viterbi(feats)
def loss(self, feats, tags):
"""
Computes negative log likelihood between features and tags.
Essentially difference between individual sequence scores and
sum of all possible sequence scores (partition function)
Parameters:
feats: Input features [batch size, sequence length, number of tags]
tags: Target tag indices [batch size, sequence length]. Should be between
0 and num_tags
Returns:
Negative log likelihood [a scalar]
"""
if len(feats.shape) != 3:
raise ValueError('feats must be 3-d got {}-d'.format(feats.shape))
if len(tags.shape) != 2:
raise ValueError('tags must be 2-d but got {}-d'.format(tags.shape)
)
if feats.shape[:2] != tags.shape:
raise ValueError(
'First two dimensions of feats and tags must match')
sequence_score = self._sequence_score(feats, tags)
partition_function = self._partition_function(feats)
log_probability = sequence_score - partition_function
return -log_probability.mean()
def _sequence_score(self, feats, tags):
"""
Parameters:
feats: Input features [batch size, sequence length, number of tags]
tags: Target tag indices [batch size, sequence length]. Should be between
0 and num_tags
Returns: Sequence score of shape [batch size]
"""
feats.shape[0]
feat_score = feats.gather(2, tags.unsqueeze(-1)).squeeze(-1).sum(dim=-1
)
tags_pairs = tags.unfold(1, 2, 1)
indices = tags_pairs.permute(2, 0, 1).chunk(2)
trans_score = self.transitions[indices].squeeze(0).sum(dim=-1)
start_score = self.start_transitions[tags[:, 0]]
stop_score = self.stop_transitions[tags[:, -1]]
return feat_score + start_score + trans_score + stop_score
def _partition_function(self, feats):
"""
Computes the partitition function for CRF using the forward algorithm.
Basically calculate scores for all possible tag sequences for
the given feature vector sequence
Parameters:
feats: Input features [batch size, sequence length, number of tags]
Returns:
Total scores of shape [batch size]
"""
_, seq_size, num_tags = feats.shape
if self.num_tags != num_tags:
raise ValueError('num_tags should be {} but got {}'.format(self
.num_tags, num_tags))
a = feats[:, 0] + self.start_transitions.unsqueeze(0)
transitions = self.transitions.unsqueeze(0)
for i in range(1, seq_size):
feat = feats[:, i].unsqueeze(1)
a = self._log_sum_exp(a.unsqueeze(-1) + transitions + feat, 1)
return self._log_sum_exp(a + self.stop_transitions.unsqueeze(0), 1)
def _viterbi(self, feats):
"""
Uses Viterbi algorithm to predict the best sequence
Parameters:
feats: Input features [batch size, sequence length, number of tags]
Returns: Best tag sequence [batch size, sequence length]
"""
_, seq_size, num_tags = feats.shape
if self.num_tags != num_tags:
# ... truncated (>4000 chars) for memory efficiency |
SparseDownSampleClose | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/qb/cqbgxo3ah7exgkjgz3p7rm3nr2l2fptl2jmjo3mwd5gksxmhs3ow.py
# Topologically Sorted Source Nodes: [sub, neg, mul, encode_d, max_pool2d, mask_result, d, sub_2, mul_1, d_result], Original ATen: [aten.rsub, aten.neg, aten.mul, aten.sub, aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# d => neg_1
# d_result => sub_3
# encode_d => sub_1
# mask_result => getitem_2
# max_pool2d => _low_memory_max_pool2d_with_offsets
# mul => mul
# mul_1 => mul_1
# neg => neg
# sub => sub
# sub_2 => sub_2
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sub,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, 600), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %arg1_1), kwargs = {})
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%sub_1, [1, 1], [1, 1], [0, 0], [1, 1], False), kwargs = {})
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %getitem_2), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, 600), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%neg_1, %mul_1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_mul_neg_rsub_sub_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_mul_neg_rsub_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_mul_neg_rsub_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_mul_neg_rsub_sub_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp6 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp3 = -tmp2
tmp4 = 600.0
tmp5 = tmp3 * tmp4
tmp7 = tmp5 - tmp6
tmp8 = -tmp7
tmp9 = tmp2 * tmp4
tmp10 = tmp8 - tmp9
tl.store(out_ptr0 + (x0), tmp0, xmask)
tl.store(in_out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, neg, mul, encode_d, max_pool2d, mask_result, d, sub_2, mul_1, d_result], Original ATen: [aten.rsub, aten.neg, aten.mul, aten.sub, aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_mul_neg_rsub_sub_0.run(buf2, arg0_1, arg1_1, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
class SparseDownSampleClose(nn.Module):
def __init__(self, stride):
super(SparseDownSampleClose, self).__init__()
self.pooling = nn.MaxPool2d(stride, stride)
self.large_number = 600
def forward(self, d, mask):
encode_d = -(1 - mask) * self.large_number - d
d = -self.pooling(encode_d)
mask_result = self.pooling(mask)
d_result = d - (1 - mask_result) * self.large_number
return d_result, mask_result
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'stride': 1}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_mul_neg_rsub_sub_0(in_out_ptr0,
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp6 = tl.load(in_ptr1 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp3 = -tmp2
tmp4 = 600.0
tmp5 = tmp3 * tmp4
tmp7 = tmp5 - tmp6
tmp8 = -tmp7
tmp9 = tmp2 * tmp4
tmp10 = tmp8 - tmp9
tl.store(out_ptr0 + x0, tmp0, xmask)
tl.store(in_out_ptr0 + x0, tmp10, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_mul_neg_rsub_sub_0[grid(256)](
buf2, arg0_1, arg1_1, buf1, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del arg0_1
del arg1_1
return buf2, buf1
class SparseDownSampleCloseNew(nn.Module):
def __init__(self, stride):
super(SparseDownSampleCloseNew, self).__init__()
self.pooling = nn.MaxPool2d(stride, stride)
self.large_number = 600
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0], output[1]
| phatli/PENet_ICRA2021 | SparseDownSampleClose | false | 4,119 | [
"MIT"
] | 0 | 18594b8f11d4d99022d9c80a86a6e2d4e854404a | https://github.com/phatli/PENet_ICRA2021/tree/18594b8f11d4d99022d9c80a86a6e2d4e854404a | import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
class Model(nn.Module):
def __init__(self, stride):
super().__init__()
self.pooling = nn.MaxPool2d(stride, stride)
self.large_number = 600
def forward(self, d, mask):
encode_d = -(1 - mask) * self.large_number - d
d = -self.pooling(encode_d)
mask_result = self.pooling(mask)
d_result = d - (1 - mask_result) * self.large_number
return d_result, mask_result
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [1]
|
Allocation | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/kt/ckt7cvmkxnsjtisrzjqmfpgp5cex5bs3g4ggmf52s5xgmwkn73sf.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 20
x2 = (xindex // 80)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (80*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (20 + x0 + (80*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (40 + x0 + (80*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (60 + x0 + (80*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/px/cpxkjsndxnr44uji3rez4oy34di6eiqfzfiin4fznmq5yk46khlv.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 20
x2 = (xindex // 80)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (80*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (20 + x0 + (80*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (40 + x0 + (80*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (60 + x0 + (80*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (5, 4), (4, 1))
assert_size_stride(primals_2, (5, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 5), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 320, grid=grid(320), stream=stream0)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 5), (80, 20, 5, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 320, grid=grid(320), stream=stream0)
del buf1
return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((5, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
from torch.nn import functional as F
from torch.nn import Linear
class Allocation(Module):
"""Determines allocation probability for each of the bidders given an input.
Args:
in_features: size of each input sample
bidders: number of bidders, which governs the size of each output sample
Shape:
- Input: :math:`(N, *, H_{in})` where :math:`*` means any number of
additional dimensions and :math:`H_{in} = \\text{in\\_features}`
- Output: :math:`(N, *, H_{out})` where all but the last dimension
are the same shape as the input and :math:`H_{out} = \\text{bidders}`.
Examples::
>>> m = Allocation(20, 30)
>>> input = torch.randn(128, 20)
>>> allocation = m(input)
>>> print(allocation.size())
torch.Size([128, 30])
"""
__constants__ = ['in_features', 'bidders']
def __init__(self, in_features, bidders):
super(Allocation, self).__init__()
self.in_features = in_features
self.bidders = bidders
self.linear = Linear(in_features, bidders + 1)
def forward(self, x):
return F.softmax(self.linear(x), dim=1)[:, 0:self.bidders]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'bidders': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn import Module
from torch.nn import Linear
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 20
x2 = xindex // 80
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 80 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (20 + x0 + 80 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (40 + x0 + 80 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (60 + x0 + 80 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 20
x2 = xindex // 80
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 80 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (20 + x0 + 80 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (40 + x0 + 80 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (60 + x0 + 80 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (5, 4), (4, 1))
assert_size_stride(primals_2, (5,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 5), (5, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 5), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(320)](buf0, buf1, 320, XBLOCK=256,
num_warps=4, num_stages=1)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 5), (80, 20, 5, 1), 0)
del buf0
triton_poi_fused__softmax_1[grid(320)](buf1, buf2, 320, XBLOCK=128,
num_warps=4, num_stages=1)
del buf1
return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2
class AllocationNew(Module):
"""Determines allocation probability for each of the bidders given an input.
Args:
in_features: size of each input sample
bidders: number of bidders, which governs the size of each output sample
Shape:
- Input: :math:`(N, *, H_{in})` where :math:`*` means any number of
additional dimensions and :math:`H_{in} = \\text{in\\_features}`
- Output: :math:`(N, *, H_{out})` where all but the last dimension
are the same shape as the input and :math:`H_{out} = \\text{bidders}`.
Examples::
>>> m = Allocation(20, 30)
>>> input = torch.randn(128, 20)
>>> allocation = m(input)
>>> print(allocation.size())
torch.Size([128, 30])
"""
__constants__ = ['in_features', 'bidders']
def __init__(self, in_features, bidders):
super(AllocationNew, self).__init__()
self.in_features = in_features
self.bidders = bidders
self.linear = Linear(in_features, bidders + 1)
def forward(self, input_0):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| pjordan/dmch | Allocation | false | 4,120 | [
"Apache-2.0"
] | 0 | 84e04ddb0679007b15acfdc275e0e3f51e50d9f2 | https://github.com/pjordan/dmch/tree/84e04ddb0679007b15acfdc275e0e3f51e50d9f2 | from torch.nn import Module
import torch
from torch.nn import functional as F
from torch.nn import Linear
class Model(Module):
"""Determines allocation probability for each of the bidders given an input.
Args:
in_features: size of each input sample
bidders: number of bidders, which governs the size of each output sample
Shape:
- Input: :math:`(N, *, H_{in})` where :math:`*` means any number of
additional dimensions and :math:`H_{in} = \\text{in\\_features}`
- Output: :math:`(N, *, H_{out})` where all but the last dimension
are the same shape as the input and :math:`H_{out} = \\text{bidders}`.
Examples::
>>> m = Allocation(20, 30)
>>> input = torch.randn(128, 20)
>>> allocation = m(input)
>>> print(allocation.size())
torch.Size([128, 30])
"""
__constants__ = ['in_features', 'bidders']
def __init__(self, in_features, bidders):
super().__init__()
self.in_features = in_features
self.bidders = bidders
self.linear = Linear(in_features, bidders + 1)
def forward(self, x):
return F.softmax(self.linear(x), dim=1)[:, 0:self.bidders]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
MinLossModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [y_losses], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# y_losses => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/w6/cw67ft6jq2nun42fbuvbidxkjwcifisiu5vibbb6xmybbam22o7v.py
# Topologically Sorted Source Nodes: [y_losses, y_losses_1], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg]
# Source node to ATen node mapping:
# y_losses => exp, log, mul, neg, sub_1, sum_1, sum_2
# y_losses_1 => sum_3
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%neg, [1, 2]), kwargs = {})
triton_per_fused__log_softmax_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mul_neg_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_mul_neg_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp2 = tl.load(in_ptr0 + (16 + r1 + (64*x0)), xmask, other=0.0)
tmp5 = tl.load(in_ptr0 + (32 + r1 + (64*x0)), xmask, other=0.0)
tmp8 = tl.load(in_ptr0 + (48 + r1 + (64*x0)), xmask, other=0.0)
tmp13 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0)
tmp16 = tl.load(in_ptr1 + (16 + r1 + (64*x0)), xmask, other=0.0)
tmp20 = tl.load(in_ptr1 + (32 + r1 + (64*x0)), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (48 + r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = tl.where(xmask, tmp28, 0)
tmp31 = tl.sum(tmp30, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6g/c6gzawjc4tn7232yppi4zz5zmo3w7feq3pfc6db752knazh7x4qu.py
# Topologically Sorted Source Nodes: [Y_loss], Original ATen: [aten.min]
# Source node to ATen node mapping:
# Y_loss => min_1
# Graph fragment:
# %min_1 : [num_users=1] = call_function[target=torch.ops.aten.min.default](args = (%sum_3,), kwargs = {})
triton_per_fused_min_2 = async_compile.triton('triton_per_fused_min_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_min_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_min_2(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.min2(tmp1, 1)[:, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y_losses], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [y_losses, y_losses_1], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg]
triton_per_fused__log_softmax_mul_neg_sum_1.run(buf0, arg0_1, buf1, 4, 16, grid=grid(4), stream=stream0)
del arg0_1
del buf0
buf2 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [Y_loss], Original ATen: [aten.min]
triton_per_fused_min_2.run(buf1, buf2, 1, 4, grid=grid(1), stream=stream0)
del buf1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
class MinLossModule(torch.nn.Module):
def __init__(self):
super(MinLossModule, self).__init__()
def forward(self, predictions, targets):
y_losses = F.cross_entropy(predictions, targets, reduction='none')
y_losses = torch.sum(y_losses, dim=[1, 2])
Y_loss = torch.min(y_losses)
return Y_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_mul_neg_sum_1(in_ptr0, in_ptr1, out_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp2 = tl.load(in_ptr0 + (16 + r1 + 64 * x0), xmask, other=0.0)
tmp5 = tl.load(in_ptr0 + (32 + r1 + 64 * x0), xmask, other=0.0)
tmp8 = tl.load(in_ptr0 + (48 + r1 + 64 * x0), xmask, other=0.0)
tmp13 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp16 = tl.load(in_ptr1 + (16 + r1 + 64 * x0), xmask, other=0.0)
tmp20 = tl.load(in_ptr1 + (32 + r1 + 64 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (48 + r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = tl.where(xmask, tmp28, 0)
tmp31 = tl.sum(tmp30, 1)[:, None]
tl.store(out_ptr0 + x0, tmp31, xmask)
@triton.jit
def triton_per_fused_min_2(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.min2(tmp1, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused__log_softmax_mul_neg_sum_1[grid(4)](buf0, arg0_1,
buf1, 4, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del buf0
buf2 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_min_2[grid(1)](buf1, buf2, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
del buf1
return buf2,
class MinLossModuleNew(torch.nn.Module):
def __init__(self):
super(MinLossModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| pkalluri/specialized-conditional-pcnn | MinLossModule | false | 4,121 | [
"Apache-2.0"
] | 0 | ed94e47654ed749a7dd3492c4e074e2a8fb12df8 | https://github.com/pkalluri/specialized-conditional-pcnn/tree/ed94e47654ed749a7dd3492c4e074e2a8fb12df8 | import torch
import torch.nn.functional as F
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, predictions, targets):
y_losses = F.cross_entropy(predictions, targets, reduction='none')
y_losses = torch.sum(y_losses, dim=[1, 2])
Y_loss = torch.min(y_losses)
return Y_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SequentialAllocation | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/45/c45e2c4xlsryjzha4kwkpovw6f7gjxrkeaa2uy3nd7iqhfroie2b.py
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# probs => amax, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [2], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (5*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (5*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (5*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (5*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (5*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp0 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp1 - tmp8
tmp12 = tl_math.exp(tmp11)
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp8
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/w6/cw6xtenyazqrrjyylbvm5uy5biotvroknofocfkvb4x3pby2sda6.py
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# probs => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [2], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 5)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp3 / tmp4
tl.store(in_out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/k5/ck5cqp5iaitgnpbr5mbenp52ja4zazjq4wb5u2p433wf2kgqm75t.py
# Topologically Sorted Source Nodes: [sub, mul, getitem_2, sub_1, slot_total, alloc, sub_2, mul_2, getitem_4, sub_3, slot_total_1, alloc_1, sub_4, mul_4, getitem_6, sub_5, slot_total_2, alloc_2], Original ATen: [aten.rsub, aten.mul, aten.index, aten.add]
# Source node to ATen node mapping:
# alloc => add
# alloc_1 => add_2
# alloc_2 => add_4
# getitem_2 => index
# getitem_4 => index_1
# getitem_6 => index_2
# mul => mul
# mul_2 => mul_2
# mul_4 => mul_4
# slot_total => mul_1
# slot_total_1 => mul_3
# slot_total_2 => mul_5
# sub => sub_1
# sub_1 => sub_2
# sub_2 => sub_3
# sub_3 => sub_4
# sub_4 => sub_5
# sub_5 => sub_6
# Graph fragment:
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %slice_2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %slice_4), kwargs = {})
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%select, [None, %lift_fresh_copy]), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %index), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %sub_2), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_2, %mul_1), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %slice_7), kwargs = {})
# %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%select_1, [None, %lift_fresh_copy_1]), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %index_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %sub_4), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_3), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add_2), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, %slice_10), kwargs = {})
# %index_2 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%select_3, [None, %lift_fresh_copy_2]), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %index_2), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %sub_6), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_5), kwargs = {})
triton_poi_fused_add_index_mul_rsub_2 = async_compile.triton('triton_poi_fused_add_index_mul_rsub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_index_mul_rsub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_index_mul_rsub_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (20*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (5 + x0 + (20*x1)), xmask)
tmp21 = tl.load(in_ptr0 + (10 + x0 + (20*x1)), xmask)
tmp28 = tl.load(in_ptr0 + (15 + x0 + (20*x1)), xmask)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = x0
tmp6 = tl.full([1], 2, tl.int64)
tmp7 = tmp5 < tmp6
tmp8 = tl.full([1], 1, tl.int64)
tmp9 = tmp5 < tmp8
tmp10 = tl.full([1], 4, tl.int64)
tmp11 = tl.where(tmp9, tmp10, tmp10)
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp5 < tmp12
tmp14 = tl.where(tmp13, tmp10, tmp10)
tmp15 = tl.where(tmp7, tmp11, tmp14)
tmp16 = tl.load(in_ptr0 + (tmp15 + (20*x1)), xmask, eviction_policy='evict_last')
tmp17 = tmp1 - tmp16
tmp18 = tmp4 * tmp17
tmp19 = tmp0 + tmp18
tmp20 = tmp1 - tmp19
tmp22 = tmp20 * tmp21
tmp23 = tl.load(in_ptr0 + (5 + tmp15 + (20*x1)), xmask, eviction_policy='evict_last')
tmp24 = tmp1 - tmp23
tmp25 = tmp22 * tmp24
tmp26 = tmp19 + tmp25
tmp27 = tmp1 - tmp26
tmp29 = tmp27 * tmp28
tmp30 = tl.load(in_ptr0 + (10 + tmp15 + (20*x1)), xmask, eviction_policy='evict_last')
tmp31 = tmp1 - tmp30
tmp32 = tmp29 * tmp31
tmp33 = tmp26 + tmp32
tl.store(in_out_ptr0 + (x2), tmp33, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (20, 4), (4, 1))
assert_size_stride(primals_2, (20, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4, 1), (4, 1, 256), torch.float32)
buf2 = empty_strided_cuda((64, 4, 1), (4, 1, 256), torch.float32)
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = reinterpret_tensor(buf0, (64, 4, 5), (20, 5, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf3, buf1, buf2, 1280, grid=grid(1280), stream=stream0)
del buf1
buf4 = reinterpret_tensor(buf2, (64, 4), (4, 1), 0); del buf2 # reuse
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [sub, mul, getitem_2, sub_1, slot_total, alloc, sub_2, mul_2, getitem_4, sub_3, slot_total_1, alloc_1, sub_4, mul_4, getitem_6, sub_5, slot_total_2, alloc_2], Original ATen: [aten.rsub, aten.mul, aten.index, aten.add]
triton_poi_fused_add_index_mul_rsub_2.run(buf5, buf3, 256, grid=grid(256), stream=stream0)
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((20, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
from torch.nn import functional as F
from torch.nn import Linear
def _sequential_allocation(p, weights):
_, slots, bidders_plus_one = p.shape
bidders = bidders_plus_one - 1
cumulative_total = p[:, 0, :bidders]
if weights is None:
alloc = cumulative_total
else:
alloc = cumulative_total * weights[0]
for k in range(1, slots):
slot_total = (1 - cumulative_total) * p[:, k, :bidders] * (1 - p[:,
k - 1, [bidders for _ in range(bidders)]])
if weights is None:
alloc = alloc + slot_total
else:
alloc = alloc + slot_total * weights[k]
cumulative_total = cumulative_total + slot_total
return alloc
class SequentialAllocation(Module):
__constants__ = ['in_features', 'bidders', 'slots', 'weights']
def __init__(self, in_features, slots, bidders, weights=None):
super(SequentialAllocation, self).__init__()
self.in_features = in_features
self.slots = slots
self.bidders = bidders
self.weights = weights
self.linear = Linear(in_features, slots * (bidders + 1))
def forward(self, x):
probs = F.softmax(self.linear(x).reshape(-1, self.slots, self.
bidders + 1), dim=2)
return _sequential_allocation(probs, weights=self.weights)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'slots': 4, 'bidders': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn import Module
from torch.nn import Linear
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 5 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 5 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 5 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 5 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + 5 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp0 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp1 - tmp8
tmp12 = tl_math.exp(tmp11)
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp8
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp22, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 5
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp3 / tmp4
tl.store(in_out_ptr0 + x2, tmp5, xmask)
@triton.jit
def triton_poi_fused_add_index_mul_rsub_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 20 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (5 + x0 + 20 * x1), xmask)
tmp21 = tl.load(in_ptr0 + (10 + x0 + 20 * x1), xmask)
tmp28 = tl.load(in_ptr0 + (15 + x0 + 20 * x1), xmask)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = x0
tmp6 = tl.full([1], 2, tl.int64)
tmp7 = tmp5 < tmp6
tmp8 = tl.full([1], 1, tl.int64)
tmp9 = tmp5 < tmp8
tmp10 = tl.full([1], 4, tl.int64)
tmp11 = tl.where(tmp9, tmp10, tmp10)
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp5 < tmp12
tmp14 = tl.where(tmp13, tmp10, tmp10)
tmp15 = tl.where(tmp7, tmp11, tmp14)
tmp16 = tl.load(in_ptr0 + (tmp15 + 20 * x1), xmask, eviction_policy=
'evict_last')
tmp17 = tmp1 - tmp16
tmp18 = tmp4 * tmp17
tmp19 = tmp0 + tmp18
tmp20 = tmp1 - tmp19
tmp22 = tmp20 * tmp21
tmp23 = tl.load(in_ptr0 + (5 + tmp15 + 20 * x1), xmask, eviction_policy
='evict_last')
tmp24 = tmp1 - tmp23
tmp25 = tmp22 * tmp24
tmp26 = tmp19 + tmp25
tmp27 = tmp1 - tmp26
tmp29 = tmp27 * tmp28
tmp30 = tl.load(in_ptr0 + (10 + tmp15 + 20 * x1), xmask,
eviction_policy='evict_last')
tmp31 = tmp1 - tmp30
tmp32 = tmp29 * tmp31
tmp33 = tmp26 + tmp32
tl.store(in_out_ptr0 + x2, tmp33, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (20, 4), (4, 1))
assert_size_stride(primals_2, (20,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4, 1), (4, 1, 256), torch.float32)
buf2 = empty_strided_cuda((64, 4, 1), (4, 1, 256), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](buf0, buf1, buf2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf0, (64, 4, 5), (20, 5, 1), 0)
del buf0
triton_poi_fused__softmax_1[grid(1280)](buf3, buf1, buf2, 1280,
XBLOCK=256, num_warps=4, num_stages=1)
del buf1
buf4 = reinterpret_tensor(buf2, (64, 4), (4, 1), 0)
del buf2
buf5 = buf4
del buf4
triton_poi_fused_add_index_mul_rsub_2[grid(256)](buf5, buf3, 256,
XBLOCK=128, num_warps=4, num_stages=1)
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf3
def _sequential_allocation(p, weights):
_, slots, bidders_plus_one = p.shape
bidders = bidders_plus_one - 1
cumulative_total = p[:, 0, :bidders]
if weights is None:
alloc = cumulative_total
else:
alloc = cumulative_total * weights[0]
for k in range(1, slots):
slot_total = (1 - cumulative_total) * p[:, k, :bidders] * (1 - p[:,
k - 1, [bidders for _ in range(bidders)]])
if weights is None:
alloc = alloc + slot_total
else:
alloc = alloc + slot_total * weights[k]
cumulative_total = cumulative_total + slot_total
return alloc
class SequentialAllocationNew(Module):
__constants__ = ['in_features', 'bidders', 'slots', 'weights']
def __init__(self, in_features, slots, bidders, weights=None):
super(SequentialAllocationNew, self).__init__()
self.in_features = in_features
self.slots = slots
self.bidders = bidders
self.weights = weights
self.linear = Linear(in_features, slots * (bidders + 1))
def forward(self, input_0):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| pjordan/dmch | SequentialAllocation | false | 4,122 | [
"Apache-2.0"
] | 0 | 84e04ddb0679007b15acfdc275e0e3f51e50d9f2 | https://github.com/pjordan/dmch/tree/84e04ddb0679007b15acfdc275e0e3f51e50d9f2 | from torch.nn import Module
import torch
from torch.nn import functional as F
from torch.nn import Linear
def _sequential_allocation(p, weights):
_, slots, bidders_plus_one = p.shape
bidders = bidders_plus_one - 1
cumulative_total = p[:, 0, :bidders]
if weights is None:
alloc = cumulative_total
else:
alloc = cumulative_total * weights[0]
for k in range(1, slots):
slot_total = (1 - cumulative_total) * p[:, k, :bidders] * (1 - p[:,
k - 1, [bidders for _ in range(bidders)]])
if weights is None:
alloc = alloc + slot_total
else:
alloc = alloc + slot_total * weights[k]
cumulative_total = cumulative_total + slot_total
return alloc
class Model(Module):
__constants__ = ['in_features', 'bidders', 'slots', 'weights']
def __init__(self, in_features, slots, bidders, weights=None):
super().__init__()
self.in_features = in_features
self.slots = slots
self.bidders = bidders
self.weights = weights
self.linear = Linear(in_features, slots * (bidders + 1))
def forward(self, x):
probs = F.softmax(self.linear(x).reshape(-1, self.slots, self.
bidders + 1), dim=2)
return _sequential_allocation(probs, weights=self.weights)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
TextureSegmentation | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/uu/cuuz64vjdf55nvqzb56xepy4nuom6xkfbga3qduvlkofb2w2rcz5.py
# Topologically Sorted Source Nodes: [conv_transpose2d, embeddings_dec1_1], Original ATen: [aten.convolution, aten.native_group_norm]
# Source node to ATen node mapping:
# conv_transpose2d => convolution
# embeddings_dec1_1 => add, add_1, mul_1, rsqrt, var_mean
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [2, 2], [3, 7], [1, 1], True, [0, 0], 1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {})
triton_red_fused_convolution_native_group_norm_0 = async_compile.triton('triton_red_fused_convolution_native_group_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[4, 2048],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_native_group_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_convolution_native_group_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 4
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = (rindex // 64)
tmp0 = tl.load(in_out_ptr0 + (r3 + (2048*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = triton_helpers.welford_reduce(
tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r3 + (2048*x0)), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(
tmp6_mean, tmp6_m2, tmp6_weight, 1
)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8 = tmp8_tmp[:, None]
tl.store(out_ptr0 + (x0), tmp6, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = (rindex // 64)
tmp9 = tl.load(in_out_ptr0 + (r3 + (2048*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp19 = tl.load(in_ptr1 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp21 = tl.load(in_ptr2 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 - tmp6
tmp13 = 2048.0
tmp14 = tmp7 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp12 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tl.store(out_ptr2 + (r3 + (2048*x0)), tmp22, rmask & xmask)
tmp23 = 2048.0
tmp24 = tmp7 / tmp23
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = libdevice.rsqrt(tmp26)
tl.store(out_ptr3 + (x0), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/cg/ccgsdqyeo4zmix6ydcqsntzzpkcudckfgtlvl3zmvygaucgkcle5.py
# Topologically Sorted Source Nodes: [conv_transpose2d_1, embeddings_dec2_1], Original ATen: [aten.convolution, aten.native_group_norm]
# Source node to ATen node mapping:
# conv_transpose2d_1 => convolution_1
# embeddings_dec2_1 => add_2, add_3, mul_3, rsqrt_1, var_mean_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_1, %primals_6, %primals_7, [2, 2], [3, 7], [1, 1], True, [0, 0], 1), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze_11), kwargs = {})
# %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %unsqueeze_8), kwargs = {})
triton_red_fused_convolution_native_group_norm_1 = async_compile.triton('triton_red_fused_convolution_native_group_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[4, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_native_group_norm_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_convolution_native_group_norm_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 4
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = (rindex // 256)
tmp0 = tl.load(in_out_ptr0 + (r3 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = triton_helpers.welford_reduce(
tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r3 + (4096*x0)), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(
tmp6_mean, tmp6_m2, tmp6_weight, 1
)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8 = tmp8_tmp[:, None]
tl.store(out_ptr0 + (x0), tmp6, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = (rindex // 256)
tmp9 = tl.load(in_out_ptr0 + (r3 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp19 = tl.load(in_ptr1 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp21 = tl.load(in_ptr2 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 - tmp6
tmp13 = 4096.0
tmp14 = tmp7 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp12 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tl.store(out_ptr2 + (r3 + (4096*x0)), tmp22, rmask & xmask)
tmp23 = 4096.0
tmp24 = tmp7 / tmp23
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = libdevice.rsqrt(tmp26)
tl.store(out_ptr3 + (x0), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/d3/cd3mqt6cdu46akjjddj4hpzz3bwnl5e4eykk6l22bqe7phvlj5e7.py
# Topologically Sorted Source Nodes: [conv_transpose2d_2, embeddings_dec3_1], Original ATen: [aten.convolution, aten.native_group_norm]
# Source node to ATen node mapping:
# conv_transpose2d_2 => convolution_2
# embeddings_dec3_1 => add_4, add_5, mul_5, rsqrt_2, var_mean_2
# Graph fragment:
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_3, %primals_10, %primals_11, [2, 2], [3, 7], [1, 1], True, [0, 0], 1), kwargs = {})
# %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {})
# %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %unsqueeze_17), kwargs = {})
# %add_5 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, %unsqueeze_14), kwargs = {})
triton_red_fused_convolution_native_group_norm_2 = async_compile.triton('triton_red_fused_convolution_native_group_norm_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[4, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_native_group_norm_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_convolution_native_group_norm_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 4
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = (rindex // 1024)
tmp0 = tl.load(in_out_ptr0 + (r3 + (8192*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = triton_helpers.welford_reduce(
tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r3 + (8192*x0)), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(
tmp6_mean, tmp6_m2, tmp6_weight, 1
)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8 = tmp8_tmp[:, None]
tl.store(out_ptr0 + (x0), tmp6, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = (rindex // 1024)
tmp9 = tl.load(in_out_ptr0 + (r3 + (8192*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp19 = tl.load(in_ptr1 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp21 = tl.load(in_ptr2 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 - tmp6
tmp13 = 8192.0
tmp14 = tmp7 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp12 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tl.store(out_ptr2 + (r3 + (8192*x0)), tmp22, rmask & xmask)
tmp23 = 8192.0
tmp24 = tmp7 / tmp23
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = libdevice.rsqrt(tmp26)
tl.store(out_ptr3 + (x0), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/np/cnp5v6qpoys2t5j36bmfyjtmatvurxdqxn4fmow6tjvaoq4uzwin.py
# Topologically Sorted Source Nodes: [conv_transpose2d_3, segment], Original ATen: [aten.convolution, aten.sigmoid]
# Source node to ATen node mapping:
# conv_transpose2d_3 => convolution_3
# segment => sigmoid
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_5, %primals_14, %primals_15, [2, 2], [3, 7], [1, 1], True, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_sigmoid_3 = async_compile.triton('triton_poi_fused_convolution_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (4, 16, 4, 4), (256, 16, 4, 1))
assert_size_stride(primals_2, (16, 32, 8, 16), (4096, 128, 16, 1))
assert_size_stride(primals_3, (32, ), (1, ))
assert_size_stride(primals_4, (32, ), (1, ))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (32, 16, 8, 16), (2048, 128, 16, 1))
assert_size_stride(primals_7, (16, ), (1, ))
assert_size_stride(primals_8, (16, ), (1, ))
assert_size_stride(primals_9, (16, ), (1, ))
assert_size_stride(primals_10, (16, 8, 8, 16), (1024, 128, 16, 1))
assert_size_stride(primals_11, (8, ), (1, ))
assert_size_stride(primals_12, (8, ), (1, ))
assert_size_stride(primals_13, (8, ), (1, ))
assert_size_stride(primals_14, (8, 1, 8, 16), (128, 128, 16, 1))
assert_size_stride(primals_15, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(2, 2), padding=(3, 7), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 8, 8), (2048, 64, 8, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf5 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.float32)
buf6 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv_transpose2d, embeddings_dec1_1], Original ATen: [aten.convolution, aten.native_group_norm]
stream0 = get_raw_stream(0)
triton_red_fused_convolution_native_group_norm_0.run(buf1, primals_3, primals_4, primals_5, buf2, buf5, buf6, 4, 2048, grid=grid(4), stream=stream0)
del primals_3
del primals_5
# Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf5, primals_6, stride=(2, 2), padding=(3, 7), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 16, 16, 16), (4096, 256, 16, 1))
buf8 = buf7; del buf7 # reuse
buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf12 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.float32)
buf13 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv_transpose2d_1, embeddings_dec2_1], Original ATen: [aten.convolution, aten.native_group_norm]
triton_red_fused_convolution_native_group_norm_1.run(buf8, primals_7, primals_8, primals_9, buf9, buf12, buf13, 4, 4096, grid=grid(4), stream=stream0)
del primals_7
del primals_9
# Topologically Sorted Source Nodes: [conv_transpose2d_2], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf12, primals_10, stride=(2, 2), padding=(3, 7), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 8, 32, 32), (8192, 1024, 32, 1))
buf15 = buf14; del buf14 # reuse
buf16 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf19 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.float32)
buf20 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv_transpose2d_2, embeddings_dec3_1], Original ATen: [aten.convolution, aten.native_group_norm]
triton_red_fused_convolution_native_group_norm_2.run(buf15, primals_11, primals_12, primals_13, buf16, buf19, buf20, 4, 8192, grid=grid(4), stream=stream0)
del primals_11
del primals_13
# Topologically Sorted Source Nodes: [conv_transpose2d_3], Original ATen: [aten.convolution]
buf21 = extern_kernels.convolution(buf19, primals_14, stride=(2, 2), padding=(3, 7), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf22 = buf21; del buf21 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d_3, segment], Original ATen: [aten.convolution, aten.sigmoid]
triton_poi_fused_convolution_sigmoid_3.run(buf22, primals_15, 16384, grid=grid(16384), stream=stream0)
del primals_15
return (buf22, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, buf1, buf5, reinterpret_tensor(buf2, (4, 1), (1, 1), 0), reinterpret_tensor(buf6, (4, 1), (1, 1), 0), buf8, buf12, reinterpret_tensor(buf9, (4, 1), (1, 1), 0), reinterpret_tensor(buf13, (4, 1), (1, 1), 0), buf15, buf19, reinterpret_tensor(buf16, (4, 1), (1, 1), 0), reinterpret_tensor(buf20, (4, 1), (1, 1), 0), buf22, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 16, 4, 4), (256, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, 32, 8, 16), (4096, 128, 16, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((32, 16, 8, 16), (2048, 128, 16, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((16, 8, 8, 16), (1024, 128, 16, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((8, 1, 8, 16), (128, 128, 16, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class TextureSegmentation(nn.Module):
def __init__(self):
super(TextureSegmentation, self).__init__()
self.decoder_conv1 = nn.ConvTranspose2d(16, 32, kernel_size=(8, 16),
stride=2, padding=(3, 7))
self.decoder_conv1.bias.data.zero_()
self.decoder_conv1.weight.data[:, :, :, :] = 1 / (8 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.decoder_normalization1 = nn.GroupNorm(1, 32, eps=1e-05, affine
=True)
self.decoder_conv2 = nn.ConvTranspose2d(32, 16, kernel_size=(8, 16),
stride=2, padding=(3, 7), output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv2.bias.data.zero_()
self.decoder_conv2.weight.data[:, :, :, :] = 1 / (8 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.decoder_normalization2 = nn.GroupNorm(1, 16, eps=1e-05, affine
=True)
self.decoder_conv3 = nn.ConvTranspose2d(16, 8, kernel_size=(8, 16),
stride=2, padding=(3, 7), output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv3.bias.data.zero_()
self.decoder_conv3.weight.data[:, :, :, :] = 1 / (4 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
self.decoder_normalization3 = nn.GroupNorm(1, 8, eps=1e-05, affine=True
)
self.decoder_conv5 = nn.ConvTranspose2d(8, 1, kernel_size=(8, 16),
stride=2, padding=(3, 7), output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv5.bias.data[:] = -(0.5 / 0.24)
self.decoder_conv5.weight.data[:, :, :, :] = 1 / (8 * 8 * 8 * 0.24
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
def forward(self, sample):
embeddings_dec1 = F.relu(self.decoder_conv1(sample, output_size=
torch.empty(sample.size()[0], 32, sample.size()[2] * 2, sample.
size()[3] * 2).size()))
embeddings_dec1 = self.decoder_normalization1(embeddings_dec1)
embeddings_dec2 = F.relu(self.decoder_conv2(embeddings_dec1,
output_size=torch.empty(embeddings_dec1.size()[0], 16,
embeddings_dec1.size()[2] * 2, embeddings_dec1.size()[3] * 2).
size()))
embeddings_dec2 = self.decoder_normalization2(embeddings_dec2)
embeddings_dec3 = F.relu(self.decoder_conv3(embeddings_dec2,
output_size=torch.empty(embeddings_dec2.size()[0], 8,
embeddings_dec2.size()[2] * 2, embeddings_dec2.size()[3] * 2).
size()))
embeddings_dec3 = self.decoder_normalization3(embeddings_dec3)
segment = F.sigmoid(self.decoder_conv5(embeddings_dec3, output_size
=torch.empty(embeddings_dec3.size()[0], 1, embeddings_dec3.size
()[2] * 2, embeddings_dec3.size()[3] * 2).size()))
return segment
def get_inputs():
return [torch.rand([4, 16, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_red_fused_convolution_native_group_norm_0(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK:
tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 4
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = rindex // 64
tmp0 = tl.load(in_out_ptr0 + (r3 + 2048 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = (triton_helpers.
welford_reduce(tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0)
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r3 + 2048 * x0), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(tmp6_mean,
tmp6_m2, tmp6_weight, 1)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8_tmp[:, None]
tl.store(out_ptr0 + x0, tmp6, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = rindex // 64
tmp9 = tl.load(in_out_ptr0 + (r3 + 2048 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp19 = tl.load(in_ptr1 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp21 = tl.load(in_ptr2 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 - tmp6
tmp13 = 2048.0
tmp14 = tmp7 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp12 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tl.store(out_ptr2 + (r3 + 2048 * x0), tmp22, rmask & xmask)
tmp23 = 2048.0
tmp24 = tmp7 / tmp23
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = libdevice.rsqrt(tmp26)
tl.store(out_ptr3 + x0, tmp27, xmask)
@triton.jit
def triton_red_fused_convolution_native_group_norm_1(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK:
tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 4
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = rindex // 256
tmp0 = tl.load(in_out_ptr0 + (r3 + 4096 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = (triton_helpers.
welford_reduce(tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0)
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r3 + 4096 * x0), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(tmp6_mean,
tmp6_m2, tmp6_weight, 1)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8_tmp[:, None]
tl.store(out_ptr0 + x0, tmp6, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = rindex // 256
tmp9 = tl.load(in_out_ptr0 + (r3 + 4096 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp19 = tl.load(in_ptr1 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp21 = tl.load(in_ptr2 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 - tmp6
tmp13 = 4096.0
tmp14 = tmp7 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp12 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tl.store(out_ptr2 + (r3 + 4096 * x0), tmp22, rmask & xmask)
tmp23 = 4096.0
tmp24 = tmp7 / tmp23
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = libdevice.rsqrt(tmp26)
tl.store(out_ptr3 + x0, tmp27, xmask)
@triton.jit
def triton_red_fused_convolution_native_group_norm_2(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK:
tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 4
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = rindex // 1024
tmp0 = tl.load(in_out_ptr0 + (r3 + 8192 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = (triton_helpers.
welford_reduce(tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0)
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r3 + 8192 * x0), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(tmp6_mean,
tmp6_m2, tmp6_weight, 1)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8_tmp[:, None]
tl.store(out_ptr0 + x0, tmp6, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = rindex // 1024
tmp9 = tl.load(in_out_ptr0 + (r3 + 8192 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp19 = tl.load(in_ptr1 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp21 = tl.load(in_ptr2 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 - tmp6
tmp13 = 8192.0
tmp14 = tmp7 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp12 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tl.store(out_ptr2 + (r3 + 8192 * x0), tmp22, rmask & xmask)
tmp23 = 8192.0
tmp24 = tmp7 / tmp23
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = libdevice.rsqrt(tmp26)
tl.store(out_ptr3 + x0, tmp27, xmask)
@triton.jit
def triton_poi_fused_convolution_sigmoid_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (4, 16, 4, 4), (256, 16, 4, 1))
assert_size_stride(primals_2, (16, 32, 8, 16), (4096, 128, 16, 1))
assert_size_stride(primals_3, (32,), (1,))
assert_size_stride(primals_4, (32,), (1,))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (32, 16, 8, 16), (2048, 128, 16, 1))
assert_size_stride(primals_7, (16,), (1,))
assert_size_stride(primals_8, (16,), (1,))
assert_size_stride(primals_9, (16,), (1,))
assert_size_stride(primals_10, (16, 8, 8, 16), (1024, 128, 16, 1))
assert_size_stride(primals_11, (8,), (1,))
assert_size_stride(primals_12, (8,), (1,))
assert_size_stride(primals_13, (8,), (1,))
assert_size_stride(primals_14, (8, 1, 8, 16), (128, 128, 16, 1))
assert_size_stride(primals_15, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(2,
2), padding=(3, 7), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 8, 8), (2048, 64, 8, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf5 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.
float32)
buf6 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
get_raw_stream(0)
triton_red_fused_convolution_native_group_norm_0[grid(4)](buf1,
primals_3, primals_4, primals_5, buf2, buf5, buf6, 4, 2048,
XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
del primals_3
del primals_5
buf7 = extern_kernels.convolution(buf5, primals_6, stride=(2, 2),
padding=(3, 7), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 16, 16, 16), (4096, 256, 16, 1))
buf8 = buf7
del buf7
buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf12 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1),
torch.float32)
buf13 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
triton_red_fused_convolution_native_group_norm_1[grid(4)](buf8,
primals_7, primals_8, primals_9, buf9, buf12, buf13, 4, 4096,
XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
del primals_7
del primals_9
buf14 = extern_kernels.convolution(buf12, primals_10, stride=(2, 2),
padding=(3, 7), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 8, 32, 32), (8192, 1024, 32, 1))
buf15 = buf14
del buf14
buf16 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf19 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1),
torch.float32)
buf20 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
triton_red_fused_convolution_native_group_norm_2[grid(4)](buf15,
primals_11, primals_12, primals_13, buf16, buf19, buf20, 4,
8192, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
del primals_11
del primals_13
buf21 = extern_kernels.convolution(buf19, primals_14, stride=(2, 2),
padding=(3, 7), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf22 = buf21
del buf21
triton_poi_fused_convolution_sigmoid_3[grid(16384)](buf22,
primals_15, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_15
return (buf22, primals_1, primals_2, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, buf1, buf5, reinterpret_tensor(
buf2, (4, 1), (1, 1), 0), reinterpret_tensor(buf6, (4, 1), (1, 1),
0), buf8, buf12, reinterpret_tensor(buf9, (4, 1), (1, 1), 0),
reinterpret_tensor(buf13, (4, 1), (1, 1), 0), buf15, buf19,
reinterpret_tensor(buf16, (4, 1), (1, 1), 0), reinterpret_tensor(
buf20, (4, 1), (1, 1), 0), buf22)
class TextureSegmentationNew(nn.Module):
def __init__(self):
super(TextureSegmentationNew, self).__init__()
self.decoder_conv1 = nn.ConvTranspose2d(16, 32, kernel_size=(8, 16),
stride=2, padding=(3, 7))
self.decoder_conv1.bias.data.zero_()
self.decoder_conv1.weight.data[:, :, :, :] = 1 / (8 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.decoder_normalization1 = nn.GroupNorm(1, 32, eps=1e-05, affine
=True)
self.decoder_conv2 = nn.ConvTranspose2d(32, 16, kernel_size=(8, 16),
stride=2, padding=(3, 7), output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv2.bias.data.zero_()
self.decoder_conv2.weight.data[:, :, :, :] = 1 / (8 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.decoder_normalization2 = nn.GroupNorm(1, 16, eps=1e-05, affine
=True)
self.decoder_conv3 = nn.ConvTranspose2d(16, 8, kernel_size=(8, 16),
stride=2, padding=(3, 7), output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv3.bias.data.zero_()
self.decoder_conv3.weight.data[:, :, :, :] = 1 / (4 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
self.decoder_normalization3 = nn.GroupNorm(1, 8, eps=1e-05, affine=True
)
self.decoder_conv5 = nn.ConvTranspose2d(8, 1, kernel_size=(8, 16),
stride=2, padding=(3, 7), output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv5.bias.data[:] = -(0.5 / 0.24)
self.decoder_conv5.weight.data[:, :, :, :] = 1 / (8 * 8 * 8 * 0.24
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
def forward(self, input_0):
primals_2 = self.decoder_conv1.weight
primals_3 = self.decoder_conv1.bias
primals_4 = self.decoder_normalization1.weight
primals_5 = self.decoder_normalization1.bias
primals_6 = self.decoder_conv2.weight
primals_7 = self.decoder_conv2.bias
primals_8 = self.decoder_normalization2.weight
primals_9 = self.decoder_normalization2.bias
primals_10 = self.decoder_conv3.weight
primals_11 = self.decoder_conv3.bias
primals_12 = self.decoder_normalization3.weight
primals_13 = self.decoder_normalization3.bias
primals_14 = self.decoder_conv5.weight
primals_15 = self.decoder_conv5.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0]
| paucarre/staal | TextureSegmentation | false | 4,123 | [
"MIT"
] | 0 | 1635e514f0ed978a08c078afd258980bcb6f0cec | https://github.com/paucarre/staal/tree/1635e514f0ed978a08c078afd258980bcb6f0cec | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.decoder_conv1 = nn.ConvTranspose2d(16, 32, kernel_size=(8, 16),
stride=2, padding=(3, 7))
self.decoder_conv1.bias.data.zero_()
self.decoder_conv1.weight.data[:, :, :, :] = 1 / (8 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.decoder_normalization1 = nn.GroupNorm(1, 32, eps=1e-05, affine
=True)
self.decoder_conv2 = nn.ConvTranspose2d(32, 16, kernel_size=(8, 16),
stride=2, padding=(3, 7), output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv2.bias.data.zero_()
self.decoder_conv2.weight.data[:, :, :, :] = 1 / (8 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.decoder_normalization2 = nn.GroupNorm(1, 16, eps=1e-05, affine
=True)
self.decoder_conv3 = nn.ConvTranspose2d(16, 8, kernel_size=(8, 16),
stride=2, padding=(3, 7), output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv3.bias.data.zero_()
self.decoder_conv3.weight.data[:, :, :, :] = 1 / (4 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
self.decoder_normalization3 = nn.GroupNorm(1, 8, eps=1e-05, affine=True
)
self.decoder_conv5 = nn.ConvTranspose2d(8, 1, kernel_size=(8, 16),
stride=2, padding=(3, 7), output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv5.bias.data[:] = -(0.5 / 0.24)
self.decoder_conv5.weight.data[:, :, :, :] = 1 / (8 * 8 * 8 * 0.24
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
def forward(self, sample):
embeddings_dec1 = F.relu(self.decoder_conv1(sample, output_size=
torch.empty(sample.size()[0], 32, sample.size()[2] * 2, sample.
size()[3] * 2).size()))
embeddings_dec1 = self.decoder_normalization1(embeddings_dec1)
embeddings_dec2 = F.relu(self.decoder_conv2(embeddings_dec1,
output_size=torch.empty(embeddings_dec1.size()[0], 16,
embeddings_dec1.size()[2] * 2, embeddings_dec1.size()[3] * 2).
size()))
embeddings_dec2 = self.decoder_normalization2(embeddings_dec2)
embeddings_dec3 = F.relu(self.decoder_conv3(embeddings_dec2,
output_size=torch.empty(embeddings_dec2.size()[0], 8,
embeddings_dec2.size()[2] * 2, embeddings_dec2.size()[3] * 2).
size()))
embeddings_dec3 = self.decoder_normalization3(embeddings_dec3)
segment = F.sigmoid(self.decoder_conv5(embeddings_dec3, output_size
=torch.empty(embeddings_dec3.size()[0], 1, embeddings_dec3.size
()[2] * 2, embeddings_dec3.size()[3] * 2).size()))
return segment
def get_inputs():
return [torch.rand([4, 16, 4, 4])]
def get_init_inputs():
return []
|
GeometryFeature | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ht/cht3iys3phvxlbyjckyukc3p63g6utngacelztmjhpv5nwxanb5z.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%div, %div_1, %arg3_1], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 11, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 12
x0 = xindex % 16
x2 = (xindex // 192)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tl.load(in_ptr1 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tmp9 = tl.load(in_ptr2 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp10 = 1.0
tmp11 = tmp9 + tmp10
tmp12 = tmp8 * tmp11
tmp13 = tl.load(in_ptr3 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp14 = tmp12 - tmp13
tmp15 = tmp5 * tmp14
tmp16 = tl.load(in_ptr4 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp17 = tmp15 / tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp4, tmp17, tmp18)
tmp20 = tmp0 >= tmp3
tmp21 = tl.full([1], 8, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = tmp20 & tmp22
tmp24 = tl.load(in_ptr0 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp23 & xmask, other=0.0)
tmp25 = tl.load(in_ptr5 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp23 & xmask, other=0.0)
tmp26 = tmp25 * tmp7
tmp27 = tl.load(in_ptr6 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp23 & xmask, other=0.0)
tmp28 = tmp27 + tmp10
tmp29 = tmp26 * tmp28
tmp30 = tl.load(in_ptr7 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp23 & xmask, other=0.0)
tmp31 = tmp29 - tmp30
tmp32 = tmp24 * tmp31
tmp33 = tl.load(in_ptr8 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp23 & xmask, other=0.0)
tmp34 = tmp32 / tmp33
tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype)
tmp36 = tl.where(tmp23, tmp34, tmp35)
tmp37 = tmp0 >= tmp21
tmp38 = tl.full([1], 12, tl.int64)
tmp39 = tmp0 < tmp38
tmp40 = tl.load(in_ptr0 + (x0 + (16*((-8) + x1)) + (64*x2)), tmp37 & xmask, other=0.0)
tmp41 = tl.where(tmp23, tmp36, tmp40)
tmp42 = tl.where(tmp4, tmp19, tmp41)
tl.store(out_ptr0 + (x3), tmp42, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg5_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg6_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg7_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg8_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12, 4, 4), (192, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg3_1, arg0_1, arg1_1, arg2_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, buf0, 768, grid=grid(768), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
del arg4_1
del arg5_1
del arg6_1
del arg7_1
del arg8_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg4_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg5_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg6_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg7_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg8_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
class GeometryFeature(nn.Module):
def __init__(self):
super(GeometryFeature, self).__init__()
def forward(self, z, vnorm, unorm, h, w, ch, cw, fh, fw):
x = z * (0.5 * h * (vnorm + 1) - ch) / fh
y = z * (0.5 * w * (unorm + 1) - cw) / fw
return torch.cat((x, y, z), 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]),
torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4,
4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 12
x0 = xindex % 16
x2 = xindex // 192
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tl.load(in_ptr1 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tmp9 = tl.load(in_ptr2 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp10 = 1.0
tmp11 = tmp9 + tmp10
tmp12 = tmp8 * tmp11
tmp13 = tl.load(in_ptr3 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0
)
tmp14 = tmp12 - tmp13
tmp15 = tmp5 * tmp14
tmp16 = tl.load(in_ptr4 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0
)
tmp17 = tmp15 / tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp4, tmp17, tmp18)
tmp20 = tmp0 >= tmp3
tmp21 = tl.full([1], 8, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = tmp20 & tmp22
tmp24 = tl.load(in_ptr0 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp23 &
xmask, other=0.0)
tmp25 = tl.load(in_ptr5 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp23 &
xmask, other=0.0)
tmp26 = tmp25 * tmp7
tmp27 = tl.load(in_ptr6 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp23 &
xmask, other=0.0)
tmp28 = tmp27 + tmp10
tmp29 = tmp26 * tmp28
tmp30 = tl.load(in_ptr7 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp23 &
xmask, other=0.0)
tmp31 = tmp29 - tmp30
tmp32 = tmp24 * tmp31
tmp33 = tl.load(in_ptr8 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp23 &
xmask, other=0.0)
tmp34 = tmp32 / tmp33
tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype)
tmp36 = tl.where(tmp23, tmp34, tmp35)
tmp37 = tmp0 >= tmp21
tl.full([1], 12, tl.int64)
tmp40 = tl.load(in_ptr0 + (x0 + 16 * (-8 + x1) + 64 * x2), tmp37 &
xmask, other=0.0)
tmp41 = tl.where(tmp23, tmp36, tmp40)
tmp42 = tl.where(tmp4, tmp19, tmp41)
tl.store(out_ptr0 + x3, tmp42, xmask)
def call(args):
(arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1
) = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg5_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg6_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg7_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg8_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12, 4, 4), (192, 16, 4, 1), torch.float32
)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(768)](arg3_1, arg0_1, arg1_1, arg2_1,
arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, buf0, 768, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
del arg4_1
del arg5_1
del arg6_1
del arg7_1
del arg8_1
return buf0,
class GeometryFeatureNew(nn.Module):
def __init__(self):
super(GeometryFeatureNew, self).__init__()
def forward(self, input_0, input_1, input_2, input_3, input_4, input_5,
input_6, input_7, input_8):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
arg4_1 = input_4
arg5_1 = input_5
arg6_1 = input_6
arg7_1 = input_7
arg8_1 = input_8
output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1,
arg6_1, arg7_1, arg8_1])
return output[0]
| phatli/PENet_ICRA2021 | GeometryFeature | false | 4,124 | [
"MIT"
] | 0 | 18594b8f11d4d99022d9c80a86a6e2d4e854404a | https://github.com/phatli/PENet_ICRA2021/tree/18594b8f11d4d99022d9c80a86a6e2d4e854404a | import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, z, vnorm, unorm, h, w, ch, cw, fh, fw):
x = z * (0.5 * h * (vnorm + 1) - ch) / fh
y = z * (0.5 * w * (unorm + 1) - cw) / fw
return torch.cat((x, y, z), 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]),
torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4,
4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
_VariableWeightsAndBiases | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/jq/cjqaq2meov3vkcgfealq7w4w35tw2oemvmhneuxmigeoumva22p7.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# x => sigmoid
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_sigmoid_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_7
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class _VariableWeightsAndBiases(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super(_VariableWeightsAndBiases, self).__init__()
self.linear = nn.Linear(in_features, hidden_features)
self.weights = nn.Linear(hidden_features, out_features)
self.biases = nn.Linear(hidden_features, out_features)
def forward(self, x):
x = torch.sigmoid(self.linear(x))
return self.weights(x), self.biases(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'hidden_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_sigmoid_0[grid(256)](buf1, primals_2, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_7
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, primals_6, primals_4
class _VariableWeightsAndBiasesNew(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super(_VariableWeightsAndBiasesNew, self).__init__()
self.linear = nn.Linear(in_features, hidden_features)
self.weights = nn.Linear(hidden_features, out_features)
self.biases = nn.Linear(hidden_features, out_features)
def forward(self, input_0):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_4 = self.weights.weight
primals_5 = self.weights.bias
primals_6 = self.biases.weight
primals_7 = self.biases.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1]
| pjordan/dmch | _VariableWeightsAndBiases | false | 4,125 | [
"Apache-2.0"
] | 0 | 84e04ddb0679007b15acfdc275e0e3f51e50d9f2 | https://github.com/pjordan/dmch/tree/84e04ddb0679007b15acfdc275e0e3f51e50d9f2 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super().__init__()
self.linear = nn.Linear(in_features, hidden_features)
self.weights = nn.Linear(hidden_features, out_features)
self.biases = nn.Linear(hidden_features, out_features)
def forward(self, x):
x = torch.sigmoid(self.linear(x))
return self.weights(x), self.biases(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
Prototypes | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/fh/cfhnguw4v6uy4ysjg54ojclakwi3bj2lte6oqizl4rpf4lcxpiyp.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.div]
# Source node to ATen node mapping:
# x => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x3), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xd/cxdbguu35qzisnm6s4hmvcdzncwpv7ttzfferq6uwb7s22krgyjh.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.div]
# Source node to ATen node mapping:
# out_1 => div_1
# Graph fragment:
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, 0.05), kwargs = {})
triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = 20.0
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.div]
triton_poi_fused_div_1.run(buf2, 256, grid=grid(256), stream=stream0)
return (buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn import functional as F
class Prototypes(nn.Module):
def __init__(self, fdim, num_classes, temp=0.05):
super().__init__()
self.prototypes = nn.Linear(fdim, num_classes, bias=False)
self.temp = temp
def forward(self, x):
x = F.normalize(x, p=2, dim=1)
out = self.prototypes(x)
out = out / self.temp
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'fdim': 4, 'num_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x3, tmp15, xmask)
@triton.jit
def triton_poi_fused_div_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(256)](primals_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_div_1[grid(256)](buf2, 256, XBLOCK=256, num_warps=
4, num_stages=1)
return buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0)
class PrototypesNew(nn.Module):
def __init__(self, fdim, num_classes, temp=0.05):
super().__init__()
self.prototypes = nn.Linear(fdim, num_classes, bias=False)
self.temp = temp
def forward(self, input_0):
primals_2 = self.prototypes.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| pmirallesr/Dassl.pytorch | Prototypes | false | 4,126 | [
"MIT"
] | 0 | ec41f816bb60a9af94c9b055c500f0e2e404cfc6 | https://github.com/pmirallesr/Dassl.pytorch/tree/ec41f816bb60a9af94c9b055c500f0e2e404cfc6 | import torch
import torch.nn as nn
from torch.nn import functional as F
class Model(nn.Module):
def __init__(self, fdim, num_classes, temp=0.05):
super().__init__()
self.prototypes = nn.Linear(fdim, num_classes, bias=False)
self.temp = temp
def forward(self, x):
x = F.normalize(x, p=2, dim=1)
out = self.prototypes(x)
out = out / self.temp
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Value | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/a2/ca2wr2cvkya5clovpxidv7ia56pdcyp7uq4omtpg5m2nr7ya3ryn.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (1, 64), (64, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_2, 4096, grid=grid(4096), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh]
triton_poi_fused_tanh_0.run(buf3, primals_5, 4096, grid=grid(4096), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [state_values], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 1), (1, 64), 0), alpha=1, beta=1, out=buf5)
del primals_7
return (reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Value(nn.Module):
def __init__(self, num_inputs):
super(Value, self).__init__()
self.affine1 = nn.Linear(num_inputs, 64)
self.affine2 = nn.Linear(64, 64)
self.value_head = nn.Linear(64, 1)
self.value_head.weight.data.mul_(0.1)
self.value_head.bias.data.mul_(0.0)
self.device = torch.device('cuda:0' if torch.cuda.is_available() else
'cpu')
self
def forward(self, x):
x = torch.tanh(self.affine1(x))
x = torch.tanh(self.affine2(x))
state_values = self.value_head(x)
return state_values
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_inputs': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (1, 64), (64, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(4096)](buf1, primals_2, 4096, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf2
triton_poi_fused_tanh_0[grid(4096)](buf3, primals_5, 4096, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_6, (64, 1), (1, 64), 0),
alpha=1, beta=1, out=buf5)
del primals_7
return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, buf3, primals_6, primals_4
class ValueNew(nn.Module):
def __init__(self, num_inputs):
super(ValueNew, self).__init__()
self.affine1 = nn.Linear(num_inputs, 64)
self.affine2 = nn.Linear(64, 64)
self.value_head = nn.Linear(64, 1)
self.value_head.weight.data.mul_(0.1)
self.value_head.bias.data.mul_(0.0)
self.device = torch.device('cuda:0' if torch.cuda.is_available() else
'cpu')
self
def forward(self, input_0):
primals_1 = self.affine1.weight
primals_2 = self.affine1.bias
primals_4 = self.affine2.weight
primals_5 = self.affine2.bias
primals_6 = self.value_head.weight
primals_7 = self.value_head.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| SaminYeasar/pytorch-trpo | Value | false | 4,127 | [
"MIT"
] | 0 | 653a3357cf0461c175fb741604c0cd4ad1f4b841 | https://github.com/SaminYeasar/pytorch-trpo/tree/653a3357cf0461c175fb741604c0cd4ad1f4b841 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, num_inputs):
super().__init__()
self.affine1 = nn.Linear(num_inputs, 64)
self.affine2 = nn.Linear(64, 64)
self.value_head = nn.Linear(64, 1)
self.value_head.weight.data.mul_(0.1)
self.value_head.bias.data.mul_(0.0)
self.device = torch.device('cuda:0' if torch.cuda.is_available() else
'cpu')
self
def forward(self, x):
x = torch.tanh(self.affine1(x))
x = torch.tanh(self.affine2(x))
state_values = self.value_head(x)
return state_values
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SpatialAttentionModule | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/46/c46mg7rvdztu6n5oosf5c4if7ziag6obrxhwbn43lcdfibfuom7w.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%mean, %getitem], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 2
x0 = xindex % 16
x2 = (xindex // 32)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = tmp7 + tmp8
tmp10 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = 4.0
tmp13 = tmp11 / tmp12
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp4, tmp13, tmp14)
tmp16 = tmp0 >= tmp3
tmp17 = tl.full([1], 2, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = triton_helpers.maximum(tmp19, tmp20)
tmp22 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp23 = triton_helpers.maximum(tmp21, tmp22)
tmp24 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = triton_helpers.maximum(tmp23, tmp24)
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp16, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp15, tmp27)
tl.store(out_ptr0 + (x3), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/go/cgofqcgduqrtcjakfd7uk3wkcrpwsqxispluihwsstry6ekodk2u.py
# Topologically Sorted Source Nodes: [conv2d, out_1], Original ATen: [aten.convolution, aten.sigmoid]
# Source node to ATen node mapping:
# conv2d => convolution
# out_1 => sigmoid
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_2, %primals_3, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_sigmoid_1 = async_compile.triton('triton_poi_fused_convolution_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 2, 7, 7), (98, 49, 7, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, buf0, 128, grid=grid(128), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d, out_1], Original ATen: [aten.convolution, aten.sigmoid]
triton_poi_fused_convolution_sigmoid_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
return (buf2, primals_2, buf0, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 2, 7, 7), (98, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SpatialAttentionModule(nn.Module):
def __init__(self):
super(SpatialAttentionModule, self).__init__()
self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=
7, stride=1, padding=3)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avgout = torch.mean(x, dim=1, keepdim=True)
maxout, _ = torch.max(x, dim=1, keepdim=True)
out = torch.cat([avgout, maxout], dim=1)
out = self.sigmoid(self.conv2d(out))
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 2
x0 = xindex % 16
x2 = xindex // 32
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp9 = tmp7 + tmp8
tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = 4.0
tmp13 = tmp11 / tmp12
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp4, tmp13, tmp14)
tmp16 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp19 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp21 = triton_helpers.maximum(tmp19, tmp20)
tmp22 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp23 = triton_helpers.maximum(tmp21, tmp22)
tmp24 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp25 = triton_helpers.maximum(tmp23, tmp24)
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp16, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp15, tmp27)
tl.store(out_ptr0 + x3, tmp28, xmask)
@triton.jit
def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 2, 7, 7), (98, 49, 7, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](primals_1, buf0, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_sigmoid_1[grid(64)](buf2, primals_3,
64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
return buf2, primals_2, buf0, buf2
class SpatialAttentionModuleNew(nn.Module):
def __init__(self):
super(SpatialAttentionModuleNew, self).__init__()
self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=
7, stride=1, padding=3)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.conv2d.weight
primals_3 = self.conv2d.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| poppy862/Qnet | SpatialAttentionModule | false | 4,128 | [
"Apache-2.0"
] | 0 | da751bc6eb9ae23e0ff9b96fe0afdfd6bed31f8b | https://github.com/poppy862/Qnet/tree/da751bc6eb9ae23e0ff9b96fe0afdfd6bed31f8b | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=
7, stride=1, padding=3)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avgout = torch.mean(x, dim=1, keepdim=True)
maxout, _ = torch.max(x, dim=1, keepdim=True)
out = torch.cat([avgout, maxout], dim=1)
out = self.sigmoid(self.conv2d(out))
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SumLossModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [y_losses], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# y_losses => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/w6/cw67ft6jq2nun42fbuvbidxkjwcifisiu5vibbb6xmybbam22o7v.py
# Topologically Sorted Source Nodes: [y_losses, y_losses_1], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg]
# Source node to ATen node mapping:
# y_losses => exp, log, mul, neg, sub_1, sum_1, sum_2
# y_losses_1 => sum_3
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %sum_3 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%neg, [1, 2]), kwargs = {})
triton_per_fused__log_softmax_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mul_neg_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_mul_neg_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp2 = tl.load(in_ptr0 + (16 + r1 + (64*x0)), xmask, other=0.0)
tmp5 = tl.load(in_ptr0 + (32 + r1 + (64*x0)), xmask, other=0.0)
tmp8 = tl.load(in_ptr0 + (48 + r1 + (64*x0)), xmask, other=0.0)
tmp13 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0)
tmp16 = tl.load(in_ptr1 + (16 + r1 + (64*x0)), xmask, other=0.0)
tmp20 = tl.load(in_ptr1 + (32 + r1 + (64*x0)), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (48 + r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = tl.where(xmask, tmp28, 0)
tmp31 = tl.sum(tmp30, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/aq/caqsz6tag53umqmpoegtfyyxverid4mnn2icbqxkkamlj2fsqyvu.py
# Topologically Sorted Source Nodes: [Y_loss], Original ATen: [aten.logsumexp]
# Source node to ATen node mapping:
# Y_loss => abs_1, add, amax_1, eq, exp_1, full_default, log_1, sub_2, sum_4, where
# Graph fragment:
# %amax_1 : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%sum_3, [0], True), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%amax_1,), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%abs_1, inf), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %amax_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_3, %where), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [0]), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_4,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log_1, %squeeze), kwargs = {})
triton_per_fused_logsumexp_2 = async_compile.triton('triton_per_fused_logsumexp_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_logsumexp_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_logsumexp_2(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tl_math.abs(tmp3)
tmp5 = float("inf")
tmp6 = tmp4 == tmp5
tmp7 = 0.0
tmp8 = tl.where(tmp6, tmp7, tmp3)
tmp9 = tmp0 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = tl_math.log(tmp13)
tmp15 = tmp14 + tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp15, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y_losses], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [y_losses, y_losses_1], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg]
triton_per_fused__log_softmax_mul_neg_sum_1.run(buf0, arg0_1, buf1, 4, 16, grid=grid(4), stream=stream0)
del arg0_1
del buf0
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [Y_loss], Original ATen: [aten.logsumexp]
triton_per_fused_logsumexp_2.run(buf4, buf1, 1, 4, grid=grid(1), stream=stream0)
del buf1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
class SumLossModule(torch.nn.Module):
def __init__(self):
super(SumLossModule, self).__init__()
def forward(self, predictions, targets):
y_losses = F.cross_entropy(predictions, targets, reduction='none')
y_losses = torch.sum(y_losses, dim=[1, 2])
Y_loss = torch.logsumexp(y_losses, dim=0)
return Y_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_mul_neg_sum_1(in_ptr0, in_ptr1, out_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp2 = tl.load(in_ptr0 + (16 + r1 + 64 * x0), xmask, other=0.0)
tmp5 = tl.load(in_ptr0 + (32 + r1 + 64 * x0), xmask, other=0.0)
tmp8 = tl.load(in_ptr0 + (48 + r1 + 64 * x0), xmask, other=0.0)
tmp13 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp16 = tl.load(in_ptr1 + (16 + r1 + 64 * x0), xmask, other=0.0)
tmp20 = tl.load(in_ptr1 + (32 + r1 + 64 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (48 + r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = tl.where(xmask, tmp28, 0)
tmp31 = tl.sum(tmp30, 1)[:, None]
tl.store(out_ptr0 + x0, tmp31, xmask)
@triton.jit
def triton_per_fused_logsumexp_2(in_out_ptr0, in_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tl_math.abs(tmp3)
tmp5 = float('inf')
tmp6 = tmp4 == tmp5
tmp7 = 0.0
tmp8 = tl.where(tmp6, tmp7, tmp3)
tmp9 = tmp0 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = tl_math.log(tmp13)
tmp15 = tmp14 + tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp15, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused__log_softmax_mul_neg_sum_1[grid(4)](buf0, arg0_1,
buf1, 4, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del buf0
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_per_fused_logsumexp_2[grid(1)](buf4, buf1, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
del buf1
return buf4,
class SumLossModuleNew(torch.nn.Module):
def __init__(self):
super(SumLossModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| pkalluri/specialized-conditional-pcnn | SumLossModule | false | 4,129 | [
"Apache-2.0"
] | 0 | ed94e47654ed749a7dd3492c4e074e2a8fb12df8 | https://github.com/pkalluri/specialized-conditional-pcnn/tree/ed94e47654ed749a7dd3492c4e074e2a8fb12df8 | import torch
import torch.nn.functional as F
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, predictions, targets):
y_losses = F.cross_entropy(predictions, targets, reduction='none')
y_losses = torch.sum(y_losses, dim=[1, 2])
Y_loss = torch.logsumexp(y_losses, dim=0)
return Y_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
DQN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/r4/cr4qs7g66krlhqldbwy7bilbdelqowjzjr3hpo2vmrnuio6ze3t6.py
# Topologically Sorted Source Nodes: [layer_norm, x], Original ATen: [aten.native_layer_norm, aten.leaky_relu]
# Source node to ATen node mapping:
# layer_norm => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# x => gt, mul_2, where
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_1, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_4), kwargs = {})
# %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_5), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_1, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_1, %mul_2), kwargs = {})
triton_per_fused_leaky_relu_native_layer_norm_0 = async_compile.triton('triton_per_fused_leaky_relu_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 32],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_leaky_relu_native_layer_norm_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_leaky_relu_native_layer_norm_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 32
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (32*x0)), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (r1), None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 32, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 32.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp22 = tmp0 - tmp10
tmp23 = tmp22 * tmp21
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = 0.0
tmp29 = tmp27 > tmp28
tmp30 = 0.01
tmp31 = tmp27 * tmp30
tmp32 = tl.where(tmp29, tmp27, tmp31)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp21, xmask)
tl.store(in_out_ptr1 + (r1 + (32*x0)), tmp32, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/aw/cawcaeotbueu5g5ifjssgghczfxd3vmnzhgjbqqmgopew6u6jp6t.py
# Topologically Sorted Source Nodes: [layer_norm_1, x_1], Original ATen: [aten.native_layer_norm, aten.leaky_relu]
# Source node to ATen node mapping:
# layer_norm_1 => add_2, add_3, mul_3, mul_4, rsqrt_1, sub_1, var_mean_1
# x_1 => gt_1, mul_5, where_1
# Graph fragment:
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_3, [3]), kwargs = {correction: 0, keepdim: True})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %getitem_3), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_8), kwargs = {})
# %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_9), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_3, 0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, 0.01), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_3, %mul_5), kwargs = {})
triton_per_fused_leaky_relu_native_layer_norm_1 = async_compile.triton('triton_per_fused_leaky_relu_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_leaky_relu_native_layer_norm_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_leaky_relu_native_layer_norm_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (r1), None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 64.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp22 = tmp0 - tmp10
tmp23 = tmp22 * tmp21
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = 0.0
tmp29 = tmp27 > tmp28
tmp30 = 0.01
tmp31 = tmp27 * tmp30
tmp32 = tl.where(tmp29, tmp27, tmp31)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp21, xmask)
tl.store(in_out_ptr1 + (r1 + (64*x0)), tmp32, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19 = args
args.clear()
assert_size_stride(primals_1, (32, 4), (4, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32, ), (1, ))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32), (32, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, ), (1, ))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (64, 64), (64, 1))
assert_size_stride(primals_11, (64, ), (1, ))
assert_size_stride(primals_12, (64, ), (1, ))
assert_size_stride(primals_13, (64, ), (1, ))
assert_size_stride(primals_14, (32, 64), (64, 1))
assert_size_stride(primals_15, (32, ), (1, ))
assert_size_stride(primals_16, (32, ), (1, ))
assert_size_stride(primals_17, (32, ), (1, ))
assert_size_stride(primals_18, (4, 32), (32, 1))
assert_size_stride(primals_19, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.float32)
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [layer_norm, x], Original ATen: [aten.native_layer_norm, aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_per_fused_leaky_relu_native_layer_norm_0.run(buf4, buf6, buf0, primals_4, primals_5, buf1, 64, 32, grid=grid(64), stream=stream0)
buf7 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf6, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 64), (1, 32), 0), alpha=1, beta=1, out=buf7)
del primals_7
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf11 = reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf9 # reuse
buf12 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.float32)
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [layer_norm_1, x_1], Original ATen: [aten.native_layer_norm, aten.leaky_relu]
triton_per_fused_leaky_relu_native_layer_norm_1.run(buf11, buf13, buf7, primals_8, primals_9, buf8, 64, 64, grid=grid(64), stream=stream0)
buf14 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf13, (64, 64), (64, 1), 0), reinterpret_tensor(primals_10, (64, 64), (1, 64), 0), alpha=1, beta=1, out=buf14)
del primals_11
buf15 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf16 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf18 = reinterpret_tensor(buf16, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf16 # reuse
buf19 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.float32)
buf20 = buf19; del buf19 # reuse
# Topologically Sorted Source Nodes: [layer_norm_2, x_2], Original ATen: [aten.native_layer_norm, aten.leaky_relu]
triton_per_fused_leaky_relu_native_layer_norm_1.run(buf18, buf20, buf14, primals_12, primals_13, buf15, 64, 64, grid=grid(64), stream=stream0)
buf21 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_15, reinterpret_tensor(buf20, (64, 64), (64, 1), 0), reinterpret_tensor(primals_14, (64, 32), (1, 64), 0), alpha=1, beta=1, out=buf21)
del primals_15
buf22 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf23 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf25 = reinterpret_tensor(buf23, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf23 # reuse
buf26 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.float32)
buf27 = buf26; del buf26 # reuse
# Topologically Sorted Source Nodes: [layer_norm_3, x_3], Original ATen: [aten.native_layer_norm, aten.leaky_relu]
triton_per_fused_leaky_relu_native_layer_norm_0.run(buf25, buf27, buf21, primals_16, primals_17, buf22, 64, 32, grid=grid(64), stream=stream0)
buf28 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_19, reinterpret_tensor(buf27, (64, 32), (32, 1), 0), reinterpret_tensor(primals_18, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf28)
del primals_19
return (reinterpret_tensor(buf28, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_4, primals_5, primals_8, primals_9, primals_12, primals_13, primals_16, primals_17, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, buf1, buf4, reinterpret_tensor(buf6, (64, 32), (32, 1), 0), buf7, buf8, buf11, reinterpret_tensor(buf13, (64, 64), (64, 1), 0), buf14, buf15, buf18, reinterpret_tensor(buf20, (64, 64), (64, 1), 0), buf21, buf22, buf25, reinterpret_tensor(buf27, (64, 32), (32, 1), 0), primals_18, primals_14, primals_10, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((32, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class DQN(nn.Module):
def __init__(self, num_in_features, num_out_features):
super(DQN, self).__init__()
self.linear1 = nn.Linear(num_in_features, 32)
self.ln1 = nn.LayerNorm(32)
self.linear2 = nn.Linear(32, 64)
self.ln2 = nn.LayerNorm(64)
self.linear3 = nn.Linear(64, 64)
self.ln3 = nn.LayerNorm(64)
self.linear4 = nn.Linear(64, 32)
self.ln4 = nn.LayerNorm(32)
self.out_layer = nn.Linear(32, num_out_features)
def forward(self, x):
x = F.leaky_relu(self.ln1(self.linear1(x)))
x = F.leaky_relu(self.ln2(self.linear2(x)))
x = F.leaky_relu(self.ln3(self.linear3(x)))
x = F.leaky_relu(self.ln4(self.linear4(x)))
return self.out_layer(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_in_features': 4, 'num_out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_leaky_relu_native_layer_norm_0(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 32 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + r1, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 32, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 32.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp22 = tmp0 - tmp10
tmp23 = tmp22 * tmp21
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = 0.0
tmp29 = tmp27 > tmp28
tmp30 = 0.01
tmp31 = tmp27 * tmp30
tmp32 = tl.where(tmp29, tmp27, tmp31)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp21, xmask)
tl.store(in_out_ptr1 + (r1 + 32 * x0), tmp32, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_per_fused_leaky_relu_native_layer_norm_1(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + r1, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 64.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp22 = tmp0 - tmp10
tmp23 = tmp22 * tmp21
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = 0.0
tmp29 = tmp27 > tmp28
tmp30 = 0.01
tmp31 = tmp27 * tmp30
tmp32 = tl.where(tmp29, tmp27, tmp31)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp21, xmask)
tl.store(in_out_ptr1 + (r1 + 64 * x0), tmp32, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19) = args
args.clear()
assert_size_stride(primals_1, (32, 4), (4, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32,), (1,))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32), (32, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64,), (1,))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (64, 64), (64, 1))
assert_size_stride(primals_11, (64,), (1,))
assert_size_stride(primals_12, (64,), (1,))
assert_size_stride(primals_13, (64,), (1,))
assert_size_stride(primals_14, (32, 64), (64, 1))
assert_size_stride(primals_15, (32,), (1,))
assert_size_stride(primals_16, (32,), (1,))
assert_size_stride(primals_17, (32,), (1,))
assert_size_stride(primals_18, (4, 32), (32, 1))
assert_size_stride(primals_19, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.
float32)
buf6 = buf5
del buf5
get_raw_stream(0)
triton_per_fused_leaky_relu_native_layer_norm_0[grid(64)](buf4,
buf6, buf0, primals_4, primals_5, buf1, 64, 32, XBLOCK=1,
num_warps=2, num_stages=1)
buf7 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf6, (64, 32),
(32, 1), 0), reinterpret_tensor(primals_6, (32, 64), (1, 32), 0
), alpha=1, beta=1, out=buf7)
del primals_7
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf11 = reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf9
buf12 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch
.float32)
buf13 = buf12
del buf12
triton_per_fused_leaky_relu_native_layer_norm_1[grid(64)](buf11,
buf13, buf7, primals_8, primals_9, buf8, 64, 64, XBLOCK=1,
num_warps=2, num_stages=1)
buf14 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.addmm(primals_11, reinterpret_tensor(buf13, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_10, (64, 64), (1, 64),
0), alpha=1, beta=1, out=buf14)
del primals_11
buf15 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf16 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf18 = reinterpret_tensor(buf16, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf16
buf19 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch
.float32)
buf20 = buf19
del buf19
triton_per_fused_leaky_relu_native_layer_norm_1[grid(64)](buf18,
buf20, buf14, primals_12, primals_13, buf15, 64, 64, XBLOCK=1,
num_warps=2, num_stages=1)
buf21 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
extern_kernels.addmm(primals_15, reinterpret_tensor(buf20, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_14, (64, 32), (1, 64),
0), alpha=1, beta=1, out=buf21)
del primals_15
buf22 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf23 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf25 = reinterpret_tensor(buf23, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf23
buf26 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.
float32)
buf27 = buf26
del buf26
triton_per_fused_leaky_relu_native_layer_norm_0[grid(64)](buf25,
buf27, buf21, primals_16, primals_17, buf22, 64, 32, XBLOCK=1,
num_warps=2, num_stages=1)
buf28 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_19, reinterpret_tensor(buf27, (64, 32),
(32, 1), 0), reinterpret_tensor(primals_18, (32, 4), (1, 32), 0
), alpha=1, beta=1, out=buf28)
del primals_19
return (reinterpret_tensor(buf28, (4, 4, 4, 4), (64, 16, 4, 1), 0),
primals_4, primals_5, primals_8, primals_9, primals_12, primals_13,
primals_16, primals_17, reinterpret_tensor(primals_3, (64, 4), (4,
1), 0), buf0, buf1, buf4, reinterpret_tensor(buf6, (64, 32), (32, 1
), 0), buf7, buf8, buf11, reinterpret_tensor(buf13, (64, 64), (64,
1), 0), buf14, buf15, buf18, reinterpret_tensor(buf20, (64, 64), (
64, 1), 0), buf21, buf22, buf25, reinterpret_tensor(buf27, (64, 32),
(32, 1), 0), primals_18, primals_14, primals_10, primals_6)
class DQNNew(nn.Module):
def __init__(self, num_in_features, num_out_features):
super(DQNNew, self).__init__()
self.linear1 = nn.Linear(num_in_features, 32)
self.ln1 = nn.LayerNorm(32)
self.linear2 = nn.Linear(32, 64)
self.ln2 = nn.LayerNorm(64)
self.linear3 = nn.Linear(64, 64)
self.ln3 = nn.LayerNorm(64)
self.linear4 = nn.Linear(64, 32)
self.ln4 = nn.LayerNorm(32)
self.out_layer = nn.Linear(32, num_out_features)
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.ln1.weight
primals_5 = self.ln1.bias
primals_6 = self.linear2.weight
primals_7 = self.linear2.bias
primals_8 = self.ln2.weight
primals_9 = self.ln2.bias
primals_10 = self.linear3.weight
primals_11 = self.linear3.bias
primals_12 = self.ln3.weight
primals_13 = self.ln3.bias
primals_14 = self.linear4.weight
primals_15 = self.linear4.bias
primals_16 = self.ln4.weight
primals_17 = self.ln4.bias
primals_18 = self.out_layer.weight
primals_19 = self.out_layer.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19])
return output[0]
| pgabriela/dqn-jitsi-autoscaler | DQN | false | 4,130 | [
"Apache-2.0"
] | 0 | b39eb335e584095ef66a9941dbe0b2ea21a02d4a | https://github.com/pgabriela/dqn-jitsi-autoscaler/tree/b39eb335e584095ef66a9941dbe0b2ea21a02d4a | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, num_in_features, num_out_features):
super().__init__()
self.linear1 = nn.Linear(num_in_features, 32)
self.ln1 = nn.LayerNorm(32)
self.linear2 = nn.Linear(32, 64)
self.ln2 = nn.LayerNorm(64)
self.linear3 = nn.Linear(64, 64)
self.ln3 = nn.LayerNorm(64)
self.linear4 = nn.Linear(64, 32)
self.ln4 = nn.LayerNorm(32)
self.out_layer = nn.Linear(32, num_out_features)
def forward(self, x):
x = F.leaky_relu(self.ln1(self.linear1(x)))
x = F.leaky_relu(self.ln2(self.linear2(x)))
x = F.leaky_relu(self.ln3(self.linear3(x)))
x = F.leaky_relu(self.ln4(self.linear4(x)))
return self.out_layer(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
AttentiveNorm2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/xv/cxvga7aqg47qbxifrmkpsyesxvdalz4kzbjr4ndf2ym3lzai5ilk.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten._native_batch_norm_legit]
# Source node to ATen node mapping:
# output => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_per_fused__native_batch_norm_legit_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex % 16
r2 = (rindex // 16)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0) + (64*r2)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 64.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp21, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2p/c2pnfdc6yx2sgyvlx4ourbneqawu2ipz64stfb3c4m6jl27octkl.py
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool2d => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_1 = async_compile.triton('triton_per_fused_mean_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/mk/cmknzaakxexgyxwhmsn2renwqjzmimiizhfitnrnihynzsm7qrlf.py
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# y_2 => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/oa/coa5gnpci376vetmsvkfurrnywvvfe3bbwlg6vunliupimtcsxfa.py
# Topologically Sorted Source Nodes: [output, mul, add], Original ATen: [aten._native_batch_norm_legit, aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add_1
# mul => mul_1
# output => mul, sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %mul), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %expand_1), kwargs = {})
triton_poi_fused__native_batch_norm_legit_add_mul_3 = async_compile.triton('triton_poi_fused__native_batch_norm_legit_add_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__native_batch_norm_legit_add_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__native_batch_norm_legit_add_mul_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 16)
x4 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x4), xmask)
tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x3), xmask, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = tmp3 * tmp4
tmp6 = tmp0 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x4), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (32, 4), (4, 1))
assert_size_stride(primals_3, (32, ), (1, ))
assert_size_stride(primals_4, (32, 4), (4, 1))
assert_size_stride(primals_5, (32, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf1 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 4, 4), torch.float32)
buf3 = reinterpret_tensor(buf1, (1, 4, 1, 1), (4, 1, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten._native_batch_norm_legit]
stream0 = get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_0.run(buf3, primals_1, buf0, 4, 64, grid=grid(4), stream=stream0)
buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
triton_per_fused_mean_1.run(buf5, primals_1, 16, 16, grid=grid(16), stream=stream0)
buf6 = empty_strided_cuda((4, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf6)
del primals_2
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf7, primals_3, 128, grid=grid(128), stream=stream0)
del primals_3
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gamma], Original ATen: [aten.mm]
extern_kernels.mm(buf7, primals_4, out=buf8)
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [beta], Original ATen: [aten.mm]
extern_kernels.mm(buf7, primals_5, out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output, mul, add], Original ATen: [aten._native_batch_norm_legit, aten.mul, aten.add]
triton_poi_fused__native_batch_norm_legit_add_mul_3.run(buf8, primals_1, buf0, buf3, buf9, buf10, 256, grid=grid(256), stream=stream0)
del buf8
del buf9
return (buf10, primals_1, buf0, buf3, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), buf7, reinterpret_tensor(primals_5, (4, 32), (1, 4), 0), reinterpret_tensor(primals_4, (4, 32), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class AttentiveNorm2d(nn.BatchNorm2d):
def __init__(self, num_features, hidden_channels=32, eps=1e-05,
momentum=0.1, track_running_stats=False):
super(AttentiveNorm2d, self).__init__(num_features, eps=eps,
momentum=momentum, affine=False, track_running_stats=
track_running_stats)
self.gamma = nn.Parameter(torch.randn(hidden_channels, num_features))
self.beta = nn.Parameter(torch.randn(hidden_channels, num_features))
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(num_features, hidden_channels)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
output = super(AttentiveNorm2d, self).forward(x)
size = output.size()
b, c, _, _ = x.size()
y = self.avgpool(x).view(b, c)
y = self.fc(y)
y = self.sigmoid(y)
gamma = y @ self.gamma
beta = y @ self.beta
gamma = gamma.unsqueeze(-1).unsqueeze(-1).expand(size)
beta = beta.unsqueeze(-1).unsqueeze(-1).expand(size)
return gamma * output + beta
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex % 16
r2 = rindex // 16
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0 + 64 * r2), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 64.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp21, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused__native_batch_norm_legit_add_mul_3(in_ptr0, in_ptr1,
in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 16
x4 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x4, xmask)
tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x3, xmask, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = tmp3 * tmp4
tmp6 = tmp0 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x4, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (32, 4), (4, 1))
assert_size_stride(primals_3, (32,), (1,))
assert_size_stride(primals_4, (32, 4), (4, 1))
assert_size_stride(primals_5, (32, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf1 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 4, 4), torch.float32)
buf3 = reinterpret_tensor(buf1, (1, 4, 1, 1), (4, 1, 1, 1), 0)
del buf1
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_0[grid(4)](buf3,
primals_1, buf0, 4, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf5 = buf4
del buf4
triton_per_fused_mean_1[grid(16)](buf5, primals_1, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
buf6 = empty_strided_cuda((4, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf6)
del primals_2
buf7 = buf6
del buf6
triton_poi_fused_sigmoid_2[grid(128)](buf7, primals_3, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_3
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf7, primals_4, out=buf8)
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf7, primals_5, out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__native_batch_norm_legit_add_mul_3[grid(256)](buf8,
primals_1, buf0, buf3, buf9, buf10, 256, XBLOCK=128, num_warps=
4, num_stages=1)
del buf8
del buf9
return buf10, primals_1, buf0, buf3, reinterpret_tensor(buf5, (4, 4), (
4, 1), 0), buf7, reinterpret_tensor(primals_5, (4, 32), (1, 4), 0
), reinterpret_tensor(primals_4, (4, 32), (1, 4), 0)
class AttentiveNorm2dNew(nn.BatchNorm2d):
def __init__(self, num_features, hidden_channels=32, eps=1e-05,
momentum=0.1, track_running_stats=False):
super(AttentiveNorm2dNew, self).__init__(num_features, eps=eps,
momentum=momentum, affine=False, track_running_stats=
track_running_stats)
self.gamma = nn.Parameter(torch.randn(hidden_channels, num_features))
self.beta = nn.Parameter(torch.randn(hidden_channels, num_features))
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(num_features, hidden_channels)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.gamma
primals_4 = self.beta
primals_5 = self.fc.weight
primals_3 = self.fc.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ppomelo/Attentive-Transformation-Based-Normalization | AttentiveNorm2d | false | 4,131 | [
"Apache-2.0"
] | 0 | 62ad02eb025613e90f4fe0e0a9f0f85839e53092 | https://github.com/ppomelo/Attentive-Transformation-Based-Normalization/tree/62ad02eb025613e90f4fe0e0a9f0f85839e53092 | import torch
import torch.nn as nn
import torch.utils.data
class Model(nn.BatchNorm2d):
def __init__(self, num_features, hidden_channels=32, eps=1e-05,
momentum=0.1, track_running_stats=False):
super().__init__(num_features, eps=eps,
momentum=momentum, affine=False, track_running_stats=
track_running_stats)
self.gamma = nn.Parameter(torch.randn(hidden_channels, num_features))
self.beta = nn.Parameter(torch.randn(hidden_channels, num_features))
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(num_features, hidden_channels)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
output = super(AttentiveNorm2d, self).forward(x)
size = output.size()
b, c, _, _ = x.size()
y = self.avgpool(x).view(b, c)
y = self.fc(y)
y = self.sigmoid(y)
gamma = y @ self.gamma
beta = y @ self.beta
gamma = gamma.unsqueeze(-1).unsqueeze(-1).expand(size)
beta = beta.unsqueeze(-1).unsqueeze(-1).expand(size)
return gamma * output + beta
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
DenseCrossEntropy | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/nr/cnrkptzsuv7qm3ss6i6xgoxkou23z76h2vmwqkwz2zkgpdbxhedc.py
# Topologically Sorted Source Nodes: [logprobs], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# logprobs => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [-1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/gj/cgjmdsptms5icab2cbzhcwfjcj7is44q3ygyr5bydefmu4f3uvs2.py
# Topologically Sorted Source Nodes: [logprobs, loss, loss_1, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.mean]
# Source node to ATen node mapping:
# logprobs => exp, log, sub_1, sum_1
# loss => mul
# loss_1 => sum_2
# mean => mean
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %sub_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {})
triton_per_fused__log_softmax_mean_mul_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mean_mul_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mean_mul_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp1 - tmp12
tmp14 = tmp0 * tmp13
tmp16 = tmp3 - tmp12
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp20 = tmp6 - tmp12
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp24 = tmp9 - tmp12
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.sum(tmp27, 1)[:, None]
tmp30 = 64.0
tmp31 = tmp29 / tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp31, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logprobs], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [logprobs, loss, loss_1, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.mean]
triton_per_fused__log_softmax_mean_mul_sum_1.run(buf2, arg1_1, buf0, 1, 64, grid=grid(1), stream=stream0)
del arg1_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class DenseCrossEntropy(nn.Module):
def __init__(self):
super().__init__()
def forward(self, logits, labels):
logits = logits.float()
labels = labels.float()
logprobs = F.log_softmax(logits, dim=-1)
loss = labels * logprobs
loss = loss.sum(-1)
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_sum_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp1 - tmp12
tmp14 = tmp0 * tmp13
tmp16 = tmp3 - tmp12
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp20 = tmp6 - tmp12
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp24 = tmp9 - tmp12
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.sum(tmp27, 1)[:, None]
tmp30 = 64.0
tmp31 = tmp29 / tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp31, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__log_softmax_mean_mul_sum_1[grid(1)](buf2, arg1_1,
buf0, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg1_1
del buf0
return buf2,
class DenseCrossEntropyNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| prakhar154/Cassava-Leaf-Disease-Classification | DenseCrossEntropy | false | 4,132 | [
"MIT"
] | 0 | 04824834a6a1898c77858e8134bd3767c64789f2 | https://github.com/prakhar154/Cassava-Leaf-Disease-Classification/tree/04824834a6a1898c77858e8134bd3767c64789f2 | import torch
import torch.nn.functional as F
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, logits, labels):
logits = logits.float()
labels = labels.float()
logprobs = F.log_softmax(logits, dim=-1)
loss = labels * logprobs
loss = loss.sum(-1)
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
BCEDiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/z6/cz6ehk6udjuldkbvdykpkjp4ihcvsvw26c57rsotg2zyo22imkez.py
# Topologically Sorted Source Nodes: [bce], Original ATen: [aten.binary_cross_entropy_with_logits]
# Source node to ATen node mapping:
# bce => abs_1, exp, full_default, log1p, mean, minimum, mul, neg, sub, sub_1, sub_2
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {})
triton_per_fused_binary_cross_entropy_with_logits_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/zs/czsfocxocrg5tbsgfmzmhomswsg7jp4tsfc6o6cysqu2g7ckglyt.py
# Topologically Sorted Source Nodes: [intersection, sum_1, sum_2, sum_3], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# intersection => mul_1
# sum_1 => sum_1
# sum_2 => sum_2
# sum_3 => sum_3
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view, [1]), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_1, [1]), kwargs = {})
triton_per_fused_mul_sum_1 = async_compile.triton('triton_per_fused_mul_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp2 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp10 = tl.where(xmask, tmp8, 0)
tmp11 = tl.sum(tmp10, 1)[:, None]
tmp12 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp14 = tl.where(xmask, tmp12, 0)
tmp15 = tl.sum(tmp14, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp7, xmask)
tl.store(out_ptr1 + (x0), tmp11, xmask)
tl.store(out_ptr2 + (x0), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/bq/cbqdogl2lmx7siiygon4blcvfrvjcu5hs444zchcmvufyck7m5i5.py
# Topologically Sorted Source Nodes: [bce, mul_2, mul_1, add, add_1, add_2, dice, sum_4, truediv_1, dice_1, mul_3, add_3], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.add, aten.div, aten.sum, aten.rsub]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# add_3 => add_3
# bce => abs_1, exp, full_default, log1p, mean, minimum, mul, neg, sub, sub_1, sub_2
# dice => div
# dice_1 => sub_3
# mul_1 => mul_2
# mul_2 => mul_3
# mul_3 => mul_4
# sum_4 => sum_4
# truediv_1 => div_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, 1e-05), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1e-05), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_2), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%div,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_4, 4), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, 0.5), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %mul_4), kwargs = {})
triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_2 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp5 = tl.load(in_ptr1 + (r0), None)
tmp6 = tl.load(in_ptr2 + (r0), None)
tmp13 = tl.load(in_out_ptr0 + (0))
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, 1])
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 1e-05
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp7 + tmp3
tmp9 = tmp4 / tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.sum(tmp10, 1)[:, None]
tmp15 = 256.0
tmp16 = tmp14 / tmp15
tmp17 = 0.5
tmp18 = tmp16 * tmp17
tmp19 = 0.25
tmp20 = tmp12 * tmp19
tmp21 = 1.0
tmp22 = tmp21 - tmp20
tmp23 = tmp22 * tmp17
tmp24 = tmp18 + tmp23
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp24, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [bce], Original ATen: [aten.binary_cross_entropy_with_logits]
stream0 = get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_0.run(arg0_1, arg1_1, buf0, 1, 256, grid=grid(1), stream=stream0)
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf2 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf3 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [intersection, sum_1, sum_2, sum_3], Original ATen: [aten.mul, aten.sum]
triton_per_fused_mul_sum_1.run(arg1_1, arg0_1, buf1, buf2, buf3, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
del arg1_1
buf5 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [bce, mul_2, mul_1, add, add_1, add_2, dice, sum_4, truediv_1, dice_1, mul_3, add_3], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.add, aten.div, aten.sum, aten.rsub]
triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_2.run(buf5, buf1, buf2, buf3, 1, 4, grid=grid(1), stream=stream0)
del buf1
del buf2
del buf3
return (buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
class BCEDiceLoss(nn.Module):
def __init__(self):
super(BCEDiceLoss, self).__init__()
def forward(self, input, target):
bce = F.binary_cross_entropy_with_logits(input, target)
smooth = 1e-05
input = torch.sigmoid(input)
num = target.size(0)
input = input.view(num, -1)
target = target.view(num, -1)
intersection = input * target
dice = (2.0 * intersection.sum(1) + smooth) / (input.sum(1) +
target.sum(1) + smooth)
dice = 1 - dice.sum() / num
return 0.5 * bce + 0.5 * dice
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None)
@triton.jit
def triton_per_fused_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp2 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp10 = tl.where(xmask, tmp8, 0)
tmp11 = tl.sum(tmp10, 1)[:, None]
tmp12 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp14 = tl.where(xmask, tmp12, 0)
tmp15 = tl.sum(tmp14, 1)[:, None]
tl.store(out_ptr0 + x0, tmp7, xmask)
tl.store(out_ptr1 + x0, tmp11, xmask)
tl.store(out_ptr2 + x0, tmp15, xmask)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_2(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.
constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp5 = tl.load(in_ptr1 + r0, None)
tmp6 = tl.load(in_ptr2 + r0, None)
tmp13 = tl.load(in_out_ptr0 + 0)
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, 1])
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 1e-05
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp7 + tmp3
tmp9 = tmp4 / tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.sum(tmp10, 1)[:, None]
tmp15 = 256.0
tmp16 = tmp14 / tmp15
tmp17 = 0.5
tmp18 = tmp16 * tmp17
tmp19 = 0.25
tmp20 = tmp12 * tmp19
tmp21 = 1.0
tmp22 = tmp21 - tmp20
tmp23 = tmp22 * tmp17
tmp24 = tmp18 + tmp23
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp24, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_0[grid(1)](arg0_1,
arg1_1, buf0, 1, 256, num_warps=2, num_stages=1)
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
buf3 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused_mul_sum_1[grid(4)](arg1_1, arg0_1, buf1, buf2,
buf3, 4, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf5 = buf0
del buf0
triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_2[
grid(1)](buf5, buf1, buf2, buf3, 1, 4, XBLOCK=1, num_warps=2,
num_stages=1)
del buf1
del buf2
del buf3
return buf5,
class BCEDiceLossNew(nn.Module):
def __init__(self):
super(BCEDiceLossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ppomelo/Attentive-Transformation-Based-Normalization | BCEDiceLoss | false | 4,133 | [
"Apache-2.0"
] | 0 | 62ad02eb025613e90f4fe0e0a9f0f85839e53092 | https://github.com/ppomelo/Attentive-Transformation-Based-Normalization/tree/62ad02eb025613e90f4fe0e0a9f0f85839e53092 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input, target):
bce = F.binary_cross_entropy_with_logits(input, target)
smooth = 1e-05
input = torch.sigmoid(input)
num = target.size(0)
input = input.view(num, -1)
target = target.view(num, -1)
intersection = input * target
dice = (2.0 * intersection.sum(1) + smooth) / (input.sum(1) +
target.sum(1) + smooth)
dice = 1 - dice.sum() / num
return 0.5 * bce + 0.5 * dice
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
BinaryReg | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/li/clih2rm4sq3k4o5jpgwdsbvrpahwpp4564zt7k2hbvcxuqelslkr.py
# Topologically Sorted Source Nodes: [diff, abs_1, diff_1, sum_1, loss, mul], Original ATen: [aten.sub, aten.abs, aten.clamp, aten.sum, aten.reciprocal, aten.mul]
# Source node to ATen node mapping:
# abs_1 => abs_1
# diff => sub
# diff_1 => clamp_min
# loss => mul, reciprocal
# mul => mul_1
# sum_1 => sum_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%abs_1, 0.01), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%clamp_min,), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%sum_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 1.0), kwargs = {})
triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0 = async_compile.triton('triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = 0.5
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.01
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tl.broadcast_to(tmp5, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = tl.full([1], 1, tl.int32)
tmp10 = tmp9 / tmp8
tmp11 = 1.0
tmp12 = tmp10 * tmp11
tmp13 = tmp12 * tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp13, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [diff, abs_1, diff_1, sum_1, loss, mul], Original ATen: [aten.sub, aten.abs, aten.clamp, aten.sum, aten.reciprocal, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class BinaryReg(nn.Module):
"""Regularization for encouraging the outputs to be binary.
"""
def __init__(self, alpha=1.0):
super().__init__()
self.alpha = alpha
def forward(self, input):
diff = input - 0.5
diff = torch.clamp(torch.abs(diff), min=0.01)
loss = 1.0 / diff.sum()
return self.alpha * loss
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0(in_out_ptr0,
in_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = 0.5
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.01
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tl.broadcast_to(tmp5, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = tl.full([1], 1, tl.int32)
tmp10 = tmp9 / tmp8
tmp11 = 1.0
tmp12 = tmp10 * tmp11
tmp13 = tmp12 * tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp13, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0[grid(1)](buf1,
arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
return buf1,
class BinaryRegNew(nn.Module):
"""Regularization for encouraging the outputs to be binary.
"""
def __init__(self, alpha=1.0):
super().__init__()
self.alpha = alpha
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| pragyasingh7/pytorch_connectomics | BinaryReg | false | 4,134 | [
"MIT"
] | 0 | fdc8e1900b0a38d19ea50f78f8c81da2a4f015a9 | https://github.com/pragyasingh7/pytorch_connectomics/tree/fdc8e1900b0a38d19ea50f78f8c81da2a4f015a9 | import torch
import torch.nn as nn
import torch.utils.data
class Model(nn.Module):
"""Regularization for encouraging the outputs to be binary.
"""
def __init__(self, alpha=1.0):
super().__init__()
self.alpha = alpha
def forward(self, input):
diff = input - 0.5
diff = torch.clamp(torch.abs(diff), min=0.01)
loss = 1.0 / diff.sum()
return self.alpha * loss
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
DepthWiseSeparableConvBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/va/cva6ihsdbuu7bf42nqgixbpzrsl2ylcahxoy4skgvm5q7v3nr6xx.py
# Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# input_1 => convolution
# input_2 => gt, mul, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 4), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py
# Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# input_3 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 16, grid=grid(16), stream=stream0)
del buf0
del primals_2
# Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf4, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
return (buf4, primals_1, primals_3, primals_4, buf1, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class DepthWiseSeparableConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, bias=True, padding_mode='zeros',
inner_kernel_size=1, inner_stride=1, inner_padding=0):
"""Depthwise separable 2D Convolution.
:param in_channels: Input channels.
:type in_channels: int
:param out_channels: Output channels.
:type out_channels: int
:param kernel_size: Kernel shape/size.
:type kernel_size: int|tuple|list
:param stride: Stride.
:type stride: int|tuple|list
:param padding: Padding.
:type padding: int|tuple|list
:param dilation: Dilation.
:type dilation: int
:param bias: Bias.
:type bias: bool
:param padding_mode: Padding mode.
:type padding_mode: str
:param inner_kernel_size: Kernel shape/size of the second convolution.
:type inner_kernel_size: int|tuple|list
:param inner_stride: Inner stride.
:type inner_stride: int|tuple|list
:param inner_padding: Inner padding.
:type inner_padding: int|tuple|list
"""
super(DepthWiseSeparableConvBlock, self).__init__()
self.depth_wise_conv: 'nn.Module' = nn.Conv2d(in_channels=
in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=
in_channels if out_channels >= in_channels else out_channels,
bias=bias, padding_mode=padding_mode)
self.non_linearity: 'nn.Module' = nn.LeakyReLU()
self.point_wise: 'nn.Module' = nn.Conv2d(in_channels=out_channels,
out_channels=out_channels, kernel_size=inner_kernel_size,
stride=inner_stride, padding=inner_padding, dilation=1, groups=
1, bias=bias, padding_mode=padding_mode)
if inner_kernel_size != 1:
None
None
raise ValueError
self.layers = nn.Sequential(self.depth_wise_conv, self.
non_linearity, self.point_wise)
def forward(self, x):
"""Forward pass of the module.
:param x: Input tensor.
:type x: torch.Tensor
:return: Output tensor.
:rtype: torch.Tensor
"""
return self.layers(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0[grid(16)](buf0, primals_2,
buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf0
del primals_2
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_1[grid(16)](buf4, primals_5, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_5
return buf4, primals_1, primals_3, primals_4, buf1, buf2
class DepthWiseSeparableConvBlockNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, bias=True, padding_mode='zeros',
inner_kernel_size=1, inner_stride=1, inner_padding=0):
"""Depthwise separable 2D Convolution.
:param in_channels: Input channels.
:type in_channels: int
:param out_channels: Output channels.
:type out_channels: int
:param kernel_size: Kernel shape/size.
:type kernel_size: int|tuple|list
:param stride: Stride.
:type stride: int|tuple|list
:param padding: Padding.
:type padding: int|tuple|list
:param dilation: Dilation.
:type dilation: int
:param bias: Bias.
:type bias: bool
:param padding_mode: Padding mode.
:type padding_mode: str
:param inner_kernel_size: Kernel shape/size of the second convolution.
:type inner_kernel_size: int|tuple|list
:param inner_stride: Inner stride.
:type inner_stride: int|tuple|list
:param inner_padding: Inner padding.
:type inner_padding: int|tuple|list
"""
super(DepthWiseSeparableConvBlockNew, self).__init__()
self.depth_wise_conv: 'nn.Module' = nn.Conv2d(in_channels=
in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=
in_channels if out_channels >= in_channels else out_channels,
bias=bias, padding_mode=padding_mode)
self.non_linearity: 'nn.Module' = nn.LeakyReLU()
self.point_wise: 'nn.Module' = nn.Conv2d(in_channels=out_channels,
out_channels=out_channels, kernel_size=inner_kernel_size,
stride=inner_stride, padding=inner_padding, dilation=1, groups=
1, bias=bias, padding_mode=padding_mode)
if inner_kernel_size != 1:
None
None
raise ValueError
self.layers = nn.Sequential(self.depth_wise_conv, self.
non_linearity, self.point_wise)
def forward(self, input_0):
primals_1 = self.depth_wise_conv.weight
primals_2 = self.depth_wise_conv.bias
primals_4 = self.point_wise.weight
primals_5 = self.point_wise.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| pppyykknen/LFDisplay-PyTorch | DepthWiseSeparableConvBlock | false | 4,135 | [
"MIT"
] | 0 | d19261dac1717a799bb5ba5f96563be1d2383340 | https://github.com/pppyykknen/LFDisplay-PyTorch/tree/d19261dac1717a799bb5ba5f96563be1d2383340 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, bias=True, padding_mode='zeros',
inner_kernel_size=1, inner_stride=1, inner_padding=0):
"""Depthwise separable 2D Convolution.
:param in_channels: Input channels.
:type in_channels: int
:param out_channels: Output channels.
:type out_channels: int
:param kernel_size: Kernel shape/size.
:type kernel_size: int|tuple|list
:param stride: Stride.
:type stride: int|tuple|list
:param padding: Padding.
:type padding: int|tuple|list
:param dilation: Dilation.
:type dilation: int
:param bias: Bias.
:type bias: bool
:param padding_mode: Padding mode.
:type padding_mode: str
:param inner_kernel_size: Kernel shape/size of the second convolution.
:type inner_kernel_size: int|tuple|list
:param inner_stride: Inner stride.
:type inner_stride: int|tuple|list
:param inner_padding: Inner padding.
:type inner_padding: int|tuple|list
"""
super().__init__()
self.depth_wise_conv: 'nn.Module' = nn.Conv2d(in_channels=
in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=
in_channels if out_channels >= in_channels else out_channels,
bias=bias, padding_mode=padding_mode)
self.non_linearity: 'nn.Module' = nn.LeakyReLU()
self.point_wise: 'nn.Module' = nn.Conv2d(in_channels=out_channels,
out_channels=out_channels, kernel_size=inner_kernel_size,
stride=inner_stride, padding=inner_padding, dilation=1, groups=
1, bias=bias, padding_mode=padding_mode)
if inner_kernel_size != 1:
None
None
raise ValueError
self.layers = nn.Sequential(self.depth_wise_conv, self.
non_linearity, self.point_wise)
def forward(self, x):
"""Forward pass of the module.
:param x: Input tensor.
:type x: torch.Tensor
:return: Output tensor.
:rtype: torch.Tensor
"""
return self.layers(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
MDN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/jc/cjci7bgapx6yvf7yerkmjijiqsv7ujo7xnfkfv6pe2a67e4n4kxl.py
# Topologically Sorted Source Nodes: [neg, eos], Original ATen: [aten.neg, aten.sigmoid]
# Source node to ATen node mapping:
# eos => sigmoid
# neg => neg
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%slice_3,), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%neg,), kwargs = {})
triton_poi_fused_neg_sigmoid_0 = async_compile.triton('triton_poi_fused_neg_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_neg_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_neg_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (25*x0), xmask, eviction_policy='evict_last')
tmp1 = -tmp0
tmp2 = tl.sigmoid(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/et/cetmfp4k6nlbftvzk7efanwi6fcznzbfzajqpzmcpdhgb4nozxxl.py
# Topologically Sorted Source Nodes: [rho], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# rho => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%getitem_5,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (21 + x0 + (25*x1)), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + (x2), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/fi/cfisw76yb3boijyy6xdys3rcwgmfpbxfle3w4u3bhgvzh7jpxdsw.py
# Topologically Sorted Source Nodes: [pi], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# pi => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%getitem, [2], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%getitem, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (1 + x0 + (25*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (1 + (25*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (2 + (25*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (3 + (25*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (4 + (25*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/zu/czuvep3dmpmqmhiiliwubh4ghdt2qr27va67sszkua7trziinwov.py
# Topologically Sorted Source Nodes: [pi], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# pi => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7b/c7byzz4ndp62fzqhx6z2an7sx7dw42xl3cjemrx7bjabay5et3oz.py
# Topologically Sorted Source Nodes: [sigma1], Original ATen: [aten.exp]
# Source node to ATen node mapping:
# sigma1 => exp_1
# Graph fragment:
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%getitem_3,), kwargs = {})
triton_poi_fused_exp_4 = async_compile.triton('triton_poi_fused_exp_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (13 + x0 + (25*x1)), xmask)
tmp1 = tl_math.exp(tmp0)
tl.store(out_ptr0 + (x2), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/vk/cvkwiim257iuap3tkmay4svowl5svorsqysug3uu2pnto3pxkj2c.py
# Topologically Sorted Source Nodes: [sigma2], Original ATen: [aten.exp]
# Source node to ATen node mapping:
# sigma2 => exp_2
# Graph fragment:
# %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%getitem_4,), kwargs = {})
triton_poi_fused_exp_5 = async_compile.triton('triton_poi_fused_exp_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (17 + x0 + (25*x1)), xmask)
tmp1 = tl_math.exp(tmp0)
tl.store(out_ptr0 + (x2), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (25, 4), (4, 1))
assert_size_stride(primals_2, (25, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 25), (25, 1), torch.float32)
# Topologically Sorted Source Nodes: [mixture_parameters], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 25), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [neg, eos], Original ATen: [aten.neg, aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_neg_sigmoid_0.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [rho], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf0, buf2, 64, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pi], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf0, buf3, 64, grid=grid(64), stream=stream0)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pi], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf3, buf4, 64, grid=grid(64), stream=stream0)
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [sigma1], Original ATen: [aten.exp]
triton_poi_fused_exp_4.run(buf0, buf5, 64, grid=grid(64), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigma2], Original ATen: [aten.exp]
triton_poi_fused_exp_5.run(buf0, buf6, 64, grid=grid(64), stream=stream0)
return (buf1, buf4, reinterpret_tensor(buf0, (4, 4, 4), (100, 25, 1), 5), reinterpret_tensor(buf0, (4, 4, 4), (100, 25, 1), 9), buf5, buf6, buf2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf1, buf2, buf4, buf5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((25, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((25, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
from torch.nn.modules import Module
from torch.nn.modules import Linear
class MDN(Module):
def __init__(self, input_size, num_mixtures):
super(MDN, self).__init__()
self.input_size = input_size
self.num_mixtures = num_mixtures
self.parameter_layer = Linear(in_features=input_size, out_features=
1 + 6 * num_mixtures)
def forward(self, input_, bias=None):
mixture_parameters = self.parameter_layer(input_)
eos_hat = mixture_parameters[:, :, 0:1]
pi_hat, mu1_hat, mu2_hat, sigma1_hat, sigma2_hat, rho_hat = (torch.
chunk(mixture_parameters[:, :, 1:], 6, dim=2))
eos = torch.sigmoid(-eos_hat)
mu1 = mu1_hat
mu2 = mu2_hat
rho = torch.tanh(rho_hat)
if bias is None:
bias = torch.zeros_like(rho)
pi = torch.softmax(pi_hat * (1 + bias), dim=2)
sigma1 = torch.exp(sigma1_hat - bias)
sigma2 = torch.exp(sigma2_hat - bias)
return eos, pi, mu1, mu2, sigma1, sigma2, rho
def __repr__(self):
s = '{name}(input_size={input_size}, num_mixtures={num_mixtures})'
return s.format(name=self.__class__.__name__, **self.__dict__)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'num_mixtures': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn import Module
from torch.nn.modules import Module
from torch.nn.modules import Linear
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_neg_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 25 * x0, xmask, eviction_policy='evict_last')
tmp1 = -tmp0
tmp2 = tl.sigmoid(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (21 + x0 + 25 * x1), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + x2, tmp1, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (1 + x0 + 25 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (1 + 25 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tl.load(in_ptr0 + (2 + 25 * x1), xmask, eviction_policy='evict_last'
)
tmp4 = tl.load(in_ptr0 + (3 + 25 * x1), xmask, eviction_policy='evict_last'
)
tmp6 = tl.load(in_ptr0 + (4 + 25 * x1), xmask, eviction_policy='evict_last'
)
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_exp_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (13 + x0 + 25 * x1), xmask)
tmp1 = tl_math.exp(tmp0)
tl.store(out_ptr0 + x2, tmp1, xmask)
@triton.jit
def triton_poi_fused_exp_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (17 + x0 + 25 * x1), xmask)
tmp1 = tl_math.exp(tmp0)
tl.store(out_ptr0 + x2, tmp1, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (25, 4), (4, 1))
assert_size_stride(primals_2, (25,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 25), (25, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 25), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_neg_sigmoid_0[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_tanh_1[grid(64)](buf0, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(64)](buf0, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_3[grid(64)](buf3, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = buf3
del buf3
triton_poi_fused_exp_4[grid(64)](buf0, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_exp_5[grid(64)](buf0, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
return buf1, buf4, reinterpret_tensor(buf0, (4, 4, 4), (100, 25, 1), 5
), reinterpret_tensor(buf0, (4, 4, 4), (100, 25, 1), 9
), buf5, buf6, buf2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), buf1, buf2, buf4, buf5, buf6
class MDNNew(Module):
def __init__(self, input_size, num_mixtures):
super(MDNNew, self).__init__()
self.input_size = input_size
self.num_mixtures = num_mixtures
self.parameter_layer = Linear(in_features=input_size, out_features=
1 + 6 * num_mixtures)
def __repr__(self):
s = '{name}(input_size={input_size}, num_mixtures={num_mixtures})'
return s.format(name=self.__class__.__name__, **self.__dict__)
def forward(self, input_0):
primals_1 = self.parameter_layer.weight
primals_2 = self.parameter_layer.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0], output[1], output[2], output[3], output[4], output[5
], output[6]
| poctaviano/Handwriting-Model | MDN | false | 4,136 | [
"MIT"
] | 0 | 30311ea0f4cb6e7bc0114cf0b2a96dc915dd9795 | https://github.com/poctaviano/Handwriting-Model/tree/30311ea0f4cb6e7bc0114cf0b2a96dc915dd9795 | from torch.nn import Module
import torch
from torch.nn.modules import Module
from torch.nn.modules import Linear
class Model(Module):
def __init__(self, input_size, num_mixtures):
super().__init__()
self.input_size = input_size
self.num_mixtures = num_mixtures
self.parameter_layer = Linear(in_features=input_size, out_features=
1 + 6 * num_mixtures)
def forward(self, input_, bias=None):
mixture_parameters = self.parameter_layer(input_)
eos_hat = mixture_parameters[:, :, 0:1]
pi_hat, mu1_hat, mu2_hat, sigma1_hat, sigma2_hat, rho_hat = (torch.
chunk(mixture_parameters[:, :, 1:], 6, dim=2))
eos = torch.sigmoid(-eos_hat)
mu1 = mu1_hat
mu2 = mu2_hat
rho = torch.tanh(rho_hat)
if bias is None:
bias = torch.zeros_like(rho)
pi = torch.softmax(pi_hat * (1 + bias), dim=2)
sigma1 = torch.exp(sigma1_hat - bias)
sigma2 = torch.exp(sigma2_hat - bias)
return eos, pi, mu1, mu2, sigma1, sigma2, rho
def __repr__(self):
s = '{name}(input_size={input_size}, num_mixtures={num_mixtures})'
return s.format(name=self.__class__.__name__, **self.__dict__)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
KARAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {})
# %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/iz/ciztqj6kop3hxov46yrmzprkzfir3eljcic4mkqznz2j5cfeaudr.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %primals_9), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
# %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {})
# %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%add_tensor, -inf), kwargs = {})
# %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {})
# %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tmp2 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp5 - tmp14
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp9 - tmp14
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tmp13 - tmp14
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = float("-inf")
tmp27 = tmp2 == tmp26
tmp28 = tmp27 == 0
tmp29 = tmp28.to(tl.int64)
tmp30 = (tmp29 != 0)
tmp31 = tmp5 == tmp26
tmp32 = tmp31 == 0
tmp33 = tmp32.to(tl.int64)
tmp34 = (tmp33 != 0)
tmp35 = tmp30 | tmp34
tmp36 = tmp9 == tmp26
tmp37 = tmp36 == 0
tmp38 = tmp37.to(tl.int64)
tmp39 = (tmp38 != 0)
tmp40 = tmp35 | tmp39
tmp41 = tmp13 == tmp26
tmp42 = tmp41 == 0
tmp43 = tmp42.to(tl.int64)
tmp44 = (tmp43 != 0)
tmp45 = tmp40 | tmp44
tl.store(out_ptr0 + (x2), tmp14, xmask)
tl.store(out_ptr1 + (x2), tmp25, xmask)
tl.store(out_ptr2 + (x2), tmp45, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/x5/cx5uvbfethxuwwkwxf3xaualzhlcwqsz4jxqpbhintggaypzjwqf.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %primals_9), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {})
# %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 4)
x4 = xindex
x5 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last').to(tl.int1)
tmp2 = tl.load(in_out_ptr0 + (x4), xmask)
tmp3 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x3), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + (x3), xmask, eviction_policy='evict_last')
tmp1 = tmp0 == 0
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tmp10 = 0.0
tmp11 = tl.where(tmp1, tmp10, tmp9)
tl.store(in_out_ptr0 + (x4), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(buf5, primals_9, buf6, buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf9, buf8, primals_9, buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf8
del primals_9
buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(buf2, primals_8, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0)
del buf11
return (reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import math
import torch
from torch import nn
class KARMultiHeadAttention(nn.Module):
def __init__(self, config, hidden_size):
super(KARMultiHeadAttention, self).__init__()
if hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(hidden_size / config.num_attention_heads
)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.config = config
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask, s_i_tag_in):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(s_i_tag_in)
mixed_value_layer = self.value(s_i_tag_in)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class KARAttention(nn.Module):
def __init__(self, config, kar_size):
super(KARAttention, self).__init__()
self.multihead = KARMultiHeadAttention(config, kar_size)
def forward(self, input_tensor, attention_mask, s_m_tag):
attention_output = self.multihead(input_tensor, attention_mask, s_m_tag
)
return attention_output
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'config': _mock_config(num_attention_heads=4,
attention_probs_dropout_prob=0.5), 'kar_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tmp2 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp5 - tmp14
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp9 - tmp14
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tmp13 - tmp14
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = float('-inf')
tmp27 = tmp2 == tmp26
tmp28 = tmp27 == 0
tmp29 = tmp28.to(tl.int64)
tmp30 = tmp29 != 0
tmp31 = tmp5 == tmp26
tmp32 = tmp31 == 0
tmp33 = tmp32.to(tl.int64)
tmp34 = tmp33 != 0
tmp35 = tmp30 | tmp34
tmp36 = tmp9 == tmp26
tmp37 = tmp36 == 0
tmp38 = tmp37.to(tl.int64)
tmp39 = tmp38 != 0
tmp40 = tmp35 | tmp39
tmp41 = tmp13 == tmp26
tmp42 = tmp41 == 0
tmp43 = tmp42.to(tl.int64)
tmp44 = tmp43 != 0
tmp45 = tmp40 | tmp44
tl.store(out_ptr0 + x2, tmp14, xmask)
tl.store(out_ptr1 + x2, tmp25, xmask)
tl.store(out_ptr2 + x2, tmp45, xmask)
@triton.jit
def triton_poi_fused_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 4
x4 = xindex
x5 = xindex % 64
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last').to(tl
.int1)
tmp2 = tl.load(in_out_ptr0 + x4, xmask)
tmp3 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + x3, xmask, eviction_policy='evict_last')
tmp1 = tmp0 == 0
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tmp10 = 0.0
tmp11 = tl.where(tmp1, tmp10, tmp9)
tl.store(in_out_ptr0 + x4, tmp11, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf1
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool)
triton_poi_fused_1[grid(64)](buf5, primals_9, buf6, buf7, buf8, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused_2[grid(256)](buf9, buf8, primals_9, buf6, buf7,
256, XBLOCK=128, num_warps=4, num_stages=1)
del buf8
del primals_9
buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf7
triton_poi_fused_3[grid(16, 4)](buf2, primals_8, buf10, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_8
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf6
triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del buf11
return reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class KARMultiHeadAttention(nn.Module):
def __init__(self, config, hidden_size):
super(KARMultiHeadAttention, self).__init__()
if hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(hidden_size / config.num_attention_heads
)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.config = config
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask, s_i_tag_in):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(s_i_tag_in)
mixed_value_layer = self.value(s_i_tag_in)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class KARAttentionNew(nn.Module):
def __init__(self, config, kar_size):
super(KARAttentionNew, self).__init__()
self.multihead = KARMultiHeadAttention(config, kar_size)
def forward(self, input_0, input_1, input_2):
primals_1 = self.multihead.query.weight
primals_2 = self.multihead.query.bias
primals_4 = self.multihead.key.weight
primals_5 = self.multihead.key.bias
primals_7 = self.multihead.value.weight
primals_8 = self.multihead.value.bias
primals_3 = input_0
primals_6 = input_1
primals_9 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| ohadrozen/inferbert | KARAttention | false | 4,137 | [
"Apache-2.0"
] | 0 | 2e450aba894937e5769dcf028e4a8a597991fe43 | https://github.com/ohadrozen/inferbert/tree/2e450aba894937e5769dcf028e4a8a597991fe43 | from _paritybench_helpers import _mock_config
import math
import torch
from torch import nn
class KARMultiHeadAttention(nn.Module):
def __init__(self, config, hidden_size):
super().__init__()
if hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(hidden_size / config.num_attention_heads
)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.config = config
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask, s_i_tag_in):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(s_i_tag_in)
mixed_value_layer = self.value(s_i_tag_in)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class Model(nn.Module):
def __init__(self, config, kar_size):
super().__init__()
self.multihead = KARMultiHeadAttention(config, kar_size)
def forward(self, input_tensor, attention_mask, s_m_tag):
attention_output = self.multihead(input_tensor, attention_mask, s_m_tag
)
return attention_output
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'config': _mock_config(num_attention_heads=4,
attention_probs_dropout_prob=0.5), 'kar_size': 4}]
|
AttentiveTrans2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/fw/cfwf4cqx5b74nicbdzcsqw5y5udnbi2iup6zmlyftutg2xy77pvj.py
# Topologically Sorted Source Nodes: [output, adaptive_avg_pool2d, feature_nc], Original ATen: [aten._native_batch_norm_legit, aten.mean, aten.view]
# Source node to ATen node mapping:
# adaptive_avg_pool2d => mean
# feature_nc => view_2
# output => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
# %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%mean, [4, 4]), kwargs = {})
triton_per_fused__native_batch_norm_legit_mean_view_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_mean_view_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_mean_view_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 5, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_mean_view_0(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp18 = tl.sum(tmp3, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp16 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp18 / tmp19
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp23, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp24, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hj/chjfadrnarbcrgbkp5elg2ayohua34qwuuq2pagwltxrtpr5oioj.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mm,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/v2/cv2arloq7u6gre4qrh7u5jb4lnzdhuot64eerw2haozehephehpj.py
# Topologically Sorted Source Nodes: [avg_max_concat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# avg_max_concat => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%_adaptive_avg_pool3d, %getitem_2], 1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 2
x0 = xindex % 16
x2 = (xindex // 32)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/m7/cm7gcrorfm7sh53z7x25ngu7cxeixi22sw34bxdmyf25vhoxnsyh.py
# Topologically Sorted Source Nodes: [sigmoid_1], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid_1 => sigmoid_1
# Graph fragment:
# %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_3(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/eg/cegogzhkyydihspifudl3ybsjagm3oo6th6a6mce3dwg4lq24wva.py
# Topologically Sorted Source Nodes: [pixel_wise_response], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# pixel_wise_response => mul_1
# Graph fragment:
# %mul_1 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %expand_1), kwargs = {})
triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 16)
x0 = xindex % 16
x2 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x4), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hq/chqnf64lvplsf6vm2pepyprrb322t3sfmqwy6vtcqmkooedil7vx.py
# Topologically Sorted Source Nodes: [importance_gamma, importance_beta, mul_1, out_in], Original ATen: [aten.add, aten.mul]
# Source node to ATen node mapping:
# importance_beta => add_2
# importance_gamma => add_1
# mul_1 => mul_2
# out_in => add_3
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_2, 1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_3, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %add_1), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %add_2), kwargs = {})
triton_poi_fused_add_mul_5 = async_compile.triton('triton_poi_fused_add_mul_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_out_ptr0 + (x2), xmask)
tmp9 = tl.load(in_ptr3 + (x2), xmask)
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp4 * tmp7
tmp10 = 0.0
tmp11 = tmp9 + tmp10
tmp12 = tmp8 + tmp11
tl.store(in_out_ptr0 + (x2), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 32), (32, 1))
assert_size_stride(primals_3, (32, 4), (4, 1))
assert_size_stride(primals_4, (1, 2, 3, 3), (18, 9, 3, 1))
assert_size_stride(primals_5, (1, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (4, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32)
buf1 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf3 = reinterpret_tensor(buf1, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf1 # reuse
buf5 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [output, adaptive_avg_pool2d, feature_nc], Original ATen: [aten._native_batch_norm_legit, aten.mean, aten.view]
stream0 = get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_mean_view_0.run(buf3, buf5, primals_1, buf0, 16, 16, grid=grid(16), stream=stream0)
buf6 = empty_strided_cuda((4, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm]
extern_kernels.mm(buf5, primals_2, out=buf6)
del primals_2
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf7, 128, grid=grid(128), stream=stream0)
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [channel_wise_response], Original ATen: [aten.mm]
extern_kernels.mm(buf7, primals_3, out=buf8)
# Topologically Sorted Source Nodes: [avg_out], Original ATen: [aten._adaptive_avg_pool3d]
buf9 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [1, 4, 4])
buf10 = buf9
del buf9
# Topologically Sorted Source Nodes: [max_out], Original ATen: [aten.adaptive_max_pool3d]
buf11 = torch.ops.aten.adaptive_max_pool3d.default(primals_1, [1, 4, 4])
buf12 = buf11[0]
del buf11
buf14 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [avg_max_concat], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(buf10, buf12, buf14, 128, grid=grid(128), stream=stream0)
del buf10
del buf12
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf14, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 1, 4, 4), (16, 16, 4, 1))
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [sigmoid_1], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_3.run(buf16, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 1, 4, 4), (16, 16, 4, 1))
buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pixel_wise_response], Original ATen: [aten.mul]
triton_poi_fused_mul_4.run(buf8, buf17, buf18, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf18, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf20 = extern_kernels.convolution(buf18, primals_7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 4, 4, 4), (64, 16, 4, 1))
buf21 = buf19; del buf19 # reuse
# Topologically Sorted Source Nodes: [importance_gamma, importance_beta, mul_1, out_in], Original ATen: [aten.add, aten.mul]
triton_poi_fused_add_mul_5.run(buf21, primals_1, buf0, buf3, buf20, 256, grid=grid(256), stream=stream0)
del buf20
return (buf21, primals_1, primals_4, primals_5, primals_6, primals_7, buf0, buf3, buf7, buf8, buf14, buf16, buf17, buf18, reinterpret_tensor(primals_3, (4, 32), (1, 4), 0), reinterpret_tensor(buf5, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 2, 3, 3), (18, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
class AttentiveTrans2d(nn.Module):
def __init__(self, num_features, hidden_channels=32):
super(AttentiveTrans2d, self).__init__()
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.smooth_gamma = 1
self.smooth_beta = 0
self.matrix1 = nn.Parameter(torch.ones(num_features, hidden_channels))
self.matrix2 = nn.Parameter(torch.ones(hidden_channels, num_features))
self.sigmoid = nn.Sigmoid()
self.conv1 = nn.Conv2d(2, 1, 3, padding=1, bias=False)
self.conv2 = nn.Conv2d(1, 1, 3, padding=1, bias=False)
self.conv3 = nn.Conv2d(num_features, num_features, 1, bias=False)
self.conv4 = nn.Conv2d(num_features, num_features, 1, bias=False)
self.IN_norm = nn.InstanceNorm2d(num_features, affine=False,
track_running_stats=False)
def forward(self, feature):
output = self.IN_norm(feature)
feature_nc = self.avgpool(feature).view(feature.size()[0], feature.
size()[1])
channel_wise_response = self.sigmoid(feature_nc @ self.matrix1
) @ self.matrix2
channel_wise_response = channel_wise_response.unsqueeze(-1).unsqueeze(
-1).expand(output.size())
avg_out = F.adaptive_avg_pool3d(feature, (1, feature.size()[2],
feature.size()[3]))
max_out = F.adaptive_max_pool3d(feature, (1, feature.size()[2],
feature.size()[3]))
avg_max_concat = torch.cat([avg_out, max_out], dim=1)
spatial_wise_response = self.conv2(self.sigmoid(self.conv1(
avg_max_concat))).expand(output.size())
pixel_wise_response = channel_wise_response * spatial_wise_response
importance_gamma = self.conv3(pixel_wise_response) + self.smooth_gamma
importance_beta = self.conv4(pixel_wise_response) + self.smooth_beta
out_in = output * importance_gamma + importance_beta
return out_in
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_mean_view_0(in_out_ptr0,
in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp18 = tl.sum(tmp3, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp16 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp18 / tmp19
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp23, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp24, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 2
x0 = xindex % 16
x2 = xindex // 32
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * x2), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_sigmoid_3(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 16
x0 = xindex % 16
x2 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x4, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_mul_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2,
in_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_out_ptr0 + x2, xmask)
tmp9 = tl.load(in_ptr3 + x2, xmask)
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp4 * tmp7
tmp10 = 0.0
tmp11 = tmp9 + tmp10
tmp12 = tmp8 + tmp11
tl.store(in_out_ptr0 + x2, tmp12, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 32), (32, 1))
assert_size_stride(primals_3, (32, 4), (4, 1))
assert_size_stride(primals_4, (1, 2, 3, 3), (18, 9, 3, 1))
assert_size_stride(primals_5, (1, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (4, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32)
buf1 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf3 = reinterpret_tensor(buf1, (1, 16, 1, 1), (16, 1, 1, 1), 0)
del buf1
buf5 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0)
del buf4
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_mean_view_0[grid(16)](buf3,
buf5, primals_1, buf0, 16, 16, XBLOCK=8, num_warps=2, num_stages=1)
buf6 = empty_strided_cuda((4, 32), (32, 1), torch.float32)
extern_kernels.mm(buf5, primals_2, out=buf6)
del primals_2
buf7 = buf6
del buf6
triton_poi_fused_sigmoid_1[grid(128)](buf7, 128, XBLOCK=128,
num_warps=4, num_stages=1)
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf7, primals_3, out=buf8)
buf9 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [1, 4, 4]
)
buf10 = buf9
del buf9
buf11 = torch.ops.aten.adaptive_max_pool3d.default(primals_1, [1, 4, 4]
)
buf12 = buf11[0]
del buf11
buf14 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
triton_poi_fused_cat_2[grid(128)](buf10, buf12, buf14, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del buf10
del buf12
buf15 = extern_kernels.convolution(buf14, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 1, 4, 4), (16, 16, 4, 1))
buf16 = buf15
del buf15
triton_poi_fused_sigmoid_3[grid(64)](buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf17 = extern_kernels.convolution(buf16, primals_5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 1, 4, 4), (16, 16, 4, 1))
buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_4[grid(256)](buf8, buf17, buf18, 256, XBLOCK=
128, num_warps=4, num_stages=1)
buf19 = extern_kernels.convolution(buf18, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 4, 4, 4), (64, 16, 4, 1))
buf20 = extern_kernels.convolution(buf18, primals_7, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 4, 4, 4), (64, 16, 4, 1))
buf21 = buf19
del buf19
triton_poi_fused_add_mul_5[grid(256)](buf21, primals_1, buf0, buf3,
buf20, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf20
return (buf21, primals_1, primals_4, primals_5, primals_6, primals_7,
buf0, buf3, buf7, buf8, buf14, buf16, buf17, buf18,
reinterpret_tensor(primals_3, (4, 32), (1, 4), 0),
reinterpret_tensor(buf5, (4, 4), (1, 4), 0))
class AttentiveTrans2dNew(nn.Module):
def __init__(self, num_features, hidden_channels=32):
super(AttentiveTrans2dNew, self).__init__()
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.smooth_gamma = 1
self.smooth_beta = 0
self.matrix1 = nn.Parameter(torch.ones(num_features, hidden_channels))
self.matrix2 = nn.Parameter(torch.ones(hidden_channels, num_features))
self.sigmoid = nn.Sigmoid()
self.conv1 = nn.Conv2d(2, 1, 3, padding=1, bias=False)
self.conv2 = nn.Conv2d(1, 1, 3, padding=1, bias=False)
self.conv3 = nn.Conv2d(num_features, num_features, 1, bias=False)
self.conv4 = nn.Conv2d(num_features, num_features, 1, bias=False)
self.IN_norm = nn.InstanceNorm2d(num_features, affine=False,
track_running_stats=False)
def forward(self, input_0):
primals_2 = self.matrix1
primals_3 = self.matrix2
primals_4 = self.conv1.weight
primals_5 = self.conv2.weight
primals_6 = self.conv3.weight
primals_7 = self.conv4.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| ppomelo/Attentive-Transformation-Based-Normalization | AttentiveTrans2d | false | 4,138 | [
"Apache-2.0"
] | 0 | 62ad02eb025613e90f4fe0e0a9f0f85839e53092 | https://github.com/ppomelo/Attentive-Transformation-Based-Normalization/tree/62ad02eb025613e90f4fe0e0a9f0f85839e53092 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
class Model(nn.Module):
def __init__(self, num_features, hidden_channels=32):
super().__init__()
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.smooth_gamma = 1
self.smooth_beta = 0
self.matrix1 = nn.Parameter(torch.ones(num_features, hidden_channels))
self.matrix2 = nn.Parameter(torch.ones(hidden_channels, num_features))
self.sigmoid = nn.Sigmoid()
self.conv1 = nn.Conv2d(2, 1, 3, padding=1, bias=False)
self.conv2 = nn.Conv2d(1, 1, 3, padding=1, bias=False)
self.conv3 = nn.Conv2d(num_features, num_features, 1, bias=False)
self.conv4 = nn.Conv2d(num_features, num_features, 1, bias=False)
self.IN_norm = nn.InstanceNorm2d(num_features, affine=False,
track_running_stats=False)
def forward(self, feature):
output = self.IN_norm(feature)
feature_nc = self.avgpool(feature).view(feature.size()[0], feature.
size()[1])
channel_wise_response = self.sigmoid(feature_nc @ self.matrix1
) @ self.matrix2
channel_wise_response = channel_wise_response.unsqueeze(-1).unsqueeze(
-1).expand(output.size())
avg_out = F.adaptive_avg_pool3d(feature, (1, feature.size()[2],
feature.size()[3]))
max_out = F.adaptive_max_pool3d(feature, (1, feature.size()[2],
feature.size()[3]))
avg_max_concat = torch.cat([avg_out, max_out], dim=1)
spatial_wise_response = self.conv2(self.sigmoid(self.conv1(
avg_max_concat))).expand(output.size())
pixel_wise_response = channel_wise_response * spatial_wise_response
importance_gamma = self.conv3(pixel_wise_response) + self.smooth_gamma
importance_beta = self.conv4(pixel_wise_response) + self.smooth_beta
out_in = output * importance_gamma + importance_beta
return out_in
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
DepthLogLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/vl/cvlmdamhuo5xnk3srfiycktrtz5z5sugw4mvo7zwofn5piotsuiy.py
# Topologically Sorted Source Nodes: [add, inputs, targets, d, pow_1, sum_1, truediv, sum_2, pow_2, mul, truediv_1, loss], Original ATen: [aten.add, aten.log, aten.sub, aten.pow, aten.sum, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# d => sub
# inputs => log
# loss => sub_1
# mul => mul
# pow_1 => pow_1
# pow_2 => pow_2
# sum_1 => sum_1
# sum_2 => sum_2
# targets => log_1
# truediv => div
# truediv_1 => div_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1e-08), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%log, %log_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 64), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub,), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, 4), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 4096), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %div_1), kwargs = {})
triton_per_fused_add_div_log_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_log_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_log_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_log_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp4 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1e-08
tmp2 = tmp0 + tmp1
tmp3 = tl_math.log(tmp2)
tmp5 = tl_math.log(tmp4)
tmp6 = tmp3 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = tl.broadcast_to(tmp6, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 0.015625
tmp15 = tmp10 * tmp14
tmp16 = tmp13 * tmp13
tmp17 = 4.0
tmp18 = tmp16 * tmp17
tmp19 = 0.000244140625
tmp20 = tmp18 * tmp19
tmp21 = tmp15 - tmp20
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [add, inputs, targets, d, pow_1, sum_1, truediv, sum_2, pow_2, mul, truediv_1, loss], Original ATen: [aten.add, aten.log, aten.sub, aten.pow, aten.sum, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_log_mul_pow_sub_sum_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class DepthLogLoss(nn.Module):
def __init__(self, balance_factor):
super(DepthLogLoss, self).__init__()
self.balance_factor = balance_factor
def forward(self, inputs, targets):
n, _, h, w = inputs.shape
n_pixel = n * h * w
inputs = torch.log(inputs + 1e-08)
targets = torch.log(targets)
d = inputs - targets
loss = torch.sum(d ** 2) / n_pixel - self.balance_factor * torch.sum(d
) ** 2 / n_pixel ** 2
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'balance_factor': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_log_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp4 = tl.load(in_ptr1 + r0, None)
tmp1 = 1e-08
tmp2 = tmp0 + tmp1
tmp3 = tl_math.log(tmp2)
tmp5 = tl_math.log(tmp4)
tmp6 = tmp3 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = tl.broadcast_to(tmp6, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 0.015625
tmp15 = tmp10 * tmp14
tmp16 = tmp13 * tmp13
tmp17 = 4.0
tmp18 = tmp16 * tmp17
tmp19 = 0.000244140625
tmp20 = tmp18 * tmp19
tmp21 = tmp15 - tmp20
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_log_mul_pow_sub_sum_0[grid(1)](buf2,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class DepthLogLossNew(nn.Module):
def __init__(self, balance_factor):
super(DepthLogLossNew, self).__init__()
self.balance_factor = balance_factor
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| pystokes/depth_estimation | DepthLogLoss | false | 4,140 | [
"MIT"
] | 0 | b5b1955bcb5b3f1a1f1c8ddde45431cf38514f90 | https://github.com/pystokes/depth_estimation/tree/b5b1955bcb5b3f1a1f1c8ddde45431cf38514f90 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, balance_factor):
super().__init__()
self.balance_factor = balance_factor
def forward(self, inputs, targets):
n, _, h, w = inputs.shape
n_pixel = n * h * w
inputs = torch.log(inputs + 1e-08)
targets = torch.log(targets)
d = inputs - targets
loss = torch.sum(d ** 2) / n_pixel - self.balance_factor * torch.sum(d
) ** 2 / n_pixel ** 2
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
ConditionalBottleNeck | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/es/ces44qnnsxil2dafm2xyy2gyquns7xgk6aon2uuwy4h5tpsyggbv.py
# Topologically Sorted Source Nodes: [add, mul, out], Original ATen: [aten.add, aten.mul]
# Source node to ATen node mapping:
# add => add
# mul => mul
# out => add_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %primals_6), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %getitem_1), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 16
x3 = (xindex // 256)
x4 = xindex % 256
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (8*x1) + (128*x3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + x0 + (8*x1) + (128*x3)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 + tmp3
tmp6 = tmp4 * tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tl.store(out_ptr0 + (x6), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (8, 4), (4, 1))
assert_size_stride(primals_5, (8, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1, ), (1, ))
assert_size_stride(primals_9, (4, 1), (1, 1))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_cond], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (4, 8), (1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, mul, out], Original ATen: [aten.add, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(buf1, primals_5, primals_6, buf2, 1024, grid=grid(1024), stream=stream0)
del buf1
del primals_5
buf4 = empty_strided_cuda((256, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_8
buf5 = empty_strided_cuda((256, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden_states_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, buf4, reinterpret_tensor(primals_9, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf5)
del primals_10
return (reinterpret_tensor(buf5, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf2, (256, 4), (4, 1), 0), buf4, primals_9, primals_7, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
class FiLM(nn.Module):
""" Feature-wise Linear Modulation (FiLM) layer"""
def __init__(self, input_size, output_size, num_film_layers=1,
layer_norm=False):
"""
:param input_size: feature size of x_cond
:param output_size: feature size of x_to_film
:param layer_norm: true or false
"""
super(FiLM, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.num_film_layers = num_film_layers
self.layer_norm = nn.LayerNorm(output_size) if layer_norm else None
film_output_size = self.output_size * num_film_layers * 2
self.gb_weights = nn.Linear(self.input_size, film_output_size)
self.gb_weights.bias.data.fill_(0)
def forward(self, x_cond, x_to_film):
gb = self.gb_weights(x_cond).unsqueeze(1)
gamma, beta = torch.chunk(gb, 2, dim=-1)
out = (1 + gamma) * x_to_film + beta
if self.layer_norm is not None:
out = self.layer_norm(out)
return out
class ConditionalBottleNeck(nn.Module):
"""Down projection and up projection with FiLM layers within Transformer layer."""
def __init__(self, config):
super(ConditionalBottleNeck, self).__init__()
self.emb_transf = nn.Linear(config.hidden_size, config.hidden_size)
self.hidden_modulation = FiLM(config.hidden_size, config.hidden_size)
self.down_proj_layer = nn.Linear(config.hidden_size, config.
hidden_size // 3)
self.up_proj_layer = nn.Linear(config.hidden_size // 3, config.
hidden_size)
def forward(self, x_cond, hidden_states):
x_cond = self.emb_transf(x_cond)
hidden_states = self.hidden_modulation(x_cond=x_cond, x_to_film=
hidden_states)
hidden_states = self.down_proj_layer(hidden_states)
hidden_states = self.up_proj_layer(hidden_states)
return hidden_states
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 16
x3 = xindex // 256
x4 = xindex % 256
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 8 * x1 + 128 * x3), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + x0 + 8 * x1 + 128 * x3), xmask,
eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 + tmp3
tmp6 = tmp4 * tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tl.store(out_ptr0 + x6, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (8, 4), (4, 1))
assert_size_stride(primals_5, (8,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1,), (1,))
assert_size_stride(primals_9, (4, 1), (1, 1))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (4, 8), (1, 4
), 0), out=buf1)
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(1024)](buf1, primals_5, primals_6,
buf2, 1024, XBLOCK=256, num_warps=4, num_stages=1)
del buf1
del primals_5
buf4 = empty_strided_cuda((256, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 4),
(4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_8
buf5 = empty_strided_cuda((256, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_10, buf4, reinterpret_tensor(primals_9,
(1, 4), (1, 1), 0), alpha=1, beta=1, out=buf5)
del primals_10
return reinterpret_tensor(buf5, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0
), primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0, reinterpret_tensor(buf2, (256, 4), (4, 1), 0
), buf4, primals_9, primals_7, primals_4
class FiLM(nn.Module):
""" Feature-wise Linear Modulation (FiLM) layer"""
def __init__(self, input_size, output_size, num_film_layers=1,
layer_norm=False):
"""
:param input_size: feature size of x_cond
:param output_size: feature size of x_to_film
:param layer_norm: true or false
"""
super(FiLM, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.num_film_layers = num_film_layers
self.layer_norm = nn.LayerNorm(output_size) if layer_norm else None
film_output_size = self.output_size * num_film_layers * 2
self.gb_weights = nn.Linear(self.input_size, film_output_size)
self.gb_weights.bias.data.fill_(0)
def forward(self, x_cond, x_to_film):
gb = self.gb_weights(x_cond).unsqueeze(1)
gamma, beta = torch.chunk(gb, 2, dim=-1)
out = (1 + gamma) * x_to_film + beta
if self.layer_norm is not None:
out = self.layer_norm(out)
return out
class ConditionalBottleNeckNew(nn.Module):
"""Down projection and up projection with FiLM layers within Transformer layer."""
def __init__(self, config):
super(ConditionalBottleNeckNew, self).__init__()
self.emb_transf = nn.Linear(config.hidden_size, config.hidden_size)
self.hidden_modulation = FiLM(config.hidden_size, config.hidden_size)
self.down_proj_layer = nn.Linear(config.hidden_size, config.
hidden_size // 3)
self.up_proj_layer = nn.Linear(config.hidden_size // 3, config.
hidden_size)
def forward(self, input_0, input_1):
primals_1 = self.emb_transf.weight
primals_2 = self.emb_transf.bias
primals_4 = self.hidden_modulation.gb_weights.weight
primals_5 = self.hidden_modulation.gb_weights.bias
primals_7 = self.down_proj_layer.weight
primals_8 = self.down_proj_layer.bias
primals_9 = self.up_proj_layer.weight
primals_10 = self.up_proj_layer.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
| Daupler/CA-MTL | ConditionalBottleNeck | false | 4,141 | [
"MIT"
] | 0 | d417b039dee973e32f42ba5c1c346738cd29ab3c | https://github.com/Daupler/CA-MTL/tree/d417b039dee973e32f42ba5c1c346738cd29ab3c | from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
class FiLM(nn.Module):
""" Feature-wise Linear Modulation (FiLM) layer"""
def __init__(self, input_size, output_size, num_film_layers=1,
layer_norm=False):
"""
:param input_size: feature size of x_cond
:param output_size: feature size of x_to_film
:param layer_norm: true or false
"""
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.num_film_layers = num_film_layers
self.layer_norm = nn.LayerNorm(output_size) if layer_norm else None
film_output_size = self.output_size * num_film_layers * 2
self.gb_weights = nn.Linear(self.input_size, film_output_size)
self.gb_weights.bias.data.fill_(0)
def forward(self, x_cond, x_to_film):
gb = self.gb_weights(x_cond).unsqueeze(1)
gamma, beta = torch.chunk(gb, 2, dim=-1)
out = (1 + gamma) * x_to_film + beta
if self.layer_norm is not None:
out = self.layer_norm(out)
return out
class Model(nn.Module):
"""Down projection and up projection with FiLM layers within Transformer layer."""
def __init__(self, config):
super().__init__()
self.emb_transf = nn.Linear(config.hidden_size, config.hidden_size)
self.hidden_modulation = FiLM(config.hidden_size, config.hidden_size)
self.down_proj_layer = nn.Linear(config.hidden_size, config.
hidden_size // 3)
self.up_proj_layer = nn.Linear(config.hidden_size // 3, config.
hidden_size)
def forward(self, x_cond, hidden_states):
x_cond = self.emb_transf(x_cond)
hidden_states = self.hidden_modulation(x_cond=x_cond, x_to_film=
hidden_states)
hidden_states = self.down_proj_layer(hidden_states)
hidden_states = self.up_proj_layer(hidden_states)
return hidden_states
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
TextureFinder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/qw/cqwu7gfcs2xr22qxdohgd5ntfqt7ewoukkcr76l4wakpggi7j2m5.py
# Topologically Sorted Source Nodes: [conv2d, embeddings_enc0_1], Original ATen: [aten.convolution, aten.native_group_norm]
# Source node to ATen node mapping:
# conv2d => convolution
# embeddings_enc0_1 => add, add_1, mul_1, rsqrt, var_mean
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {})
triton_red_fused_convolution_native_group_norm_0 = async_compile.triton('triton_red_fused_convolution_native_group_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[4, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_native_group_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_convolution_native_group_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 4
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = (rindex // 1024)
tmp0 = tl.load(in_out_ptr0 + (r3 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = triton_helpers.welford_reduce(
tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r3 + (4096*x0)), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(
tmp6_mean, tmp6_m2, tmp6_weight, 1
)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8 = tmp8_tmp[:, None]
tl.store(out_ptr0 + (x0), tmp6, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = (rindex // 1024)
tmp9 = tl.load(in_out_ptr0 + (r3 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp19 = tl.load(in_ptr1 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp21 = tl.load(in_ptr2 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 - tmp6
tmp13 = 4096.0
tmp14 = tmp7 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp12 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tl.store(out_ptr2 + (r3 + (4096*x0)), tmp22, rmask & xmask)
tmp23 = 4096.0
tmp24 = tmp7 / tmp23
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = libdevice.rsqrt(tmp26)
tl.store(out_ptr3 + (x0), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/cg/ccgsdqyeo4zmix6ydcqsntzzpkcudckfgtlvl3zmvygaucgkcle5.py
# Topologically Sorted Source Nodes: [conv2d_1, embeddings_enc1_1], Original ATen: [aten.convolution, aten.native_group_norm]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# embeddings_enc1_1 => add_2, add_3, mul_3, rsqrt_1, var_mean_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_1, %primals_6, %primals_7, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze_11), kwargs = {})
# %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %unsqueeze_8), kwargs = {})
triton_red_fused_convolution_native_group_norm_1 = async_compile.triton('triton_red_fused_convolution_native_group_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[4, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_native_group_norm_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_convolution_native_group_norm_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 4
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = (rindex // 256)
tmp0 = tl.load(in_out_ptr0 + (r3 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = triton_helpers.welford_reduce(
tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r3 + (4096*x0)), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(
tmp6_mean, tmp6_m2, tmp6_weight, 1
)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8 = tmp8_tmp[:, None]
tl.store(out_ptr0 + (x0), tmp6, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = (rindex // 256)
tmp9 = tl.load(in_out_ptr0 + (r3 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp19 = tl.load(in_ptr1 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp21 = tl.load(in_ptr2 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 - tmp6
tmp13 = 4096.0
tmp14 = tmp7 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp12 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tl.store(out_ptr2 + (r3 + (4096*x0)), tmp22, rmask & xmask)
tmp23 = 4096.0
tmp24 = tmp7 / tmp23
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = libdevice.rsqrt(tmp26)
tl.store(out_ptr3 + (x0), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ly/clymhlhl3x3zobxz7fouq4fgrdwvnxxw34efp7qoqh7ibymgjp2q.py
# Topologically Sorted Source Nodes: [conv2d_2, embeddings_enc2_1], Original ATen: [aten.convolution, aten.native_group_norm]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# embeddings_enc2_1 => add_4, add_5, mul_5, rsqrt_2, var_mean_2
# Graph fragment:
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_3, %primals_10, %primals_11, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {})
# %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %unsqueeze_17), kwargs = {})
# %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, %unsqueeze_14), kwargs = {})
triton_red_fused_convolution_native_group_norm_2 = async_compile.triton('triton_red_fused_convolution_native_group_norm_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[4, 2048],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_native_group_norm_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_convolution_native_group_norm_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 4
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = (rindex // 64)
tmp0 = tl.load(in_out_ptr0 + (r3 + (2048*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = triton_helpers.welford_reduce(
tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r3 + (2048*x0)), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(
tmp6_mean, tmp6_m2, tmp6_weight, 1
)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8 = tmp8_tmp[:, None]
tl.store(out_ptr0 + (x0), tmp6, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = (rindex // 64)
tmp9 = tl.load(in_out_ptr0 + (r3 + (2048*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp19 = tl.load(in_ptr1 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp21 = tl.load(in_ptr2 + (r2), rmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 - tmp6
tmp13 = 2048.0
tmp14 = tmp7 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp12 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tl.store(out_ptr2 + (r3 + (2048*x0)), tmp22, rmask & xmask)
tmp23 = 2048.0
tmp24 = tmp7 / tmp23
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = libdevice.rsqrt(tmp26)
tl.store(out_ptr3 + (x0), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ij/cijfxuq22xjmun6z5wfs22uqqtyoufz6y62hkpfoxjs3txwyrrs6.py
# Topologically Sorted Source Nodes: [mu, log_var, mul, std, mul_1, sample], Original ATen: [aten.convolution, aten.mul, aten.exp, aten.add]
# Source node to ATen node mapping:
# log_var => convolution_4
# mu => convolution_3
# mul => mul_6
# mul_1 => mul_7
# sample => add_6
# std => exp
# Graph fragment:
# %convolution_3 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_5, %primals_14, %primals_15, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_5, %primals_16, %primals_17, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.5), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_6,), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%randn, %exp), kwargs = {})
# %add_6 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_3, %mul_7), kwargs = {})
triton_poi_fused_add_convolution_exp_mul_3 = async_compile.triton('triton_poi_fused_add_convolution_exp_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_exp_mul_3', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_exp_mul_3(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + (x3), xmask)
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp7 = 0.5
tmp8 = tmp5 * tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp6 * tmp9
tmp11 = tmp2 + tmp10
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(in_out_ptr1 + (x3), tmp5, xmask)
tl.store(out_ptr0 + (x3), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/sm/csm6zoakpy32tnj3ofwoc2qgidtu45hq23nhlo2edrxtz5jngi5u.py
# Topologically Sorted Source Nodes: [conv_transpose2d_1, embeddings_dec2_1], Original ATen: [aten.convolution, aten.native_group_norm]
# Source node to ATen node mapping:
# conv_transpose2d_1 => convolution_6
# embeddings_dec2_1 => var_mean_4
# Graph fragment:
# %convolution_6 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_8, %primals_22, %primals_23, [2, 2], [3, 3], [1, 1], True, [0, 0], 1), kwargs = {})
# %var_mean_4 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_8, [2, 3]), kwargs = {correction: 0, keepdim: True})
triton_red_fused_convolution_native_group_norm_4 = async_compile.triton('triton_red_fused_convolution_native_group_norm_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[8, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_native_group_norm_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_convolution_native_group_norm_4(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 8
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x4 = xindex
x0 = xindex % 2
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r5 = rindex
r3 = (rindex // 256)
tmp0 = tl.load(in_out_ptr0 + (r5 + (8192*x4)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (r3 + (32*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = triton_helpers.welford_reduce(
tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r5 + (8192*x4)), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(
tmp6_mean, tmp6_m2, tmp6_weight, 1
)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8 = tmp8_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp6, xmask)
tl.store(out_ptr1 + (x4), tmp7, xmask)
tl.store(out_ptr2 + (x4), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/j5/cj5xmzxbxyteuqwmvb46fkivgof6izjjjepxsa6dyez7p7psi5fv.py
# Topologically Sorted Source Nodes: [embeddings_dec2_1], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# embeddings_dec2_1 => add_9, rsqrt_4, var_mean_4
# Graph fragment:
# %var_mean_4 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_8, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {})
# %rsqrt_4 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_9,), kwargs = {})
triton_per_fused_native_group_norm_5 = async_compile.triton('triton_per_fused_native_group_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 2],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 2
RBLOCK: tl.constexpr = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (2*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + (2*x0)), xmask, other=0.0)
tmp2 = tl.load(in_ptr2 + (r1 + (2*x0)), xmask, other=0.0)
tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp3, 0)
tmp8 = tl.where(xmask, tmp4, 0)
tmp9 = tl.where(xmask, tmp5, 0)
tmp10, tmp11, tmp12 = triton_helpers.welford(tmp7, tmp8, tmp9, 1)
tmp13 = tmp10[:, None]
tmp14 = tmp11[:, None]
tmp15 = tmp12[:, None]
tmp16 = 16384.0
tmp17 = tmp14 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tl.store(out_ptr2 + (x0), tmp20, xmask)
tl.store(out_ptr0 + (x0), tmp13, xmask)
tl.store(out_ptr1 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yt/cyt2t7s6tuniln7brla5yvhgp5gaqmhuivmnuw4nj2iijrjmss25.py
# Topologically Sorted Source Nodes: [embeddings_dec2_1], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# embeddings_dec2_1 => add_10, mul_11
# Graph fragment:
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_9, %unsqueeze_29), kwargs = {})
# %add_10 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_11, %unsqueeze_26), kwargs = {})
triton_poi_fused_native_group_norm_6 = async_compile.triton('triton_poi_fused_native_group_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x2 = (xindex // 16384)
x1 = (xindex // 256) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp3 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + (x1), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tmp2 - tmp3
tmp6 = 16384.0
tmp7 = tmp5 / tmp6
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp4 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/cd/ccdbicqqxcddssfhnr5c2xcj32rfdjpkqeu2phas2td3rz4tmndb.py
# Topologically Sorted Source Nodes: [conv_transpose2d_2, embeddings_dec3_1], Original ATen: [aten.convolution, aten.native_group_norm]
# Source node to ATen node mapping:
# conv_transpose2d_2 => convolution_7
# embeddings_dec3_1 => var_mean_5
# Graph fragment:
# %convolution_7 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_10, %primals_26, %primals_27, [2, 2], [3, 3], [1, 1], True, [0, 0], 1), kwargs = {})
# %var_mean_5 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_10, [2, 3]), kwargs = {correction: 0, keepdim: True})
triton_red_fused_convolution_native_group_norm_7 = async_compile.triton('triton_red_fused_convolution_native_group_norm_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[16, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_native_group_norm_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_convolution_native_group_norm_7(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 16
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x4 = xindex
x0 = xindex % 4
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r5 = rindex
r3 = (rindex // 1024)
tmp0 = tl.load(in_out_ptr0 + (r5 + (8192*x4)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (r3 + (8*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = triton_helpers.welford_reduce(
tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r5 + (8192*x4)), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(
tmp6_mean, tmp6_m2, tmp6_weight, 1
)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8 = tmp8_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp6, xmask)
tl.store(out_ptr1 + (x4), tmp7, xmask)
tl.store(out_ptr2 + (x4), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ju/cju62i74gfmdx53v4lnd7mu7x3nyiciyzoujwy77wxulerqf5lxw.py
# Topologically Sorted Source Nodes: [embeddings_dec3_1], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# embeddings_dec3_1 => add_11, rsqrt_5, var_mean_5
# Graph fragment:
# %var_mean_5 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_10, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_10, 1e-05), kwargs = {})
# %rsqrt_5 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_11,), kwargs = {})
triton_per_fused_native_group_norm_8 = async_compile.triton('triton_per_fused_native_group_norm_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (4*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + (4*x0)), xmask, other=0.0)
tmp2 = tl.load(in_ptr2 + (r1 + (4*x0)), xmask, other=0.0)
tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp3, 0)
tmp8 = tl.where(xmask, tmp4, 0)
tmp9 = tl.where(xmask, tmp5, 0)
tmp10, tmp11, tmp12 = triton_helpers.welford(tmp7, tmp8, tmp9, 1)
tmp13 = tmp10[:, None]
tmp14 = tmp11[:, None]
tmp15 = tmp12[:, None]
tmp16 = 32768.0
tmp17 = tmp14 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tl.store(out_ptr2 + (x0), tmp20, xmask)
tl.store(out_ptr0 + (x0), tmp13, xmask)
tl.store(out_ptr1 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/js/cjsniinegjeab4t6o2dzahqda54fwwdq26icaiad3pa6gax5k2kk.py
# Topologically Sorted Source Nodes: [embeddings_dec3_1], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# embeddings_dec3_1 => add_12, mul_13
# Graph fragment:
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, %unsqueeze_35), kwargs = {})
# %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_13, %unsqueeze_32), kwargs = {})
triton_poi_fused_native_group_norm_9 = async_compile.triton('triton_poi_fused_native_group_norm_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x2 = (xindex // 32768)
x1 = (xindex // 1024) % 32
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp3 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + (x1), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tmp2 - tmp3
tmp6 = 32768.0
tmp7 = tmp5 / tmp6
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp4 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/kr/ckrnm6cfksazxqsbwiyb2rvpsysnin6kdzqtsfumjfnpom6mboml.py
# Topologically Sorted Source Nodes: [conv_transpose2d_3, reconstructed], Original ATen: [aten.convolution, aten.sigmoid]
# Source node to ATen node mapping:
# conv_transpose2d_3 => convolution_8
# reconstructed => sigmoid
# Graph fragment:
# %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_12, %primals_30, %primals_31, [2, 2], [3, 3], [1, 1], True, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_8,), kwargs = {})
triton_poi_fused_convolution_sigmoid_10 = async_compile.triton('triton_poi_fused_convolution_sigmoid_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (16, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (16, ), (1, ))
assert_size_stride(primals_8, (16, ), (1, ))
assert_size_stride(primals_9, (16, ), (1, ))
assert_size_stride(primals_10, (32, 16, 4, 4), (256, 16, 4, 1))
assert_size_stride(primals_11, (32, ), (1, ))
assert_size_stride(primals_12, (32, ), (1, ))
assert_size_stride(primals_13, (32, ), (1, ))
assert_size_stride(primals_14, (16, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_15, (16, ), (1, ))
assert_size_stride(primals_16, (16, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_17, (16, ), (1, ))
assert_size_stride(primals_18, (16, 32, 8, 8), (2048, 64, 8, 1))
assert_size_stride(primals_19, (32, ), (1, ))
assert_size_stride(primals_20, (32, ), (1, ))
assert_size_stride(primals_21, (32, ), (1, ))
assert_size_stride(primals_22, (32, 64, 8, 8), (4096, 64, 8, 1))
assert_size_stride(primals_23, (64, ), (1, ))
assert_size_stride(primals_24, (64, ), (1, ))
assert_size_stride(primals_25, (64, ), (1, ))
assert_size_stride(primals_26, (64, 32, 8, 8), (2048, 64, 8, 1))
assert_size_stride(primals_27, (32, ), (1, ))
assert_size_stride(primals_28, (32, ), (1, ))
assert_size_stride(primals_29, (32, ), (1, ))
assert_size_stride(primals_30, (32, 1, 8, 8), (64, 64, 8, 1))
assert_size_stride(primals_31, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 32, 32), (4096, 1024, 32, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf5 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32)
buf6 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, embeddings_enc0_1], Original ATen: [aten.convolution, aten.native_group_norm]
stream0 = get_raw_stream(0)
triton_red_fused_convolution_native_group_norm_0.run(buf1, primals_2, primals_4, primals_5, buf2, buf5, buf6, 4, 4096, grid=grid(4), stream=stream0)
del primals_2
del primals_5
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf5, primals_6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 16, 16, 16), (4096, 256, 16, 1))
buf8 = buf7; del buf7 # reuse
buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf12 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.float32)
buf13 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, embeddings_enc1_1], Original ATen: [aten.convolution, aten.native_group_norm]
triton_red_fused_convolution_native_group_norm_1.run(buf8, primals_7, primals_8, primals_9, buf9, buf12, buf13, 4, 4096, grid=grid(4), stream=stream0)
del primals_7
del primals_9
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf12, primals_10, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 32, 8, 8), (2048, 64, 8, 1))
buf15 = buf14; del buf14 # reuse
buf16 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf19 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.float32)
buf20 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_2, embeddings_enc2_1], Original ATen: [aten.convolution, aten.native_group_norm]
triton_red_fused_convolution_native_group_norm_2.run(buf15, primals_11, primals_12, primals_13, buf16, buf19, buf20, 4, 2048, grid=grid(4), stream=stream0)
del primals_11
del primals_13
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.convolution]
buf21 = extern_kernels.convolution(buf19, primals_14, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 16, 4, 4), (256, 16, 4, 1))
# Topologically Sorted Source Nodes: [log_var], Original ATen: [aten.convolution]
buf23 = extern_kernels.convolution(buf19, primals_16, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 16, 4, 4), (256, 16, 4, 1))
# Topologically Sorted Source Nodes: [eps], Original ATen: [aten.randn_like]
buf25 = torch.ops.aten.randn.default([4, 16, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf26 = buf25
del buf25
buf22 = buf21; del buf21 # reuse
buf24 = buf23; del buf23 # reuse
buf27 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mu, log_var, mul, std, mul_1, sample], Original ATen: [aten.convolution, aten.mul, aten.exp, aten.add]
triton_poi_fused_add_convolution_exp_mul_3.run(buf22, buf24, primals_15, primals_17, buf26, buf27, 1024, grid=grid(1024), stream=stream0)
del primals_15
del primals_17
# Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution]
buf28 = extern_kernels.convolution(buf27, primals_18, stride=(2, 2), padding=(3, 3), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 32, 8, 8), (2048, 64, 8, 1))
buf29 = buf28; del buf28 # reuse
buf30 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf33 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.float32)
buf34 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv_transpose2d, embeddings_dec1_1], Original ATen: [aten.convolution, aten.native_group_norm]
triton_red_fused_convolution_native_group_norm_2.run(buf29, primals_19, primals_20, primals_21, buf30, buf33, buf34, 4, 2048, grid=grid(4), stream=stream0)
del primals_19
del primals_21
# Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution]
buf35 = extern_kernels.convolution(buf33, primals_22, stride=(2, 2), padding=(3, 3), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 64, 16, 16), (16384, 256, 16, 1))
buf36 = buf35; del buf35 # reuse
buf37 = empty_strided_cuda((4, 1, 1, 1, 2), (2, 8, 8, 8, 1), torch.float32)
buf38 = empty_strided_cuda((4, 1, 1, 1, 2), (2, 8, 8, 8, 1), torch.float32)
buf39 = empty_strided_cuda((4, 1, 1, 1, 2), (2, 8, 8, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv_transpose2d_1, embeddings_dec2_1], Original ATen: [aten.convolution, aten.native_group_norm]
triton_red_fused_convolution_native_group_norm_4.run(buf36, primals_23, buf37, buf38, buf39, 8, 8192, grid=grid(8), stream=stream0)
del primals_23
buf40 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf41 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf44 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [embeddings_dec2_1], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_5.run(buf37, buf38, buf39, buf40, buf41, buf44, 4, 2, grid=grid(4), stream=stream0)
del buf37
del buf38
del buf39
buf43 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [embeddings_dec2_1], Original ATen: [aten.native_group_norm]
triton_poi_fused_native_group_norm_6.run(buf36, buf40, buf41, primals_24, primals_25, buf43, 65536, grid=grid(65536), stream=stream0)
del primals_25
# Topologically Sorted Source Nodes: [conv_transpose2d_2], Original ATen: [aten.convolution]
buf45 = extern_kernels.convolution(buf43, primals_26, stride=(2, 2), padding=(3, 3), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf45, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf46 = buf45; del buf45 # reuse
buf47 = empty_strided_cuda((4, 1, 1, 1, 4), (4, 16, 16, 16, 1), torch.float32)
buf48 = empty_strided_cuda((4, 1, 1, 1, 4), (4, 16, 16, 16, 1), torch.float32)
buf49 = empty_strided_cuda((4, 1, 1, 1, 4), (4, 16, 16, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv_transpose2d_2, embeddings_dec3_1], Original ATen: [aten.convolution, aten.native_group_norm]
triton_red_fused_convolution_native_group_norm_7.run(buf46, primals_27, buf47, buf48, buf49, 16, 8192, grid=grid(16), stream=stream0)
del primals_27
buf50 = buf41; del buf41 # reuse
buf51 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf54 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [embeddings_dec3_1], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_8.run(buf47, buf48, buf49, buf50, buf51, buf54, 4, 4, grid=grid(4), stream=stream0)
del buf47
del buf48
del buf49
buf53 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [embeddings_dec3_1], Original ATen: [aten.native_group_norm]
triton_poi_fused_native_group_norm_9.run(buf46, buf50, buf51, primals_28, primals_29, buf53, 131072, grid=grid(131072), stream=stream0)
del buf51
del primals_29
# Topologically Sorted Source Nodes: [conv_transpose2d_3], Original ATen: [aten.convolution]
buf55 = extern_kernels.convolution(buf53, primals_30, stride=(2, 2), padding=(3, 3), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf55, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf56 = buf55; del buf55 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d_3, reconstructed], Original ATen: [aten.convolution, aten.sigmoid]
triton_poi_fused_convolution_sigmoid_10.run(buf56, primals_31, 16384, grid=grid(16384), stream=stream0)
del primals_31
return (buf56, buf22, buf24, buf27, buf12, buf43, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, buf1, buf5, reinterpret_tensor(buf2, (4, 1), (1, 1), 0), reinterpret_tensor(buf6, (4, 1), (1, 1), 0), buf8, buf12, reinterpret_tensor(buf9, (4, 1), (1, 1), 0), reinterpret_tensor(buf13, (4, 1), (1, 1), 0), buf15, buf19, reinterpret_tensor(buf16, (4, 1), (1, 1), 0), reinterpret_tensor(buf20, (4, 1), (1, 1), 0), buf24, buf26, buf27, buf29, buf33, reinterpret_tensor(buf30, (4, 1), (1, 1), 0), reinterpret_tensor(buf34, (4, 1), (1, 1), 0), buf36, buf43, reinterpret_tensor(buf40, (4, 1), (1, 1), 0), reinterpret_tensor(buf44, (4, 1), (1, 1), 0), buf46, buf53, reinterpret_tensor(buf50, (4, 1), (1, 1), 0), reinterpret_tensor(buf54, (4, 1), (1, 1), 0), buf56, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((32, 16, 4, 4), (256, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((16, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((16, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((16, 32, 8, 8), (2048, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((32, 64, 8, 8), (4096, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((64, 32, 8, 8), (2048, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((32, 1, 8, 8), (64, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class TextureFinder(nn.Module):
def __init__(self):
super(TextureFinder, self).__init__()
self.encoder_conv1 = nn.Conv2d(in_channels=1, out_channels=4,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_conv1.bias.data.zero_()
self.encoder_conv1.weight.data[:, :, :, :] = 1 / 0.32 + torch.normal(
mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.encoder_normalization1 = nn.GroupNorm(1, 4, eps=1e-05, affine=True
)
self.encoder_conv2 = nn.Conv2d(in_channels=4, out_channels=16,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_conv2.bias.data.zero_()
self.encoder_conv2.weight.data[:, :, :, :] = 1 / (8 * 16
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.encoder_normalization2 = nn.GroupNorm(1, 16, eps=1e-05, affine
=True)
self.encoder_conv3 = nn.Conv2d(in_channels=16, out_channels=32,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_conv3.bias.data.zero_()
self.encoder_conv3.weight.data[:, :, :, :] = 1 / (8 * 16
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
self.encoder_normalization3 = nn.GroupNorm(1, 32, eps=1e-05, affine
=True)
self.encoder_mu = nn.Conv2d(in_channels=32, out_channels=16,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_mu.bias.data.zero_()
self.encoder_mu.weight.data[:, :, :, :] = 1 / (8 * 16) + torch.normal(
mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.encoder_log_var = nn.Conv2d(in_channels=32, out_channels=16,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_log_var.bias.data[:] = -2.3
self.encoder_log_var.weight.data.zero_()
self.decoder_conv1 = nn.ConvTranspose2d(16, 32, kernel_size=8,
stride=2, padding=3)
self.decoder_conv1.bias.data.zero_()
self.decoder_conv1.weight.data[:, :, :, :] = 1 / (8 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.decoder_normalization1 = nn.GroupNorm(1, 32, eps=1e-05, affine
=True)
self.decoder_conv2 = nn.ConvTranspose2d(32, 64, kernel_size=8,
stride=2, padding=3, output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv2.bias.data.zero_()
self.decoder_conv2.weight.data[:, :, :, :] = 1 / (8 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.decoder_normalization2 = nn.GroupNorm(1, 64, eps=1e-05, affine
=True)
self.decoder_conv3 = nn.ConvTranspose2d(64, 32, kernel_size=8,
stride=2, padding=3, output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv3.bias.data.zero_()
self.decoder_conv3.weight.data[:, :, :, :] = 1 / (4 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
self.decoder_normalization3 = nn.GroupNorm(1, 32, eps=1e-05, affine
=True)
self.decoder_conv5 = nn.ConvTranspose2d(32, 1, kernel_size=8,
stride=2, padding=3, output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv5.bias.data[:] = -(0.5 / 0.24)
self.decoder_conv5.weight.data[:, :, :, :] = 1 / (32 * 8 * 8 * 0.24
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
def forward(self, input):
embeddings_enc0 = F.relu(self.encoder_conv1(input))
embeddings_enc0 = self.encoder_normalization1(embeddings_enc0)
embeddings_enc1 = F.relu(self.encoder_conv2(embeddings_enc0))
embeddings_enc1 = self.encoder_normalization2(embeddings_enc1)
embeddings_enc2 = F.relu(self.encoder_conv3(embeddings_enc1))
embeddings_enc2 = self.encoder_normalization3(embeddings_enc2)
mu = self.encoder_mu(embeddings_enc2)
log_var = self.encoder_log_var(embeddings_enc2)
sample = self.sample_from_mu_log_var(mu, log_var)
embeddings_dec1 = F.relu(self.decoder_conv1(sample, output_size=
embeddings_enc2.size()))
embeddings_dec1 = self.decoder_normalization1(embeddings_dec1)
embeddings_dec2 = F.relu(self.decoder_conv2(embeddings_dec1,
output_size=embeddings_enc1.size()))
embeddings_dec2 = self.decoder_normalization2(embeddings_dec2)
embeddings_dec3 = F.relu(self.decoder_conv3(embeddings_dec2,
output_size=embeddings_enc0.size()))
embeddings_dec3 = self.decoder_normalization3(embeddings_dec3)
reconstructed = F.sigmoid(self.decoder_conv5(embeddings_dec3,
output_size=input.size()))
return (reconstructed, mu, log_var, sample, embeddings_enc1,
embeddings_dec2)
def sample_from_mu_log_var(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
sample = mu + eps * std
return sample
def get_inputs():
return [torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch import device
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_red_fused_convolution_native_group_norm_0(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK:
tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 4
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = rindex // 1024
tmp0 = tl.load(in_out_ptr0 + (r3 + 4096 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = (triton_helpers.
welford_reduce(tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0)
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r3 + 4096 * x0), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(tmp6_mean,
tmp6_m2, tmp6_weight, 1)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8_tmp[:, None]
tl.store(out_ptr0 + x0, tmp6, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = rindex // 1024
tmp9 = tl.load(in_out_ptr0 + (r3 + 4096 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp19 = tl.load(in_ptr1 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp21 = tl.load(in_ptr2 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 - tmp6
tmp13 = 4096.0
tmp14 = tmp7 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp12 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tl.store(out_ptr2 + (r3 + 4096 * x0), tmp22, rmask & xmask)
tmp23 = 4096.0
tmp24 = tmp7 / tmp23
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = libdevice.rsqrt(tmp26)
tl.store(out_ptr3 + x0, tmp27, xmask)
@triton.jit
def triton_red_fused_convolution_native_group_norm_1(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK:
tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 4
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = rindex // 256
tmp0 = tl.load(in_out_ptr0 + (r3 + 4096 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = (triton_helpers.
welford_reduce(tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0)
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r3 + 4096 * x0), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(tmp6_mean,
tmp6_m2, tmp6_weight, 1)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8_tmp[:, None]
tl.store(out_ptr0 + x0, tmp6, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = rindex // 256
tmp9 = tl.load(in_out_ptr0 + (r3 + 4096 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp19 = tl.load(in_ptr1 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp21 = tl.load(in_ptr2 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 - tmp6
tmp13 = 4096.0
tmp14 = tmp7 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp12 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tl.store(out_ptr2 + (r3 + 4096 * x0), tmp22, rmask & xmask)
tmp23 = 4096.0
tmp24 = tmp7 / tmp23
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = libdevice.rsqrt(tmp26)
tl.store(out_ptr3 + x0, tmp27, xmask)
@triton.jit
def triton_red_fused_convolution_native_group_norm_2(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK:
tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 4
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = rindex // 64
tmp0 = tl.load(in_out_ptr0 + (r3 + 2048 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = (triton_helpers.
welford_reduce(tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0)
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r3 + 2048 * x0), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(tmp6_mean,
tmp6_m2, tmp6_weight, 1)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8_tmp[:, None]
tl.store(out_ptr0 + x0, tmp6, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r3 = rindex
r2 = rindex // 64
tmp9 = tl.load(in_out_ptr0 + (r3 + 2048 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp19 = tl.load(in_ptr1 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp21 = tl.load(in_ptr2 + r2, rmask, eviction_policy='evict_last',
other=0.0)
tmp10 = tl.full([1, 1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 - tmp6
tmp13 = 2048.0
tmp14 = tmp7 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp12 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tl.store(out_ptr2 + (r3 + 2048 * x0), tmp22, rmask & xmask)
tmp23 = 2048.0
tmp24 = tmp7 / tmp23
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = libdevice.rsqrt(tmp26)
tl.store(out_ptr3 + x0, tmp27, xmask)
@triton.jit
def triton_poi_fused_add_convolution_exp_mul_3(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + x3, xmask)
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp7 = 0.5
tmp8 = tmp5 * tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp6 * tmp9
tmp11 = tmp2 + tmp10
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(in_out_ptr1 + x3, tmp5, xmask)
tl.store(out_ptr0 + x3, tmp11, xmask)
@triton.jit
def triton_red_fused_convolution_native_group_norm_4(in_out_ptr0, in_ptr0,
out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr,
RBLOCK: tl.constexpr):
xnumel = 8
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x4 = xindex
x0 = xindex % 2
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r5 = rindex
r3 = rindex // 256
tmp0 = tl.load(in_out_ptr0 + (r5 + 8192 * x4), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (r3 + 32 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = (triton_helpers.
welford_reduce(tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0)
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r5 + 8192 * x4), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(tmp6_mean,
tmp6_m2, tmp6_weight, 1)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8 = tmp8_tmp[:, None]
tl.store(out_ptr0 + x4, tmp6, xmask)
tl.store(out_ptr1 + x4, tmp7, xmask)
tl.store(out_ptr2 + x4, tmp8, xmask)
@triton.jit
def triton_per_fused_native_group_norm_5(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 2 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 2 * x0), xmask, other=0.0)
tmp2 = tl.load(in_ptr2 + (r1 + 2 * x0), xmask, other=0.0)
tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp3, 0)
tmp8 = tl.where(xmask, tmp4, 0)
tmp9 = tl.where(xmask, tmp5, 0)
tmp10, tmp11, tmp12 = triton_helpers.welford(tmp7, tmp8, tmp9, 1)
tmp13 = tmp10[:, None]
tmp14 = tmp11[:, None]
tmp12[:, None]
tmp16 = 16384.0
tmp17 = tmp14 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tl.store(out_ptr2 + x0, tmp20, xmask)
tl.store(out_ptr0 + x0, tmp13, xmask)
tl.store(out_ptr1 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x2 = xindex // 16384
x1 = xindex // 256 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp3 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + x1, None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tmp2 - tmp3
tmp6 = 16384.0
tmp7 = tmp5 / tmp6
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp4 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_red_fused_convolution_native_group_norm_7(in_out_ptr0, in_ptr0,
out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr,
RBLOCK: tl.constexpr):
xnumel = 16
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x4 = xindex
x0 = xindex % 4
tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r5 = rindex
r3 = rindex // 1024
tmp0 = tl.load(in_out_ptr0 + (r5 + 8192 * x4), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (r3 + 8 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = (triton_helpers.
welford_reduce(tmp5, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0)
)
tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean)
tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2)
tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight)
tl.store(in_out_ptr0 + (r5 + 8192 * x4), tmp2, rmask & xmask)
tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(tmp6_mean,
tmp6_m2, tmp6_weight, 1)
tmp6 = tmp6_tmp[:, None]
tmp7 = tmp7_tmp[:, None]
tmp8 = tmp8_tmp[:, None]
tl.store(out_ptr0 + x4, tmp6, xmask)
tl.store(out_ptr1 + x4, tmp7, xmask)
tl.store(out_ptr2 + x4, tmp8, xmask)
@triton.jit
def triton_per_fused_native_group_norm_8(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 4 * x0), xmask, other=0.0)
tmp2 = tl.load(in_ptr2 + (r1 + 4 * x0), xmask, other=0.0)
tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp3, 0)
tmp8 = tl.where(xmask, tmp4, 0)
tmp9 = tl.where(xmask, tmp5, 0)
tmp10, tmp11, tmp12 = triton_helpers.welford(tmp7, tmp8, tmp9, 1)
tmp13 = tmp10[:, None]
tmp14 = tmp11[:, None]
tmp12[:, None]
tmp16 = 32768.0
tmp17 = tmp14 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tl.store(out_ptr2 + x0, tmp20, xmask)
tl.store(out_ptr0 + x0, tmp13, xmask)
tl.store(out_ptr1 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x2 = xindex // 32768
x1 = xindex // 1024 % 32
tmp0 = tl.load(in_ptr0 + x3, None)
tmp3 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + x1, None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tmp2 - tmp3
tmp6 = 32768.0
tmp7 = tmp5 / tmp6
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp4 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_convolution_sigmoid_10(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31) = args
args.clear()
assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (16, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (16,), (1,))
assert_size_stride(primals_8, (16,), (1,))
assert_size_stride(primals_9, (16,), (1,))
assert_size_stride(primals_10, (32, 16, 4, 4), (256, 16, 4, 1))
assert_size_stride(primals_11, (32,), (1,))
assert_size_stride(primals_12, (32,), (1,))
assert_size_stride(primals_13, (32,), (1,))
assert_size_stride(primals_14, (16, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_15, (16,), (1,))
assert_size_stride(primals_16, (16, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_17, (16,), (1,))
assert_size_stride(primals_18, (16, 32, 8, 8), (2048, 64, 8, 1))
assert_size_stride(primals_19, (32,), (1,))
assert_size_stride(primals_20, (32,), (1,))
assert_size_stride(primals_21, (32,), (1,))
assert_size_stride(primals_22, (32, 64, 8, 8), (4096, 64, 8, 1))
assert_size_stride(primals_23, (64,), (1,))
assert_size_stride(primals_24, (64,), (1,))
assert_size_stride(primals_25, (64,), (1,))
assert_size_stride(primals_26, (64, 32, 8, 8), (2048, 64, 8, 1))
assert_size_stride(primals_27, (32,), (1,))
assert_size_stride(primals_28, (32,), (1,))
assert_size_stride(primals_29, (32,), (1,))
assert_size_stride(primals_30, (32, 1, 8, 8), (64, 64, 8, 1))
assert_size_stride(primals_31, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 32, 32), (4096, 1024, 32, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf5 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
buf6 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
get_raw_stream(0)
triton_red_fused_convolution_native_group_norm_0[grid(4)](buf1,
primals_2, primals_4, primals_5, buf2, buf5, buf6, 4, 4096,
XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
del primals_2
del primals_5
buf7 = extern_kernels.convolution(buf5, primals_6, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 16, 16, 16), (4096, 256, 16, 1))
buf8 = buf7
del buf7
buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf12 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1),
torch.float32)
buf13 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
triton_red_fused_convolution_native_group_norm_1[grid(4)](buf8,
primals_7, primals_8, primals_9, buf9, buf12, buf13, 4, 4096,
XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
del primals_7
del primals_9
buf14 = extern_kernels.convolution(buf12, primals_10, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 32, 8, 8), (2048, 64, 8, 1))
buf15 = buf14
del buf14
buf16 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf19 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.
float32)
buf20 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
triton_red_fused_convolution_native_group_norm_2[grid(4)](buf15,
primals_11, primals_12, primals_13, buf16, buf19, buf20, 4,
2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
del primals_11
del primals_13
buf21 = extern_kernels.convolution(buf19, primals_14, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 16, 4, 4), (256, 16, 4, 1))
buf23 = extern_kernels.convolution(buf19, primals_16, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 16, 4, 4), (256, 16, 4, 1))
buf25 = torch.ops.aten.randn.default([4, 16, 4, 4], dtype=torch.
float32, device=device(type='cuda', index=0), pin_memory=False)
buf26 = buf25
del buf25
buf22 = buf21
del buf21
buf24 = buf23
del buf23
buf27 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.
float32)
triton_poi_fused_add_convolution_exp_mul_3[grid(1024)](buf22, buf24,
primals_15, primals_17, buf26, buf27, 1024, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_15
del primals_17
buf28 = extern_kernels.convolution(buf27, primals_18, stride=(2, 2),
padding=(3, 3), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 32, 8, 8), (2048, 64, 8, 1))
buf29 = buf28
del buf28
buf30 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf33 = empty_strided_cuda((4, 32, 8, 8), (2048, 64, 8, 1), torch.
float32)
buf34 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
triton_red_fused_convolution_native_group_norm_2[grid(4)](buf29,
primals_19, primals_20, primals_21, buf30, buf33, buf34, 4,
2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
del primals_19
del primals_21
buf35 = extern_kernels.convolution(buf33, primals_22, stride=(2, 2),
padding=(3, 3), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 64, 16, 16), (16384, 256, 16, 1))
buf36 = buf35
del buf35
buf37 = empty_strided_cuda((4, 1, 1, 1, 2), (2, 8, 8, 8, 1), torch.
float32)
buf38 = empty_strided_cuda((4, 1, 1, 1, 2), (2, 8, 8, 8, 1), torch.
float32)
buf39 = empty_strided_cuda((4, 1, 1, 1, 2), (2, 8, 8, 8, 1), torch.
float32)
triton_red_fused_convolution_native_group_norm_4[grid(8)](buf36,
primals_23, buf37, buf38, buf39, 8, 8192, XBLOCK=1, RBLOCK=2048,
num_warps=16, num_stages=1)
del primals_23
buf40 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf41 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf44 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
triton_per_fused_native_group_norm_5[grid(4)](buf37, buf38, buf39,
buf40, buf41, buf44, 4, 2, XBLOCK=1, num_warps=2, num_stages=1)
del buf37
del buf38
del buf39
buf43 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1),
torch.float32)
triton_poi_fused_native_group_norm_6[grid(65536)](buf36, buf40,
buf41, primals_24, primals_25, buf43, 65536, XBLOCK=512,
num_warps=4, num_stages=1)
del primals_25
buf45 = extern_kernels.convolution(buf43, primals_26, stride=(2, 2),
padding=(3, 3), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf45, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf46 = buf45
del buf45
buf47 = empty_strided_cuda((4, 1, 1, 1, 4), (4, 16, 16, 16, 1),
torch.float32)
buf48 = empty_strided_cuda((4, 1, 1, 1, 4), (4, 16, 16, 16, 1),
torch.float32)
buf49 = empty_strided_cuda((4, 1, 1, 1, 4), (4, 16, 16, 16, 1),
torch.float32)
triton_red_fused_convolution_native_group_norm_7[grid(16)](buf46,
primals_27, buf47, buf48, buf49, 16, 8192, XBLOCK=1, RBLOCK=
2048, num_warps=16, num_stages=1)
del primals_27
buf50 = buf41
del buf41
buf51 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf54 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
triton_per_fused_native_group_norm_8[grid(4)](buf47, buf48, buf49,
buf50, buf51, buf54, 4, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf47
del buf48
del buf49
buf53 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1),
torch.float32)
triton_poi_fused_native_group_norm_9[grid(131072)](buf46, buf50,
buf51, primals_28, primals_29, buf53, 131072, XBLOCK=512,
num_warps=8, num_stages=1)
del buf51
del primals_29
buf55 = extern_kernels.convolution(buf53, primals_30, stride=(2, 2),
padding=(3, 3), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf55, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf56 = buf55
del buf55
triton_poi_fused_convolution_sigmoid_10[grid(16384)](buf56,
primals_31, 16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_31
return (buf56, buf22, buf24, buf27, buf12, buf43, primals_1, primals_3,
primals_4, primals_6, primals_8, primals_10, primals_12, primals_14,
primals_16, primals_18, primals_20, primals_22, primals_24,
primals_26, primals_28, primals_30, buf1, buf5, reinterpret_tensor(
buf2, (4, 1), (1, 1), 0), reinterpret_tensor(buf6, (4, 1), (1, 1),
0), buf8, buf12, reinterpret_tensor(buf9, (4, 1), (1, 1), 0),
reinterpret_tensor(buf13, (4, 1), (1, 1), 0), buf15, buf19,
reinterpret_tensor(buf16, (4, 1), (1, 1), 0), reinterpret_tensor(
buf20, (4, 1), (1, 1), 0), buf24, buf26, buf27, buf29, buf33,
reinterpret_tensor(buf30, (4, 1), (1, 1), 0), reinterpret_tensor(
buf34, (4, 1), (1, 1), 0), buf36, buf43, reinterpret_tensor(buf40,
(4, 1), (1, 1), 0), reinterpret_tensor(buf44, (4, 1), (1, 1), 0),
buf46, buf53, reinterpret_tensor(buf50, (4, 1), (1, 1), 0),
reinterpret_tensor(buf54, (4, 1), (1, 1), 0), buf56)
class TextureFinderNew(nn.Module):
def __init__(self):
super(TextureFinderNew, self).__init__()
self.encoder_conv1 = nn.Conv2d(in_channels=1, out_channels=4,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_conv1.bias.data.zero_()
self.encoder_conv1.weight.data[:, :, :, :] = 1 / 0.32 + torch.normal(
mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.encoder_normalization1 = nn.GroupNorm(1, 4, eps=1e-05, affine=True
)
self.encoder_conv2 = nn.Conv2d(in_channels=4, out_channels=16,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_conv2.bias.data.zero_()
self.encoder_conv2.weight.data[:, :, :, :] = 1 / (8 * 16
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.encoder_normalization2 = nn.GroupNorm(1, 16, eps=1e-05, affine
=True)
self.encoder_conv3 = nn.Conv2d(in_channels=16, out_channels=32,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_conv3.bias.data.zero_()
self.encoder_conv3.weight.data[:, :, :, :] = 1 / (8 * 16
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
self.encoder_normalization3 = nn.GroupNorm(1, 32, eps=1e-05, affine
=True)
self.encoder_mu = nn.Conv2d(in_channels=32, out_channels=16,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_mu.bias.data.zero_()
self.encoder_mu.weight.data[:, :, :, :] = 1 / (8 * 16) + torch.normal(
mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.encoder_log_var = nn.Conv2d(in_channels=32, out_channels=16,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_log_var.bias.data[:] = -2.3
self.encoder_log_var.weight.data.zero_()
self.decoder_conv1 = nn.ConvTranspose2d(16, 32, kernel_size=8,
stride=2, padding=3)
self.decoder_conv1.bias.data.zero_()
self.decoder_conv1.weight.data[:, :, :, :] = 1 / (8 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.decoder_normalization1 = nn.GroupNorm(1, 32, eps=1e-05, affine
=True)
self.decoder_conv2 = nn.ConvTranspose2d(32, 64, kernel_size=8,
stride=2, padding=3, output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv2.bias.data.zero_()
self.decoder_conv2.weight.data[:, :, :, :] = 1 / (8 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.decoder_normalization2 = nn.GroupNorm(1, 64, eps=1e-05, affine
=True)
self.decoder_conv3 = nn.ConvTranspose2d(64, 32, kernel_size=8,
stride=2, padding=3, output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv3.bias.data.zero_()
self.decoder_conv3.weight.data[:, :, :, :] = 1 / (4 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
self.decoder_normalization3 = nn.GroupNorm(1, 32, eps=1e-05, affine
=True)
self.decoder_conv5 = nn.ConvTranspose2d(32, 1, kernel_size=8,
stride=2, padding=3, output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv5.bias.data[:] = -(0.5 / 0.24)
self.decoder_conv5.weight.data[:, :, :, :] = 1 / (32 * 8 * 8 * 0.24
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
def sample_from_mu_log_var(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
sample = mu + eps * std
return sample
def forward(self, input_0):
primals_1 = self.encoder_conv1.weight
primals_2 = self.encoder_conv1.bias
primals_4 = self.encoder_normalization1.weight
primals_5 = self.encoder_normalization1.bias
primals_6 = self.encoder_conv2.weight
primals_7 = self.encoder_conv2.bias
primals_8 = self.encoder_normalization2.weight
primals_9 = self.encoder_normalization2.bias
primals_10 = self.encoder_conv3.weight
primals_11 = self.encoder_conv3.bias
primals_12 = self.encoder_normalization3.weight
primals_13 = self.encoder_normalization3.bias
primals_14 = self.encoder_mu.weight
primals_15 = self.encoder_mu.bias
primals_16 = self.encoder_log_var.weight
primals_17 = self.encoder_log_var.bias
primals_18 = self.decoder_conv1.weight
primals_19 = self.decoder_conv1.bias
primals_20 = self.decoder_normalization1.weight
primals_21 = self.decoder_normalization1.bias
primals_22 = self.decoder_conv2.weight
primals_23 = self.decoder_conv2.bias
primals_24 = self.decoder_normalization2.weight
primals_25 = self.decoder_normalization2.bias
primals_26 = self.decoder_conv3.weight
primals_27 = self.decoder_conv3.bias
primals_28 = self.decoder_normalization3.weight
primals_29 = self.decoder_normalization3.bias
primals_30 = self.decoder_conv5.weight
primals_31 = self.decoder_conv5.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31])
return output[0], output[1], output[2], output[3], output[4], output[5]
| paucarre/staal | TextureFinder | false | 4,142 | [
"MIT"
] | 0 | 1635e514f0ed978a08c078afd258980bcb6f0cec | https://github.com/paucarre/staal/tree/1635e514f0ed978a08c078afd258980bcb6f0cec | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.encoder_conv1 = nn.Conv2d(in_channels=1, out_channels=4,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_conv1.bias.data.zero_()
self.encoder_conv1.weight.data[:, :, :, :] = 1 / 0.32 + torch.normal(
mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.encoder_normalization1 = nn.GroupNorm(1, 4, eps=1e-05, affine=True
)
self.encoder_conv2 = nn.Conv2d(in_channels=4, out_channels=16,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_conv2.bias.data.zero_()
self.encoder_conv2.weight.data[:, :, :, :] = 1 / (8 * 16
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.encoder_normalization2 = nn.GroupNorm(1, 16, eps=1e-05, affine
=True)
self.encoder_conv3 = nn.Conv2d(in_channels=16, out_channels=32,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_conv3.bias.data.zero_()
self.encoder_conv3.weight.data[:, :, :, :] = 1 / (8 * 16
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
self.encoder_normalization3 = nn.GroupNorm(1, 32, eps=1e-05, affine
=True)
self.encoder_mu = nn.Conv2d(in_channels=32, out_channels=16,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_mu.bias.data.zero_()
self.encoder_mu.weight.data[:, :, :, :] = 1 / (8 * 16) + torch.normal(
mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.encoder_log_var = nn.Conv2d(in_channels=32, out_channels=16,
kernel_size=4, stride=2, padding=1, dilation=1, groups=1, bias=True
)
self.encoder_log_var.bias.data[:] = -2.3
self.encoder_log_var.weight.data.zero_()
self.decoder_conv1 = nn.ConvTranspose2d(16, 32, kernel_size=8,
stride=2, padding=3)
self.decoder_conv1.bias.data.zero_()
self.decoder_conv1.weight.data[:, :, :, :] = 1 / (8 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.decoder_normalization1 = nn.GroupNorm(1, 32, eps=1e-05, affine
=True)
self.decoder_conv2 = nn.ConvTranspose2d(32, 64, kernel_size=8,
stride=2, padding=3, output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv2.bias.data.zero_()
self.decoder_conv2.weight.data[:, :, :, :] = 1 / (8 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.0001))
self.decoder_normalization2 = nn.GroupNorm(1, 64, eps=1e-05, affine
=True)
self.decoder_conv3 = nn.ConvTranspose2d(64, 32, kernel_size=8,
stride=2, padding=3, output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv3.bias.data.zero_()
self.decoder_conv3.weight.data[:, :, :, :] = 1 / (4 * 8 * 8
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
self.decoder_normalization3 = nn.GroupNorm(1, 32, eps=1e-05, affine
=True)
self.decoder_conv5 = nn.ConvTranspose2d(32, 1, kernel_size=8,
stride=2, padding=3, output_padding=0, groups=1, bias=True,
dilation=1)
self.decoder_conv5.bias.data[:] = -(0.5 / 0.24)
self.decoder_conv5.weight.data[:, :, :, :] = 1 / (32 * 8 * 8 * 0.24
) + torch.normal(mean=torch.tensor(0.0), std=torch.tensor(0.001))
def forward(self, input):
embeddings_enc0 = F.relu(self.encoder_conv1(input))
embeddings_enc0 = self.encoder_normalization1(embeddings_enc0)
embeddings_enc1 = F.relu(self.encoder_conv2(embeddings_enc
# ... truncated (>4000 chars) for memory efficiency |
C3D | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/2q/c2qsph7yuvd4qrjdx7qhitc2tkim3pjng4rqgufiypesenwycnhv.py
# Topologically Sorted Source Nodes: [conv3d, h], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv3d => convolution
# h => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1, 1], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[67108864],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 67108864
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 262144) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/eu/ceuil3ionjy5idiy2xjrrzjxcgrg2fvxv4ss4ir6tq6ujzy4reaj.py
# Topologically Sorted Source Nodes: [conv3d_1, h_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv3d_1 => convolution_1
# h_2 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1, 1], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[33554432],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 33554432
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 65536) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/nn/cnn7hqqmtvi4uqysugefq7m5ihityrhrm67vilpt5jxdaxwfcfpi.py
# Topologically Sorted Source Nodes: [conv3d_2, h_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv3d_2 => convolution_2
# h_4 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1, 1], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8388608
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 8192) % 256
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ak/cako5owywlvsqzbhtqdpp4mnk6y5rgiwicwor2sud27i4p2v7h4b.py
# Topologically Sorted Source Nodes: [conv3d_4, h_7], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv3d_4 => convolution_4
# h_7 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_10, %primals_11, [1, 1, 1], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2097152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 512
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2m/c2mlcrdzpklk4uu7woynsfes6p6r456zqy544wvawz5m7bdynwhk.py
# Topologically Sorted Source Nodes: [conv3d_6, h_10], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv3d_6 => convolution_6
# h_10 => relu_6
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_14, %primals_15, [1, 1, 1], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
# %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 128) % 512
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7f/c7fsm76ekzbme3x3pcwji4sqrwbua2jjzyzs4f75qcr3ojbocfpn.py
# Topologically Sorted Source Nodes: [h_14], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# h_14 => relu_8
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_19), kwargs = {})
# %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 36864
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 4096
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ci/ccicdznor3tpnzoknsctuog6zgbstipaqm2gru3jze4dyyxeyem7.py
# Topologically Sorted Source Nodes: [h_16], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# h_16 => relu_9
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_21), kwargs = {})
# %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_6 = async_compile.triton('triton_poi_fused_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 9216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qv/cqv5xnzrwboufcidxxxwfv4m7lbtkceulydrckonqpx3wdgp3j5z.py
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# probs => amax, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
triton_poi_fused__softmax_7 = async_compile.triton('triton_poi_fused__softmax_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 9
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (5*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (5*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (5*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (5*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (5*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp0 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp1 - tmp8
tmp12 = tl_math.exp(tmp11)
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp8
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/up/cupmrnkfsawgfxio5beefkxtolreysogyueupq7s3otlegmkpytq.py
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# probs => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_8 = async_compile.triton('triton_poi_fused__softmax_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 45
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 5)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp3 / tmp4
tl.store(in_out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 = args
args.clear()
assert_size_stride(primals_1, (64, 3, 3, 3, 3), (81, 27, 9, 3, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64, 64), (786432, 262144, 4096, 64, 1))
assert_size_stride(primals_4, (128, 64, 3, 3, 3), (1728, 27, 9, 3, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (256, 128, 3, 3, 3), (3456, 27, 9, 3, 1))
assert_size_stride(primals_7, (256, ), (1, ))
assert_size_stride(primals_8, (256, 256, 3, 3, 3), (6912, 27, 9, 3, 1))
assert_size_stride(primals_9, (256, ), (1, ))
assert_size_stride(primals_10, (512, 256, 3, 3, 3), (6912, 27, 9, 3, 1))
assert_size_stride(primals_11, (512, ), (1, ))
assert_size_stride(primals_12, (512, 512, 3, 3, 3), (13824, 27, 9, 3, 1))
assert_size_stride(primals_13, (512, ), (1, ))
assert_size_stride(primals_14, (512, 512, 3, 3, 3), (13824, 27, 9, 3, 1))
assert_size_stride(primals_15, (512, ), (1, ))
assert_size_stride(primals_16, (512, 512, 3, 3, 3), (13824, 27, 9, 3, 1))
assert_size_stride(primals_17, (512, ), (1, ))
assert_size_stride(primals_18, (4096, 8192), (8192, 1))
assert_size_stride(primals_19, (4096, ), (1, ))
assert_size_stride(primals_20, (1024, 4096), (4096, 1))
assert_size_stride(primals_21, (1024, ), (1, ))
assert_size_stride(primals_22, (5, 1024), (1024, 1))
assert_size_stride(primals_23, (5, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 64, 64, 64), (16777216, 262144, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv3d, h], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 67108864, grid=grid(67108864), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.max_pool3d_with_indices]
buf2 = torch.ops.aten.max_pool3d_with_indices.default(buf1, [1, 2, 2], [1, 2, 2])
buf3 = buf2[0]
buf4 = buf2[1]
del buf2
# Topologically Sorted Source Nodes: [conv3d_1], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 128, 64, 32, 32), (8388608, 65536, 1024, 32, 1))
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [conv3d_1, h_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf6, primals_5, 33554432, grid=grid(33554432), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.max_pool3d_with_indices]
buf7 = torch.ops.aten.max_pool3d_with_indices.default(buf6, [2, 2, 2], [2, 2, 2])
buf8 = buf7[0]
buf9 = buf7[1]
del buf7
# Topologically Sorted Source Nodes: [conv3d_2], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf8, primals_6, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 256, 32, 16, 16), (2097152, 8192, 256, 16, 1))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [conv3d_2, h_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf11, primals_7, 8388608, grid=grid(8388608), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv3d_3], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_8, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 256, 32, 16, 16), (2097152, 8192, 256, 16, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [conv3d_3, h_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf13, primals_9, 8388608, grid=grid(8388608), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [h_6], Original ATen: [aten.max_pool3d_with_indices]
buf14 = torch.ops.aten.max_pool3d_with_indices.default(buf13, [2, 2, 2], [2, 2, 2])
buf15 = buf14[0]
buf16 = buf14[1]
del buf14
# Topologically Sorted Source Nodes: [conv3d_4], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf15, primals_10, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 512, 16, 8, 8), (524288, 1024, 64, 8, 1))
buf18 = buf17; del buf17 # reuse
# Topologically Sorted Source Nodes: [conv3d_4, h_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf18, primals_11, 2097152, grid=grid(2097152), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv3d_5], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf18, primals_12, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 512, 16, 8, 8), (524288, 1024, 64, 8, 1))
buf20 = buf19; del buf19 # reuse
# Topologically Sorted Source Nodes: [conv3d_5, h_8], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf20, primals_13, 2097152, grid=grid(2097152), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [h_9], Original ATen: [aten.max_pool3d_with_indices]
buf21 = torch.ops.aten.max_pool3d_with_indices.default(buf20, [2, 2, 2], [2, 2, 2])
buf22 = buf21[0]
buf23 = buf21[1]
del buf21
# Topologically Sorted Source Nodes: [conv3d_6], Original ATen: [aten.convolution]
buf24 = extern_kernels.convolution(buf22, primals_14, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 512, 8, 4, 4), (65536, 128, 16, 4, 1))
buf25 = buf24; del buf24 # reuse
# Topologically Sorted Source Nodes: [conv3d_6, h_10], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf25, primals_15, 262144, grid=grid(262144), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [conv3d_7], Original ATen: [aten.convolution]
buf26 = extern_kernels.convolution(buf25, primals_16, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 512, 8, 4, 4), (65536, 128, 16, 4, 1))
buf27 = buf26; del buf26 # reuse
# Topologically Sorted Source Nodes: [conv3d_7, h_11], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf27, primals_17, 262144, grid=grid(262144), stream=stream0)
del primals_17
# Topologically Sorted Source Nodes: [h_12], Original ATen: [aten.max_pool3d_with_indices]
buf28 = torch.ops.aten.max_pool3d_with_indices.default(buf27, [2, 2, 2], [2, 2, 2], [0, 1, 1])
buf29 = buf28[0]
buf30 = buf28[1]
del buf28
buf31 = empty_strided_cuda((9, 4096), (4096, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf29, (9, 8192), (8192, 1), 0), reinterpret_tensor(primals_18, (8192, 4096), (1, 8192), 0), out=buf31)
buf32 = buf31; del buf31 # reuse
# Topologically Sorted Source Nodes: [h_14], Original ATen: [aten.relu]
triton_poi_fused_relu_5.run(buf32, primals_19, 36864, grid=grid(36864), stream=stream0)
del primals_19
buf33 = empty_strided_cuda((9, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf32, reinterpret_tensor(primals_20, (4096, 1024), (1, 4096), 0), out=buf33)
buf34 = buf33; del buf33 # reuse
# Topologically Sorted Source Nodes: [h_16], Original ATen: [aten.relu]
triton_poi_fused_relu_6.run(buf34, primals_21, 9216, grid=grid(9216), stream=stream0)
del primals_21
buf35 = empty_strided_cuda((9, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_23, buf34, reinterpret_tensor(primals_22, (1024, 5), (1, 1024), 0), alpha=1, beta=1, out=buf35)
del primals_23
buf36 = empty_strided_cuda((9, 1), (1, 9), torch.float32)
buf37 = empty_strided_cuda((9, 1), (1, 9), torch.float32)
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
triton_poi_fused__softmax_7.run(buf35, buf36, buf37, 9, grid=grid(9), stream=stream0)
buf38 = buf35; del buf35 # reuse
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
triton_poi_fused__softmax_8.run(buf38, buf36, buf37, 45, grid=grid(45), stream=stream0)
del buf36
del buf37
return (buf38, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, buf1, buf3, buf4, buf6, buf8, buf9, buf11, buf13, buf15, buf16, buf18, buf20, buf22, buf23, buf25, buf27, buf30, reinterpret_tensor(buf29, (9, 8192), (8192, 1), 0), buf32, buf34, buf38, primals_22, primals_20, primals_18, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64, 64), (786432, 262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 64, 3, 3, 3), (1728, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, 128, 3, 3, 3), (3456, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, 256, 3, 3, 3), (6912, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((512, 256, 3, 3, 3), (6912, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((512, 512, 3, 3, 3), (13824, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((512, 512, 3, 3, 3), (13824, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((512, 512, 3, 3, 3), (13824, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4096, 8192), (8192, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((1024, 4096), (4096, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((5, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn
class C3D(nn.Module):
"""
The C3D network as described in [1].
"""
def __init__(self):
super(C3D, self).__init__()
self.conv1 = nn.Conv3d(3, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool1 = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2))
self.conv2 = nn.Conv3d(64, 128, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.pool2 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv3a = nn.Conv3d(128, 256, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.conv3b = nn.Conv3d(256, 256, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.pool3 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv4a = nn.Conv3d(256, 512, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.conv4b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.pool4 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv5a = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.conv5b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.pool5 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2),
padding=(0, 1, 1))
self.fc6 = nn.Linear(8192, 4096)
self.fc7 = nn.Linear(4096, 1024)
self.fc8 = nn.Linear(1024, 5)
self.dropout = nn.Dropout(p=0.5)
self.relu = nn.ReLU()
self.softmax = nn.Softmax()
def forward(self, x):
h = self.relu(self.conv1(x))
h = self.pool1(h)
h = self.relu(self.conv2(h))
h = self.pool2(h)
h = self.relu(self.conv3a(h))
h = self.relu(self.conv3b(h))
h = self.pool3(h)
h = self.relu(self.conv4a(h))
h = self.relu(self.conv4b(h))
h = self.pool4(h)
h = self.relu(self.conv5a(h))
h = self.relu(self.conv5b(h))
h = self.pool5(h)
h = h.view(-1, 8192)
h = self.relu(self.fc6(h))
h = self.dropout(h)
h = self.relu(self.fc7(h))
h = self.dropout(h)
logits = self.fc8(h)
probs = self.softmax(logits)
return probs
def get_inputs():
return [torch.rand([4, 3, 64, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 262144 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 65536 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 8192 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 512
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 128 % 512
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 4096
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 9216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 9
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 5 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 5 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 5 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 5 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + 5 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp0 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp1 - tmp8
tmp12 = tl_math.exp(tmp11)
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp8
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp22, xmask)
@triton.jit
def triton_poi_fused__softmax_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 45
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 5
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp3 / tmp4
tl.store(in_out_ptr0 + x2, tmp5, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22, primals_23
) = args
args.clear()
assert_size_stride(primals_1, (64, 3, 3, 3, 3), (81, 27, 9, 3, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64, 64), (786432, 262144, 4096,
64, 1))
assert_size_stride(primals_4, (128, 64, 3, 3, 3), (1728, 27, 9, 3, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (256, 128, 3, 3, 3), (3456, 27, 9, 3, 1))
assert_size_stride(primals_7, (256,), (1,))
assert_size_stride(primals_8, (256, 256, 3, 3, 3), (6912, 27, 9, 3, 1))
assert_size_stride(primals_9, (256,), (1,))
assert_size_stride(primals_10, (512, 256, 3, 3, 3), (6912, 27, 9, 3, 1))
assert_size_stride(primals_11, (512,), (1,))
assert_size_stride(primals_12, (512, 512, 3, 3, 3), (13824, 27, 9, 3, 1))
assert_size_stride(primals_13, (512,), (1,))
assert_size_stride(primals_14, (512, 512, 3, 3, 3), (13824, 27, 9, 3, 1))
assert_size_stride(primals_15, (512,), (1,))
assert_size_stride(primals_16, (512, 512, 3, 3, 3), (13824, 27, 9, 3, 1))
assert_size_stride(primals_17, (512,), (1,))
assert_size_stride(primals_18, (4096, 8192), (8192, 1))
assert_size_stride(primals_19, (4096,), (1,))
assert_size_stride(primals_20, (1024, 4096), (4096, 1))
assert_size_stride(primals_21, (1024,), (1,))
assert_size_stride(primals_22, (5, 1024), (1024, 1))
assert_size_stride(primals_23, (5,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 64, 64, 64), (16777216, 262144,
4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(67108864)](buf1, primals_2,
67108864, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = torch.ops.aten.max_pool3d_with_indices.default(buf1, [1, 2,
2], [1, 2, 2])
buf3 = buf2[0]
buf4 = buf2[1]
del buf2
buf5 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1, 1),
padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 128, 64, 32, 32), (8388608, 65536,
1024, 32, 1))
buf6 = buf5
del buf5
triton_poi_fused_convolution_relu_1[grid(33554432)](buf6, primals_5,
33554432, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf7 = torch.ops.aten.max_pool3d_with_indices.default(buf6, [2, 2,
2], [2, 2, 2])
buf8 = buf7[0]
buf9 = buf7[1]
del buf7
buf10 = extern_kernels.convolution(buf8, primals_6, stride=(1, 1, 1
), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 256, 32, 16, 16), (2097152, 8192, 256,
16, 1))
buf11 = buf10
del buf10
triton_poi_fused_convolution_relu_2[grid(8388608)](buf11, primals_7,
8388608, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf12 = extern_kernels.convolution(buf11, primals_8, stride=(1, 1,
1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 256, 32, 16, 16), (2097152, 8192, 256,
16, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_relu_2[grid(8388608)](buf13, primals_9,
8388608, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_9
buf14 = torch.ops.aten.max_pool3d_with_indices.default(buf13, [2, 2,
2], [2, 2, 2])
buf15 = buf14[0]
buf16 = buf14[1]
del buf14
buf17 = extern_kernels.convolution(buf15, primals_10, stride=(1, 1,
1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 512, 16, 8, 8), (524288, 1024, 64, 8, 1))
buf18 = buf17
del buf17
triton_poi_fused_convolution_relu_3[grid(2097152)](buf18,
primals_11, 2097152, XBLOCK=512, num_warps=8, num_stages=1)
del primals_11
buf19 = extern_kernels.convolution(buf18, primals_12, stride=(1, 1,
1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 512, 16, 8, 8), (524288, 1024, 64, 8, 1))
buf20 = buf19
del buf19
triton_poi_fused_convolution_relu_3[grid(2097152)](buf20,
primals_13, 2097152, XBLOCK=512, num_warps=8, num_stages=1)
del primals_13
buf21 = torch.ops.aten.max_pool3d_with_indices.default(buf20, [2, 2,
2], [2, 2, 2])
buf22 = buf21[0]
buf23 = buf21[1]
del buf21
buf24 = extern_kernels.convolution(buf22, primals_14, stride=(1, 1,
1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 512, 8, 4, 4), (65536, 128, 16, 4, 1))
buf25 = buf24
del buf24
triton_poi_fused_convolution_relu_4[grid(262144)](buf25, primals_15,
262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_15
buf26 = extern_kernels.convolution(buf25, primals_16, stride=(1, 1,
1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 512, 8, 4, 4), (65536, 128, 16, 4, 1))
buf27 = buf26
del buf26
triton_poi_fused_convolution_relu_4[grid(262144)](buf27, primals_17,
262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_17
buf28 = torch.ops.aten.max_pool3d_with_indices.default(buf27, [2, 2,
2], [2, 2, 2], [0, 1, 1])
buf29 = buf28[0]
buf30 = buf28[1]
del buf28
buf31 = empty_strided_cuda((9, 4096), (4096, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf29, (9, 8192), (8192, 1), 0
), reinterpret_tensor(primals_18, (8192, 4096), (1, 8192), 0),
out=buf31)
buf32 = buf31
del buf31
triton_poi_fused_relu_5[grid(36864)](buf32, primals_19, 36864,
XBLOCK=512, num_warps=4, num_stages=1)
del primals_19
buf33 = empty_strided_cuda((9, 1024), (1024, 1), torch.float32)
extern_kernels.mm(buf32, reinterpret_tensor(primals_20, (4096, 1024
), (1, 4096), 0), out=buf33)
buf34 = buf33
del buf33
triton_poi_fused_relu_6[grid(9216)](buf34, primals_21, 9216, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_21
buf35 = empty_strided_cuda((9, 5), (5, 1), torch.float32)
extern_kernels.addmm(primals_23, buf34, reinterpret_tensor(
primals_22, (1024, 5), (1, 1024), 0), alpha=1, beta=1, out=buf35)
del primals_23
buf36 = empty_strided_cuda((9, 1), (1, 9), torch.float32)
buf37 = empty_strided_cuda((9, 1), (1, 9), torch.float32)
triton_poi_fused__softmax_7[grid(9)](buf35, buf36, buf37, 9, XBLOCK
=16, num_warps=1, num_stages=1)
buf38 = buf35
del buf35
triton_poi_fused__softmax_8[grid(45)](buf38, buf36, buf37, 45,
XBLOCK=64, num_warps=1, num_stages=1)
del buf36
del buf37
return (buf38, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, primals_16, buf1, buf3, buf4,
buf6, buf8, buf9, buf11, buf13, buf15, buf16, buf18, buf20, buf22,
buf23, buf25, buf27, buf30, reinterpret_tensor(buf29, (9, 8192), (
8192, 1), 0), buf32, buf34, buf38, primals_22, primals_20, primals_18)
class C3DNew(nn.Module):
"""
The C3D network as described in [1].
"""
def __init__(self):
super(C3DNew, self).__init__()
self.conv1 = nn.Conv3d(3, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool1 = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2))
self.conv2 = nn.Conv3d(64, 128, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.pool2 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv3a = nn.Conv3d(128, 256, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.conv3b = nn.Conv3d(256, 256, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.pool3 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv4a = nn.Conv3d(256, 512, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.conv4b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.pool4 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv5a = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.conv5b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.pool5 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2),
padding=(0, 1, 1))
self.fc6 = nn.Linear(8192, 4096)
self.fc7 = nn.Linear(4096, 1024)
self.fc8 = nn.Linear(1024, 5)
self.dropout = nn.Dropout(p=0.5)
self.relu = nn.ReLU()
self.softmax = nn.Softmax()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3a.weight
primals_7 = self.conv3a.bias
primals_8 = self.conv3b.weight
primals_9 = self.conv3b.bias
primals_10 = self.conv4a.weight
primals_11 = self.conv4a.bias
primals_12 = self.conv4b.weight
primals_13 = self.conv4b.bias
primals_14 = self.conv5a.weight
primals_15 = self.conv5a.bias
primals_16 = self.conv5b.weight
primals_17 = self.conv5b.bias
primals_18 = self.fc6.weight
primals_19 = self.fc6.bias
primals_20 = self.fc7.weight
primals_21 = self.fc7.bias
primals_22 = self.fc8.weight
primals_23 = self.fc8.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23])
return output[0]
| kar98kbang/c3d-pytorch | C3D | false | 4,143 | [
"MIT"
] | 0 | 22b3564798cb9249ad6fdb6c9d929bff3fdfa567 | https://github.com/kar98kbang/c3d-pytorch/tree/22b3564798cb9249ad6fdb6c9d929bff3fdfa567 | import torch
import torch.nn as nn
import torch.nn
class Model(nn.Module):
"""
The C3D network as described in [1].
"""
def __init__(self):
super().__init__()
self.conv1 = nn.Conv3d(3, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool1 = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2))
self.conv2 = nn.Conv3d(64, 128, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.pool2 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv3a = nn.Conv3d(128, 256, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.conv3b = nn.Conv3d(256, 256, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.pool3 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv4a = nn.Conv3d(256, 512, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.conv4b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.pool4 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv5a = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.conv5b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1,
1, 1))
self.pool5 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2),
padding=(0, 1, 1))
self.fc6 = nn.Linear(8192, 4096)
self.fc7 = nn.Linear(4096, 1024)
self.fc8 = nn.Linear(1024, 5)
self.dropout = nn.Dropout(p=0.5)
self.relu = nn.ReLU()
self.softmax = nn.Softmax()
def forward(self, x):
h = self.relu(self.conv1(x))
h = self.pool1(h)
h = self.relu(self.conv2(h))
h = self.pool2(h)
h = self.relu(self.conv3a(h))
h = self.relu(self.conv3b(h))
h = self.pool3(h)
h = self.relu(self.conv4a(h))
h = self.relu(self.conv4b(h))
h = self.pool4(h)
h = self.relu(self.conv5a(h))
h = self.relu(self.conv5b(h))
h = self.pool5(h)
h = h.view(-1, 8192)
h = self.relu(self.fc6(h))
h = self.dropout(h)
h = self.relu(self.fc7(h))
h = self.dropout(h)
logits = self.fc8(h)
probs = self.softmax(logits)
return probs
def get_inputs():
return [torch.rand([4, 3, 64, 64, 64])]
def get_init_inputs():
return []
|
Model | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/up/cupulppb6gntt36vlwmxuai5yj6kvwpdqsf65wjj4wwaeiqznte5.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128, 32], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 96
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (75*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/wv/cwvtp6qflpb42kxrujmda5zselv7wvkz3fgp2tryo2ftsisaildr.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = (yindex // 32)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/nw/cnwm6ljuusoqjcwr2jdx6p2ue7ldghxjdr3oe62stiuqhsboiczy.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/3q/c3qvez2r77ch5iao37cjwlxkfudhougiy5mgqj2rvlssb3674oac.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (256*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xy/cxywlc5r7yjtvyou6fnlzzrsjbhsl4cdxvkd2j2aju5ypjqzjikm.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = (yindex // 32)
tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (32*x2) + (128*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qg/cqgqogb4lwpfoqoswtiz32gg4efy32v3otqyngp3ck4aeneajlnf.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_6 = async_compile.triton('triton_poi_fused_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 96
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (12*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/y3/cy3xrwxmzmyk4g65n6gzgqgvggt3lrm3fshyrrdpesep27vduud4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_7 = async_compile.triton('triton_poi_fused_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 32], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 9
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (75*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/el/celqbsdsjxlddag7kjqbw4d5toctpvgvmvgovoiq22oi7t5i4jvk.py
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# relu => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/gp/cgpvvejckghowgzeeyhfktvtsqg74ypo62by3zzolnnftiizlmpi.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_9 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32) % 32
x2 = (xindex // 1024)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1) + (4096*x2)), None)
tmp1 = tl.load(in_ptr0 + (32 + x0 + (64*x1) + (4096*x2)), None)
tmp3 = tl.load(in_ptr0 + (2048 + x0 + (64*x1) + (4096*x2)), None)
tmp5 = tl.load(in_ptr0 + (2080 + x0 + (64*x1) + (4096*x2)), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3), tmp6, None)
tl.store(out_ptr1 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qw/cqwycqejlggbdughmquwm6rxcsjq4dwoau5elbk6fdgcnbtliu57.py
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# relu_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/oq/coqnmiaaxfaytqqkczz5hddycgzx5ow7lbhb7anxngxrtgalhak2.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_1 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_11 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 64
x1 = (xindex // 64) % 16
x2 = (xindex // 1024)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (4096*x2)), None)
tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (4096*x2)), None)
tmp3 = tl.load(in_ptr0 + (2048 + x0 + (128*x1) + (4096*x2)), None)
tmp5 = tl.load(in_ptr0 + (2112 + x0 + (128*x1) + (4096*x2)), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3), tmp6, None)
tl.store(out_ptr1 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/a3/ca36vxxdl7qqwkvm3ezqsuwwpl63uvtumybk6caxtxh2fqpxetu2.py
# Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# relu_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_12 = async_compile.triton('triton_poi_fused_convolution_relu_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/56/c562il346j2mgaxawbxdoxhsm567diaor7s2gysw44ifytybqpgw.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_2 => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_13 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = (xindex // 128) % 8
x2 = (xindex // 1024)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (256*x1) + (4096*x2)), None)
tmp1 = tl.load(in_ptr0 + (128 + x0 + (256*x1) + (4096*x2)), None)
tmp3 = tl.load(in_ptr0 + (2048 + x0 + (256*x1) + (4096*x2)), None)
tmp5 = tl.load(in_ptr0 + (2176 + x0 + (256*x1) + (4096*x2)), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3), tmp6, None)
tl.store(out_ptr1 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/jj/cjjitaudcaledjzrcursnpke66knbupppk5hbp6cdjvonpk4ka43.py
# Topologically Sorted Source Nodes: [conv_transpose2d, x_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv_transpose2d => convolution_3
# x_3 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_8, %primals_9, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_relu_14 = async_compile.triton('triton_poi_fused_convolution_relu_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/mr/cmrlyjesfnl2cyxpoui2ueuu7sfgrmyzoeg43em24cljantixmef.py
# Topologically Sorted Source Nodes: [conv_transpose2d_1, x_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv_transpose2d_1 => convolution_4
# x_4 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_relu_15 = async_compile.triton('triton_poi_fused_convolution_relu_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qj/cqjp6kwl6wji55hwruohge4jf7wjo3odvmw4apb52dwfkrxbib2o.py
# Topologically Sorted Source Nodes: [conv_transpose2d_2, x_5], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv_transpose2d_2 => convolution_5
# x_5 => relu_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_12, %primals_13, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {})
triton_poi_fused_convolution_relu_16 = async_compile.triton('triton_poi_fused_convolution_relu_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_16', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 3
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/4s/c4strxbrgkugf4lu35y6x722zdhmj7hkj2freubl4dituddyp4jr.py
# Topologically Sorted Source Nodes: [conv2d_3, x_6], Original ATen: [aten.convolution, aten.sigmoid]
# Source node to ATen node mapping:
# conv2d_3 => convolution_6
# x_6 => sigmoid
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_14, %primals_15, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_6,), kwargs = {})
triton_poi_fused_convolution_sigmoid_17 = async_compile.triton('triton_poi_fused_convolution_sigmoid_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_17(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 3
y1 = (yindex // 3)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (3*x2) + (12288*y1)), ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(out_ptr0 + (x2 + (4096*y3)), tmp3, ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (32, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (128, 64, 2, 2), (256, 4, 2, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (64, 32, 2, 2), (128, 4, 2, 1))
assert_size_stride(primals_11, (32, ), (1, ))
assert_size_stride(primals_12, (32, 3, 2, 2), (12, 4, 2, 1))
assert_size_stride(primals_13, (3, ), (1, ))
assert_size_stride(primals_14, (3, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_15, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((32, 3, 5, 5), (75, 1, 15, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 96, 25, grid=grid(96, 25), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_4, buf2, 2048, 9, grid=grid(2048, 9), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_6, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0)
del primals_6
buf4 = empty_strided_cuda((128, 64, 2, 2), (256, 1, 128, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_8, buf4, 8192, 4, grid=grid(8192, 4), stream=stream0)
del primals_8
buf5 = empty_strided_cuda((64, 32, 2, 2), (128, 1, 64, 32), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_10, buf5, 2048, 4, grid=grid(2048, 4), stream=stream0)
del primals_10
buf6 = empty_strided_cuda((32, 3, 2, 2), (12, 1, 6, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_6.run(primals_12, buf6, 96, 4, grid=grid(96, 4), stream=stream0)
del primals_12
buf7 = empty_strided_cuda((3, 3, 5, 5), (75, 1, 15, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_7.run(primals_14, buf7, 9, 25, grid=grid(9, 25), stream=stream0)
del primals_14
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 32, 64, 64), (131072, 1, 2048, 32))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_8.run(buf9, primals_2, 524288, grid=grid(524288), stream=stream0)
del primals_2
buf10 = empty_strided_cuda((4, 32, 32, 32), (32768, 1, 1024, 32), torch.float32)
buf11 = empty_strided_cuda((4, 32, 32, 32), (32768, 1, 1024, 32), torch.int8)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_9.run(buf9, buf10, buf11, 131072, grid=grid(131072), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf10, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 64, 32, 32), (65536, 1, 2048, 64))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_10.run(buf13, primals_5, 262144, grid=grid(262144), stream=stream0)
del primals_5
buf14 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.float32)
buf15 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.int8)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_11.run(buf13, buf14, buf15, 65536, grid=grid(65536), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf14, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 128, 16, 16), (32768, 1, 2048, 128))
buf17 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_12.run(buf17, primals_7, 131072, grid=grid(131072), stream=stream0)
del primals_7
buf18 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.float32)
buf19 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.int8)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_13.run(buf17, buf18, buf19, 32768, grid=grid(32768), stream=stream0)
# Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution]
buf20 = extern_kernels.convolution(buf18, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 64, 16, 16), (16384, 1, 1024, 64))
buf21 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d, x_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_14.run(buf21, primals_9, 65536, grid=grid(65536), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf21, buf5, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 32, 32, 32), (32768, 1, 1024, 32))
buf23 = buf22; del buf22 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d_1, x_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_15.run(buf23, primals_11, 131072, grid=grid(131072), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv_transpose2d_2], Original ATen: [aten.convolution]
buf24 = extern_kernels.convolution(buf23, buf6, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 3, 64, 64), (12288, 1, 192, 3))
buf25 = buf24; del buf24 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d_2, x_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf25, primals_13, 49152, grid=grid(49152), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf26 = extern_kernels.convolution(buf25, buf7, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 3, 64, 64), (12288, 1, 192, 3))
buf27 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_3, x_6], Original ATen: [aten.convolution, aten.sigmoid]
triton_poi_fused_convolution_sigmoid_17.run(buf26, primals_15, buf27, 12, 4096, grid=grid(12, 4096), stream=stream0)
del buf26
del primals_15
return (buf27, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf9, buf10, buf11, buf13, buf14, buf15, buf17, buf18, buf19, buf21, buf23, buf25, buf27, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, 64, 2, 2), (256, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, 32, 2, 2), (128, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((32, 3, 2, 2), (12, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((3, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""conv. autoencoder"""
def __init__(self):
"""constructor"""
super().__init__()
self.conv1 = nn.Conv2d(3, 32, 5, padding=2)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
self.deconv1 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.deconv2 = nn.ConvTranspose2d(64, 32, 2, stride=2)
self.deconv3 = nn.ConvTranspose2d(32, 3, 2, stride=2)
self.conv4 = nn.Conv2d(3, 3, 5, padding=2)
def forward(self, x):
"""forward prop."""
x = F.max_pool2d(F.relu(self.conv1(x)), 2)
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = F.max_pool2d(F.relu(self.conv3(x)), 2)
x = F.relu(self.deconv1(x))
x = F.relu(self.deconv2(x))
x = F.relu(self.deconv3(x))
x = torch.sigmoid(self.conv4(x))
return x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 96
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 75 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 256 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 32 * x2 + 128 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 96
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 9
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 75 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32 % 32
x2 = xindex // 1024
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1 + 4096 * x2), None)
tmp1 = tl.load(in_ptr0 + (32 + x0 + 64 * x1 + 4096 * x2), None)
tmp3 = tl.load(in_ptr0 + (2048 + x0 + 64 * x1 + 4096 * x2), None)
tmp5 = tl.load(in_ptr0 + (2080 + x0 + 64 * x1 + 4096 * x2), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 64
x1 = xindex // 64 % 16
x2 = xindex // 1024
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 4096 * x2), None)
tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 4096 * x2), None)
tmp3 = tl.load(in_ptr0 + (2048 + x0 + 128 * x1 + 4096 * x2), None)
tmp5 = tl.load(in_ptr0 + (2112 + x0 + 128 * x1 + 4096 * x2), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = xindex // 128 % 8
x2 = xindex // 1024
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 256 * x1 + 4096 * x2), None)
tmp1 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 4096 * x2), None)
tmp3 = tl.load(in_ptr0 + (2048 + x0 + 256 * x1 + 4096 * x2), None)
tmp5 = tl.load(in_ptr0 + (2176 + x0 + 256 * x1 + 4096 * x2), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 3
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_sigmoid_17(in_ptr0, in_ptr1, out_ptr0,
ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 3
y1 = yindex // 3
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 3 * x2 + 12288 * y1), ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(out_ptr0 + (x2 + 4096 * y3), tmp3, ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (32, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (128, 64, 2, 2), (256, 4, 2, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (64, 32, 2, 2), (128, 4, 2, 1))
assert_size_stride(primals_11, (32,), (1,))
assert_size_stride(primals_12, (32, 3, 2, 2), (12, 4, 2, 1))
assert_size_stride(primals_13, (3,), (1,))
assert_size_stride(primals_14, (3, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_15, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((32, 3, 5, 5), (75, 1, 15, 3), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(96, 25)](primals_1, buf0, 96, 25, XBLOCK=32,
YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch
.float32)
triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.
float32)
triton_poi_fused_2[grid(2048, 9)](primals_4, buf2, 2048, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
triton_poi_fused_3[grid(8192, 9)](primals_6, buf3, 8192, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((128, 64, 2, 2), (256, 1, 128, 64), torch
.float32)
triton_poi_fused_4[grid(8192, 4)](primals_8, buf4, 8192, 4, XBLOCK=
4, YBLOCK=256, num_warps=4, num_stages=1)
del primals_8
buf5 = empty_strided_cuda((64, 32, 2, 2), (128, 1, 64, 32), torch.
float32)
triton_poi_fused_5[grid(2048, 4)](primals_10, buf5, 2048, 4, XBLOCK
=4, YBLOCK=256, num_warps=4, num_stages=1)
del primals_10
buf6 = empty_strided_cuda((32, 3, 2, 2), (12, 1, 6, 3), torch.float32)
triton_poi_fused_6[grid(96, 4)](primals_12, buf6, 96, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
del primals_12
buf7 = empty_strided_cuda((3, 3, 5, 5), (75, 1, 15, 3), torch.float32)
triton_poi_fused_7[grid(9, 25)](primals_14, buf7, 9, 25, XBLOCK=32,
YBLOCK=16, num_warps=4, num_stages=1)
del primals_14
buf8 = extern_kernels.convolution(buf1, buf0, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 32, 64, 64), (131072, 1, 2048, 32))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_8[grid(524288)](buf9, primals_2,
524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf10 = empty_strided_cuda((4, 32, 32, 32), (32768, 1, 1024, 32),
torch.float32)
buf11 = empty_strided_cuda((4, 32, 32, 32), (32768, 1, 1024, 32),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_9[grid(131072)](buf9,
buf10, buf11, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
buf12 = extern_kernels.convolution(buf10, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 64, 32, 32), (65536, 1, 2048, 64))
buf13 = buf12
del buf12
triton_poi_fused_convolution_relu_10[grid(262144)](buf13, primals_5,
262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf14 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64),
torch.float32)
buf15 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_11[grid(65536)](buf13,
buf14, buf15, 65536, XBLOCK=256, num_warps=4, num_stages=1)
buf16 = extern_kernels.convolution(buf14, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 128, 16, 16), (32768, 1, 2048, 128))
buf17 = buf16
del buf16
triton_poi_fused_convolution_relu_12[grid(131072)](buf17, primals_7,
131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf18 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128),
torch.float32)
buf19 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_13[grid(32768)](buf17,
buf18, buf19, 32768, XBLOCK=128, num_warps=4, num_stages=1)
buf20 = extern_kernels.convolution(buf18, buf4, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 64, 16, 16), (16384, 1, 1024, 64))
buf21 = buf20
del buf20
triton_poi_fused_convolution_relu_14[grid(65536)](buf21, primals_9,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_9
buf22 = extern_kernels.convolution(buf21, buf5, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 32, 32, 32), (32768, 1, 1024, 32))
buf23 = buf22
del buf22
triton_poi_fused_convolution_relu_15[grid(131072)](buf23,
primals_11, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_11
buf24 = extern_kernels.convolution(buf23, buf6, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 3, 64, 64), (12288, 1, 192, 3))
buf25 = buf24
del buf24
triton_poi_fused_convolution_relu_16[grid(49152)](buf25, primals_13,
49152, XBLOCK=512, num_warps=4, num_stages=1)
del primals_13
buf26 = extern_kernels.convolution(buf25, buf7, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 3, 64, 64), (12288, 1, 192, 3))
buf27 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.float32)
triton_poi_fused_convolution_sigmoid_17[grid(12, 4096)](buf26,
primals_15, buf27, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4,
num_stages=1)
del buf26
del primals_15
return (buf27, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf9,
buf10, buf11, buf13, buf14, buf15, buf17, buf18, buf19, buf21,
buf23, buf25, buf27)
class ModelNew(nn.Module):
"""conv. autoencoder"""
def __init__(self):
"""constructor"""
super().__init__()
self.conv1 = nn.Conv2d(3, 32, 5, padding=2)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
self.deconv1 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.deconv2 = nn.ConvTranspose2d(64, 32, 2, stride=2)
self.deconv3 = nn.ConvTranspose2d(32, 3, 2, stride=2)
self.conv4 = nn.Conv2d(3, 3, 5, padding=2)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.deconv1.weight
primals_9 = self.deconv1.bias
primals_10 = self.deconv2.weight
primals_11 = self.deconv2.bias
primals_12 = self.deconv3.weight
primals_13 = self.deconv3.bias
primals_14 = self.conv4.weight
primals_15 = self.conv4.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0]
| positivevaib/semi-supervised-imagenet-classification | Model | false | 4,144 | [
"MIT"
] | 0 | 4fb6427f5a72951c1b866a1ddbc2599811bb5770 | https://github.com/positivevaib/semi-supervised-imagenet-classification/tree/4fb6427f5a72951c1b866a1ddbc2599811bb5770 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""conv. autoencoder"""
def __init__(self):
"""constructor"""
super().__init__()
self.conv1 = nn.Conv2d(3, 32, 5, padding=2)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
self.deconv1 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.deconv2 = nn.ConvTranspose2d(64, 32, 2, stride=2)
self.deconv3 = nn.ConvTranspose2d(32, 3, 2, stride=2)
self.conv4 = nn.Conv2d(3, 3, 5, padding=2)
def forward(self, x):
"""forward prop."""
x = F.max_pool2d(F.relu(self.conv1(x)), 2)
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = F.max_pool2d(F.relu(self.conv3(x)), 2)
x = F.relu(self.deconv1(x))
x = F.relu(self.deconv2(x))
x = F.relu(self.deconv3(x))
x = torch.sigmoid(self.conv4(x))
return x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return []
|
ActorCritic | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/fx/cfxps376igbkryk2lanm5jwyrbfuksiuiuxrcratrmpdcqvdaycx.py
# Topologically Sorted Source Nodes: [sigmoid, h], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# h => mul
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = tl.sigmoid(tmp0)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ku/ckukyw44hxxcrcpyqqe6auljaf54daimtcs6kbykg5nkqzpxqi7c.py
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# mu => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/fo/cfokpftmldsexreegxi6jmjfkfwgfgugc72bfkdjsgjhcwbxqwag.py
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.softplus]
# Source node to ATen node mapping:
# v => exp, gt, log1p, where
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_10,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_10, 20), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %primals_10, %log1p), kwargs = {})
triton_poi_fused_softplus_2 = async_compile.triton('triton_poi_fused_softplus_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_softplus_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7o/c7odor2xtxsyvv6duux4o5xbldvy42fccrtkirxlbr5xr4ofxjwr.py
# Topologically Sorted Source Nodes: [sub], Original ATen: [aten.sub]
# Source node to ATen node mapping:
# sub => sub
# Graph fragment:
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%normal, %tanh), kwargs = {})
triton_poi_fused_sub_3 = async_compile.triton('triton_poi_fused_sub_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sub_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_out_ptr0 + (x0), xmask)
tmp2 = tmp0 - tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6k/c6kgopng2xuunijnoz74xntvx5nogelmdave3tib3w36gkhulir3.py
# Topologically Sorted Source Nodes: [var, mul_2], Original ATen: [aten.pow, aten.mul]
# Source node to ATen node mapping:
# mul_2 => mul_2
# var => pow_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%expand, 2), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 2), kwargs = {})
triton_poi_fused_mul_pow_4 = async_compile.triton('triton_poi_fused_mul_pow_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_pow_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_pow_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp2 = 2.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/r6/cr6brqnyiqylhmfjnpwhu3ecauqtnligkrymgj4q2q2mxoq43igw.py
# Topologically Sorted Source Nodes: [log_scale, pow_2, neg, truediv, sub_1, log_prob, log_prob_1, add, entropy], Original ATen: [aten.log, aten.pow, aten.neg, aten.div, aten.sub, aten.sum, aten.add]
# Source node to ATen node mapping:
# add => add
# entropy => sum_2
# log_prob => sub_2
# log_prob_1 => sum_1
# log_scale => log
# neg => neg
# pow_2 => pow_2
# sub_1 => sub_1
# truediv => div
# Graph fragment:
# %log : [num_users=2] = call_function[target=torch.ops.aten.log.default](args = (%expand,), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_2,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, %mul_2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %log), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, 0.9189385332046727), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub_2, [-1]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log, 1.4189385332046727), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add, [-1]), kwargs = {})
triton_poi_fused_add_div_log_neg_pow_sub_sum_5 = async_compile.triton('triton_poi_fused_add_div_log_neg_pow_sub_sum_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_log_neg_pow_sub_sum_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_log_neg_pow_sub_sum_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp11 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (1))
tmp17 = tl.broadcast_to(tmp16, [XBLOCK])
tmp22 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr2 + (2))
tmp28 = tl.broadcast_to(tmp27, [XBLOCK])
tmp33 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr2 + (3))
tmp39 = tl.broadcast_to(tmp38, [XBLOCK])
tmp1 = tmp0 * tmp0
tmp2 = -tmp1
tmp4 = tmp2 / tmp3
tmp7 = tl_math.log(tmp6)
tmp8 = tmp4 - tmp7
tmp9 = 0.9189385332046727
tmp10 = tmp8 - tmp9
tmp12 = tmp11 * tmp11
tmp13 = -tmp12
tmp15 = tmp13 / tmp14
tmp18 = tl_math.log(tmp17)
tmp19 = tmp15 - tmp18
tmp20 = tmp19 - tmp9
tmp21 = tmp10 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = -tmp23
tmp26 = tmp24 / tmp25
tmp29 = tl_math.log(tmp28)
tmp30 = tmp26 - tmp29
tmp31 = tmp30 - tmp9
tmp32 = tmp21 + tmp31
tmp34 = tmp33 * tmp33
tmp35 = -tmp34
tmp37 = tmp35 / tmp36
tmp40 = tl_math.log(tmp39)
tmp41 = tmp37 - tmp40
tmp42 = tmp41 - tmp9
tmp43 = tmp32 + tmp42
tmp44 = 1.4189385332046727
tmp45 = tmp7 + tmp44
tmp46 = tmp18 + tmp44
tmp47 = tmp45 + tmp46
tmp48 = tmp29 + tmp44
tmp49 = tmp47 + tmp48
tmp50 = tmp40 + tmp44
tmp51 = tmp49 + tmp50
tl.store(out_ptr0 + (x0), tmp43, xmask)
tl.store(out_ptr1 + (x0), tmp51, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (4, 64), (64, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (1, 64), (64, 1))
assert_size_stride(primals_9, (1, ), (1, ))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, h], Original ATen: [aten.sigmoid, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0.run(buf0, buf1, 4096, grid=grid(4096), stream=stream0)
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid_1, h_1], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_0.run(buf2, buf3, 4096, grid=grid(4096), stream=stream0)
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 1), (1, 64), 0), alpha=1, beta=1, out=buf6)
del primals_9
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf4, buf7, 256, grid=grid(256), stream=stream0)
buf8 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.softplus]
triton_poi_fused_softplus_2.run(primals_10, buf8, 4, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [mu, actions], Original ATen: [aten.tanh, aten.normal]
buf9 = torch.ops.aten.normal.Tensor_Tensor(buf7, reinterpret_tensor(buf8, (4, 4, 4, 4), (0, 0, 0, 1), 0))
buf10 = buf9
del buf9
buf11 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [sub], Original ATen: [aten.sub]
triton_poi_fused_sub_3.run(buf11, buf10, 256, grid=grid(256), stream=stream0)
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [var, mul_2], Original ATen: [aten.pow, aten.mul]
triton_poi_fused_mul_pow_4.run(buf8, buf12, 256, grid=grid(256), stream=stream0)
buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_scale, pow_2, neg, truediv, sub_1, log_prob, log_prob_1, add, entropy], Original ATen: [aten.log, aten.pow, aten.neg, aten.div, aten.sub, aten.sum, aten.add]
triton_poi_fused_add_div_log_neg_pow_sub_sum_5.run(buf11, buf12, buf8, buf13, buf14, 64, grid=grid(64), stream=stream0)
del buf8
return (buf10, buf13, buf14, reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0), primals_10, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (64, 64), (64, 1), 0), buf2, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), buf4, buf11, buf12, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
def swish(x):
return x * F.sigmoid(x)
class ActorCritic(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=64,
fc2_units=64):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
"""
super().__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.actor_fc = nn.Linear(fc2_units, action_size)
self.critic_fc = nn.Linear(fc2_units, 1)
self.std = nn.Parameter(torch.zeros(action_size))
def forward(self, state, actions=None):
"""Build a network that maps state -> actions mu."""
h = swish(self.fc1(state))
h = swish(self.fc2(h))
mu = F.tanh(self.actor_fc(h))
values = self.critic_fc(h).squeeze(-1)
dist = torch.distributions.Normal(mu, F.softplus(self.std))
if actions is None:
actions = dist.sample()
log_prob = dist.log_prob(actions)
log_prob = torch.sum(log_prob, dim=-1)
entropy = torch.sum(dist.entropy(), dim=-1)
return actions, log_prob, entropy, values
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn.functional as F
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = tl.sigmoid(tmp0)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_poi_fused_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_poi_fused_softplus_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_sub_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_out_ptr0 + x0, xmask)
tmp2 = tmp0 - tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_pow_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp2 = 2.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_add_div_log_neg_pow_sub_sum_5(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp11 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr2 + 1)
tmp17 = tl.broadcast_to(tmp16, [XBLOCK])
tmp22 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp27 = tl.load(in_ptr2 + 2)
tmp28 = tl.broadcast_to(tmp27, [XBLOCK])
tmp33 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp36 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp38 = tl.load(in_ptr2 + 3)
tmp39 = tl.broadcast_to(tmp38, [XBLOCK])
tmp1 = tmp0 * tmp0
tmp2 = -tmp1
tmp4 = tmp2 / tmp3
tmp7 = tl_math.log(tmp6)
tmp8 = tmp4 - tmp7
tmp9 = 0.9189385332046727
tmp10 = tmp8 - tmp9
tmp12 = tmp11 * tmp11
tmp13 = -tmp12
tmp15 = tmp13 / tmp14
tmp18 = tl_math.log(tmp17)
tmp19 = tmp15 - tmp18
tmp20 = tmp19 - tmp9
tmp21 = tmp10 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = -tmp23
tmp26 = tmp24 / tmp25
tmp29 = tl_math.log(tmp28)
tmp30 = tmp26 - tmp29
tmp31 = tmp30 - tmp9
tmp32 = tmp21 + tmp31
tmp34 = tmp33 * tmp33
tmp35 = -tmp34
tmp37 = tmp35 / tmp36
tmp40 = tl_math.log(tmp39)
tmp41 = tmp37 - tmp40
tmp42 = tmp41 - tmp9
tmp43 = tmp32 + tmp42
tmp44 = 1.4189385332046727
tmp45 = tmp7 + tmp44
tmp46 = tmp18 + tmp44
tmp47 = tmp45 + tmp46
tmp48 = tmp29 + tmp44
tmp49 = tmp47 + tmp48
tmp50 = tmp40 + tmp44
tmp51 = tmp49 + tmp50
tl.store(out_ptr0 + x0, tmp43, xmask)
tl.store(out_ptr1 + x0, tmp51, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (4, 64), (64, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (1, 64), (64, 1))
assert_size_stride(primals_9, (1,), (1,))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0[grid(4096)](buf0, buf1, 4096, XBLOCK
=128, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0
), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.
float32)
triton_poi_fused_mul_sigmoid_0[grid(4096)](buf2, buf3, 4096, XBLOCK
=128, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf3, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_8, (64, 1), (1, 64), 0),
alpha=1, beta=1, out=buf6)
del primals_9
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_tanh_1[grid(256)](buf4, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf8 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_softplus_2[grid(4)](primals_10, buf8, 4, XBLOCK=4,
num_warps=1, num_stages=1)
buf9 = torch.ops.aten.normal.Tensor_Tensor(buf7, reinterpret_tensor
(buf8, (4, 4, 4, 4), (0, 0, 0, 1), 0))
buf10 = buf9
del buf9
buf11 = buf7
del buf7
triton_poi_fused_sub_3[grid(256)](buf11, buf10, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_pow_4[grid(256)](buf8, buf12, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_log_neg_pow_sub_sum_5[grid(64)](buf11,
buf12, buf8, buf13, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1
)
del buf8
return buf10, buf13, buf14, reinterpret_tensor(buf6, (4, 4, 4), (16, 4,
1), 0), primals_10, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0, reinterpret_tensor(buf1, (64, 64), (64, 1), 0
), buf2, reinterpret_tensor(buf3, (64, 64), (64, 1), 0
), buf4, buf11, buf12, primals_8, primals_6, primals_4
def swish(x):
return x * F.sigmoid(x)
class ActorCriticNew(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=64,
fc2_units=64):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
"""
super().__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.actor_fc = nn.Linear(fc2_units, action_size)
self.critic_fc = nn.Linear(fc2_units, 1)
self.std = nn.Parameter(torch.zeros(action_size))
def forward(self, input_0):
primals_7 = self.std
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.actor_fc.weight
primals_10 = self.actor_fc.bias
primals_8 = self.critic_fc.weight
primals_9 = self.critic_fc.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0], output[1], output[2], output[3]
| postBG/deep-reinforcement-learning | ActorCritic | false | 4,145 | [
"MIT"
] | 0 | 5df5662b091c4c3f00beba1aa6f9ce8a52001c93 | https://github.com/postBG/deep-reinforcement-learning/tree/5df5662b091c4c3f00beba1aa6f9ce8a52001c93 | import torch
import torch.nn.functional as F
import torch.nn as nn
def swish(x):
return x * F.sigmoid(x)
class Model(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=64,
fc2_units=64):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
"""
super().__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.actor_fc = nn.Linear(fc2_units, action_size)
self.critic_fc = nn.Linear(fc2_units, 1)
self.std = nn.Parameter(torch.zeros(action_size))
def forward(self, state, actions=None):
"""Build a network that maps state -> actions mu."""
h = swish(self.fc1(state))
h = swish(self.fc2(h))
mu = F.tanh(self.actor_fc(h))
values = self.critic_fc(h).squeeze(-1)
dist = torch.distributions.Normal(mu, F.softplus(self.std))
if actions is None:
actions = dist.sample()
log_prob = dist.log_prob(actions)
log_prob = torch.sum(log_prob, dim=-1)
entropy = torch.sum(dist.entropy(), dim=-1)
return actions, log_prob, entropy, values
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
ODEfunc | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/s7/cs7s463ghnhvtoipngmc77ztpf56ypqqkauaigy7e6zxonjluz2g.py
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# out => add, add_1, mul_1, rsqrt, var_mean
# out_1 => relu
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_3), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_1), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {})
triton_per_fused_native_group_norm_relu_0 = async_compile.triton('triton_per_fused_native_group_norm_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_relu_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = (rindex // 4)
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 16.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp22 = tmp0 - tmp10
tmp23 = tmp22 * tmp21
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tl.full([1, 1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp27)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp21, xmask)
tl.store(out_ptr1 + (r1 + (20*x0)), tmp29, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yn/cynvdbh5v7timxfsivmpyqoa6iuuric56f24sorjuichccqzwocf.py
# Topologically Sorted Source Nodes: [ttx, ttx_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# ttx => cat
# ttx_1 => cat_1
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_4, %relu], 1), kwargs = {})
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_4, %relu_1], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (20*x1)), tmp0, xmask)
tl.store(out_ptr1 + (x0 + (20*x1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/k3/ck3zm3vnmzmayg6v3jbdzqwge3f27f6qaxncpoltu4ynaqqoufl3.py
# Topologically Sorted Source Nodes: [out_2, out_3, out_4], Original ATen: [aten.convolution, aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# out_2 => convolution
# out_3 => add_2, add_3, mul_4, rsqrt_1, var_mean_1
# out_4 => relu_1
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_5, %primals_6, [1], [1], [1], False, [0], 1), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze_7), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %unsqueeze_5), kwargs = {})
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add_3,), kwargs = {})
triton_per_fused_convolution_native_group_norm_relu_2 = async_compile.triton('triton_per_fused_convolution_native_group_norm_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_native_group_norm_relu_2', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_convolution_native_group_norm_relu_2(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r3 = rindex
x0 = xindex
r2 = (rindex // 4)
tmp0 = tl.load(in_out_ptr0 + (r3 + (16*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (r2), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + (r2), None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (r2), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp2 - tmp12
tmp25 = tmp24 * tmp23
tmp27 = tmp25 * tmp26
tmp29 = tmp27 + tmp28
tmp30 = tl.full([1, 1], 0, tl.int32)
tmp31 = triton_helpers.maximum(tmp30, tmp29)
tl.store(in_out_ptr0 + (r3 + (16*x0)), tmp2, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp23, xmask)
tl.store(out_ptr1 + (r3 + (20*x0)), tmp31, xmask)
tl.store(out_ptr0 + (x0), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hm/chm5mmqaf4alyip2xi5neegdrsga26bynlv7jdc7k43ysytz6rfo.py
# Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.convolution, aten.native_group_norm]
# Source node to ATen node mapping:
# out_5 => convolution_1
# out_6 => add_4, add_5, mul_7, rsqrt_2, var_mean_2
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_9, %primals_10, [1], [1], [1], False, [0], 1), kwargs = {})
# %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {})
# %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %unsqueeze_11), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, %unsqueeze_9), kwargs = {})
triton_per_fused_convolution_native_group_norm_3 = async_compile.triton('triton_per_fused_convolution_native_group_norm_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_native_group_norm_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_convolution_native_group_norm_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r3 = rindex
x0 = xindex
r2 = (rindex // 4)
tmp0 = tl.load(in_out_ptr0 + (r3 + (16*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (r2), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + (r2), None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (r2), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp27 = tmp25 * tmp26
tmp29 = tmp27 + tmp28
tl.store(in_out_ptr0 + (r3 + (16*x0)), tmp2, xmask)
tl.store(out_ptr2 + (r3 + (16*x0)), tmp29, xmask)
tl.store(out_ptr3 + (x0), tmp24, xmask)
tl.store(out_ptr0 + (x0), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 1, 4), (4, 4, 1))
assert_size_stride(primals_5, (4, 5, 3), (15, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 5, 3), (15, 3, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32)
buf1 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf3 = reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf1 # reuse
buf6 = empty_strided_cuda((4, 5, 4), (20, 4, 1), torch.float32)
buf5 = reinterpret_tensor(buf6, (4, 4, 4), (20, 4, 1), 4) # alias
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.native_group_norm, aten.relu]
stream0 = get_raw_stream(0)
triton_per_fused_native_group_norm_relu_0.run(buf3, primals_3, primals_1, primals_2, buf0, buf5, 4, 16, grid=grid(4), stream=stream0)
buf4 = reinterpret_tensor(buf6, (4, 1, 4), (20, 4, 1), 0) # alias
buf15 = empty_strided_cuda((4, 5, 4), (20, 4, 1), torch.float32)
buf13 = reinterpret_tensor(buf15, (4, 1, 4), (20, 4, 1), 0) # alias
# Topologically Sorted Source Nodes: [ttx, ttx_1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_4, buf4, buf13, 16, grid=grid(16), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4), (16, 4, 1))
buf8 = buf7; del buf7 # reuse
buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32)
buf10 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf12 = reinterpret_tensor(buf10, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf10 # reuse
buf14 = reinterpret_tensor(buf15, (4, 4, 4), (20, 4, 1), 4) # alias
# Topologically Sorted Source Nodes: [out_2, out_3, out_4], Original ATen: [aten.convolution, aten.native_group_norm, aten.relu]
triton_per_fused_convolution_native_group_norm_relu_2.run(buf8, buf12, primals_6, primals_7, primals_8, buf9, buf14, 4, 16, grid=grid(4), stream=stream0)
del primals_6
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf15, primals_9, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf16, (4, 4, 4), (16, 4, 1))
buf17 = buf16; del buf16 # reuse
buf18 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf22 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.convolution, aten.native_group_norm]
triton_per_fused_convolution_native_group_norm_3.run(buf17, primals_10, primals_11, primals_12, buf18, buf21, buf22, 4, 16, grid=grid(4), stream=stream0)
del primals_10
del primals_12
return (buf21, primals_1, primals_2, primals_3, primals_5, primals_7, primals_8, primals_9, primals_11, buf0, buf3, buf6, buf8, buf9, buf12, buf15, buf17, reinterpret_tensor(buf18, (4, 1), (1, 1), 0), reinterpret_tensor(buf22, (4, 1), (1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 5, 3), (15, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 5, 3), (15, 3, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def norm(dim):
"""
Group normalization to improve model accuracy and training speed.
"""
return nn.GroupNorm(min(1, dim), dim)
class ConcatConv1d(nn.Module):
"""
1d convolution concatenated with time for usage in ODENet.
"""
def __init__(self, dim_in, dim_out, kernel_size=3, stride=1, padding=0,
bias=True, transpose=False):
super(ConcatConv1d, self).__init__()
module = nn.ConvTranspose1d if transpose else nn.Conv1d
self._layer = module(dim_in + 1, dim_out, kernel_size=kernel_size,
stride=stride, padding=padding, bias=bias)
def forward(self, t, x):
tt = torch.ones_like(x[:, :1, :]) * t
ttx = torch.cat([tt, x], 1)
return self._layer(ttx)
class ODEfunc(nn.Module):
"""
Network architecture for ODENet.
"""
def __init__(self, dim):
super(ODEfunc, self).__init__()
self.norm1 = norm(dim)
self.relu = nn.ReLU(inplace=True)
self.conv1 = ConcatConv1d(dim, dim, 3, 1, 1)
self.norm2 = norm(dim)
self.conv2 = ConcatConv1d(dim, dim, 3, 1, 1)
self.norm3 = norm(dim)
self.nfe = 0
def forward(self, t, x):
self.nfe += 1
out = self.norm1(x)
out = self.relu(out)
out = self.conv1(t, out)
out = self.norm2(out)
out = self.relu(out)
out = self.conv2(t, out)
out = self.norm3(out)
return out
def get_inputs():
return [torch.rand([4, 1, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_native_group_norm_relu_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = rindex // 4
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 16.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp22 = tmp0 - tmp10
tmp23 = tmp22 * tmp21
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tl.full([1, 1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp27)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp21, xmask)
tl.store(out_ptr1 + (r1 + 20 * x0), tmp29, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 20 * x1), tmp0, xmask)
tl.store(out_ptr1 + (x0 + 20 * x1), tmp0, xmask)
@triton.jit
def triton_per_fused_convolution_native_group_norm_relu_2(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r3 = rindex
x0 = xindex
r2 = rindex // 4
tmp0 = tl.load(in_out_ptr0 + (r3 + 16 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + r2, None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + r2, None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + r2, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp2 - tmp12
tmp25 = tmp24 * tmp23
tmp27 = tmp25 * tmp26
tmp29 = tmp27 + tmp28
tmp30 = tl.full([1, 1], 0, tl.int32)
tmp31 = triton_helpers.maximum(tmp30, tmp29)
tl.store(in_out_ptr0 + (r3 + 16 * x0), tmp2, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp23, xmask)
tl.store(out_ptr1 + (r3 + 20 * x0), tmp31, xmask)
tl.store(out_ptr0 + x0, tmp12, xmask)
@triton.jit
def triton_per_fused_convolution_native_group_norm_3(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r3 = rindex
x0 = xindex
r2 = rindex // 4
tmp0 = tl.load(in_out_ptr0 + (r3 + 16 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + r2, None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + r2, None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + r2, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp27 = tmp25 * tmp26
tmp29 = tmp27 + tmp28
tl.store(in_out_ptr0 + (r3 + 16 * x0), tmp2, xmask)
tl.store(out_ptr2 + (r3 + 16 * x0), tmp29, xmask)
tl.store(out_ptr3 + x0, tmp24, xmask)
tl.store(out_ptr0 + x0, tmp12, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 1, 4), (4, 4, 1))
assert_size_stride(primals_5, (4, 5, 3), (15, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 5, 3), (15, 3, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32)
buf1 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf3 = reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0)
del buf1
buf6 = empty_strided_cuda((4, 5, 4), (20, 4, 1), torch.float32)
buf5 = reinterpret_tensor(buf6, (4, 4, 4), (20, 4, 1), 4)
get_raw_stream(0)
triton_per_fused_native_group_norm_relu_0[grid(4)](buf3, primals_3,
primals_1, primals_2, buf0, buf5, 4, 16, XBLOCK=1, num_warps=2,
num_stages=1)
buf4 = reinterpret_tensor(buf6, (4, 1, 4), (20, 4, 1), 0)
buf15 = empty_strided_cuda((4, 5, 4), (20, 4, 1), torch.float32)
buf13 = reinterpret_tensor(buf15, (4, 1, 4), (20, 4, 1), 0)
triton_poi_fused_cat_1[grid(16)](primals_4, buf4, buf13, 16, XBLOCK
=16, num_warps=1, num_stages=1)
del primals_4
buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1,),
padding=(1,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4), (16, 4, 1))
buf8 = buf7
del buf7
buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32)
buf10 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf12 = reinterpret_tensor(buf10, (4, 1, 1, 1), (1, 1, 1, 1), 0)
del buf10
buf14 = reinterpret_tensor(buf15, (4, 4, 4), (20, 4, 1), 4)
triton_per_fused_convolution_native_group_norm_relu_2[grid(4)](buf8,
buf12, primals_6, primals_7, primals_8, buf9, buf14, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del primals_6
buf16 = extern_kernels.convolution(buf15, primals_9, stride=(1,),
padding=(1,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf16, (4, 4, 4), (16, 4, 1))
buf17 = buf16
del buf16
buf18 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf22 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
triton_per_fused_convolution_native_group_norm_3[grid(4)](buf17,
primals_10, primals_11, primals_12, buf18, buf21, buf22, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del primals_10
del primals_12
return (buf21, primals_1, primals_2, primals_3, primals_5, primals_7,
primals_8, primals_9, primals_11, buf0, buf3, buf6, buf8, buf9,
buf12, buf15, buf17, reinterpret_tensor(buf18, (4, 1), (1, 1), 0),
reinterpret_tensor(buf22, (4, 1), (1, 1), 0))
def norm(dim):
"""
Group normalization to improve model accuracy and training speed.
"""
return nn.GroupNorm(min(1, dim), dim)
class ConcatConv1d(nn.Module):
"""
1d convolution concatenated with time for usage in ODENet.
"""
def __init__(self, dim_in, dim_out, kernel_size=3, stride=1, padding=0,
bias=True, transpose=False):
super(ConcatConv1d, self).__init__()
module = nn.ConvTranspose1d if transpose else nn.Conv1d
self._layer = module(dim_in + 1, dim_out, kernel_size=kernel_size,
stride=stride, padding=padding, bias=bias)
def forward(self, t, x):
tt = torch.ones_like(x[:, :1, :]) * t
ttx = torch.cat([tt, x], 1)
return self._layer(ttx)
class ODEfuncNew(nn.Module):
"""
Network architecture for ODENet.
"""
def __init__(self, dim):
super(ODEfuncNew, self).__init__()
self.norm1 = norm(dim)
self.relu = nn.ReLU(inplace=True)
self.conv1 = ConcatConv1d(dim, dim, 3, 1, 1)
self.norm2 = norm(dim)
self.conv2 = ConcatConv1d(dim, dim, 3, 1, 1)
self.norm3 = norm(dim)
self.nfe = 0
def forward(self, input_0, input_1):
primals_1 = self.norm1.weight
primals_2 = self.norm1.bias
primals_5 = self.conv1._layer.weight
primals_6 = self.conv1._layer.bias
primals_7 = self.norm2.weight
primals_8 = self.norm2.bias
primals_9 = self.conv2._layer.weight
primals_10 = self.conv2._layer.bias
primals_11 = self.norm3.weight
primals_12 = self.norm3.bias
primals_4 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
| puneat/SS-using-NODE | ODEfunc | false | 4,146 | [
"MIT"
] | 0 | 29f053769420a2d1cab1ad45f59a912c2ac737da | https://github.com/puneat/SS-using-NODE/tree/29f053769420a2d1cab1ad45f59a912c2ac737da | import torch
import torch.nn as nn
def norm(dim):
"""
Group normalization to improve model accuracy and training speed.
"""
return nn.GroupNorm(min(1, dim), dim)
class ConcatConv1d(nn.Module):
"""
1d convolution concatenated with time for usage in ODENet.
"""
def __init__(self, dim_in, dim_out, kernel_size=3, stride=1, padding=0,
bias=True, transpose=False):
super().__init__()
module = nn.ConvTranspose1d if transpose else nn.Conv1d
self._layer = module(dim_in + 1, dim_out, kernel_size=kernel_size,
stride=stride, padding=padding, bias=bias)
def forward(self, t, x):
tt = torch.ones_like(x[:, :1, :]) * t
ttx = torch.cat([tt, x], 1)
return self._layer(ttx)
class Model(nn.Module):
"""
Network architecture for ODENet.
"""
def __init__(self, dim):
super().__init__()
self.norm1 = norm(dim)
self.relu = nn.ReLU(inplace=True)
self.conv1 = ConcatConv1d(dim, dim, 3, 1, 1)
self.norm2 = norm(dim)
self.conv2 = ConcatConv1d(dim, dim, 3, 1, 1)
self.norm3 = norm(dim)
self.nfe = 0
def forward(self, t, x):
self.nfe += 1
out = self.norm1(x)
out = self.relu(out)
out = self.conv1(t, out)
out = self.norm2(out)
out = self.relu(out)
out = self.conv2(t, out)
out = self.norm3(out)
return out
def get_inputs():
return [torch.rand([4, 1, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [4]
|
ConcatConv1d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/nd/cndqmv6opasogda3abybssrolojxtgspiw4l44wajkbuoorfwxgs.py
# Topologically Sorted Source Nodes: [ttx], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# ttx => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_2, %primals_1], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 5
x0 = xindex % 4
x2 = (xindex // 20)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 5, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (4*((-1) + x1)) + (16*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/gi/cgiwilqietbdjis33kn5fz2pnnroyzpbn4tycl3qtynjtmghkqyd.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_3, %primals_4, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 2) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 1, 4), (4, 4, 1))
assert_size_stride(primals_3, (4, 5, 3), (15, 3, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 5, 4), (20, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [ttx], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_2, primals_1, buf0, 80, grid=grid(80), stream=stream0)
del primals_1
del primals_2
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 2), (8, 2, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_4, 32, grid=grid(32), stream=stream0)
del primals_4
return (buf2, primals_3, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 5, 3), (15, 3, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ConcatConv1d(nn.Module):
"""
1d convolution concatenated with time for usage in ODENet.
"""
def __init__(self, dim_in, dim_out, kernel_size=3, stride=1, padding=0,
bias=True, transpose=False):
super(ConcatConv1d, self).__init__()
module = nn.ConvTranspose1d if transpose else nn.Conv1d
self._layer = module(dim_in + 1, dim_out, kernel_size=kernel_size,
stride=stride, padding=padding, bias=bias)
def forward(self, t, x):
tt = torch.ones_like(x[:, :1, :]) * t
ttx = torch.cat([tt, x], 1)
return self._layer(ttx)
def get_inputs():
return [torch.rand([4, 1, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim_in': 4, 'dim_out': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 5
x0 = xindex % 4
x2 = xindex // 20
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 5, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 4 * (-1 + x1) + 16 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 2 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 1, 4), (4, 4, 1))
assert_size_stride(primals_3, (4, 5, 3), (15, 3, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 5, 4), (20, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(80)](primals_2, primals_1, buf0, 80,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 2), (8, 2, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(32)](buf2, primals_4, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_4
return buf2, primals_3, buf0
class ConcatConv1dNew(nn.Module):
"""
1d convolution concatenated with time for usage in ODENet.
"""
def __init__(self, dim_in, dim_out, kernel_size=3, stride=1, padding=0,
bias=True, transpose=False):
super(ConcatConv1dNew, self).__init__()
module = nn.ConvTranspose1d if transpose else nn.Conv1d
self._layer = module(dim_in + 1, dim_out, kernel_size=kernel_size,
stride=stride, padding=padding, bias=bias)
def forward(self, input_0, input_1):
primals_3 = self._layer.weight
primals_4 = self._layer.bias
primals_2 = input_0
primals_1 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| puneat/SS-using-NODE | ConcatConv1d | false | 4,147 | [
"MIT"
] | 0 | 29f053769420a2d1cab1ad45f59a912c2ac737da | https://github.com/puneat/SS-using-NODE/tree/29f053769420a2d1cab1ad45f59a912c2ac737da | import torch
import torch.nn as nn
class Model(nn.Module):
"""
1d convolution concatenated with time for usage in ODENet.
"""
def __init__(self, dim_in, dim_out, kernel_size=3, stride=1, padding=0,
bias=True, transpose=False):
super().__init__()
module = nn.ConvTranspose1d if transpose else nn.Conv1d
self._layer = module(dim_in + 1, dim_out, kernel_size=kernel_size,
stride=stride, padding=padding, bias=bias)
def forward(self, t, x):
tt = torch.ones_like(x[:, :1, :]) * t
ttx = torch.cat([tt, x], 1)
return self._layer(ttx)
def get_inputs():
return [torch.rand([4, 1, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
AdversarialNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/de/cdembifim67bqts3efzetevxechbzwyyunsy2tw5hoo3jc5z27hj.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x_1 => gt, mul, where
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr1 + (x2), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7z/c7zsuucunqdovb2xa6tywxjxwmolzjzdk72ratro7fi3qvgyqb7c.py
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# x_7 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_5,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (32, 4), (4, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32, 32), (32, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (1, 32), (32, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 2048, grid=grid(2048), stream=stream0)
del primals_2
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 32), (1, 32), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 2048, grid=grid(2048), stream=stream0)
del buf3
del primals_5
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 1), (1, 32), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf7, primals_7, 64, grid=grid(64), stream=stream0)
del primals_7
return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 32), (32, 1), 0), buf4, reinterpret_tensor(buf5, (64, 32), (32, 1), 0), buf7, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class AdversarialNetwork(nn.Module):
def __init__(self, in_feature):
super(AdversarialNetwork, self).__init__()
self.ad_layer1 = nn.Linear(in_feature, 32)
self.ad_layer2 = nn.Linear(32, 32)
self.ad_layer3 = nn.Linear(32, 1)
self.ad_layer1.weight.data.normal_(0, 0.01)
self.ad_layer2.weight.data.normal_(0, 0.01)
self.ad_layer3.weight.data.normal_(0, 0.3)
self.ad_layer1.bias.data.fill_(0.0)
self.ad_layer2.bias.data.fill_(0.0)
self.ad_layer3.bias.data.fill_(0.0)
self.relu1 = nn.LeakyReLU()
self.relu2 = nn.LeakyReLU()
self.dropout1 = nn.Dropout(0.5)
self.dropout2 = nn.Dropout(0.5)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.ad_layer1(x)
x = self.relu1(x)
x = self.dropout1(x)
x = self.ad_layer2(x)
x = self.relu2(x)
x = self.dropout2(x)
x = self.ad_layer3(x)
x = self.sigmoid(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_feature': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_ptr0 + x2, None)
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, None)
tl.store(out_ptr1 + x2, tmp7, None)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (32, 4), (4, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32, 32), (32, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (1, 32), (32, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(2048)](buf0, primals_2, buf1,
buf2, 2048, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf3 = buf0
del buf0
extern_kernels.mm(reinterpret_tensor(buf2, (64, 32), (32, 1), 0),
reinterpret_tensor(primals_4, (32, 32), (1, 32), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.
float32)
triton_poi_fused_leaky_relu_0[grid(2048)](buf3, primals_5, buf4,
buf5, 2048, XBLOCK=256, num_warps=4, num_stages=1)
del buf3
del primals_5
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (64, 32), (32, 1), 0),
reinterpret_tensor(primals_6, (32, 1), (1, 32), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf6
triton_poi_fused_sigmoid_1[grid(64)](buf7, primals_7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_7
return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, reinterpret_tensor(buf2, (64, 32), (32, 1), 0
), buf4, reinterpret_tensor(buf5, (64, 32), (32, 1), 0
), buf7, primals_6, primals_4
class AdversarialNetworkNew(nn.Module):
def __init__(self, in_feature):
super(AdversarialNetworkNew, self).__init__()
self.ad_layer1 = nn.Linear(in_feature, 32)
self.ad_layer2 = nn.Linear(32, 32)
self.ad_layer3 = nn.Linear(32, 1)
self.ad_layer1.weight.data.normal_(0, 0.01)
self.ad_layer2.weight.data.normal_(0, 0.01)
self.ad_layer3.weight.data.normal_(0, 0.3)
self.ad_layer1.bias.data.fill_(0.0)
self.ad_layer2.bias.data.fill_(0.0)
self.ad_layer3.bias.data.fill_(0.0)
self.relu1 = nn.LeakyReLU()
self.relu2 = nn.LeakyReLU()
self.dropout1 = nn.Dropout(0.5)
self.dropout2 = nn.Dropout(0.5)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.ad_layer1.weight
primals_2 = self.ad_layer1.bias
primals_4 = self.ad_layer2.weight
primals_5 = self.ad_layer2.bias
primals_6 = self.ad_layer3.weight
primals_7 = self.ad_layer3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| pwjworks/MS-MDA | AdversarialNetwork | false | 4,148 | [
"MIT"
] | 0 | 21f921a933a318820239541adb26b9fc6feba699 | https://github.com/pwjworks/MS-MDA/tree/21f921a933a318820239541adb26b9fc6feba699 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, in_feature):
super().__init__()
self.ad_layer1 = nn.Linear(in_feature, 32)
self.ad_layer2 = nn.Linear(32, 32)
self.ad_layer3 = nn.Linear(32, 1)
self.ad_layer1.weight.data.normal_(0, 0.01)
self.ad_layer2.weight.data.normal_(0, 0.01)
self.ad_layer3.weight.data.normal_(0, 0.3)
self.ad_layer1.bias.data.fill_(0.0)
self.ad_layer2.bias.data.fill_(0.0)
self.ad_layer3.bias.data.fill_(0.0)
self.relu1 = nn.LeakyReLU()
self.relu2 = nn.LeakyReLU()
self.dropout1 = nn.Dropout(0.5)
self.dropout2 = nn.Dropout(0.5)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.ad_layer1(x)
x = self.relu1(x)
x = self.dropout1(x)
x = self.ad_layer2(x)
x = self.relu2(x)
x = self.dropout2(x)
x = self.ad_layer3(x)
x = self.sigmoid(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
CollaborativeAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/vs/cvslwsbdr2xseewsvjtjyawvddtuuagpl4bpsy7l2xvkynedvylo.py
# Topologically Sorted Source Nodes: [mixed_query], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mixed_query => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 64)
x4 = xindex % 16
x0 = xindex % 4
x2 = (xindex // 16) % 4
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x4 + (16*x3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x5), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/mw/cmwbhnt24ta6fo2ljoapektehwaj7lt6kb2ot2cw5sfzp5feru5z.py
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# attention_scores => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1 + (4*x0) + (16*x3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/pq/cpqnfrogm4dnzim2vyszfmugd6fc43gfnmxicoezmiidejzudrdz.py
# Topologically Sorted Source Nodes: [attention_probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention_probs => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_6, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tmp14 * tmp1
tmp16 = tl_math.exp(tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py
# Topologically Sorted Source Nodes: [attention_probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention_probs => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/i7/ci74lcjvdrgwnbtocqmmzkb7xqcqxx2irkocptqdyvdbc3bsyphn.py
# Topologically Sorted Source Nodes: [context_layer], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/we/cwe54p4p4jvwbdktkpj3wy2coheu6f3r3dgvi7ozm7xjfk4mgbwx.py
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer_1 => clone_2
# Graph fragment:
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_5,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [query_layer], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [key_layer], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mixed_query], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf0, primals_4, buf2, 256, grid=grid(256), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf1, buf3, 256, grid=grid(256), stream=stream0)
buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_probs], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [attention_probs], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
del buf5
buf7 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf7)
del primals_5
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_layer], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf7, primals_6, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_6
buf9 = reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [context_layer], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
triton_poi_fused_clone_5.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
del buf9
return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), primals_4, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf0, buf6, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.utils.data
from enum import Enum
import torch.nn as nn
class MixingMatrixInit(Enum):
CONCATENATE = 1
ALL_ONES = 2
UNIFORM = 3
class CollaborativeAttention(nn.Module):
def __init__(self, dim_input: 'int', dim_value_all: 'int',
dim_key_query_all: 'int', num_attention_heads: 'int',
mixing_initialization: 'MixingMatrixInit'=MixingMatrixInit.UNIFORM):
super().__init__()
if dim_value_all % num_attention_heads != 0:
raise ValueError(
'Value dimension ({}) should be divisible by number of heads ({})'
.format(dim_value_all, num_attention_heads))
self.dim_input = dim_input
self.dim_value_all = dim_value_all
self.dim_key_query_all = dim_key_query_all
self.num_attention_heads = num_attention_heads
self.mixing_initialization = mixing_initialization
self.dim_value_per_head = dim_value_all // num_attention_heads
self.attention_head_size = dim_key_query_all / num_attention_heads
self.query = nn.Linear(dim_input, dim_key_query_all, bias=False)
self.key = nn.Linear(dim_input, dim_key_query_all, bias=False)
self.value = nn.Linear(dim_input, dim_value_all)
self.mixing = self.init_mixing_matrix()
def forward(self, hidden_states, attention_mask=None, head_mask=None,
encoder_hidden_states=None, encoder_attention_mask=None):
from_sequence = hidden_states
to_sequence = hidden_states
if encoder_hidden_states is not None:
to_sequence = encoder_hidden_states
attention_mask = encoder_attention_mask
query_layer = self.query(from_sequence)
key_layer = self.key(to_sequence)
mixed_query = query_layer[..., None, :, :] * self.mixing[..., :,
None, :]
mixed_key = key_layer[..., None, :, :]
attention_scores = torch.matmul(mixed_query, mixed_key.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
if head_mask is not None:
attention_probs = attention_probs * head_mask
value_layer = self.value(to_sequence)
value_layer = self.transpose_for_scores(value_layer)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
dim_value_all,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def init_mixing_matrix(self, scale=0.2):
mixing = torch.zeros(self.num_attention_heads, self.dim_key_query_all)
if self.mixing_initialization is MixingMatrixInit.CONCATENATE:
dim_head = int(math.ceil(self.dim_key_query_all / self.
num_attention_heads))
for i in range(self.num_attention_heads):
mixing[i, i * dim_head:(i + 1) * dim_head] = 1.0
elif self.mixing_initialization is MixingMatrixInit.ALL_ONES:
mixing.one_()
elif self.mixing_initialization is MixingMatrixInit.UNIFORM:
mixing.normal_(std=scale)
else:
raise ValueError('Unknown mixing matrix initialization: {}'.
format(self.mixing_initialization))
return nn.Parameter(mixing)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim_input': 4, 'dim_value_all': 4, 'dim_key_query_all': 4,
'num_attention_heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.utils.data
from enum import Enum
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 64
x4 = xindex % 16
x0 = xindex % 4
x2 = xindex // 16 % 4
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x4 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x5, tmp2, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1 + 4 * x0 + 16 * x3), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tmp14 * tmp1
tmp16 = tl_math.exp(tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](buf0, primals_4, buf2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_1[grid(256)](buf1, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(256)](buf4, buf5, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
triton_poi_fused__softmax_3[grid(256)](buf5, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf5
buf7 = buf1
del buf1
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf7)
del primals_5
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_4[grid(16, 4)](buf7, primals_6, buf8, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_6
buf9 = reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 1), 0)
del buf7
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_5[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del buf9
return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0
), primals_4, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), buf0, buf6, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf2, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0)
class MixingMatrixInit(Enum):
CONCATENATE = 1
ALL_ONES = 2
UNIFORM = 3
class CollaborativeAttentionNew(nn.Module):
def __init__(self, dim_input: 'int', dim_value_all: 'int',
dim_key_query_all: 'int', num_attention_heads: 'int',
mixing_initialization: 'MixingMatrixInit'=MixingMatrixInit.UNIFORM):
super().__init__()
if dim_value_all % num_attention_heads != 0:
raise ValueError(
'Value dimension ({}) should be divisible by number of heads ({})'
.format(dim_value_all, num_attention_heads))
self.dim_input = dim_input
self.dim_value_all = dim_value_all
self.dim_key_query_all = dim_key_query_all
self.num_attention_heads = num_attention_heads
self.mixing_initialization = mixing_initialization
self.dim_value_per_head = dim_value_all // num_attention_heads
self.attention_head_size = dim_key_query_all / num_attention_heads
self.query = nn.Linear(dim_input, dim_key_query_all, bias=False)
self.key = nn.Linear(dim_input, dim_key_query_all, bias=False)
self.value = nn.Linear(dim_input, dim_value_all)
self.mixing = self.init_mixing_matrix()
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def init_mixing_matrix(self, scale=0.2):
mixing = torch.zeros(self.num_attention_heads, self.dim_key_query_all)
if self.mixing_initialization is MixingMatrixInit.CONCATENATE:
dim_head = int(math.ceil(self.dim_key_query_all / self.
num_attention_heads))
for i in range(self.num_attention_heads):
mixing[i, i * dim_head:(i + 1) * dim_head] = 1.0
elif self.mixing_initialization is MixingMatrixInit.ALL_ONES:
mixing.one_()
elif self.mixing_initialization is MixingMatrixInit.UNIFORM:
mixing.normal_(std=scale)
else:
raise ValueError('Unknown mixing matrix initialization: {}'.
format(self.mixing_initialization))
return nn.Parameter(mixing)
def forward(self, input_0):
primals_2 = self.mixing
primals_3 = self.query.weight
primals_4 = self.key.weight
primals_5 = self.value.weight
primals_6 = self.value.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| prattcmp/NonAttentiveTacotron2 | CollaborativeAttention | false | 4,149 | [
"BSD-3-Clause"
] | 0 | c65722133c392fba233b5003b480ee498fc0a44a | https://github.com/prattcmp/NonAttentiveTacotron2/tree/c65722133c392fba233b5003b480ee498fc0a44a | import math
import torch
import torch.utils.data
from enum import Enum
import torch.nn as nn
class MixingMatrixInit(Enum):
CONCATENATE = 1
ALL_ONES = 2
UNIFORM = 3
class Model(nn.Module):
def __init__(self, dim_input: 'int', dim_value_all: 'int',
dim_key_query_all: 'int', num_attention_heads: 'int',
mixing_initialization: 'MixingMatrixInit'=MixingMatrixInit.UNIFORM):
super().__init__()
if dim_value_all % num_attention_heads != 0:
raise ValueError(
'Value dimension ({}) should be divisible by number of heads ({})'
.format(dim_value_all, num_attention_heads))
self.dim_input = dim_input
self.dim_value_all = dim_value_all
self.dim_key_query_all = dim_key_query_all
self.num_attention_heads = num_attention_heads
self.mixing_initialization = mixing_initialization
self.dim_value_per_head = dim_value_all // num_attention_heads
self.attention_head_size = dim_key_query_all / num_attention_heads
self.query = nn.Linear(dim_input, dim_key_query_all, bias=False)
self.key = nn.Linear(dim_input, dim_key_query_all, bias=False)
self.value = nn.Linear(dim_input, dim_value_all)
self.mixing = self.init_mixing_matrix()
def forward(self, hidden_states, attention_mask=None, head_mask=None,
encoder_hidden_states=None, encoder_attention_mask=None):
from_sequence = hidden_states
to_sequence = hidden_states
if encoder_hidden_states is not None:
to_sequence = encoder_hidden_states
attention_mask = encoder_attention_mask
query_layer = self.query(from_sequence)
key_layer = self.key(to_sequence)
mixed_query = query_layer[..., None, :, :] * self.mixing[..., :,
None, :]
mixed_key = key_layer[..., None, :, :]
attention_scores = torch.matmul(mixed_query, mixed_key.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
if head_mask is not None:
attention_probs = attention_probs * head_mask
value_layer = self.value(to_sequence)
value_layer = self.transpose_for_scores(value_layer)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
dim_value_all,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def init_mixing_matrix(self, scale=0.2):
mixing = torch.zeros(self.num_attention_heads, self.dim_key_query_all)
if self.mixing_initialization is MixingMatrixInit.CONCATENATE:
dim_head = int(math.ceil(self.dim_key_query_all / self.
num_attention_heads))
for i in range(self.num_attention_heads):
mixing[i, i * dim_head:(i + 1) * dim_head] = 1.0
elif self.mixing_initialization is MixingMatrixInit.ALL_ONES:
mixing.one_()
elif self.mixing_initialization is MixingMatrixInit.UNIFORM:
mixing.normal_(std=scale)
else:
raise ValueError('Unknown mixing matrix initialization: {}'.
format(self.mixing_initialization))
return nn.Parameter(mixing)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim_input': 4, 'dim_value_all': 4, 'dim_key_query_all': 4,
'num_attention_heads': 4}]
|
UpSample | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/x4/cx4aiwhxcpuogek5qgympx3uifty33mll43dvafoho24lhfly6ft.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add]
# Source node to ATen node mapping:
# x => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_3, add_4, clamp_max_2, clamp_max_3, clamp_min, clamp_min_2, clamp_min_3, convert_element_type, convert_element_type_1, convert_element_type_3, iota, mul, mul_2, mul_3, mul_4, sub, sub_1, sub_2, sub_3, sub_4
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 1.0), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0.0), kwargs = {})
# %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
# %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min, torch.int64), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_2), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %clamp_max_2), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_3, 0.0), kwargs = {})
# %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %add_2), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_3), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_4), kwargs = {})
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 4
x0 = xindex % 4
x2 = (xindex // 16)
x4 = xindex
x3 = xindex % 16
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 3, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tmp11 = x0
tmp12 = tmp11.to(tl.float32)
tmp13 = tmp12 * tmp2
tmp14 = triton_helpers.maximum(tmp13, tmp4)
tmp15 = tmp14.to(tl.int32)
tmp16 = tl.load(in_ptr0 + (tmp15 + (4*tmp10) + (16*x2)), xmask, eviction_policy='evict_last')
tmp17 = tmp15 + tmp7
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl.load(in_ptr0 + (tmp18 + (4*tmp10) + (16*x2)), xmask, eviction_policy='evict_last')
tmp20 = tmp19 - tmp16
tmp21 = tmp15.to(tl.float32)
tmp22 = tmp14 - tmp21
tmp23 = triton_helpers.maximum(tmp22, tmp4)
tmp24 = triton_helpers.minimum(tmp23, tmp2)
tmp25 = tmp20 * tmp24
tmp26 = tmp16 + tmp25
tmp27 = tl.load(in_ptr0 + (tmp15 + (4*tmp6) + (16*x2)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (tmp18 + (4*tmp6) + (16*x2)), xmask, eviction_policy='evict_last')
tmp29 = tmp28 - tmp27
tmp30 = tmp29 * tmp24
tmp31 = tmp27 + tmp30
tmp32 = tmp26 - tmp31
tmp33 = tmp6.to(tl.float32)
tmp34 = tmp5 - tmp33
tmp35 = triton_helpers.maximum(tmp34, tmp4)
tmp36 = triton_helpers.minimum(tmp35, tmp2)
tmp37 = tmp32 * tmp36
tmp38 = tmp31 + tmp37
tl.store(out_ptr1 + (x3 + (64*x2)), tmp38, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/b5/cb5xs32m7ylysedp2f7jyeeg5jkoepupiiui7cvyhlsaxqmkzmfv.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add_4, %primals_1], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 48
x1 = (xindex // 48)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (64*x1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/p6/cp6kjjnbx6x6vx773fn74my6orskkocw7j5ex7lhq72nsdcqflhu.py
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x_1 => convolution
# x_2 => gt, mul_5, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_3, %primals_4, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul_5), kwargs = {})
triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 4, 4), (48, 16, 4, 1))
assert_size_stride(primals_2, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = reinterpret_tensor(buf3, (4, 1, 4, 4), (64, 16, 4, 1), 0) # alias
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(primals_2, buf1, 64, grid=grid(64), stream=stream0)
del primals_2
buf2 = reinterpret_tensor(buf3, (4, 3, 4, 4), (64, 16, 4, 1), 16) # alias
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, buf2, 192, grid=grid(192), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_2.run(buf4, primals_4, buf5, buf6, 256, grid=grid(256), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1))
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf9 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_2.run(buf7, primals_6, buf8, buf9, 256, grid=grid(256), stream=stream0)
del buf7
del primals_6
return (buf9, primals_3, primals_5, buf3, buf5, buf6, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class UpSample(nn.Sequential):
def __init__(self, skip_input, output_features):
super(UpSample, self).__init__()
self.convA = nn.Conv2d(skip_input, output_features, kernel_size=3,
stride=1, padding=1)
self.leakyreluA = nn.LeakyReLU(0.2)
self.convB = nn.Conv2d(output_features, output_features,
kernel_size=3, stride=1, padding=1)
self.leakyreluB = nn.LeakyReLU(0.2)
def forward(self, x, concat_with):
x = F.interpolate(x, size=[concat_with.size(2), concat_with.size(3)
], mode='bilinear', align_corners=True)
x = self.convA(torch.cat([x, concat_with], dim=1))
x = self.leakyreluA(x)
x = self.convB(x)
x = self.leakyreluB(x)
return x
def get_inputs():
return [torch.rand([4, 1, 4, 4]), torch.rand([4, 3, 4, 4])]
def get_init_inputs():
return [[], {'skip_input': 4, 'output_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex % 16
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 3, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tmp11 = x0
tmp12 = tmp11.to(tl.float32)
tmp13 = tmp12 * tmp2
tmp14 = triton_helpers.maximum(tmp13, tmp4)
tmp15 = tmp14.to(tl.int32)
tmp16 = tl.load(in_ptr0 + (tmp15 + 4 * tmp10 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp17 = tmp15 + tmp7
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl.load(in_ptr0 + (tmp18 + 4 * tmp10 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp20 = tmp19 - tmp16
tmp21 = tmp15.to(tl.float32)
tmp22 = tmp14 - tmp21
tmp23 = triton_helpers.maximum(tmp22, tmp4)
tmp24 = triton_helpers.minimum(tmp23, tmp2)
tmp25 = tmp20 * tmp24
tmp26 = tmp16 + tmp25
tmp27 = tl.load(in_ptr0 + (tmp15 + 4 * tmp6 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (tmp18 + 4 * tmp6 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp29 = tmp28 - tmp27
tmp30 = tmp29 * tmp24
tmp31 = tmp27 + tmp30
tmp32 = tmp26 - tmp31
tmp33 = tmp6.to(tl.float32)
tmp34 = tmp5 - tmp33
tmp35 = triton_helpers.maximum(tmp34, tmp4)
tmp36 = triton_helpers.minimum(tmp35, tmp2)
tmp37 = tmp32 * tmp36
tmp38 = tmp31 + tmp37
tl.store(out_ptr1 + (x3 + 64 * x2), tmp38, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 48
x1 = xindex // 48
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 64 * x1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 4, 4), (48, 16, 4, 1))
assert_size_stride(primals_2, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = reinterpret_tensor(buf3, (4, 1, 4, 4), (64, 16, 4, 1), 0)
get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid
(64)](primals_2, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_2
buf2 = reinterpret_tensor(buf3, (4, 3, 4, 4), (64, 16, 4, 1), 16)
triton_poi_fused_cat_1[grid(192)](primals_1, buf2, 192, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_1
buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_convolution_leaky_relu_2[grid(256)](buf4,
primals_4, buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1))
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf9 = buf4
del buf4
triton_poi_fused_convolution_leaky_relu_2[grid(256)](buf7,
primals_6, buf8, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf7
del primals_6
return buf9, primals_3, primals_5, buf3, buf5, buf6, buf8
class UpSampleNew(nn.Sequential):
def __init__(self, skip_input, output_features):
super(UpSampleNew, self).__init__()
self.convA = nn.Conv2d(skip_input, output_features, kernel_size=3,
stride=1, padding=1)
self.leakyreluA = nn.LeakyReLU(0.2)
self.convB = nn.Conv2d(output_features, output_features,
kernel_size=3, stride=1, padding=1)
self.leakyreluB = nn.LeakyReLU(0.2)
def forward(self, input_0, input_1):
primals_3 = self.convA.weight
primals_4 = self.convA.bias
primals_5 = self.convB.weight
primals_6 = self.convB.bias
primals_2 = input_0
primals_1 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| pystokes/depth_estimation | UpSample | false | 4,150 | [
"MIT"
] | 0 | b5b1955bcb5b3f1a1f1c8ddde45431cf38514f90 | https://github.com/pystokes/depth_estimation/tree/b5b1955bcb5b3f1a1f1c8ddde45431cf38514f90 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Sequential):
def __init__(self, skip_input, output_features):
super().__init__()
self.convA = nn.Conv2d(skip_input, output_features, kernel_size=3,
stride=1, padding=1)
self.leakyreluA = nn.LeakyReLU(0.2)
self.convB = nn.Conv2d(output_features, output_features,
kernel_size=3, stride=1, padding=1)
self.leakyreluB = nn.LeakyReLU(0.2)
def forward(self, x, concat_with):
x = F.interpolate(x, size=[concat_with.size(2), concat_with.size(3)
], mode='bilinear', align_corners=True)
x = self.convA(torch.cat([x, concat_with], dim=1))
x = self.leakyreluA(x)
x = self.convB(x)
x = self.leakyreluB(x)
return x
def get_inputs():
return [torch.rand([4, 1, 4, 4]), torch.rand([4, 3, 4, 4])]
def get_init_inputs():
return [4, 4]
|
SelfExpression | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ez/cezmv74yrhrunjwqrletcmzzbnanma4ylsle3v7w345t7kxp622s.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# y => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_2, buf0, 64, 4, grid=grid(64, 4), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, buf2, 64, 4, grid=grid(64, 4), stream=stream0)
del buf1
return (buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SelfExpression(nn.Module):
def __init__(self, n):
super(SelfExpression, self).__init__()
self.Coefficient = nn.Parameter(0.0001 * torch.ones(n, n, dtype=
torch.float32), requires_grad=True)
def forward(self, x):
y = torch.matmul(self.Coefficient, x)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64, 4)](primals_2, buf0, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_0[grid(64, 4)](buf1, buf2, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
del buf1
return buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0)
class SelfExpressionNew(nn.Module):
def __init__(self, n):
super(SelfExpressionNew, self).__init__()
self.Coefficient = nn.Parameter(0.0001 * torch.ones(n, n, dtype=
torch.float32), requires_grad=True)
def forward(self, input_0):
primals_1 = self.Coefficient
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| qilinli/DSC-Net | SelfExpression | false | 4,151 | [
"MIT"
] | 0 | c0e7a3cae3e07c34b2989234f568c7007cf0fc55 | https://github.com/qilinli/DSC-Net/tree/c0e7a3cae3e07c34b2989234f568c7007cf0fc55 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, n):
super().__init__()
self.Coefficient = nn.Parameter(0.0001 * torch.ones(n, n, dtype=
torch.float32), requires_grad=True)
def forward(self, x):
y = torch.matmul(self.Coefficient, x)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
Net | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/jq/cjq5aadlzni6ilbwnuwxtizwmcrr26auvwez3btf3jvkw3a7kef6.py
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# relu => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [3, 3], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 462400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 7225) % 16
x0 = xindex % 7225
x4 = (xindex // 7225)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + (7232*x4)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qo/cqomoxnkesxqr375sg2zmpabgnfxbpt4mzt3ejo6nfjkvv3qocjz.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 112896
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 42
x1 = (xindex // 42) % 42
x2 = (xindex // 1764)
x3 = xindex % 1764
tmp0 = tl.load(in_ptr0 + ((2*x0) + (170*x1) + (7232*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (170*x1) + (7232*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (85 + (2*x0) + (170*x1) + (7232*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (86 + (2*x0) + (170*x1) + (7232*x2)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3 + (1792*x2)), tmp6, xmask)
tl.store(out_ptr1 + (x3 + (1792*x2)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/q7/cq7mghldoknhlrd5obwh6w32rorq5yv4dgd6ejcdxrjyj6gn5qzi.py
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# relu_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [3, 3], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 25088
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 196) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/zh/czhvoonuzjbx5zatk4dl3a2sdy3ez3hqa4toipej4y6m43bwfyct.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_1 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 6272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 7
x1 = (xindex // 7)
x4 = xindex
x3 = (xindex // 1568)
x5 = xindex % 1568
tmp0 = tl.load(in_ptr0 + ((2*x0) + (28*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (28*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (14 + (2*x0) + (28*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (15 + (2*x0) + (28*x1)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4), tmp6, xmask)
tl.store(out_ptr1 + (x5 + (1664*x3)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/4f/c4fjtc7h4bjstu5a6zprzqlmiv2e62p7z4qky2bhx3b3r276xxwp.py
# Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# relu_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [3, 3], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/e2/ce2bvvmd7dute2fffhkdksstabqpdkwnhbuqs3rly63txfsm7sa4.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_2 => _low_memory_max_pool2d_with_offsets_2, getitem_5
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_2 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_2, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x0), tmp15, xmask)
tl.store(out_ptr1 + (x0), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/vt/cvt6synwfekvpysrm7reg7gv4rzuxzdlida6fy4emfeue3qp6o2b.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_5 => relu_3
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_9), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_6 = async_compile.triton('triton_poi_fused_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 500
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/24/c24d6qgzmndz7mi72mbr5gwzlae2tqndrmnuug4tmejsgwbstu4f.py
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_7 => relu_4
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_7 = async_compile.triton('triton_poi_fused_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 3, 256, 256), (196608, 65536, 256, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (500, 64), (64, 1))
assert_size_stride(primals_9, (500, ), (1, ))
assert_size_stride(primals_10, (256, 500), (500, 1))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (2, 256), (256, 1))
assert_size_stride(primals_13, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(3, 3), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 85, 85), (115600, 7225, 85, 1))
buf1 = empty_strided_cuda((4, 16, 85, 85), (115712, 7232, 85, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf0, primals_2, buf1, 462400, grid=grid(462400), stream=stream0)
del buf0
del primals_2
buf2 = empty_strided_cuda((4, 16, 42, 42), (28672, 1792, 42, 1), torch.float32)
buf3 = empty_strided_cuda((4, 16, 42, 42), (28672, 1792, 42, 1), torch.int8)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 112896, grid=grid(112896), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(3, 3), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 14, 14), (6272, 196, 14, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 25088, grid=grid(25088), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 32, 7, 7), (1568, 49, 7, 1), torch.float32)
buf7 = empty_strided_cuda((4, 32, 7, 7), (1664, 49, 7, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 6272, grid=grid(6272), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(3, 3), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 2, 2), (256, 4, 2, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf9, primals_7, 1024, grid=grid(1024), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.int8)
buf11 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 256, 256), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_5.run(buf9, buf10, buf11, 256, grid=grid(256), stream=stream0)
buf12 = empty_strided_cuda((4, 500), (500, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf11, (4, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 500), (1, 64), 0), out=buf12)
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu]
triton_poi_fused_relu_6.run(buf13, primals_9, 2000, grid=grid(2000), stream=stream0)
del primals_9
buf14 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf13, reinterpret_tensor(primals_10, (500, 256), (1, 500), 0), out=buf14)
buf15 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu]
triton_poi_fused_relu_7.run(buf15, primals_11, 1024, grid=grid(1024), stream=stream0)
del primals_11
buf16 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_13, buf15, reinterpret_tensor(primals_12, (256, 2), (1, 256), 0), alpha=1, beta=1, out=buf16)
del primals_13
return (buf16, primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, reinterpret_tensor(buf11, (4, 64), (64, 1), 0), buf13, buf15, primals_12, primals_10, primals_8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 256, 256), (196608, 65536, 256, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((500, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 500), (500, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((2, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, stride=3)
self.conv2 = nn.Conv2d(16, 32, 3, stride=3)
self.conv3 = nn.Conv2d(32, 64, 3, stride=3)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64, 500)
self.fc2 = nn.Linear(500, 256)
self.fc3 = nn.Linear(256, 2)
self.drop_out = nn.Dropout(0.25)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 64)
x = self.drop_out(x)
x = F.relu(self.fc1(x))
x = self.drop_out(x)
x = F.relu(self.fc2(x))
x = self.drop_out(x)
x = self.fc3(x)
return x
def get_inputs():
return [torch.rand([4, 3, 256, 256])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 462400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 7225 % 16
x0 = xindex % 7225
x4 = xindex // 7225
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 7232 * x4), tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 112896
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 42
x1 = xindex // 42 % 42
x2 = xindex // 1764
x3 = xindex % 1764
tmp0 = tl.load(in_ptr0 + (2 * x0 + 170 * x1 + 7232 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 170 * x1 + 7232 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (85 + 2 * x0 + 170 * x1 + 7232 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (86 + 2 * x0 + 170 * x1 + 7232 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3 + 1792 * x2), tmp6, xmask)
tl.store(out_ptr1 + (x3 + 1792 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 25088
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 196 % 32
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 6272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 7
x1 = xindex // 7
x4 = xindex
x3 = xindex // 1568
x5 = xindex % 1568
tmp0 = tl.load(in_ptr0 + (2 * x0 + 28 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 28 * x1), xmask, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (14 + 2 * x0 + 28 * x1), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (15 + 2 * x0 + 28 * x1), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x4, tmp6, xmask)
tl.store(out_ptr1 + (x5 + 1664 * x3), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x0, tmp15, xmask)
tl.store(out_ptr1 + x0, tmp16, xmask)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 2000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 500
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 3, 256, 256), (196608, 65536, 256, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (500, 64), (64, 1))
assert_size_stride(primals_9, (500,), (1,))
assert_size_stride(primals_10, (256, 500), (500, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (2, 256), (256, 1))
assert_size_stride(primals_13, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(3,
3), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 85, 85), (115600, 7225, 85, 1))
buf1 = empty_strided_cuda((4, 16, 85, 85), (115712, 7232, 85, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(462400)](buf0, primals_2,
buf1, 462400, XBLOCK=1024, num_warps=4, num_stages=1)
del buf0
del primals_2
buf2 = empty_strided_cuda((4, 16, 42, 42), (28672, 1792, 42, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 16, 42, 42), (28672, 1792, 42, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(112896)](buf1, buf2,
buf3, 112896, XBLOCK=512, num_warps=8, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(3, 3),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 14, 14), (6272, 196, 14, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(25088)](buf5, primals_5,
25088, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 32, 7, 7), (1568, 49, 7, 1), torch.
float32)
buf7 = empty_strided_cuda((4, 32, 7, 7), (1664, 49, 7, 1), torch.int8)
triton_poi_fused_max_pool2d_with_indices_3[grid(6272)](buf5, buf6,
buf7, 6272, XBLOCK=256, num_warps=4, num_stages=1)
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(3, 3),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 2, 2), (256, 4, 2, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_4[grid(1024)](buf9, primals_7,
1024, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.int8)
buf11 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 256, 256), torch.
float32)
triton_poi_fused_max_pool2d_with_indices_5[grid(256)](buf9, buf10,
buf11, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf12 = empty_strided_cuda((4, 500), (500, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf11, (4, 64), (64, 1), 0),
reinterpret_tensor(primals_8, (64, 500), (1, 64), 0), out=buf12)
buf13 = buf12
del buf12
triton_poi_fused_relu_6[grid(2000)](buf13, primals_9, 2000, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_9
buf14 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
extern_kernels.mm(buf13, reinterpret_tensor(primals_10, (500, 256),
(1, 500), 0), out=buf14)
buf15 = buf14
del buf14
triton_poi_fused_relu_7[grid(1024)](buf15, primals_11, 1024, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_11
buf16 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_13, buf15, reinterpret_tensor(
primals_12, (256, 2), (1, 256), 0), alpha=1, beta=1, out=buf16)
del primals_13
return (buf16, primals_1, primals_3, primals_4, primals_6, buf1, buf2,
buf3, buf5, buf6, buf7, buf9, buf10, reinterpret_tensor(buf11, (4,
64), (64, 1), 0), buf13, buf15, primals_12, primals_10, primals_8)
class NetNew(nn.Module):
def __init__(self):
super(NetNew, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, stride=3)
self.conv2 = nn.Conv2d(16, 32, 3, stride=3)
self.conv3 = nn.Conv2d(32, 64, 3, stride=3)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64, 500)
self.fc2 = nn.Linear(500, 256)
self.fc3 = nn.Linear(256, 2)
self.drop_out = nn.Dropout(0.25)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.fc1.weight
primals_9 = self.fc1.bias
primals_10 = self.fc2.weight
primals_11 = self.fc2.bias
primals_12 = self.fc3.weight
primals_13 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
| prasad5141/cat_vs_dog_webapp | Net | false | 4,152 | [
"MIT"
] | 0 | 29c82addbc62104c3b9250af5f465b269cf68039 | https://github.com/prasad5141/cat_vs_dog_webapp/tree/29c82addbc62104c3b9250af5f465b269cf68039 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, 3, stride=3)
self.conv2 = nn.Conv2d(16, 32, 3, stride=3)
self.conv3 = nn.Conv2d(32, 64, 3, stride=3)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64, 500)
self.fc2 = nn.Linear(500, 256)
self.fc3 = nn.Linear(256, 2)
self.drop_out = nn.Dropout(0.25)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 64)
x = self.drop_out(x)
x = F.relu(self.fc1(x))
x = self.drop_out(x)
x = F.relu(self.fc2(x))
x = self.drop_out(x)
x = self.fc3(x)
return x
def get_inputs():
return [torch.rand([4, 3, 256, 256])]
def get_init_inputs():
return []
|
LearnedPositionalEmbedding | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/5i/c5iybmnijeaxq3pumkl5crtkns462pwdrh72bxy4lcvnlh3r4364.py
# Topologically Sorted Source Nodes: [ne, mask, cumsum], Original ATen: [aten.ne, aten._to_copy, aten.cumsum]
# Source node to ATen node mapping:
# cumsum => cumsum
# mask => convert_element_type
# ne => ne
# Graph fragment:
# %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%primals_1, 4), kwargs = {})
# %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ne, torch.int32), kwargs = {})
# %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%convert_element_type, 1), kwargs = {})
triton_per_fused__to_copy_cumsum_ne_0 = async_compile.triton('triton_per_fused__to_copy_cumsum_ne_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[64, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_cumsum_ne_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_cumsum_ne_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (64*x1)), xmask, other=0.0)
tmp1 = 4.0
tmp2 = tmp0 != tmp1
tmp3 = tmp2.to(tl.int32)
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4.to(tl.int64)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp7, = tl.associative_scan((tmp6,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (x0 + (16*r2) + (64*x1)), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ft/cftxaavy7b7scxgnrhfsvfnicvimxnf3kpckow5nzkyed3meyoli.py
# Topologically Sorted Source Nodes: [ne, mask, type_as, mul, long, positions], Original ATen: [aten.ne, aten._to_copy, aten.mul, aten.add]
# Source node to ATen node mapping:
# long => convert_element_type_2
# mask => convert_element_type
# mul => mul
# ne => ne
# positions => add
# type_as => convert_element_type_1
# Graph fragment:
# %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%primals_1, 4), kwargs = {})
# %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ne, torch.int32), kwargs = {})
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%cumsum, torch.int32), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, %convert_element_type), kwargs = {})
# %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul, torch.int64), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, 4), kwargs = {})
triton_poi_fused__to_copy_add_mul_ne_1 = async_compile.triton('triton_poi_fused__to_copy_add_mul_ne_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_mul_ne_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_mul_ne_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0.to(tl.int32)
tmp3 = 4.0
tmp4 = tmp2 != tmp3
tmp5 = tmp4.to(tl.int32)
tmp6 = tmp1 * tmp5
tmp7 = tmp6.to(tl.int64)
tmp8 = tl.full([1], 4, tl.int64)
tmp9 = tmp7 + tmp8
tl.store(in_out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/in/cinglqnf6mtochspmiolvr3bqay6yiivzgqlihpkdlbd5p4ccw54.py
# Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.embedding]
# Source node to ATen node mapping:
# embedding => embedding
# Graph fragment:
# %embedding : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_2, %add, 4), kwargs = {})
triton_poi_fused_embedding_2 = async_compile.triton('triton_poi_fused_embedding_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_embedding_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_embedding_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 9, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert(((0 <= tmp4) & (tmp4 < 9)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 9")
tmp6 = tl.load(in_ptr1 + (x0 + (4*tmp4)), xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (9, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64)
# Topologically Sorted Source Nodes: [ne, mask, cumsum], Original ATen: [aten.ne, aten._to_copy, aten.cumsum]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_cumsum_ne_0.run(primals_1, buf0, 64, 4, grid=grid(64), stream=stream0)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [ne, mask, type_as, mul, long, positions], Original ATen: [aten.ne, aten._to_copy, aten.mul, aten.add]
triton_poi_fused__to_copy_add_mul_ne_1.run(buf1, primals_1, 256, grid=grid(256), stream=stream0)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.embedding]
triton_poi_fused_embedding_2.run(buf1, primals_2, buf2, 1024, grid=grid(1024), stream=stream0)
del primals_2
return (buf2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((9, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class LearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
Padding ids are ignored by either offsetting based on padding_idx
or by setting padding_idx to None and ensuring that the appropriate
position ids are passed to the forward function.
"""
def __init__(self, num_embeddings: 'int', embedding_dim: 'int',
padding_idx: 'int'):
if padding_idx is not None:
num_embeddings_ = num_embeddings + padding_idx + 1
else:
num_embeddings_ = num_embeddings
super().__init__(num_embeddings_, embedding_dim, padding_idx)
self.max_positions = num_embeddings
def forward(self, input: 'torch.Tensor'):
"""Input is expected to be of size [bsz x seqlen]."""
mask = input.ne(self.padding_idx).int()
positions = (torch.cumsum(mask, dim=1).type_as(mask) * mask).long(
) + self.padding_idx
return F.embedding(positions, self.weight, self.padding_idx, self.
max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_embeddings': 4, 'embedding_dim': 4, 'padding_idx': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton.jit
def triton_per_fused__to_copy_cumsum_ne_0(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 64 * x1), xmask, other=0.0)
tmp1 = 4.0
tmp2 = tmp0 != tmp1
tmp3 = tmp2.to(tl.int32)
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4.to(tl.int64)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp7, = tl.associative_scan((tmp6,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (x0 + 16 * r2 + 64 * x1), tmp7, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_mul_ne_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0.to(tl.int32)
tmp3 = 4.0
tmp4 = tmp2 != tmp3
tmp5 = tmp4.to(tl.int32)
tmp6 = tmp1 * tmp5
tmp7 = tmp6.to(tl.int64)
tmp8 = tl.full([1], 4, tl.int64)
tmp9 = tmp7 + tmp8
tl.store(in_out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_embedding_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 9, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 9) | ~xmask,
'index out of bounds: 0 <= tmp4 < 9')
tmp6 = tl.load(in_ptr1 + (x0 + 4 * tmp4), xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (9, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64)
get_raw_stream(0)
triton_per_fused__to_copy_cumsum_ne_0[grid(64)](primals_1, buf0, 64,
4, XBLOCK=1, num_warps=2, num_stages=1)
buf1 = buf0
del buf0
triton_poi_fused__to_copy_add_mul_ne_1[grid(256)](buf1, primals_1,
256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_embedding_2[grid(1024)](buf1, primals_2, buf2,
1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return buf2, buf1
class LearnedPositionalEmbeddingNew(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
Padding ids are ignored by either offsetting based on padding_idx
or by setting padding_idx to None and ensuring that the appropriate
position ids are passed to the forward function.
"""
def __init__(self, num_embeddings: 'int', embedding_dim: 'int',
padding_idx: 'int'):
if padding_idx is not None:
num_embeddings_ = num_embeddings + padding_idx + 1
else:
num_embeddings_ = num_embeddings
super().__init__(num_embeddings_, embedding_dim, padding_idx)
self.max_positions = num_embeddings
def forward(self, input_0):
primals_2 = self.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| qinwang-ai/Contact-Distil | LearnedPositionalEmbedding | false | 4,153 | [
"Apache-2.0"
] | 0 | 5e98389de70e0d9c4d16bd91ca1326689dc220a6 | https://github.com/qinwang-ai/Contact-Distil/tree/5e98389de70e0d9c4d16bd91ca1326689dc220a6 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
Padding ids are ignored by either offsetting based on padding_idx
or by setting padding_idx to None and ensuring that the appropriate
position ids are passed to the forward function.
"""
def __init__(self, num_embeddings: 'int', embedding_dim: 'int',
padding_idx: 'int'):
if padding_idx is not None:
num_embeddings_ = num_embeddings + padding_idx + 1
else:
num_embeddings_ = num_embeddings
super().__init__(num_embeddings_, embedding_dim, padding_idx)
self.max_positions = num_embeddings
def forward(self, input: 'torch.Tensor'):
"""Input is expected to be of size [bsz x seqlen]."""
mask = input.ne(self.padding_idx).int()
positions = (torch.cumsum(mask, dim=1).type_as(mask) * mask).long(
) + self.padding_idx
return F.embedding(positions, self.weight, self.padding_idx, self.
max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
ConvAE | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/td/ctdv3m5a33kovvtng5iilth4k6mtnyfcota6hhwoiqm34iumu7wi.py
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# input_1 => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 6) % 6
x0 = xindex % 6
x2 = (xindex // 36)
x4 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-1) + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0)
tl.store(out_ptr0 + (x4), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/i3/ci3nuuurbsrmcufle642yc7udhwn4itsu6aptfssij5nzrnylpne.py
# Topologically Sorted Source Nodes: [input_2, input_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# input_2 => convolution
# input_3 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/my/cmykveslman44cmgx6n67zhhjovkcupjikam4mujghfvxablzzpx.py
# Topologically Sorted Source Nodes: [input_4, input_6], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# input_4 => convolution_1
# input_6 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%slice_4,), kwargs = {})
# %slice_scatter_default : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_tensor, %relu_1, 3, -3, 8), kwargs = {})
# %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%convolution_1, %slice_scatter_default, 2, -3, 9), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 6) % 6
x0 = xindex % 6
x4 = xindex
x2 = (xindex // 36) % 4
tmp19 = tl.load(in_out_ptr0 + (x4), xmask)
tmp20 = tl.load(in_ptr0 + (x2), xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 3, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = x0
tmp4 = tmp3 >= tmp1
tmp5 = tmp4 & tmp2
tmp6 = tl.load(in_out_ptr0 + (x4), tmp5 & xmask, other=0.0)
tmp7 = tl.load(in_ptr0 + (x2), tmp5 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp5, tmp10, tmp11)
tmp13 = tl.load(in_out_ptr0 + (x4), tmp2 & xmask, other=0.0)
tmp14 = tl.load(in_ptr0 + (x2), tmp2 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tmp13 + tmp14
tmp16 = tl.where(tmp4, tmp12, tmp15)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp2, tmp16, tmp17)
tmp21 = tmp19 + tmp20
tmp22 = tl.where(tmp2, tmp18, tmp21)
tl.store(in_out_ptr0 + (x4), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xy/cxy7c463ocont2eh2rauxmeskuwjwuxxuxekyemvjiwq562uy7br.py
# Topologically Sorted Source Nodes: [], Original ATen: [aten.threshold_backward]
# Source node to ATen node mapping:
# Graph fragment:
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%slice_27, 0), kwargs = {})
triton_poi_fused_threshold_backward_3 = async_compile.triton('triton_poi_fused_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_threshold_backward_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = (xindex // 3) % 3
x2 = (xindex // 9)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (21 + x0 + (6*x1) + (36*x2)), xmask)
tmp1 = 0.0
tmp2 = tmp0 <= tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [input_2, input_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 6, 6), (144, 36, 6, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [input_4, input_6], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf4, primals_5, 576, grid=grid(576), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.bool)
# Topologically Sorted Source Nodes: [], Original ATen: [aten.threshold_backward]
triton_poi_fused_threshold_backward_3.run(buf4, buf5, 144, grid=grid(144), stream=stream0)
return (reinterpret_tensor(buf4, (4, 4, 3, 3), (144, 36, 6, 1), 21), primals_2, primals_4, buf0, buf2, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Conv2dSamePad(nn.Module):
"""
Implement Tensorflow's 'SAME' padding mode in Conv2d.
When an odd number, say `m`, of pixels are need to pad, Tensorflow will pad one more column at right or one more
row at bottom. But Pytorch will pad `m+1` pixels, i.e., Pytorch always pads in both sides.
So we can pad the tensor in the way of Tensorflow before call the Conv2d module.
"""
def __init__(self, kernel_size, stride):
super(Conv2dSamePad, self).__init__()
self.kernel_size = kernel_size if type(kernel_size) in [list, tuple
] else [kernel_size, kernel_size]
self.stride = stride if type(stride) in [list, tuple] else [stride,
stride]
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
out_height = math.ceil(float(in_height) / float(self.stride[0]))
out_width = math.ceil(float(in_width) / float(self.stride[1]))
pad_along_height = (out_height - 1) * self.stride[0
] + self.kernel_size[0] - in_height
pad_along_width = (out_width - 1) * self.stride[1] + self.kernel_size[1
] - in_width
pad_top = math.floor(pad_along_height / 2)
pad_left = math.floor(pad_along_width / 2)
pad_bottom = pad_along_height - pad_top
pad_right = pad_along_width - pad_left
return F.pad(x, [pad_left, pad_right, pad_top, pad_bottom],
'constant', 0)
class ConvTranspose2dSamePad(nn.Module):
"""
This module implements the "SAME" padding mode for ConvTranspose2d as in Tensorflow.
A tensor with width w_in, feed it to ConvTranspose2d(ci, co, kernel, stride), the width of output tensor T_nopad:
w_nopad = (w_in - 1) * stride + kernel
If we use padding, i.e., ConvTranspose2d(ci, co, kernel, stride, padding, output_padding), the width of T_pad:
w_pad = (w_in - 1) * stride + kernel - (2*padding - output_padding) = w_nopad - (2*padding - output_padding)
Yes, in ConvTranspose2d, more padding, the resulting tensor is smaller, i.e., the padding is actually deleting row/col.
If `pad`=(2*padding - output_padding) is odd, Pytorch deletes more columns in the left, i.e., the first ceil(pad/2) and
last `pad - ceil(pad/2)` columns of T_nopad are deleted to get T_pad.
In contrast, Tensorflow deletes more columns in the right, i.e., the first floor(pad/2) and last `pad - floor(pad/2)`
columns are deleted.
For the height, Pytorch deletes more rows at top, while Tensorflow at bottom.
In practice, we usually want `w_pad = w_in * stride` or `w_pad = w_in * stride - 1`, i.e., the "SAME" padding mode
in Tensorflow. To determine the value of `w_pad`, we should pass it to this function.
So the number of columns to delete:
pad = 2*padding - output_padding = w_nopad - w_pad
If pad is even, we can directly set padding=pad/2 and output_padding=0 in ConvTranspose2d.
If pad is odd, we can use ConvTranspose2d to get T_nopad, and then delete `pad` rows/columns by
ourselves.
This module should be called after the ConvTranspose2d module with shared kernel_size and stride values.
"""
def __init__(self, output_size):
super(ConvTranspose2dSamePad, self).__init__()
self.output_size = output_size
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
pad_height = in_height - self.output_size[0]
pad_width = in_width - self.output_size[1]
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top
pad_left = pad_width // 2
pad_right = pad_width - pad_left
return x[:, :, pad_top:in_height - pad_bottom, pad_left:in_width -
pad_right]
class ConvAE(nn.Module):
def __init__(self, channels, kernels):
"""
:param channels: a list containing all channels including the input image channel (1 for gray, 3 for RGB)
:param kernels: a list containing all kernel sizes, it should satisfy: len(kernels) = len(channels) - 1.
"""
super(ConvAE, self).__init__()
assert isinstance(channels, list) and isinstance(kernels, list)
self.encoder = nn.Sequential()
for i in range(1, len(channels)):
self.encoder.add_module('pad%d' % i, Conv2dSamePad(kernels[i -
1], 2))
self.encoder.add_module('conv%d' % i, nn.Conv2d(channels[i - 1],
channels[i], kernel_size=kernels[i - 1], stride=2))
self.encoder.add_module('relu%d' % i, nn.ReLU(True))
self.decoder = nn.Sequential()
channels = list(reversed(channels))
kernels = list(reversed(kernels))
sizes = [[12, 11], [24, 21], [48, 42]]
for i in range(len(channels) - 1):
self.decoder.add_module('deconv%d' % (i + 1), nn.
ConvTranspose2d(channels[i], channels[i + 1], kernel_size=
kernels[i], stride=2))
self.decoder.add_module('padd%d' % i, ConvTranspose2dSamePad(
sizes[i]))
self.decoder.add_module('relud%d' % i, nn.ReLU(True))
def forward(self, x):
h = self.encoder(x)
y = self.decoder(h)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': [4, 4], 'kernels': [4, 4]}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 6 % 6
x0 = xindex % 6
x2 = xindex // 36
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -1 + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask,
other=0.0)
tl.store(out_ptr0 + x4, tmp11, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 6 % 6
x0 = xindex % 6
x4 = xindex
x2 = xindex // 36 % 4
tmp19 = tl.load(in_out_ptr0 + x4, xmask)
tmp20 = tl.load(in_ptr0 + x2, xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 3, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = x0
tmp4 = tmp3 >= tmp1
tmp5 = tmp4 & tmp2
tmp6 = tl.load(in_out_ptr0 + x4, tmp5 & xmask, other=0.0)
tmp7 = tl.load(in_ptr0 + x2, tmp5 & xmask, eviction_policy='evict_last',
other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp5, tmp10, tmp11)
tmp13 = tl.load(in_out_ptr0 + x4, tmp2 & xmask, other=0.0)
tmp14 = tl.load(in_ptr0 + x2, tmp2 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp15 = tmp13 + tmp14
tmp16 = tl.where(tmp4, tmp12, tmp15)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp2, tmp16, tmp17)
tmp21 = tmp19 + tmp20
tmp22 = tl.where(tmp2, tmp18, tmp21)
tl.store(in_out_ptr0 + x4, tmp22, xmask)
@triton.jit
def triton_poi_fused_threshold_backward_3(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = xindex // 3 % 3
x2 = xindex // 9
x3 = xindex
tmp0 = tl.load(in_ptr0 + (21 + x0 + 6 * x1 + 36 * x2), xmask)
tmp1 = 0.0
tmp2 = tmp0 <= tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(576)](primals_1, buf0, 576,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(64)](buf2, primals_3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 6, 6), (144, 36, 6, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_relu_2[grid(576)](buf4, primals_5, 576,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.bool)
triton_poi_fused_threshold_backward_3[grid(144)](buf4, buf5, 144,
XBLOCK=128, num_warps=4, num_stages=1)
return reinterpret_tensor(buf4, (4, 4, 3, 3), (144, 36, 6, 1), 21
), primals_2, primals_4, buf0, buf2, buf5
class Conv2dSamePad(nn.Module):
"""
Implement Tensorflow's 'SAME' padding mode in Conv2d.
When an odd number, say `m`, of pixels are need to pad, Tensorflow will pad one more column at right or one more
row at bottom. But Pytorch will pad `m+1` pixels, i.e., Pytorch always pads in both sides.
So we can pad the tensor in the way of Tensorflow before call the Conv2d module.
"""
def __init__(self, kernel_size, stride):
super(Conv2dSamePad, self).__init__()
self.kernel_size = kernel_size if type(kernel_size) in [list, tuple
] else [kernel_size, kernel_size]
self.stride = stride if type(stride) in [list, tuple] else [stride,
stride]
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
out_height = math.ceil(float(in_height) / float(self.stride[0]))
out_width = math.ceil(float(in_width) / float(self.stride[1]))
pad_along_height = (out_height - 1) * self.stride[0
] + self.kernel_size[0] - in_height
pad_along_width = (out_width - 1) * self.stride[1] + self.kernel_size[1
] - in_width
pad_top = math.floor(pad_along_height / 2)
pad_left = math.floor(pad_along_width / 2)
pad_bottom = pad_along_height - pad_top
pad_right = pad_along_width - pad_left
return F.pad(x, [pad_left, pad_right, pad_top, pad_bottom],
'constant', 0)
class ConvTranspose2dSamePad(nn.Module):
"""
This module implements the "SAME" padding mode for ConvTranspose2d as in Tensorflow.
A tensor with width w_in, feed it to ConvTranspose2d(ci, co, kernel, stride), the width of output tensor T_nopad:
w_nopad = (w_in - 1) * stride + kernel
If we use padding, i.e., ConvTranspose2d(ci, co, kernel, stride, padding, output_padding), the width of T_pad:
w_pad = (w_in - 1) * stride + kernel - (2*padding - output_padding) = w_nopad - (2*padding - output_padding)
Yes, in ConvTranspose2d, more padding, the resulting tensor is smaller, i.e., the padding is actually deleting row/col.
If `pad`=(2*padding - output_padding) is odd, Pytorch deletes more columns in the left, i.e., the first ceil(pad/2) and
last `pad - ceil(pad/2)` columns of T_nopad are deleted to get T_pad.
In contrast, Tensorflow deletes more columns in the right, i.e., the first floor(pad/2) and last `pad - floor(pad/2)`
columns are deleted.
For the height, Pytorch deletes more rows at top, while Tensorflow at bottom.
In practice, we usually want `w_pad = w_in * stride` or `w_pad = w_in * stride - 1`, i.e., the "SAME" padding mode
in Tensorflow. To determine the value of `w_pad`, we should pass it to this function.
So the number of columns to delete:
pad = 2*padding - output_padding = w_nopad - w_pad
If pad is even, we can directly set padding=pad/2 and output_padding=0 in ConvTranspose2d.
If pad is odd, we can use ConvTranspose2d to get T_nopad, and then delete `pad` rows/columns by
ourselves.
This module should be called after the ConvTranspose2d module with shared kernel_size and stride values.
"""
def __init__(self, output_size):
super(ConvTranspose2dSamePad, self).__init__()
self.output_size = output_size
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
pad_height = in_height - self.output_size[0]
pad_width = in_width - self.output_size[1]
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top
pad_left = pad_width // 2
pad_right = pad_width - pad_left
return x[:, :, pad_top:in_height - pad_bottom, pad_left:in_width -
pad_right]
class ConvAENew(nn.Module):
def __init__(self, channels, kernels):
"""
:param channels: a list containing all channels including the input image channel (1 for gray, 3 for RGB)
:param kernels: a list containing all kernel sizes, it should satisfy: len(kernels) = len(channels) - 1.
"""
super(ConvAENew, self).__init__()
assert isinstance(channels, list) and isinstance(kernels, list)
self.encoder = nn.Sequential()
for i in range(1, len(channels)):
self.encoder.add_module('pad%d' % i, Conv2dSamePad(kernels[i -
1], 2))
self.encoder.add_module('conv%d' % i, nn.Conv2d(channels[i - 1],
channels[i], kernel_size=kernels[i - 1], stride=2))
self.encoder.add_module('relu%d' % i, nn.ReLU(True))
self.decoder = nn.Sequential()
channels = list(reversed(channels))
kernels = list(reversed(kernels))
sizes = [[12, 11], [24, 21], [48, 42]]
for i in range(len(channels) - 1):
self.decoder.add_module('deconv%d' % (i + 1), nn.
ConvTranspose2d(channels[i], channels[i + 1], kernel_size=
kernels[i], stride=2))
self.decoder.add_module('padd%d' % i, ConvTranspose2dSamePad(
sizes[i]))
self.decoder.add_module('relud%d' % i, nn.ReLU(True))
def forward(self, input_0):
primals_1 = self.encoder.conv1.weight
primals_3 = self.encoder.conv1.bias
primals_2 = self.decoder.deconv1.weight
primals_5 = self.decoder.deconv1.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| qilinli/DSC-Net | ConvAE | false | 4,154 | [
"MIT"
] | 0 | c0e7a3cae3e07c34b2989234f568c7007cf0fc55 | https://github.com/qilinli/DSC-Net/tree/c0e7a3cae3e07c34b2989234f568c7007cf0fc55 | import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Conv2dSamePad(nn.Module):
"""
Implement Tensorflow's 'SAME' padding mode in Conv2d.
When an odd number, say `m`, of pixels are need to pad, Tensorflow will pad one more column at right or one more
row at bottom. But Pytorch will pad `m+1` pixels, i.e., Pytorch always pads in both sides.
So we can pad the tensor in the way of Tensorflow before call the Conv2d module.
"""
def __init__(self, kernel_size, stride):
super().__init__()
self.kernel_size = kernel_size if type(kernel_size) in [list, tuple
] else [kernel_size, kernel_size]
self.stride = stride if type(stride) in [list, tuple] else [stride,
stride]
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
out_height = math.ceil(float(in_height) / float(self.stride[0]))
out_width = math.ceil(float(in_width) / float(self.stride[1]))
pad_along_height = (out_height - 1) * self.stride[0
] + self.kernel_size[0] - in_height
pad_along_width = (out_width - 1) * self.stride[1] + self.kernel_size[1
] - in_width
pad_top = math.floor(pad_along_height / 2)
pad_left = math.floor(pad_along_width / 2)
pad_bottom = pad_along_height - pad_top
pad_right = pad_along_width - pad_left
return F.pad(x, [pad_left, pad_right, pad_top, pad_bottom],
'constant', 0)
class ConvTranspose2dSamePad(nn.Module):
"""
This module implements the "SAME" padding mode for ConvTranspose2d as in Tensorflow.
A tensor with width w_in, feed it to ConvTranspose2d(ci, co, kernel, stride), the width of output tensor T_nopad:
w_nopad = (w_in - 1) * stride + kernel
If we use padding, i.e., ConvTranspose2d(ci, co, kernel, stride, padding, output_padding), the width of T_pad:
w_pad = (w_in - 1) * stride + kernel - (2*padding - output_padding) = w_nopad - (2*padding - output_padding)
Yes, in ConvTranspose2d, more padding, the resulting tensor is smaller, i.e., the padding is actually deleting row/col.
If `pad`=(2*padding - output_padding) is odd, Pytorch deletes more columns in the left, i.e., the first ceil(pad/2) and
last `pad - ceil(pad/2)` columns of T_nopad are deleted to get T_pad.
In contrast, Tensorflow deletes more columns in the right, i.e., the first floor(pad/2) and last `pad - floor(pad/2)`
columns are deleted.
For the height, Pytorch deletes more rows at top, while Tensorflow at bottom.
In practice, we usually want `w_pad = w_in * stride` or `w_pad = w_in * stride - 1`, i.e., the "SAME" padding mode
in Tensorflow. To determine the value of `w_pad`, we should pass it to this function.
So the number of columns to delete:
pad = 2*padding - output_padding = w_nopad - w_pad
If pad is even, we can directly set padding=pad/2 and output_padding=0 in ConvTranspose2d.
If pad is odd, we can use ConvTranspose2d to get T_nopad, and then delete `pad` rows/columns by
ourselves.
This module should be called after the ConvTranspose2d module with shared kernel_size and stride values.
"""
def __init__(self, output_size):
super().__init__()
self.output_size = output_size
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
pad_height = in_height - self.output_size[0]
pad_width = in_width - self.output_size[1]
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top
pad_left = pad_width // 2
pad_right = pad_width - pad_left
return x[:, :, pad_top:in_height - pad_bottom, pad_left:in_width -
pad_right]
class Model(nn.Module):
def __init__(self, channels, kernels):
"""
:param channels: a list containing all channels including the input image channel (1 for gray, 3 for RGB)
:param kernels: a l
# ... truncated (>4000 chars) for memory efficiency |
MultiHeadedAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/bs/cbsluabtq7ll426nybkislhh3cajm6f7ggrxam362hohynwnvtk6.py
# Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq]
# Source node to ATen node mapping:
# eq => eq
# Graph fragment:
# %eq : [num_users=2] = call_function[target=torch.ops.aten.eq.Scalar](args = (%unsqueeze, 0), kwargs = {})
triton_poi_fused_eq_1 = async_compile.triton('triton_poi_fused_eq_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6v/c6varcicuq4byhpi2ez4zfksc6c5naym336xenou4witslx53n6e.py
# Topologically Sorted Source Nodes: [scores, scores_1, p_attn], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# p_attn => amax, exp, sub, sum_1
# scores => div
# scores_1 => full_default, where
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1000000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_div_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (4*x3), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + (4*x3)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + (4*x3)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + (4*x3)), xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -1000000000.0
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp6, tmp4, tmp8)
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tmp12 * tmp2
tmp14 = tl.where(tmp11, tmp4, tmp13)
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tmp17 * tmp2
tmp19 = tl.where(tmp16, tmp4, tmp18)
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp9 - tmp20
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = tmp14 - tmp20
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tmp19 - tmp20
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp28 + tmp30
tl.store(out_ptr0 + (x3), tmp20, xmask)
tl.store(out_ptr1 + (x3), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/fb/cfb6x4ausnhkt7gycxsexlmn75uyb6haot5nthwqf5hummcazrv4.py
# Topologically Sorted Source Nodes: [scores, scores_1, p_attn], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# p_attn => amax, div_1, exp, sub
# scores => div
# scores_1 => full_default, where
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1000000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_div_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 64)
x4 = xindex % 16
x5 = xindex
x6 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x4 + (16*x3)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + (x5), xmask)
tmp6 = tl.load(in_ptr1 + (x6), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (x6), xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -1000000000.0
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp7 = tmp5 - tmp6
tmp8 = tl_math.exp(tmp7)
tmp10 = tmp8 / tmp9
tl.store(in_out_ptr0 + (x5), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_3, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq]
triton_poi_fused_eq_1.run(primals_10, buf6, 64, grid=grid(64), stream=stream0)
del primals_10
buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [scores, scores_1, p_attn], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_div_masked_fill_2.run(buf6, buf5, buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [scores, scores_1, p_attn], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_div_masked_fill_3.run(buf9, buf6, buf7, buf8, 256, grid=grid(256), stream=stream0)
buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_8, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_12, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13)
del primals_12
return (reinterpret_tensor(buf13, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), buf6, buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), primals_11, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class MultiHeadedAttention(nn.Module):
def __init__(self, num_head, d_model, dropout=0.1):
super(MultiHeadedAttention, self).__init__()
assert d_model % num_head == 0
self.d_k = d_model // num_head
self.h = num_head
self.linear_key = nn.Linear(d_model, d_model)
self.linear_value = nn.Linear(d_model, d_model)
self.linear_query = nn.Linear(d_model, d_model)
self.linear_out = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(p=dropout)
def attention(self, query, key, value, mask, dropout=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
scores = scores.masked_fill(mask == 0, -1000000000.0)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
def forward(self, query, key, value, mask):
nbatches = query.size(0)
query = self.linear_query(query).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
key = self.linear_key(key).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
value = self.linear_value(value).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
mask = mask.unsqueeze(1)
x, _attn = self.attention(query, key, value, mask, dropout=self.dropout
)
x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k
)
return self.linear_out(x)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4,
4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'num_head': 4, 'd_model': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4 * x0 + 16 * x2), xmask, eviction_policy=
'evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + 4 * x3, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy
='evict_last').to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + 4 * x3), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last').to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last').to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -1000000000.0
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp6, tmp4, tmp8)
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tmp12 * tmp2
tmp14 = tl.where(tmp11, tmp4, tmp13)
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tmp17 * tmp2
tmp19 = tl.where(tmp16, tmp4, tmp18)
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp9 - tmp20
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = tmp14 - tmp20
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tmp19 - tmp20
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp28 + tmp30
tl.store(out_ptr0 + x3, tmp20, xmask)
tl.store(out_ptr1 + x3, tmp31, xmask)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_3(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 64
x4 = xindex % 16
x5 = xindex
x6 = xindex // 4
tmp0 = tl.load(in_ptr0 + (x4 + 16 * x3), xmask, eviction_policy=
'evict_last').to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + x5, xmask)
tmp6 = tl.load(in_ptr1 + x6, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + x6, xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -1000000000.0
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp7 = tmp5 - tmp6
tmp8 = tl_math.exp(tmp7)
tmp10 = tmp8 / tmp9
tl.store(in_out_ptr0 + x5, tmp10, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf3, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.bool)
triton_poi_fused_eq_1[grid(64)](primals_10, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_10
buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf1
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_div_masked_fill_2[grid(64)](buf6, buf5,
buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_div_masked_fill_3[grid(256)](buf9, buf6,
buf7, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf8
triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_8, buf10, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_8
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf7
triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0)
del buf11
extern_kernels.addmm(primals_12, reinterpret_tensor(buf12, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf13)
del primals_12
return reinterpret_tensor(buf13, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0
), buf6, buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0
), primals_11, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class MultiHeadedAttentionNew(nn.Module):
def __init__(self, num_head, d_model, dropout=0.1):
super(MultiHeadedAttentionNew, self).__init__()
assert d_model % num_head == 0
self.d_k = d_model // num_head
self.h = num_head
self.linear_key = nn.Linear(d_model, d_model)
self.linear_value = nn.Linear(d_model, d_model)
self.linear_query = nn.Linear(d_model, d_model)
self.linear_out = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(p=dropout)
def attention(self, query, key, value, mask, dropout=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
scores = scores.masked_fill(mask == 0, -1000000000.0)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
def forward(self, input_0, input_1, input_2, input_3):
primals_2 = self.linear_key.weight
primals_3 = self.linear_key.bias
primals_4 = self.linear_value.weight
primals_5 = self.linear_value.bias
primals_7 = self.linear_query.weight
primals_8 = self.linear_query.bias
primals_11 = self.linear_out.weight
primals_12 = self.linear_out.bias
primals_1 = input_0
primals_6 = input_1
primals_9 = input_2
primals_10 = input_3
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
| qi700/my_point_summarize | MultiHeadedAttention | false | 4,155 | [
"Apache-2.0"
] | 0 | e269c2d0411fc61ea34055c3080472bc9111bcaa | https://github.com/qi700/my_point_summarize/tree/e269c2d0411fc61ea34055c3080472bc9111bcaa | import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, num_head, d_model, dropout=0.1):
super().__init__()
assert d_model % num_head == 0
self.d_k = d_model // num_head
self.h = num_head
self.linear_key = nn.Linear(d_model, d_model)
self.linear_value = nn.Linear(d_model, d_model)
self.linear_query = nn.Linear(d_model, d_model)
self.linear_out = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(p=dropout)
def attention(self, query, key, value, mask, dropout=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
scores = scores.masked_fill(mask == 0, -1000000000.0)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
def forward(self, query, key, value, mask):
nbatches = query.size(0)
query = self.linear_query(query).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
key = self.linear_key(key).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
value = self.linear_value(value).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
mask = mask.unsqueeze(1)
x, _attn = self.attention(query, key, value, mask, dropout=self.dropout
)
x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k
)
return self.linear_out(x)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4,
4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Attention | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/7b/c7bc3ar3xizii56g4w2ux3uf2vwzb2y5ig3cx2xwh4rq7s4vovlg.py
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# p_attn => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 0.5), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 2.0
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/fj/cfjl47pvhwbpfbvh6rfehwy5ijxc5p3zgkld2lwf3mw5bl6pbkak.py
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# p_attn => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg1_1, (16, 4, 4), (16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf3)
del arg2_1
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
from torch import nn
import torch.nn.functional as F
import torch.hub
class Attention(nn.Module):
def forward(self, query, key, value, mask=None, dropout=None):
scale = query.size(-1) ** -0.5
scores = query.matmul(key.transpose(-2, -1)) / scale
if mask is not None:
scores = scores.masked_fill(mask == 0, -1000000000.0)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return p_attn.matmul(value), p_attn
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
from torch import nn
import torch.hub
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 2.0
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1
), 0), reinterpret_tensor(arg1_1, (16, 4, 4), (16, 1, 4), 0),
out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf3
)
del arg2_1
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2
class AttentionNew(nn.Module):
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1]
| opqi/VMZ | Attention | false | 4,156 | [
"Apache-2.0"
] | 0 | bc9c3bf5f7d9e7d0ef433f9d9b4a3155ac5ed969 | https://github.com/opqi/VMZ/tree/bc9c3bf5f7d9e7d0ef433f9d9b4a3155ac5ed969 | import torch
import torch.utils.data
from torch import nn
import torch.nn.functional as F
import torch.hub
class Model(nn.Module):
def forward(self, query, key, value, mask=None, dropout=None):
scale = query.size(-1) ** -0.5
scores = query.matmul(key.transpose(-2, -1)) / scale
if mask is not None:
scores = scores.masked_fill(mask == 0, -1000000000.0)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return p_attn.matmul(value), p_attn
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return []
|
MultiHeadAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/dc/cdcelrvxxp73pk3p36hgarqnpiqa2vcqisv3mmwsj7xdk4jhe23l.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multi_head_attention_forward => mul
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_6, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ts/ctscnzvbagjv4t25zui245b3recij5udu7nvujnr5rixcyo7elc6.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/k6/ck6fz3qsfeqgn5jtm4ugikmu7cwvvlq3jpttijbb5kdniicwtyz6.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (12, 4), (4, 1))
assert_size_stride(primals_10, (12, ), (1, ))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [query], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [key], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, primals_6, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [value], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, primals_6, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_7
del primals_8
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_10, (4, ), (1, ), 4), buf1, reinterpret_tensor(primals_9, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf4)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_10, (4, ), (1, ), 8), buf2, reinterpret_tensor(primals_9, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf5)
buf6 = reinterpret_tensor(buf3, (1, 4, 4), (16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf6, primals_10, 16, grid=grid(16), stream=stream0)
del primals_10
buf7 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (1, 4, 4), (4, 1, 4), 0), out=buf7)
buf8 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf7, buf8, 16, grid=grid(16), stream=stream0)
buf9 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf8, buf9, 16, grid=grid(16), stream=stream0)
buf10 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (1, 4, 4), (4, 4, 1), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_12, reinterpret_tensor(buf10, (4, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11)
del primals_12
return (buf11, primals_3, primals_6, buf0, buf1, buf2, buf9, reinterpret_tensor(buf10, (4, 4), (4, 1), 0), primals_11, reinterpret_tensor(buf5, (1, 4, 4), (4, 1, 4), 0), reinterpret_tensor(buf6, (1, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (1, 4, 4), (4, 4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (4, 1), 32), reinterpret_tensor(primals_9, (4, 4), (4, 1), 16), reinterpret_tensor(primals_9, (4, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class MultiHeadAttention(nn.Module):
def __init__(self, hidden_state, num_heads=1):
super().__init__()
self.q_linear = nn.Linear(hidden_state, hidden_state)
self.v_linear = nn.Linear(hidden_state, hidden_state)
self.k_linear = nn.Linear(hidden_state, hidden_state)
self.attention = nn.MultiheadAttention(hidden_state, num_heads)
def forward(self, query_input, input, mask=None):
query = self.q_linear(query_input)
key = self.k_linear(input)
value = self.v_linear(input)
attn_output, _attn_output_weights = self.attention(query, key,
value, mask)
return attn_output
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'hidden_state': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (12, 4), (4, 1))
assert_size_stride(primals_10, (12,), (1,))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(
primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, primals_6, reinterpret_tensor(
primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, primals_6, reinterpret_tensor(
primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_7
del primals_8
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (4, 4), (1, 4
), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_10, (4,), (1,), 4),
buf1, reinterpret_tensor(primals_9, (4, 4), (1, 4), 16), alpha=
1, beta=1, out=buf4)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_10, (4,), (1,), 8),
buf2, reinterpret_tensor(primals_9, (4, 4), (1, 4), 32), alpha=
1, beta=1, out=buf5)
buf6 = reinterpret_tensor(buf3, (1, 4, 4), (16, 4, 1), 0)
del buf3
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](buf6, primals_10, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_10
buf7 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (1, 4, 4), (4, 1,
4), 0), out=buf7)
buf8 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf7, buf8, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf9 = buf7
del buf7
triton_poi_fused__softmax_2[grid(16)](buf8, buf9, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf10 = buf8
del buf8
extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (1, 4, 4), (4, 4,
1), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_12, reinterpret_tensor(buf10, (4, 4),
(4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf11)
del primals_12
return (buf11, primals_3, primals_6, buf0, buf1, buf2, buf9,
reinterpret_tensor(buf10, (4, 4), (4, 1), 0), primals_11,
reinterpret_tensor(buf5, (1, 4, 4), (4, 1, 4), 0),
reinterpret_tensor(buf6, (1, 4, 4), (16, 1, 4), 0),
reinterpret_tensor(buf4, (1, 4, 4), (4, 4, 1), 0),
reinterpret_tensor(primals_9, (4, 4), (4, 1), 32),
reinterpret_tensor(primals_9, (4, 4), (4, 1), 16),
reinterpret_tensor(primals_9, (4, 4), (4, 1), 0))
class MultiHeadAttentionNew(nn.Module):
def __init__(self, hidden_state, num_heads=1):
super().__init__()
self.q_linear = nn.Linear(hidden_state, hidden_state)
self.v_linear = nn.Linear(hidden_state, hidden_state)
self.k_linear = nn.Linear(hidden_state, hidden_state)
self.attention = nn.MultiheadAttention(hidden_state, num_heads)
def forward(self, input_0, input_1):
primals_1 = self.q_linear.weight
primals_2 = self.q_linear.bias
primals_3 = self.v_linear.weight
primals_5 = self.v_linear.bias
primals_4 = self.k_linear.weight
primals_8 = self.k_linear.bias
primals_9 = self.attention.in_proj_weight
primals_10 = self.attention.in_proj_bias
primals_6 = self.attention.out_proj.weight
primals_12 = self.attention.out_proj.bias
primals_7 = input_0
primals_11 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
| qinyiwei/MuTual | MultiHeadAttention | false | 4,157 | [
"MIT"
] | 0 | 3bdd13c1388d6136b8944666dfd434870760cc93 | https://github.com/qinyiwei/MuTual/tree/3bdd13c1388d6136b8944666dfd434870760cc93 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, hidden_state, num_heads=1):
super().__init__()
self.q_linear = nn.Linear(hidden_state, hidden_state)
self.v_linear = nn.Linear(hidden_state, hidden_state)
self.k_linear = nn.Linear(hidden_state, hidden_state)
self.attention = nn.MultiheadAttention(hidden_state, num_heads)
def forward(self, query_input, input, mask=None):
query = self.q_linear(query_input)
key = self.k_linear(input)
value = self.v_linear(input)
attn_output, _attn_output_weights = self.attention(query, key,
value, mask)
return attn_output
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4]
|
_SubPixelBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/3x/c3xs42gpn3grgaejyguafrbyhbbi4mky2tdfmfgpjkvjjdcx64dk.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/nq/cnqioqtc5smqmnt22pzdujcgch6iuo4ayzdajy2hr5awqxgsqhdm.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 256
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (262144*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/kx/ckx2rnidyqb5tiful7teg7va3kagir3uo3nzo2l5v3pauvflocqb.py
# Topologically Sorted Source Nodes: [hid], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# hid => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4194304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/lm/clmgosutf3asrjmu2gy27wlrcoy33z3ttcgudkvbmptdvdkjbyyp.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten._prelu_kernel]
# Source node to ATen node mapping:
# out => gt, mul, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %view_1), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {})
triton_poi_fused__prelu_kernel_3 = async_compile.triton('triton_poi_fused__prelu_kernel_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4194304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = (xindex // 128) % 128
x2 = (xindex // 16384) % 64
x3 = (xindex // 1048576)
x4 = xindex
tmp0 = tl.load(in_ptr0 + ((2*(x1 % 2)) + (4*x2) + (256*(x0 // 2)) + (16384*(x1 // 2)) + (1048576*x3) + (x0 % 2)), None)
tmp3 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp4 = tmp3 * tmp0
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + (x4), tmp5, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (256, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1))
assert_size_stride(primals_4, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((256, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 256, 4096, grid=grid(256, 4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [hid], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [hid], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf3, primals_2, 4194304, grid=grid(4194304), stream=stream0)
del primals_2
buf4 = empty_strided_cuda((4, 64, 128, 128), (1048576, 16384, 128, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten._prelu_kernel]
triton_poi_fused__prelu_kernel_3.run(buf3, primals_4, buf4, 4194304, grid=grid(4194304), stream=stream0)
return (buf4, buf0, buf1, primals_4, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class _SubPixelBlock(nn.Module):
def __init__(self, in_channels: 'int'=64, out_channels: 'int'=64,
scale_factor: 'int'=2):
super(_SubPixelBlock, self).__init__()
n_out = out_channels * scale_factor ** 2
self.conv = nn.Conv2d(in_channels, n_out, kernel_size=3, stride=1,
padding=1)
self.shuffle = nn.PixelShuffle(scale_factor)
self.prelu = nn.PReLU(out_channels)
def forward(self, x):
hid = self.conv(x)
hid = self.shuffle(hid)
out = self.prelu(hid)
return out
def get_inputs():
return [torch.rand([4, 64, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 64 * x2 + 262144 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, None)
@triton.jit
def triton_poi_fused__prelu_kernel_3(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = xindex // 128 % 128
x2 = xindex // 16384 % 64
x3 = xindex // 1048576
x4 = xindex
tmp0 = tl.load(in_ptr0 + (2 * (x1 % 2) + 4 * x2 + 256 * (x0 // 2) +
16384 * (x1 // 2) + 1048576 * x3 + x0 % 2), None)
tmp3 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp4 = tmp3 * tmp0
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + x4, tmp5, None)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (256, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1))
assert_size_stride(primals_4, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((256, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16384, 9)](primals_1, buf0, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64),
torch.float32)
triton_poi_fused_1[grid(256, 4096)](primals_3, buf1, 256, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(buf1, buf0, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf3 = buf2
del buf2
triton_poi_fused_convolution_2[grid(4194304)](buf3, primals_2,
4194304, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf4 = empty_strided_cuda((4, 64, 128, 128), (1048576, 16384, 128,
1), torch.float32)
triton_poi_fused__prelu_kernel_3[grid(4194304)](buf3, primals_4,
buf4, 4194304, XBLOCK=1024, num_warps=4, num_stages=1)
return buf4, buf0, buf1, primals_4, buf3
class _SubPixelBlockNew(nn.Module):
def __init__(self, in_channels: 'int'=64, out_channels: 'int'=64,
scale_factor: 'int'=2):
super(_SubPixelBlockNew, self).__init__()
n_out = out_channels * scale_factor ** 2
self.conv = nn.Conv2d(in_channels, n_out, kernel_size=3, stride=1,
padding=1)
self.shuffle = nn.PixelShuffle(scale_factor)
self.prelu = nn.PReLU(out_channels)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_4 = self.prelu.weight
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| pvrancx/torch_isr | _SubPixelBlock | false | 4,158 | [
"MIT"
] | 0 | 831278ae5c3b939b4147bae1a99bc3f3d4fc415d | https://github.com/pvrancx/torch_isr/tree/831278ae5c3b939b4147bae1a99bc3f3d4fc415d | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, in_channels: 'int'=64, out_channels: 'int'=64,
scale_factor: 'int'=2):
super().__init__()
n_out = out_channels * scale_factor ** 2
self.conv = nn.Conv2d(in_channels, n_out, kernel_size=3, stride=1,
padding=1)
self.shuffle = nn.PixelShuffle(scale_factor)
self.prelu = nn.PReLU(out_channels)
def forward(self, x):
hid = self.conv(x)
hid = self.shuffle(hid)
out = self.prelu(hid)
return out
def get_inputs():
return [torch.rand([4, 64, 64, 64])]
def get_init_inputs():
return []
|
LocalContextNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ci/cci3lxmukjzembg3pbo4xshqctklpzl5woxc7frfmy4akmshvr3g.py
# Topologically Sorted Source Nodes: [mean, var, add, sqrt], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt]
# Source node to ATen node mapping:
# add => add
# mean => mean
# sqrt => sqrt
# var => var
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [-1]), kwargs = {correction: 1, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-05), kwargs = {})
# %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
triton_per_fused_add_mean_sqrt_var_0 = async_compile.triton('triton_per_fused_add_mean_sqrt_var_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[8, 32],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_sqrt_var_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_sqrt_var_0(in_out_ptr0, in_out_ptr1, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 8
rnumel = 32
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (32*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 32, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 32.0
tmp20 = tmp4 / tmp19
tmp21 = 31.0
tmp22 = tmp18 / tmp21
tmp23 = 1e-05
tmp24 = tmp22 + tmp23
tmp25 = libdevice.sqrt(tmp24)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp25, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qk/cqkoe64td3xlqhabgekcnmxe4dl3nwn6prbtohfu53u2h5q227tj.py
# Topologically Sorted Source Nodes: [mul, add_1], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# add_1 => add_1
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr1 + ((x4 // 32)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((x4 // 32)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 / tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x4), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 1), (2, 1, 8), torch.float32)
buf3 = empty_strided_cuda((4, 2, 1), (2, 1, 8), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 2, 1), (2, 1, 1), 0); del buf0 # reuse
buf5 = reinterpret_tensor(buf3, (4, 2, 1), (2, 1, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [mean, var, add, sqrt], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_sqrt_var_0.run(buf1, buf5, primals_1, 8, 32, grid=grid(8), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, add_1], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_1.run(primals_1, buf1, buf5, primals_2, primals_3, buf6, 256, grid=grid(256), stream=stream0)
del primals_2
del primals_3
return (buf6, primals_1, buf1, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.utils.data
from torchvision.transforms import functional as F
from torch import nn
from torch.nn import functional as F
class LocalContextNorm(nn.Module):
def __init__(self, num_features, channels_per_group=2, window_size=(227,
227), eps=1e-05):
super(LocalContextNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(1, num_features, 1, 1))
self.bias = nn.Parameter(torch.zeros(1, num_features, 1, 1))
self.channels_per_group = channels_per_group
self.eps = eps
self.window_size = window_size
def forward(self, x):
N, C, H, W = x.size()
G = C // self.channels_per_group
assert C % self.channels_per_group == 0
if self.window_size[0] < H and self.window_size[1] < W:
torch.device(torch.cuda.current_device() if torch.cuda.
is_available() else 'cpu')
x_squared = x * x
integral_img = x.cumsum(dim=2).cumsum(dim=3)
integral_img_sq = x_squared.cumsum(dim=2).cumsum(dim=3)
d = 1, self.window_size[0], self.window_size[1]
integral_img = torch.unsqueeze(integral_img, dim=1)
integral_img_sq = torch.unsqueeze(integral_img_sq, dim=1)
kernel = torch.tensor([[[[[1.0, -1.0], [-1.0, 1.0]]]]])
c_kernel = torch.ones((1, 1, self.channels_per_group, 1, 1))
with torch.no_grad():
sums = F.conv3d(integral_img, kernel, stride=[1, 1, 1],
dilation=d)
sums = F.conv3d(sums, c_kernel, stride=[self.
channels_per_group, 1, 1])
squares = F.conv3d(integral_img_sq, kernel, stride=[1, 1, 1
], dilation=d)
squares = F.conv3d(squares, c_kernel, stride=[self.
channels_per_group, 1, 1])
n = self.window_size[0] * self.window_size[1
] * self.channels_per_group
means = torch.squeeze(sums / n, dim=1)
var = torch.squeeze(1.0 / n * (squares - sums * sums / n), dim=1)
_, _, h, w = means.size()
pad2d = int(math.floor((W - w) / 2)), int(math.ceil((W - w) / 2)
), int(math.floor((H - h) / 2)), int(math.ceil((H - h) / 2))
padded_means = F.pad(means, pad2d, 'replicate')
padded_vars = F.pad(var, pad2d, 'replicate') + self.eps
for i in range(G):
x[:, i * self.channels_per_group:i * self.
channels_per_group + self.channels_per_group, :, :] = (x
[:, i * self.channels_per_group:i * self.
channels_per_group + self.channels_per_group, :, :] -
torch.unsqueeze(padded_means[:, i, :, :], dim=1)
) / torch.unsqueeze(padded_vars[:, i, :, :], dim=1).sqrt()
del integral_img
del integral_img_sq
else:
x = x.view(N, G, -1)
mean = x.mean(-1, keepdim=True)
var = x.var(-1, keepdim=True)
x = (x - mean) / (var + self.eps).sqrt()
x = x.view(N, C, H, W)
return x * self.weight + self.bias
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_mean_sqrt_var_0(in_out_ptr0, in_out_ptr1, in_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 8
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 32 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 32, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 32.0
tmp20 = tmp4 / tmp19
tmp21 = 31.0
tmp22 = tmp18 / tmp21
tmp23 = 1e-05
tmp24 = tmp22 + tmp23
tmp25 = libdevice.sqrt(tmp24)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp25, xmask)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr1 + x4 // 32, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x4 // 32, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 / tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x4, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 1), (2, 1, 8), torch.float32)
buf3 = empty_strided_cuda((4, 2, 1), (2, 1, 8), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 2, 1), (2, 1, 1), 0)
del buf0
buf5 = reinterpret_tensor(buf3, (4, 2, 1), (2, 1, 1), 0)
del buf3
get_raw_stream(0)
triton_per_fused_add_mean_sqrt_var_0[grid(8)](buf1, buf5, primals_1,
8, 32, XBLOCK=8, num_warps=2, num_stages=1)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_1[grid(256)](primals_1, buf1, buf5,
primals_2, primals_3, buf6, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_2
del primals_3
return buf6, primals_1, buf1, buf5
class LocalContextNormNew(nn.Module):
def __init__(self, num_features, channels_per_group=2, window_size=(227,
227), eps=1e-05):
super(LocalContextNormNew, self).__init__()
self.weight = nn.Parameter(torch.ones(1, num_features, 1, 1))
self.bias = nn.Parameter(torch.zeros(1, num_features, 1, 1))
self.channels_per_group = channels_per_group
self.eps = eps
self.window_size = window_size
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| pjh4993/FCOS | LocalContextNorm | false | 4,159 | [
"BSD-2-Clause"
] | 0 | 27f79e3fd3f5043796450b9a2201b42c744fd3df | https://github.com/pjh4993/FCOS/tree/27f79e3fd3f5043796450b9a2201b42c744fd3df | import math
import torch
import torch.utils.data
from torchvision.transforms import functional as F
from torch import nn
from torch.nn import functional as F
class Model(nn.Module):
def __init__(self, num_features, channels_per_group=2, window_size=(227,
227), eps=1e-05):
super().__init__()
self.weight = nn.Parameter(torch.ones(1, num_features, 1, 1))
self.bias = nn.Parameter(torch.zeros(1, num_features, 1, 1))
self.channels_per_group = channels_per_group
self.eps = eps
self.window_size = window_size
def forward(self, x):
N, C, H, W = x.size()
G = C // self.channels_per_group
assert C % self.channels_per_group == 0
if self.window_size[0] < H and self.window_size[1] < W:
torch.device(torch.cuda.current_device() if torch.cuda.
is_available() else 'cpu')
x_squared = x * x
integral_img = x.cumsum(dim=2).cumsum(dim=3)
integral_img_sq = x_squared.cumsum(dim=2).cumsum(dim=3)
d = 1, self.window_size[0], self.window_size[1]
integral_img = torch.unsqueeze(integral_img, dim=1)
integral_img_sq = torch.unsqueeze(integral_img_sq, dim=1)
kernel = torch.tensor([[[[[1.0, -1.0], [-1.0, 1.0]]]]])
c_kernel = torch.ones((1, 1, self.channels_per_group, 1, 1))
with torch.no_grad():
sums = F.conv3d(integral_img, kernel, stride=[1, 1, 1],
dilation=d)
sums = F.conv3d(sums, c_kernel, stride=[self.
channels_per_group, 1, 1])
squares = F.conv3d(integral_img_sq, kernel, stride=[1, 1, 1
], dilation=d)
squares = F.conv3d(squares, c_kernel, stride=[self.
channels_per_group, 1, 1])
n = self.window_size[0] * self.window_size[1
] * self.channels_per_group
means = torch.squeeze(sums / n, dim=1)
var = torch.squeeze(1.0 / n * (squares - sums * sums / n), dim=1)
_, _, h, w = means.size()
pad2d = int(math.floor((W - w) / 2)), int(math.ceil((W - w) / 2)
), int(math.floor((H - h) / 2)), int(math.ceil((H - h) / 2))
padded_means = F.pad(means, pad2d, 'replicate')
padded_vars = F.pad(var, pad2d, 'replicate') + self.eps
for i in range(G):
x[:, i * self.channels_per_group:i * self.
channels_per_group + self.channels_per_group, :, :] = (x
[:, i * self.channels_per_group:i * self.
channels_per_group + self.channels_per_group, :, :] -
torch.unsqueeze(padded_means[:, i, :, :], dim=1)
) / torch.unsqueeze(padded_vars[:, i, :, :], dim=1).sqrt()
del integral_img
del integral_img_sq
else:
x = x.view(N, G, -1)
mean = x.mean(-1, keepdim=True)
var = x.var(-1, keepdim=True)
x = (x - mean) / (var + self.eps).sqrt()
x = x.view(N, C, H, W)
return x * self.weight + self.bias
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
NeuralNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/f3/cf3wjo3codglmel3mdjaodbq3s3viwdoc74iaz5e3kntwsnjtjqi.py
# Topologically Sorted Source Nodes: [hidden_layer], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# hidden_layer => sigmoid
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [hidden_layer], Original ATen: [aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_sigmoid_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 1), (1, 1), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class NeuralNet(torch.nn.Module):
def __init__(self, input_features, hidden_layer_size, output_classes):
super(NeuralNet, self).__init__()
self.l1 = torch.nn.Linear(input_features, hidden_layer_size)
self.l2 = torch.nn.Linear(hidden_layer_size, output_classes)
def forward(self, X):
hidden_layer = torch.sigmoid(self.l1(X))
return self.l2(hidden_layer)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_features': 4, 'hidden_layer_size': 1,
'output_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_sigmoid_0[grid(64)](buf1, primals_2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 1), (
1, 1), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0),
alpha=1, beta=1, out=buf2)
del primals_5
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_4
class NeuralNetNew(torch.nn.Module):
def __init__(self, input_features, hidden_layer_size, output_classes):
super(NeuralNetNew, self).__init__()
self.l1 = torch.nn.Linear(input_features, hidden_layer_size)
self.l2 = torch.nn.Linear(hidden_layer_size, output_classes)
def forward(self, input_0):
primals_1 = self.l1.weight
primals_2 = self.l1.bias
primals_4 = self.l2.weight
primals_5 = self.l2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| rahimftd/digit_recognizer | NeuralNet | false | 4,160 | [
"MIT"
] | 0 | a134efa915670308ad7a77c8ace2662e5c775913 | https://github.com/rahimftd/digit_recognizer/tree/a134efa915670308ad7a77c8ace2662e5c775913 | import torch
class Model(torch.nn.Module):
def __init__(self, input_features, hidden_layer_size, output_classes):
super().__init__()
self.l1 = torch.nn.Linear(input_features, hidden_layer_size)
self.l2 = torch.nn.Linear(hidden_layer_size, output_classes)
def forward(self, X):
hidden_layer = torch.sigmoid(self.l1(X))
return self.l2(hidden_layer)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_features': 4, 'hidden_layer_size': 1,
'output_classes': 4}]
|
FCNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/vx/cvxzmthv4i2niuhjkx7pdwegys74ubmwp36fuzpk743r7lkqg4tm.py
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten.norm, aten.div, aten.mul]
# Source node to ATen node mapping:
# _weight_norm => div, mul, pow_1, pow_2, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {})
# %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %pow_2), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
triton_per_fused_div_mul_norm_0 = async_compile.triton('triton_per_fused_div_mul_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mul_norm_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp6 = tl.load(in_ptr1 + (0))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp8 = tmp7 / tmp5
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None)
tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten.norm, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_div_mul_norm_0.run(buf1, primals_2, primals_1, buf2, 1, 16, grid=grid(1), stream=stream0)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_3
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2, primals_1, primals_2, buf1, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional
from torch import nn
from torch.nn.utils import weight_norm
class FCNet(nn.Module):
def __init__(self, in_size, out_size, activate=None, drop=0.0):
super(FCNet, self).__init__()
self.lin = weight_norm(nn.Linear(in_size, out_size), dim=None)
self.drop_value = drop
self.drop = nn.Dropout(drop)
self.activate = activate.lower() if activate is not None else None
if activate == 'relu':
self.ac_fn = nn.ReLU()
elif activate == 'sigmoid':
self.ac_fn = nn.Sigmoid()
elif activate == 'tanh':
self.ac_fn = nn.Tanh()
def forward(self, x):
if self.drop_value > 0:
x = self.drop(x)
x = self.lin(x)
if self.activate is not None:
x = self.ac_fn(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_size': 4, 'out_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn.functional
from torch import nn
from torch.nn.utils import weight_norm
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_div_mul_norm_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp6 = tl.load(in_ptr1 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp8 = tmp7 / tmp5
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None)
tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp9, None)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_div_mul_norm_0[grid(1)](buf1, primals_2, primals_1,
buf2, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64,
4), (4, 1), 0), reinterpret_tensor(buf2, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_3
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), buf2, primals_1, primals_2, buf1, reinterpret_tensor(primals_4,
(64, 4), (4, 1), 0)
class FCNetNew(nn.Module):
def __init__(self, in_size, out_size, activate=None, drop=0.0):
super(FCNetNew, self).__init__()
self.lin = weight_norm(nn.Linear(in_size, out_size), dim=None)
self.drop_value = drop
self.drop = nn.Dropout(drop)
self.activate = activate.lower() if activate is not None else None
if activate == 'relu':
self.ac_fn = nn.ReLU()
elif activate == 'sigmoid':
self.ac_fn = nn.Sigmoid()
elif activate == 'tanh':
self.ac_fn = nn.Tanh()
def forward(self, input_0):
primals_3 = self.lin.bias
primals_1 = self.lin.weight_g
primals_2 = self.lin.weight_v
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| rafiberlin/clp-sose21-pm-vision | FCNet | false | 4,161 | [
"MIT"
] | 0 | 55c786182ed4568cdeda4bb3676fa02b9580d68d | https://github.com/rafiberlin/clp-sose21-pm-vision/tree/55c786182ed4568cdeda4bb3676fa02b9580d68d | import torch
import torch.nn.functional
from torch import nn
from torch.nn.utils import weight_norm
class Model(nn.Module):
def __init__(self, in_size, out_size, activate=None, drop=0.0):
super().__init__()
self.lin = weight_norm(nn.Linear(in_size, out_size), dim=None)
self.drop_value = drop
self.drop = nn.Dropout(drop)
self.activate = activate.lower() if activate is not None else None
if activate == 'relu':
self.ac_fn = nn.ReLU()
elif activate == 'sigmoid':
self.ac_fn = nn.Sigmoid()
elif activate == 'tanh':
self.ac_fn = nn.Tanh()
def forward(self, x):
if self.drop_value > 0:
x = self.drop(x)
x = self.lin(x)
if self.activate is not None:
x = self.ac_fn(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
SharpenedCosineSimilarity | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/k2/ck2ifjln7mgxcq7f4l4ctfrzcqh5srlzt3rsj2xkjsdz5mju6rli.py
# Topologically Sorted Source Nodes: [square, square_sum, add, sqrt, truediv, square_1, x_norm, x_2, sign, abs_1, x_3, x_4, mul], Original ATen: [aten.pow, aten.sum, aten.add, aten.sqrt, aten.div, aten.mul, aten.sign, aten.abs]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# mul => mul_1
# sign => sign
# sqrt => sqrt
# square => pow_1
# square_1 => pow_2
# square_sum => sum_1
# truediv => div
# x_2 => mul, sum_3
# x_3 => add_4
# x_4 => pow_6
# x_norm => add_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1, 4], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-12), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, 100), kwargs = {})
# %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div, 2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, %pow_2), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%permute, [4], True), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_3, %permute_1), kwargs = {})
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%view_1,), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%view_1,), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, 1e-12), kwargs = {})
# %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%add_4, %view_2), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sign, %pow_6), kwargs = {})
triton_poi_fused_abs_add_div_mul_pow_sign_sqrt_sum_0 = async_compile.triton('triton_poi_fused_abs_add_div_mul_pow_sign_sqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_div_mul_pow_sign_sqrt_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_div_mul_pow_sign_sqrt_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp8 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp14 = tl.load(in_ptr1 + (0))
tmp15 = tl.broadcast_to(tmp14, [XBLOCK])
tmp27 = tl.load(in_ptr2 + (0))
tmp28 = tl.broadcast_to(tmp27, [XBLOCK])
tmp44 = tl.load(in_ptr3 + (0))
tmp45 = tl.broadcast_to(tmp44, [XBLOCK])
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = 1e-12
tmp12 = tmp10 + tmp11
tmp13 = libdevice.sqrt(tmp12)
tmp16 = 0.01
tmp17 = tmp15 * tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp13 + tmp18
tmp20 = tmp0 / tmp19
tmp21 = tmp2 / tmp19
tmp22 = tmp20 + tmp21
tmp23 = tmp5 / tmp19
tmp24 = tmp22 + tmp23
tmp25 = tmp8 / tmp19
tmp26 = tmp24 + tmp25
tmp29 = tmp28 * tmp28
tmp30 = tmp29 + tmp11
tmp31 = libdevice.sqrt(tmp30)
tmp32 = tmp31 + tmp18
tmp33 = tmp28 / tmp32
tmp34 = tmp26 * tmp33
tmp35 = tl.full([1], 0, tl.int32)
tmp36 = tmp35 < tmp34
tmp37 = tmp36.to(tl.int8)
tmp38 = tmp34 < tmp35
tmp39 = tmp38.to(tl.int8)
tmp40 = tmp37 - tmp39
tmp41 = tmp40.to(tmp34.dtype)
tmp42 = tl_math.abs(tmp34)
tmp43 = tmp42 + tmp11
tmp46 = 0.1
tmp47 = tmp45 * tmp46
tmp48 = tmp47 * tmp47
tmp49 = libdevice.pow(tmp43, tmp48)
tmp50 = tmp41 * tmp49
tl.store(in_out_ptr0 + (x2), tmp50, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
assert_size_stride(primals_3, (1, 1, 1), (1, 1, 1))
assert_size_stride(primals_4, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4, 1), (16, 64, 4, 1, 64), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 4, 4, 1, 1), (16, 64, 4, 1, 64, 64), 0); del buf0 # reuse
buf2 = reinterpret_tensor(buf1, (4, 1, 4, 4), (16, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [square, square_sum, add, sqrt, truediv, square_1, x_norm, x_2, sign, abs_1, x_3, x_4, mul], Original ATen: [aten.pow, aten.sum, aten.add, aten.sqrt, aten.div, aten.mul, aten.sign, aten.abs]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_add_div_mul_pow_sign_sqrt_sum_0.run(buf2, primals_1, primals_2, primals_3, primals_4, 64, grid=grid(64), stream=stream0)
return (buf2, primals_1, primals_2, primals_3, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
def unfold2d(x, kernel_size: 'int', stride: 'int', padding: 'int'):
x = F.pad(x, [padding] * 4)
bs, in_c, h, w = x.size()
ks = kernel_size
strided_x = x.as_strided((bs, in_c, (h - ks) // stride + 1, (w - ks) //
stride + 1, ks, ks), (in_c * h * w, h * w, stride * w, stride, w, 1))
return strided_x
class SharpenedCosineSimilarity(nn.Module):
def __init__(self, in_channels=1, out_channels=1, kernel_size=1, stride
=1, padding=0, eps=1e-12):
super(SharpenedCosineSimilarity, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.eps = eps
self.padding = int(padding)
w = torch.empty(out_channels, in_channels, kernel_size, kernel_size)
nn.init.xavier_uniform_(w)
self.w = nn.Parameter(w.view(out_channels, in_channels, -1),
requires_grad=True)
self.p_scale = 10
p_init = 2 ** 0.5 * self.p_scale
self.register_parameter('p', nn.Parameter(torch.empty(out_channels)))
nn.init.constant_(self.p, p_init)
self.q_scale = 100
self.register_parameter('q', nn.Parameter(torch.empty(1)))
nn.init.constant_(self.q, 10)
def forward(self, x):
x = unfold2d(x, kernel_size=self.kernel_size, stride=self.stride,
padding=self.padding)
n, c, h, w, _, _ = x.shape
x = x.reshape(n, c, h, w, -1)
square_sum = torch.sum(torch.square(x), [1, 4], keepdim=True)
x_norm = torch.add(torch.sqrt(square_sum + self.eps), torch.square(
self.q / self.q_scale))
square_sum = torch.sum(torch.square(self.w), [1, 2], keepdim=True)
w_norm = torch.add(torch.sqrt(square_sum + self.eps), torch.square(
self.q / self.q_scale))
x = torch.einsum('nchwl,vcl->nvhw', x / x_norm, self.w / w_norm)
sign = torch.sign(x)
x = torch.abs(x) + self.eps
x = x.pow(torch.square(self.p / self.p_scale).view(1, -1, 1, 1))
return sign * x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_abs_add_div_mul_pow_sign_sqrt_sum_0(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp8 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp14 = tl.load(in_ptr1 + 0)
tmp15 = tl.broadcast_to(tmp14, [XBLOCK])
tmp27 = tl.load(in_ptr2 + 0)
tmp28 = tl.broadcast_to(tmp27, [XBLOCK])
tmp44 = tl.load(in_ptr3 + 0)
tmp45 = tl.broadcast_to(tmp44, [XBLOCK])
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = 1e-12
tmp12 = tmp10 + tmp11
tmp13 = libdevice.sqrt(tmp12)
tmp16 = 0.01
tmp17 = tmp15 * tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp13 + tmp18
tmp20 = tmp0 / tmp19
tmp21 = tmp2 / tmp19
tmp22 = tmp20 + tmp21
tmp23 = tmp5 / tmp19
tmp24 = tmp22 + tmp23
tmp25 = tmp8 / tmp19
tmp26 = tmp24 + tmp25
tmp29 = tmp28 * tmp28
tmp30 = tmp29 + tmp11
tmp31 = libdevice.sqrt(tmp30)
tmp32 = tmp31 + tmp18
tmp33 = tmp28 / tmp32
tmp34 = tmp26 * tmp33
tmp35 = tl.full([1], 0, tl.int32)
tmp36 = tmp35 < tmp34
tmp37 = tmp36.to(tl.int8)
tmp38 = tmp34 < tmp35
tmp39 = tmp38.to(tl.int8)
tmp40 = tmp37 - tmp39
tmp41 = tmp40.to(tmp34.dtype)
tmp42 = tl_math.abs(tmp34)
tmp43 = tmp42 + tmp11
tmp46 = 0.1
tmp47 = tmp45 * tmp46
tmp48 = tmp47 * tmp47
tmp49 = libdevice.pow(tmp43, tmp48)
tmp50 = tmp41 * tmp49
tl.store(in_out_ptr0 + x2, tmp50, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (1, 1, 1), (1, 1, 1))
assert_size_stride(primals_4, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4, 1), (16, 64, 4, 1, 64),
torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 4, 4, 1, 1), (16, 64, 4, 1,
64, 64), 0)
del buf0
buf2 = reinterpret_tensor(buf1, (4, 1, 4, 4), (16, 16, 4, 1), 0)
del buf1
get_raw_stream(0)
triton_poi_fused_abs_add_div_mul_pow_sign_sqrt_sum_0[grid(64)](buf2,
primals_1, primals_2, primals_3, primals_4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
return buf2, primals_1, primals_2, primals_3, primals_4
def unfold2d(x, kernel_size: 'int', stride: 'int', padding: 'int'):
x = F.pad(x, [padding] * 4)
bs, in_c, h, w = x.size()
ks = kernel_size
strided_x = x.as_strided((bs, in_c, (h - ks) // stride + 1, (w - ks) //
stride + 1, ks, ks), (in_c * h * w, h * w, stride * w, stride, w, 1))
return strided_x
class SharpenedCosineSimilarityNew(nn.Module):
def __init__(self, in_channels=1, out_channels=1, kernel_size=1, stride
=1, padding=0, eps=1e-12):
super(SharpenedCosineSimilarityNew, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.eps = eps
self.padding = int(padding)
w = torch.empty(out_channels, in_channels, kernel_size, kernel_size)
nn.init.xavier_uniform_(w)
self.w = nn.Parameter(w.view(out_channels, in_channels, -1),
requires_grad=True)
self.p_scale = 10
p_init = 2 ** 0.5 * self.p_scale
self.register_parameter('p', nn.Parameter(torch.empty(out_channels)))
nn.init.constant_(self.p, p_init)
self.q_scale = 100
self.register_parameter('q', nn.Parameter(torch.empty(1)))
nn.init.constant_(self.q, 10)
def forward(self, input_0):
primals_3 = self.w
primals_2 = self.p
primals_4 = self.q
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| quickgrid/sharpened_cosine_similarity_torch | SharpenedCosineSimilarity | false | 4,162 | [
"MIT"
] | 0 | d652d76a4994a0b3817e248d5899827d35a5ebeb | https://github.com/quickgrid/sharpened_cosine_similarity_torch/tree/d652d76a4994a0b3817e248d5899827d35a5ebeb | import torch
import torch.nn as nn
import torch.nn.functional as F
def unfold2d(x, kernel_size: 'int', stride: 'int', padding: 'int'):
x = F.pad(x, [padding] * 4)
bs, in_c, h, w = x.size()
ks = kernel_size
strided_x = x.as_strided((bs, in_c, (h - ks) // stride + 1, (w - ks) //
stride + 1, ks, ks), (in_c * h * w, h * w, stride * w, stride, w, 1))
return strided_x
class Model(nn.Module):
def __init__(self, in_channels=1, out_channels=1, kernel_size=1, stride
=1, padding=0, eps=1e-12):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.eps = eps
self.padding = int(padding)
w = torch.empty(out_channels, in_channels, kernel_size, kernel_size)
nn.init.xavier_uniform_(w)
self.w = nn.Parameter(w.view(out_channels, in_channels, -1),
requires_grad=True)
self.p_scale = 10
p_init = 2 ** 0.5 * self.p_scale
self.register_parameter('p', nn.Parameter(torch.empty(out_channels)))
nn.init.constant_(self.p, p_init)
self.q_scale = 100
self.register_parameter('q', nn.Parameter(torch.empty(1)))
nn.init.constant_(self.q, 10)
def forward(self, x):
x = unfold2d(x, kernel_size=self.kernel_size, stride=self.stride,
padding=self.padding)
n, c, h, w, _, _ = x.shape
x = x.reshape(n, c, h, w, -1)
square_sum = torch.sum(torch.square(x), [1, 4], keepdim=True)
x_norm = torch.add(torch.sqrt(square_sum + self.eps), torch.square(
self.q / self.q_scale))
square_sum = torch.sum(torch.square(self.w), [1, 2], keepdim=True)
w_norm = torch.add(torch.sqrt(square_sum + self.eps), torch.square(
self.q / self.q_scale))
x = torch.einsum('nchwl,vcl->nvhw', x / x_norm, self.w / w_norm)
sign = torch.sign(x)
x = torch.abs(x) + self.eps
x = x.pow(torch.square(self.p / self.p_scale).view(1, -1, 1, 1))
return sign * x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
EncoderLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/xs/cxsdhgqd6vd2b7mfr2fdmpsoqbgad2hwpchzeouqh3m4xrstendj.py
# Topologically Sorted Source Nodes: [mul, x_att], Original ATen: [aten.mul, aten.native_layer_norm]
# Source node to ATen node mapping:
# mul => mul
# x_att => var_mean
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%mul, [2]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_mul_native_layer_norm_0 = async_compile.triton('triton_poi_fused_mul_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_native_layer_norm_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/br/cbrp2mksal5nzeuhv7d2l7c7vwkkfy7luple4fdf3knpt4yyduzw.py
# Topologically Sorted Source Nodes: [mul, x_att], Original ATen: [aten.mul, aten.native_layer_norm]
# Source node to ATen node mapping:
# mul => mul
# x_att => add, add_1, mul_1, mul_2, rsqrt, sub
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %getitem_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_3), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_4), kwargs = {})
triton_poi_fused_mul_native_layer_norm_1 = async_compile.triton('triton_poi_fused_mul_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7k/c7kkxqo5r65gqykuvge3exgf3trgxmm4raf7gypitw4ynuylbeao.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/jx/cjxnq7ke3cxy6jycsbwziiw2ic65zjzt43fodlp6vavjnqmbhbvt.py
# Topologically Sorted Source Nodes: [scores, eq, scores_1, p_attn], Original ATen: [aten.div, aten.eq, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# eq => eq
# p_attn => amax, exp, sub_1, sum_1
# scores => div
# scores_1 => full_default, where
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%unsqueeze, 0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1000000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_div_eq_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_div_eq_masked_fill_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_eq_masked_fill_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_eq_masked_fill_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (4*x3), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (1 + (4*x3)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (2 + (4*x3)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (3 + (4*x3)), xmask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = -1000000000.0
tmp7 = tl.where(tmp2, tmp6, tmp5)
tmp9 = tmp8 == tmp1
tmp11 = tmp10 * tmp4
tmp12 = tl.where(tmp9, tmp6, tmp11)
tmp13 = triton_helpers.maximum(tmp7, tmp12)
tmp15 = tmp14 == tmp1
tmp17 = tmp16 * tmp4
tmp18 = tl.where(tmp15, tmp6, tmp17)
tmp19 = triton_helpers.maximum(tmp13, tmp18)
tmp21 = tmp20 == tmp1
tmp23 = tmp22 * tmp4
tmp24 = tl.where(tmp21, tmp6, tmp23)
tmp25 = triton_helpers.maximum(tmp19, tmp24)
tmp26 = tmp7 - tmp25
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp12 - tmp25
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp31 = tmp18 - tmp25
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tmp34 = tmp24 - tmp25
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp33 + tmp35
tl.store(out_ptr0 + (x3), tmp25, xmask)
tl.store(out_ptr1 + (x3), tmp36, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/vi/cvij62mui45ampgewm2umhno5rymmzocalwymmjzsoqzlhv4a2u3.py
# Topologically Sorted Source Nodes: [scores, eq, scores_1, p_attn], Original ATen: [aten.div, aten.eq, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# eq => eq
# p_attn => amax, div_1, exp, sub_1
# scores => div
# scores_1 => full_default, where
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%unsqueeze, 0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1000000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_div_eq_masked_fill_4 = async_compile.triton('triton_poi_fused__softmax_div_eq_masked_fill_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_eq_masked_fill_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_eq_masked_fill_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 64)
x4 = xindex % 16
x5 = xindex
x6 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x4 + (16*x3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr0 + (x5), xmask)
tmp8 = tl.load(in_ptr1 + (x6), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (x6), xmask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = -1000000000.0
tmp7 = tl.where(tmp2, tmp6, tmp5)
tmp9 = tmp7 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 / tmp11
tl.store(in_out_ptr0 + (x5), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/we/cwe54p4p4jvwbdktkpj3wy2coheu6f3r3dgvi7ozm7xjfk4mgbwx.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5l/c5lfswxa2a4aybcgsyhcvcycmhp5ssxucoryh4vi63bvhownmzup.py
# Topologically Sorted Source Nodes: [x_2, mul_1, x_affine], Original ATen: [aten.add, aten.mul, aten.native_layer_norm]
# Source node to ATen node mapping:
# mul_1 => mul_3
# x_2 => add_2
# x_affine => var_mean_1
# Graph fragment:
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_17), kwargs = {})
# %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, %primals_2), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%mul_3, [2]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_mul_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_mul_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 * tmp3
tmp7 = tmp5 + tmp6
tmp9 = tmp7 * tmp8
tmp10 = tmp4 + tmp9
tmp13 = tmp11 + tmp12
tmp15 = tmp13 * tmp14
tmp16 = tmp10 + tmp15
tmp19 = tmp17 + tmp18
tmp21 = tmp19 * tmp20
tmp22 = tmp16 + tmp21
tmp23 = 4.0
tmp24 = tmp22 / tmp23
tmp25 = tmp4 - tmp24
tmp26 = tmp25 * tmp25
tmp27 = tmp9 - tmp24
tmp28 = tmp27 * tmp27
tmp29 = tmp26 + tmp28
tmp30 = tmp15 - tmp24
tmp31 = tmp30 * tmp30
tmp32 = tmp29 + tmp31
tmp33 = tmp21 - tmp24
tmp34 = tmp33 * tmp33
tmp35 = tmp32 + tmp34
tmp36 = tmp35 / tmp23
tl.store(out_ptr0 + (x0), tmp24, xmask)
tl.store(out_ptr1 + (x0), tmp36, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/az/cazk6ygry7rdh7hlohmxpdos4ijkax24xrpnhplpr2hmjlwa64s4.py
# Topologically Sorted Source Nodes: [x_2, mul_1, x_affine], Original ATen: [aten.add, aten.mul, aten.native_layer_norm]
# Source node to ATen node mapping:
# mul_1 => mul_3
# x_2 => add_2
# x_affine => add_3, add_4, mul_4, mul_5, rsqrt_1, sub_2
# Graph fragment:
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_17), kwargs = {})
# %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, %primals_2), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, %getitem_3), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %primals_13), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, %primals_14), kwargs = {})
triton_poi_fused_add_mul_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_mul_native_layer_norm_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x2), xmask)
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr6 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 - tmp5
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp6 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/23/c23j2vk753qpctrm5kblwdo7f2zh4pnjylmlrcdhyl7syfjonudr.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_19,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_8 = async_compile.triton('triton_poi_fused_relu_threshold_backward_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_8(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/x7/cx7y3kua2bihmqz24vhzuizsgkwgtdcyxynklnn7saro6oxogdky.py
# Topologically Sorted Source Nodes: [x_2, add_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add_1 => add_5
# x_2 => add_2
# Graph fragment:
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_17), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %view_21), kwargs = {})
triton_poi_fused_add_9 = async_compile.triton('triton_poi_fused_add_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_out_ptr0 + (x2), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4, ), (1, ))
assert_size_stride(primals_17, (4, 4), (4, 1))
assert_size_stride(primals_18, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [mul, x_att], Original ATen: [aten.mul, aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_native_layer_norm_0.run(primals_1, primals_2, buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, x_att], Original ATen: [aten.mul, aten.native_layer_norm]
triton_poi_fused_mul_native_layer_norm_1.run(primals_1, primals_2, buf0, buf1, primals_3, primals_4, buf2, 64, grid=grid(64), stream=stream0)
del primals_3
del primals_4
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf3, primals_6, buf6, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_6
buf7 = reinterpret_tensor(buf3, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf4, primals_8, buf7, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf8 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf7, (16, 1, 4), (4, 0, 1), 0), out=buf8)
buf9 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf4 # reuse
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [scores, eq, scores_1, p_attn], Original ATen: [aten.div, aten.eq, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_div_eq_masked_fill_3.run(primals_2, buf8, buf9, buf10, 64, grid=grid(64), stream=stream0)
buf11 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [scores, eq, scores_1, p_attn], Original ATen: [aten.div, aten.eq, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_div_eq_masked_fill_4.run(buf11, primals_2, buf9, buf10, 256, grid=grid(256), stream=stream0)
buf12 = reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf5, primals_10, buf12, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_10
buf13 = reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf11, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf12, (16, 4, 1), (4, 1, 0), 0), out=buf13)
buf14 = reinterpret_tensor(buf10, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_5.run(buf13, buf14, 16, 4, grid=grid(16, 4), stream=stream0)
buf15 = reinterpret_tensor(buf13, (16, 4), (4, 1), 0); del buf13 # reuse
# Topologically Sorted Source Nodes: [x_att_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_12, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15)
del primals_12
buf16 = buf1; del buf1 # reuse
buf17 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_2, mul_1, x_affine], Original ATen: [aten.add, aten.mul, aten.native_layer_norm]
triton_poi_fused_add_mul_native_layer_norm_6.run(primals_1, buf15, primals_2, buf16, buf17, 16, grid=grid(16), stream=stream0)
buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2, mul_1, x_affine], Original ATen: [aten.add, aten.mul, aten.native_layer_norm]
triton_poi_fused_add_mul_native_layer_norm_7.run(primals_1, buf15, primals_2, buf16, buf17, primals_13, primals_14, buf18, 64, grid=grid(64), stream=stream0)
del buf16
del buf17
del primals_14
buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf19)
buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0); del buf19 # reuse
buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_8.run(buf20, primals_16, buf23, 64, grid=grid(64), stream=stream0)
del primals_16
buf21 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf20, (16, 4), (4, 1), 0), reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf21)
buf22 = reinterpret_tensor(buf21, (4, 4, 4), (16, 4, 1), 0); del buf21 # reuse
# Topologically Sorted Source Nodes: [x_2, add_1], Original ATen: [aten.add]
triton_poi_fused_add_9.run(buf22, primals_1, buf15, primals_18, 64, grid=grid(64), stream=stream0)
del primals_18
return (buf22, primals_1, primals_2, primals_13, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf11, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), buf15, reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(buf20, (16, 4), (4, 1), 0), primals_17, buf23, primals_15, primals_11, reinterpret_tensor(buf12, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 4), 0), primals_9, primals_7, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class AffineLayer(nn.Module):
def __init__(self, dropout, d_model, d_ff):
super(AffineLayer, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class MultiHeadedAttention(nn.Module):
def __init__(self, num_head, d_model, dropout=0.1):
super(MultiHeadedAttention, self).__init__()
assert d_model % num_head == 0
self.d_k = d_model // num_head
self.h = num_head
self.linear_key = nn.Linear(d_model, d_model)
self.linear_value = nn.Linear(d_model, d_model)
self.linear_query = nn.Linear(d_model, d_model)
self.linear_out = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(p=dropout)
def attention(self, query, key, value, mask, dropout=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
scores = scores.masked_fill(mask == 0, -1000000000.0)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
def forward(self, query, key, value, mask):
nbatches = query.size(0)
query = self.linear_query(query).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
key = self.linear_key(key).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
value = self.linear_value(value).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
mask = mask.unsqueeze(1)
x, _attn = self.attention(query, key, value, mask, dropout=self.dropout
)
x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k
)
return self.linear_out(x)
class EncoderLayer(nn.Module):
def __init__(self, num_head, dropout, d_model, d_ff):
super(EncoderLayer, self).__init__()
self.att_layer = MultiHeadedAttention(num_head, d_model, dropout)
self.norm_att = nn.LayerNorm(d_model)
self.dropout_att = nn.Dropout(dropout)
self.affine_layer = AffineLayer(dropout, d_model, d_ff)
self.norm_affine = nn.LayerNorm(d_model)
self.dropout_affine = nn.Dropout(dropout)
def forward(self, x, mask):
x_att = self.norm_att(x * mask)
x_att = self.att_layer(x_att, x_att, x_att, mask)
x = x + self.dropout_att(x_att)
x_affine = self.norm_affine(x * mask)
x_affine = self.affine_layer(x_affine)
return x + self.dropout_affine(x_affine)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'num_head': 4, 'dropout': 0.5, 'd_model': 4, 'd_ff': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_native_layer_norm_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_mul_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_div_eq_masked_fill_3(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4 * x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr1 + 4 * x3, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy
='evict_last')
tmp10 = tl.load(in_ptr1 + (1 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (2 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (3 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = -1000000000.0
tmp7 = tl.where(tmp2, tmp6, tmp5)
tmp9 = tmp8 == tmp1
tmp11 = tmp10 * tmp4
tmp12 = tl.where(tmp9, tmp6, tmp11)
tmp13 = triton_helpers.maximum(tmp7, tmp12)
tmp15 = tmp14 == tmp1
tmp17 = tmp16 * tmp4
tmp18 = tl.where(tmp15, tmp6, tmp17)
tmp19 = triton_helpers.maximum(tmp13, tmp18)
tmp21 = tmp20 == tmp1
tmp23 = tmp22 * tmp4
tmp24 = tl.where(tmp21, tmp6, tmp23)
tmp25 = triton_helpers.maximum(tmp19, tmp24)
tmp26 = tmp7 - tmp25
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp12 - tmp25
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp31 = tmp18 - tmp25
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tmp34 = tmp24 - tmp25
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp33 + tmp35
tl.store(out_ptr0 + x3, tmp25, xmask)
tl.store(out_ptr1 + x3, tmp36, xmask)
@triton.jit
def triton_poi_fused__softmax_div_eq_masked_fill_4(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 64
x4 = xindex % 16
x5 = xindex
x6 = xindex // 4
tmp0 = tl.load(in_ptr0 + (x4 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_out_ptr0 + x5, xmask)
tmp8 = tl.load(in_ptr1 + x6, xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + x6, xmask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = -1000000000.0
tmp7 = tl.where(tmp2, tmp6, tmp5)
tmp9 = tmp7 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 / tmp11
tl.store(in_out_ptr0 + x5, tmp12, xmask)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_mul_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 * tmp3
tmp7 = tmp5 + tmp6
tmp9 = tmp7 * tmp8
tmp10 = tmp4 + tmp9
tmp13 = tmp11 + tmp12
tmp15 = tmp13 * tmp14
tmp16 = tmp10 + tmp15
tmp19 = tmp17 + tmp18
tmp21 = tmp19 * tmp20
tmp22 = tmp16 + tmp21
tmp23 = 4.0
tmp24 = tmp22 / tmp23
tmp25 = tmp4 - tmp24
tmp26 = tmp25 * tmp25
tmp27 = tmp9 - tmp24
tmp28 = tmp27 * tmp27
tmp29 = tmp26 + tmp28
tmp30 = tmp15 - tmp24
tmp31 = tmp30 * tmp30
tmp32 = tmp29 + tmp31
tmp33 = tmp21 - tmp24
tmp34 = tmp33 * tmp33
tmp35 = tmp32 + tmp34
tmp36 = tmp35 / tmp23
tl.store(out_ptr0 + x0, tmp24, xmask)
tl.store(out_ptr1 + x0, tmp36, xmask)
@triton.jit
def triton_poi_fused_add_mul_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x2, xmask)
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr6 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 - tmp5
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp6 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_8(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_out_ptr0 + x2, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17, primals_18
) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4,), (1,))
assert_size_stride(primals_17, (4, 4), (4, 1))
assert_size_stride(primals_18, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_native_layer_norm_0[grid(16)](primals_1,
primals_2, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_mul_native_layer_norm_1[grid(64)](primals_1,
primals_2, buf0, buf1, primals_3, primals_4, buf2, 64, XBLOCK=
64, num_warps=1, num_stages=1)
del primals_3
del primals_4
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_2[grid(16, 4)](buf3, primals_6, buf6, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_6
buf7 = reinterpret_tensor(buf3, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf3
triton_poi_fused_clone_2[grid(16, 4)](buf4, primals_8, buf7, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_8
buf8 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf7, (16, 1, 4), (4, 0, 1), 0), out=buf8)
buf9 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf4
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_div_eq_masked_fill_3[grid(64)](primals_2,
buf8, buf9, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf8
triton_poi_fused__softmax_div_eq_masked_fill_4[grid(256)](buf11,
primals_2, buf9, buf10, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf12 = reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf9
triton_poi_fused_clone_2[grid(16, 4)](buf5, primals_10, buf12, 16,
4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_10
buf13 = reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0)
del buf5
extern_kernels.bmm(reinterpret_tensor(buf11, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf12, (16, 4, 1), (4, 1, 0), 0), out=buf13)
buf14 = reinterpret_tensor(buf10, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf10
triton_poi_fused_clone_5[grid(16, 4)](buf13, buf14, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf15 = reinterpret_tensor(buf13, (16, 4), (4, 1), 0)
del buf13
extern_kernels.addmm(primals_12, reinterpret_tensor(buf14, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf15)
del primals_12
buf16 = buf1
del buf1
buf17 = buf0
del buf0
triton_poi_fused_add_mul_native_layer_norm_6[grid(16)](primals_1,
buf15, primals_2, buf16, buf17, 16, XBLOCK=16, num_warps=1,
num_stages=1)
buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_mul_native_layer_norm_7[grid(64)](primals_1,
buf15, primals_2, buf16, buf17, primals_13, primals_14, buf18,
64, XBLOCK=64, num_warps=1, num_stages=1)
del buf16
del buf17
del primals_14
buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf19)
buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0)
del buf19
buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_8[grid(64)](buf20,
primals_16, buf23, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_16
buf21 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf20, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf21)
buf22 = reinterpret_tensor(buf21, (4, 4, 4), (16, 4, 1), 0)
del buf21
triton_poi_fused_add_9[grid(64)](buf22, primals_1, buf15,
primals_18, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_18
return buf22, primals_1, primals_2, primals_13, reinterpret_tensor(buf2,
(16, 4), (4, 1), 0), buf11, reinterpret_tensor(buf14, (16, 4), (4,
1), 0), buf15, reinterpret_tensor(buf18, (16, 4), (4, 1), 0
), reinterpret_tensor(buf20, (16, 4), (4, 1), 0
), primals_17, buf23, primals_15, primals_11, reinterpret_tensor(buf12,
(16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf6, (16, 1, 4), (4,
1, 1), 0), reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 4), 0
), primals_9, primals_7, primals_5
class AffineLayer(nn.Module):
def __init__(self, dropout, d_model, d_ff):
super(AffineLayer, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class MultiHeadedAttention(nn.Module):
def __init__(self, num_head, d_model, dropout=0.1):
super(MultiHeadedAttention, self).__init__()
assert d_model % num_head == 0
self.d_k = d_model // num_head
self.h = num_head
self.linear_key = nn.Linear(d_model, d_model)
self.linear_value = nn.Linear(d_model, d_model)
self.linear_query = nn.Linear(d_model, d_model)
self.linear_out = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(p=dropout)
def attention(self, query, key, value, mask, dropout=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
scores = scores.masked_fill(mask == 0, -1000000000.0)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
def forward(self, query, key, value, mask):
nbatches = query.size(0)
query = self.linear_query(query).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
key = self.linear_key(key).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
value = self.linear_value(value).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
mask = mask.unsqueeze(1)
x, _attn = self.attention(query, key, value, mask, dropout=self.dropout
)
x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k
)
return self.linear_out(x)
class EncoderLayerNew(nn.Module):
def __init__(self, num_head, dropout, d_model, d_ff):
super(EncoderLayerNew, self).__init__()
self.att_layer = MultiHeadedAttention(num_head, d_model, dropout)
self.norm_att = nn.LayerNorm(d_model)
self.dropout_att = nn.Dropout(dropout)
self.affine_layer = AffineLayer(dropout, d_model, d_ff)
self.norm_affine = nn.LayerNorm(d_model)
self.dropout_affine = nn.Dropout(dropout)
def forward(self, input_0, input_1):
primals_5 = self.att_layer.linear_key.weight
primals_3 = self.att_layer.linear_key.bias
primals_7 = self.att_layer.linear_value.weight
primals_4 = self.att_layer.linear_value.bias
primals_9 = self.att_layer.linear_query.weight
primals_6 = self.att_layer.linear_query.bias
primals_11 = self.att_layer.linear_out.weight
primals_8 = self.att_layer.linear_out.bias
primals_10 = self.norm_att.weight
primals_12 = self.norm_att.bias
primals_15 = self.affine_layer.w_1.weight
primals_13 = self.affine_layer.w_1.bias
primals_17 = self.affine_layer.w_2.weight
primals_14 = self.affine_layer.w_2.bias
primals_16 = self.norm_affine.weight
primals_18 = self.norm_affine.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18])
return output[0]
| qi700/my_point_summarize | EncoderLayer | false | 4,163 | [
"Apache-2.0"
] | 0 | e269c2d0411fc61ea34055c3080472bc9111bcaa | https://github.com/qi700/my_point_summarize/tree/e269c2d0411fc61ea34055c3080472bc9111bcaa | import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class AffineLayer(nn.Module):
def __init__(self, dropout, d_model, d_ff):
super().__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class MultiHeadedAttention(nn.Module):
def __init__(self, num_head, d_model, dropout=0.1):
super().__init__()
assert d_model % num_head == 0
self.d_k = d_model // num_head
self.h = num_head
self.linear_key = nn.Linear(d_model, d_model)
self.linear_value = nn.Linear(d_model, d_model)
self.linear_query = nn.Linear(d_model, d_model)
self.linear_out = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(p=dropout)
def attention(self, query, key, value, mask, dropout=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
scores = scores.masked_fill(mask == 0, -1000000000.0)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
def forward(self, query, key, value, mask):
nbatches = query.size(0)
query = self.linear_query(query).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
key = self.linear_key(key).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
value = self.linear_value(value).view(nbatches, -1, self.h, self.d_k
).transpose(1, 2)
mask = mask.unsqueeze(1)
x, _attn = self.attention(query, key, value, mask, dropout=self.dropout
)
x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k
)
return self.linear_out(x)
class Model(nn.Module):
def __init__(self, num_head, dropout, d_model, d_ff):
super().__init__()
self.att_layer = MultiHeadedAttention(num_head, d_model, dropout)
self.norm_att = nn.LayerNorm(d_model)
self.dropout_att = nn.Dropout(dropout)
self.affine_layer = AffineLayer(dropout, d_model, d_ff)
self.norm_affine = nn.LayerNorm(d_model)
self.dropout_affine = nn.Dropout(dropout)
def forward(self, x, mask):
x_att = self.norm_att(x * mask)
x_att = self.att_layer(x_att, x_att, x_att, mask)
x = x + self.dropout_att(x_att)
x_affine = self.norm_affine(x * mask)
x_affine = self.affine_layer(x_affine)
return x + self.dropout_affine(x_affine)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 0.5, 4, 4]
|
DSCNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/td/ctdv3m5a33kovvtng5iilth4k6mtnyfcota6hhwoiqm34iumu7wi.py
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# input_1 => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 6) % 6
x0 = xindex % 6
x2 = (xindex // 36)
x4 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-1) + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0)
tl.store(out_ptr0 + (x4), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ee/ceel7gqb6bxxi6v5akykl67eptfcm6duyq2mtmqrub2kloaw7htp.py
# Topologically Sorted Source Nodes: [input_2, input_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# input_2 => convolution
# input_3 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/my/cmykveslman44cmgx6n67zhhjovkcupjikam4mujghfvxablzzpx.py
# Topologically Sorted Source Nodes: [input_4, input_6], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# input_4 => convolution_1
# input_6 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%view_2, %primals_5, %primals_6, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%slice_4,), kwargs = {})
# %slice_scatter_default : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_tensor, %relu_1, 3, -3, 8), kwargs = {})
# %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%convolution_1, %slice_scatter_default, 2, -3, 9), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 6) % 6
x0 = xindex % 6
x4 = xindex
x2 = (xindex // 36) % 4
tmp19 = tl.load(in_out_ptr0 + (x4), xmask)
tmp20 = tl.load(in_ptr0 + (x2), xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 3, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = x0
tmp4 = tmp3 >= tmp1
tmp5 = tmp4 & tmp2
tmp6 = tl.load(in_out_ptr0 + (x4), tmp5 & xmask, other=0.0)
tmp7 = tl.load(in_ptr0 + (x2), tmp5 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp5, tmp10, tmp11)
tmp13 = tl.load(in_out_ptr0 + (x4), tmp2 & xmask, other=0.0)
tmp14 = tl.load(in_ptr0 + (x2), tmp2 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tmp13 + tmp14
tmp16 = tl.where(tmp4, tmp12, tmp15)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp2, tmp16, tmp17)
tmp21 = tmp19 + tmp20
tmp22 = tl.where(tmp2, tmp18, tmp21)
tl.store(in_out_ptr0 + (x4), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xy/cxy7c463ocont2eh2rauxmeskuwjwuxxuxekyemvjiwq562uy7br.py
# Topologically Sorted Source Nodes: [], Original ATen: [aten.threshold_backward]
# Source node to ATen node mapping:
# Graph fragment:
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%slice_27, 0), kwargs = {})
triton_poi_fused_threshold_backward_3 = async_compile.triton('triton_poi_fused_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_threshold_backward_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = (xindex // 3) % 3
x2 = (xindex // 9)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (21 + x0 + (6*x1) + (36*x2)), xmask)
tmp1 = 0.0
tmp2 = tmp0 <= tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1))
buf2 = buf1; del buf1 # reuse
buf7 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [input_2, input_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_1.run(buf2, primals_3, buf7, 64, grid=grid(64), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.mm]
extern_kernels.mm(primals_4, reinterpret_tensor(buf2, (4, 16), (16, 1), 0), out=buf3)
# Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(buf3, (4, 4, 2, 2), (16, 4, 2, 1), 0), primals_5, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 6, 6), (144, 36, 6, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [input_4, input_6], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_6, 576, grid=grid(576), stream=stream0)
del primals_6
buf6 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.bool)
# Topologically Sorted Source Nodes: [], Original ATen: [aten.threshold_backward]
triton_poi_fused_threshold_backward_3.run(buf5, buf6, 144, grid=grid(144), stream=stream0)
return (reinterpret_tensor(buf5, (4, 4, 3, 3), (144, 36, 6, 1), 21), reinterpret_tensor(buf2, (4, 16), (16, 1), 0), buf3, primals_2, primals_5, buf0, reinterpret_tensor(buf3, (4, 4, 2, 2), (16, 4, 2, 1), 0), buf6, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), reinterpret_tensor(buf2, (16, 4), (1, 16), 0), buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Conv2dSamePad(nn.Module):
"""
Implement Tensorflow's 'SAME' padding mode in Conv2d.
When an odd number, say `m`, of pixels are need to pad, Tensorflow will pad one more column at right or one more
row at bottom. But Pytorch will pad `m+1` pixels, i.e., Pytorch always pads in both sides.
So we can pad the tensor in the way of Tensorflow before call the Conv2d module.
"""
def __init__(self, kernel_size, stride):
super(Conv2dSamePad, self).__init__()
self.kernel_size = kernel_size if type(kernel_size) in [list, tuple
] else [kernel_size, kernel_size]
self.stride = stride if type(stride) in [list, tuple] else [stride,
stride]
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
out_height = math.ceil(float(in_height) / float(self.stride[0]))
out_width = math.ceil(float(in_width) / float(self.stride[1]))
pad_along_height = (out_height - 1) * self.stride[0
] + self.kernel_size[0] - in_height
pad_along_width = (out_width - 1) * self.stride[1] + self.kernel_size[1
] - in_width
pad_top = math.floor(pad_along_height / 2)
pad_left = math.floor(pad_along_width / 2)
pad_bottom = pad_along_height - pad_top
pad_right = pad_along_width - pad_left
return F.pad(x, [pad_left, pad_right, pad_top, pad_bottom],
'constant', 0)
class ConvTranspose2dSamePad(nn.Module):
"""
This module implements the "SAME" padding mode for ConvTranspose2d as in Tensorflow.
A tensor with width w_in, feed it to ConvTranspose2d(ci, co, kernel, stride), the width of output tensor T_nopad:
w_nopad = (w_in - 1) * stride + kernel
If we use padding, i.e., ConvTranspose2d(ci, co, kernel, stride, padding, output_padding), the width of T_pad:
w_pad = (w_in - 1) * stride + kernel - (2*padding - output_padding) = w_nopad - (2*padding - output_padding)
Yes, in ConvTranspose2d, more padding, the resulting tensor is smaller, i.e., the padding is actually deleting row/col.
If `pad`=(2*padding - output_padding) is odd, Pytorch deletes more columns in the left, i.e., the first ceil(pad/2) and
last `pad - ceil(pad/2)` columns of T_nopad are deleted to get T_pad.
In contrast, Tensorflow deletes more columns in the right, i.e., the first floor(pad/2) and last `pad - floor(pad/2)`
columns are deleted.
For the height, Pytorch deletes more rows at top, while Tensorflow at bottom.
In practice, we usually want `w_pad = w_in * stride` or `w_pad = w_in * stride - 1`, i.e., the "SAME" padding mode
in Tensorflow. To determine the value of `w_pad`, we should pass it to this function.
So the number of columns to delete:
pad = 2*padding - output_padding = w_nopad - w_pad
If pad is even, we can directly set padding=pad/2 and output_padding=0 in ConvTranspose2d.
If pad is odd, we can use ConvTranspose2d to get T_nopad, and then delete `pad` rows/columns by
ourselves.
This module should be called after the ConvTranspose2d module with shared kernel_size and stride values.
"""
def __init__(self, output_size):
super(ConvTranspose2dSamePad, self).__init__()
self.output_size = output_size
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
pad_height = in_height - self.output_size[0]
pad_width = in_width - self.output_size[1]
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top
pad_left = pad_width // 2
pad_right = pad_width - pad_left
return x[:, :, pad_top:in_height - pad_bottom, pad_left:in_width -
pad_right]
class ConvAE(nn.Module):
def __init__(self, channels, kernels):
"""
:param channels: a list containing all channels including the input image channel (1 for gray, 3 for RGB)
:param kernels: a list containing all kernel sizes, it should satisfy: len(kernels) = len(channels) - 1.
"""
super(ConvAE, self).__init__()
assert isinstance(channels, list) and isinstance(kernels, list)
self.encoder = nn.Sequential()
for i in range(1, len(channels)):
self.encoder.add_module('pad%d' % i, Conv2dSamePad(kernels[i -
1], 2))
self.encoder.add_module('conv%d' % i, nn.Conv2d(channels[i - 1],
channels[i], kernel_size=kernels[i - 1], stride=2))
self.encoder.add_module('relu%d' % i, nn.ReLU(True))
self.decoder = nn.Sequential()
channels = list(reversed(channels))
kernels = list(reversed(kernels))
sizes = [[12, 11], [24, 21], [48, 42]]
for i in range(len(channels) - 1):
self.decoder.add_module('deconv%d' % (i + 1), nn.
ConvTranspose2d(channels[i], channels[i + 1], kernel_size=
kernels[i], stride=2))
self.decoder.add_module('padd%d' % i, ConvTranspose2dSamePad(
sizes[i]))
self.decoder.add_module('relud%d' % i, nn.ReLU(True))
def forward(self, x):
h = self.encoder(x)
y = self.decoder(h)
return y
class SelfExpression(nn.Module):
def __init__(self, n):
super(SelfExpression, self).__init__()
self.Coefficient = nn.Parameter(0.0001 * torch.ones(n, n, dtype=
torch.float32), requires_grad=True)
def forward(self, x):
y = torch.matmul(self.Coefficient, x)
return y
class DSCNet(nn.Module):
def __init__(self, channels, kernels, num_sample):
super(DSCNet, self).__init__()
self.n = num_sample
self.ae = ConvAE(channels, kernels)
self.self_expression = SelfExpression(self.n)
def forward(self, x):
z = self.ae.encoder(x)
shape = z.shape
z = z.view(self.n, -1)
z_recon = self.self_expression(z)
z_recon_reshape = z_recon.view(shape)
x_recon = self.ae.decoder(z_recon_reshape)
return x_recon, z, z_recon
def loss_fn(self, x, x_recon, z, z_recon, weight_coef, weight_selfExp):
loss_ae = 0.5 * F.mse_loss(x_recon, x, reduction='sum')
loss_coef = torch.sum(torch.pow(self.self_expression.Coefficient, 2))
loss_selfExp = 0.5 * F.mse_loss(z_recon, z, reduction='sum')
loss = (loss_ae + weight_coef * loss_coef + weight_selfExp *
loss_selfExp)
loss /= x.size(0)
return loss
def smoothLoss(self, z):
Z = torch.pow(z.unsqueeze(1) - z.unsqueeze(0), 2).sum(-1)
C = torch.abs(self.self_expression.Coefficient)
C = 0.5 * (C + torch.transpose(C, 0, 1))
C = C.fill_diagonal_(0)
loss_smooth = (Z * C).sum() / z.shape[0]
return loss_smooth
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': [4, 4], 'kernels': [4, 4], 'num_sample': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 6 % 6
x0 = xindex % 6
x2 = xindex // 36
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -1 + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask,
other=0.0)
tl.store(out_ptr0 + x4, tmp11, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 6 % 6
x0 = xindex % 6
x4 = xindex
x2 = xindex // 36 % 4
tmp19 = tl.load(in_out_ptr0 + x4, xmask)
tmp20 = tl.load(in_ptr0 + x2, xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 3, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = x0
tmp4 = tmp3 >= tmp1
tmp5 = tmp4 & tmp2
tmp6 = tl.load(in_out_ptr0 + x4, tmp5 & xmask, other=0.0)
tmp7 = tl.load(in_ptr0 + x2, tmp5 & xmask, eviction_policy='evict_last',
other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp5, tmp10, tmp11)
tmp13 = tl.load(in_out_ptr0 + x4, tmp2 & xmask, other=0.0)
tmp14 = tl.load(in_ptr0 + x2, tmp2 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp15 = tmp13 + tmp14
tmp16 = tl.where(tmp4, tmp12, tmp15)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp2, tmp16, tmp17)
tmp21 = tmp19 + tmp20
tmp22 = tl.where(tmp2, tmp18, tmp21)
tl.store(in_out_ptr0 + x4, tmp22, xmask)
@triton.jit
def triton_poi_fused_threshold_backward_3(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = xindex // 3 % 3
x2 = xindex // 9
x3 = xindex
tmp0 = tl.load(in_ptr0 + (21 + x0 + 6 * x1 + 36 * x2), xmask)
tmp1 = 0.0
tmp2 = tmp0 <= tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(576)](primals_1, buf0, 576,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1))
buf2 = buf1
del buf1
buf7 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_1[grid(64)](buf2,
primals_3, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
extern_kernels.mm(primals_4, reinterpret_tensor(buf2, (4, 16), (16,
1), 0), out=buf3)
buf4 = extern_kernels.convolution(reinterpret_tensor(buf3, (4, 4, 2,
2), (16, 4, 2, 1), 0), primals_5, stride=(2, 2), padding=(0, 0),
dilation=(1, 1), transposed=True, output_padding=(0, 0), groups
=1, bias=None)
assert_size_stride(buf4, (4, 4, 6, 6), (144, 36, 6, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(576)](buf5, primals_6, 576,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_6
buf6 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.bool)
triton_poi_fused_threshold_backward_3[grid(144)](buf5, buf6, 144,
XBLOCK=128, num_warps=4, num_stages=1)
return reinterpret_tensor(buf5, (4, 4, 3, 3), (144, 36, 6, 1), 21
), reinterpret_tensor(buf2, (4, 16), (16, 1), 0
), buf3, primals_2, primals_5, buf0, reinterpret_tensor(buf3, (4, 4,
2, 2), (16, 4, 2, 1), 0), buf6, reinterpret_tensor(primals_4, (4, 4
), (1, 4), 0), reinterpret_tensor(buf2, (16, 4), (1, 16), 0), buf7
class Conv2dSamePad(nn.Module):
"""
Implement Tensorflow's 'SAME' padding mode in Conv2d.
When an odd number, say `m`, of pixels are need to pad, Tensorflow will pad one more column at right or one more
row at bottom. But Pytorch will pad `m+1` pixels, i.e., Pytorch always pads in both sides.
So we can pad the tensor in the way of Tensorflow before call the Conv2d module.
"""
def __init__(self, kernel_size, stride):
super(Conv2dSamePad, self).__init__()
self.kernel_size = kernel_size if type(kernel_size) in [list, tuple
] else [kernel_size, kernel_size]
self.stride = stride if type(stride) in [list, tuple] else [stride,
stride]
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
out_height = math.ceil(float(in_height) / float(self.stride[0]))
out_width = math.ceil(float(in_width) / float(self.stride[1]))
pad_along_height = (out_height - 1) * self.stride[0
] + self.kernel_size[0] - in_height
pad_along_width = (out_width - 1) * self.stride[1] + self.kernel_size[1
] - in_width
pad_top = math.floor(pad_along_height / 2)
pad_left = math.floor(pad_along_width / 2)
pad_bottom = pad_along_height - pad_top
pad_right = pad_along_width - pad_left
return F.pad(x, [pad_left, pad_right, pad_top, pad_bottom],
'constant', 0)
class ConvTranspose2dSamePad(nn.Module):
"""
This module implements the "SAME" padding mode for ConvTranspose2d as in Tensorflow.
A tensor with width w_in, feed it to ConvTranspose2d(ci, co, kernel, stride), the width of output tensor T_nopad:
w_nopad = (w_in - 1) * stride + kernel
If we use padding, i.e., ConvTranspose2d(ci, co, kernel, stride, padding, output_padding), the width of T_pad:
w_pad = (w_in - 1) * stride + kernel - (2*padding - output_padding) = w_nopad - (2*padding - output_padding)
Yes, in ConvTranspose2d, more padding, the resulting tensor is smaller, i.e., the padding is actually deleting row/col.
If `pad`=(2*padding - output_padding) is odd, Pytorch deletes more columns in the left, i.e., the first ceil(pad/2) and
last `pad - ceil(pad/2)` columns of T_nopad are deleted to get T_pad.
In contrast, Tensorflow deletes more columns in the right, i.e., the first floor(pad/2) and last `pad - floor(pad/2)`
columns are deleted.
For the height, Pytorch deletes more rows at top, while Tensorflow at bottom.
In practice, we usually want `w_pad = w_in * stride` or `w_pad = w_in * stride - 1`, i.e., the "SAME" padding mode
in Tensorflow. To determine the value of `w_pad`, we should pass it to this function.
So the number of columns to delete:
pad = 2*padding - output_padding = w_nopad - w_pad
If pad is even, we can directly set padding=pad/2 and output_padding=0 in ConvTranspose2d.
If pad is odd, we can use ConvTranspose2d to get T_nopad, and then delete `pad` rows/columns by
ourselves.
This module should be called after the ConvTranspose2d module with shared kernel_size and stride values.
"""
def __init__(self, output_size):
super(ConvTranspose2dSamePad, self).__init__()
self.output_size = output_size
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
pad_height = in_height - self.output_size[0]
pad_width = in_width - self.output_size[1]
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top
pad_left = pad_width // 2
pad_right = pad_width - pad_left
return x[:, :, pad_top:in_height - pad_bottom, pad_left:in_width -
pad_right]
class ConvAE(nn.Module):
def __init__(self, channels, kernels):
"""
:param channels: a list containing all channels including the input image channel (1 for gray, 3 for RGB)
:param kernels: a list containing all kernel sizes, it should satisfy: len(kernels) = len(channels) - 1.
"""
super(ConvAE, self).__init__()
assert isinstance(channels, list) and isinstance(kernels, list)
self.encoder = nn.Sequential()
for i in range(1, len(channels)):
self.encoder.add_module('pad%d' % i, Conv2dSamePad(kernels[i -
1], 2))
self.encoder.add_module('conv%d' % i, nn.Conv2d(channels[i - 1],
channels[i], kernel_size=kernels[i - 1], stride=2))
self.encoder.add_module('relu%d' % i, nn.ReLU(True))
self.decoder = nn.Sequential()
channels = list(reversed(channels))
kernels = list(reversed(kernels))
sizes = [[12, 11], [24, 21], [48, 42]]
for i in range(len(channels) - 1):
self.decoder.add_module('deconv%d' % (i + 1), nn.
ConvTranspose2d(channels[i], channels[i + 1], kernel_size=
kernels[i], stride=2))
self.decoder.add_module('padd%d' % i, ConvTranspose2dSamePad(
sizes[i]))
self.decoder.add_module('relud%d' % i, nn.ReLU(True))
def forward(self, x):
h = self.encoder(x)
y = self.decoder(h)
return y
class SelfExpression(nn.Module):
def __init__(self, n):
super(SelfExpression, self).__init__()
self.Coefficient = nn.Parameter(0.0001 * torch.ones(n, n, dtype=
torch.float32), requires_grad=True)
def forward(self, x):
y = torch.matmul(self.Coefficient, x)
return y
class DSCNetNew(nn.Module):
def __init__(self, channels, kernels, num_sample):
super(DSCNetNew, self).__init__()
self.n = num_sample
self.ae = ConvAE(channels, kernels)
self.self_expression = SelfExpression(self.n)
def loss_fn(self, x, x_recon, z, z_recon, weight_coef, weight_selfExp):
loss_ae = 0.5 * F.mse_loss(x_recon, x, reduction='sum')
loss_coef = torch.sum(torch.pow(self.self_expression.Coefficient, 2))
loss_selfExp = 0.5 * F.mse_loss(z_recon, z, reduction='sum')
loss = (loss_ae + weight_coef * loss_coef + weight_selfExp *
loss_selfExp)
loss /= x.size(0)
return loss
def smoothLoss(self, z):
Z = torch.pow(z.unsqueeze(1) - z.unsqueeze(0), 2).sum(-1)
C = torch.abs(self.self_expression.Coefficient)
C = 0.5 * (C + torch.transpose(C, 0, 1))
C = C.fill_diagonal_(0)
loss_smooth = (Z * C).sum() / z.shape[0]
return loss_smooth
def forward(self, input_0):
primals_1 = self.ae.encoder.conv1.weight
primals_3 = self.ae.encoder.conv1.bias
primals_2 = self.ae.decoder.deconv1.weight
primals_6 = self.ae.decoder.deconv1.bias
primals_4 = self.self_expression.Coefficient
primals_5 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0], output[1], output[2]
| qilinli/DSC-Net | DSCNet | false | 4,164 | [
"MIT"
] | 0 | c0e7a3cae3e07c34b2989234f568c7007cf0fc55 | https://github.com/qilinli/DSC-Net/tree/c0e7a3cae3e07c34b2989234f568c7007cf0fc55 | import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Conv2dSamePad(nn.Module):
"""
Implement Tensorflow's 'SAME' padding mode in Conv2d.
When an odd number, say `m`, of pixels are need to pad, Tensorflow will pad one more column at right or one more
row at bottom. But Pytorch will pad `m+1` pixels, i.e., Pytorch always pads in both sides.
So we can pad the tensor in the way of Tensorflow before call the Conv2d module.
"""
def __init__(self, kernel_size, stride):
super().__init__()
self.kernel_size = kernel_size if type(kernel_size) in [list, tuple
] else [kernel_size, kernel_size]
self.stride = stride if type(stride) in [list, tuple] else [stride,
stride]
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
out_height = math.ceil(float(in_height) / float(self.stride[0]))
out_width = math.ceil(float(in_width) / float(self.stride[1]))
pad_along_height = (out_height - 1) * self.stride[0
] + self.kernel_size[0] - in_height
pad_along_width = (out_width - 1) * self.stride[1] + self.kernel_size[1
] - in_width
pad_top = math.floor(pad_along_height / 2)
pad_left = math.floor(pad_along_width / 2)
pad_bottom = pad_along_height - pad_top
pad_right = pad_along_width - pad_left
return F.pad(x, [pad_left, pad_right, pad_top, pad_bottom],
'constant', 0)
class ConvTranspose2dSamePad(nn.Module):
"""
This module implements the "SAME" padding mode for ConvTranspose2d as in Tensorflow.
A tensor with width w_in, feed it to ConvTranspose2d(ci, co, kernel, stride), the width of output tensor T_nopad:
w_nopad = (w_in - 1) * stride + kernel
If we use padding, i.e., ConvTranspose2d(ci, co, kernel, stride, padding, output_padding), the width of T_pad:
w_pad = (w_in - 1) * stride + kernel - (2*padding - output_padding) = w_nopad - (2*padding - output_padding)
Yes, in ConvTranspose2d, more padding, the resulting tensor is smaller, i.e., the padding is actually deleting row/col.
If `pad`=(2*padding - output_padding) is odd, Pytorch deletes more columns in the left, i.e., the first ceil(pad/2) and
last `pad - ceil(pad/2)` columns of T_nopad are deleted to get T_pad.
In contrast, Tensorflow deletes more columns in the right, i.e., the first floor(pad/2) and last `pad - floor(pad/2)`
columns are deleted.
For the height, Pytorch deletes more rows at top, while Tensorflow at bottom.
In practice, we usually want `w_pad = w_in * stride` or `w_pad = w_in * stride - 1`, i.e., the "SAME" padding mode
in Tensorflow. To determine the value of `w_pad`, we should pass it to this function.
So the number of columns to delete:
pad = 2*padding - output_padding = w_nopad - w_pad
If pad is even, we can directly set padding=pad/2 and output_padding=0 in ConvTranspose2d.
If pad is odd, we can use ConvTranspose2d to get T_nopad, and then delete `pad` rows/columns by
ourselves.
This module should be called after the ConvTranspose2d module with shared kernel_size and stride values.
"""
def __init__(self, output_size):
super().__init__()
self.output_size = output_size
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
pad_height = in_height - self.output_size[0]
pad_width = in_width - self.output_size[1]
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top
pad_left = pad_width // 2
pad_right = pad_width - pad_left
return x[:, :, pad_top:in_height - pad_bottom, pad_left:in_width -
pad_right]
class ConvAE(nn.Module):
def __init__(self, channels, kernels):
"""
:param channels: a list containing all channels including the input image channel (1 for gray, 3 for RGB)
:param kernels: a
# ... truncated (>4000 chars) for memory efficiency |
FuseLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/qy/cqylihc3fogsj2yvocypgkbiuyzokt5bhrvhf7ocl2xzspsb4pd7.py
# Topologically Sorted Source Nodes: [cat, cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# cat_1 => cat_1
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %sub, %mul], -1), kwargs = {})
# %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_5, %sub_1, %mul_1], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr1 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 - tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp14, tmp17, tmp18)
tmp20 = tmp0 >= tmp12
tmp21 = tl.full([1], 16, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = tl.load(in_ptr0 + ((4*x1) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + ((4*x1) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 * tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp20, tmp25, tmp26)
tmp28 = tl.where(tmp14, tmp19, tmp27)
tmp29 = tl.where(tmp9, tmp10, tmp28)
tmp30 = tl.where(tmp4, tmp5, tmp29)
tmp31 = tl.load(in_ptr2 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp15 - tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp14, tmp33, tmp34)
tmp36 = tl.load(in_ptr2 + ((4*x1) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp37 = tmp23 * tmp36
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp20, tmp37, tmp38)
tmp40 = tl.where(tmp14, tmp35, tmp39)
tmp41 = tl.where(tmp9, tmp31, tmp40)
tmp42 = tl.where(tmp4, tmp5, tmp41)
tl.store(out_ptr0 + (x2), tmp30, xmask)
tl.store(out_ptr1 + (x2), tmp42, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/h6/ch6zblpwfmjn7hcldykcvpbnoddtxwkqhxrbwxb36uqcbtzxmtng.py
# Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_2 => cat_2
# Graph fragment:
# %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %relu_1], -1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tmp13 = tl.full([1], 8, tl.int64)
tmp14 = tmp0 < tmp13
tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-4) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr3 + ((-4) + x0), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 + tmp16
tmp18 = triton_helpers.maximum(tmp8, tmp17)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp12, tmp18, tmp19)
tmp21 = tl.where(tmp4, tmp11, tmp20)
tl.store(out_ptr0 + (x2), tmp21, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/wz/cwzdxfokndxiun3t7rpyof4msqxgkxkraoss6yojgn3bj2fclafj.py
# Topologically Sorted Source Nodes: [fuse_prob, mul_2, sub_2, mul_3, add], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add]
# Source node to ATen node mapping:
# add => add
# fuse_prob => sigmoid
# mul_2 => mul_2
# mul_3 => mul_3
# sub_2 => sub_2
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_5,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %primals_5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
triton_poi_fused_add_mul_rsub_sigmoid_2 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp6 = tl.load(in_ptr2 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = 1.0
tmp5 = tmp4 - tmp1
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6y/c6yl4uv4syttx5p2rvialnpvw2b2afygk6u4wtiv3hxyrze6hevt.py
# Topologically Sorted Source Nodes: [out2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out2 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 16), (16, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat, cat_1], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, primals_5, buf0, buf2, 1024, grid=grid(1024), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (64, 16), (16, 1), 0), reinterpret_tensor(primals_3, (16, 4), (1, 16), 0), out=buf1)
del primals_3
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 4), (1, 16), 0), out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf1, primals_4, buf3, primals_7, buf4, 512, grid=grid(512), stream=stream0)
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf4, (64, 8), (8, 1), 0), reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5)
del primals_9
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [fuse_prob, mul_2, sub_2, mul_3, add], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add]
triton_poi_fused_add_mul_rsub_sigmoid_2.run(buf5, primals_2, primals_5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_3.run(buf3, primals_7, buf7, 256, grid=grid(256), stream=stream0)
del buf3
del primals_7
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_3.run(buf1, primals_4, buf8, 256, grid=grid(256), stream=stream0)
del buf1
del primals_4
return (buf6, primals_2, primals_5, reinterpret_tensor(buf0, (64, 16), (16, 1), 0), reinterpret_tensor(buf2, (64, 16), (16, 1), 0), reinterpret_tensor(buf4, (64, 8), (8, 1), 0), buf5, primals_8, buf7, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
class FuseLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.linear1 = nn.Linear(4 * config.hidden_size, config.hidden_size)
self.linear2 = nn.Linear(4 * config.hidden_size, config.hidden_size)
self.linear3 = nn.Linear(2 * config.hidden_size, config.hidden_size)
self.activation = nn.ReLU()
self.gate = nn.Sigmoid()
def forward(self, orig, input1, input2):
out1 = self.activation(self.linear1(torch.cat([orig, input1, orig -
input1, orig * input1], dim=-1)))
out2 = self.activation(self.linear2(torch.cat([orig, input2, orig -
input2, orig * input2], dim=-1)))
fuse_prob = self.gate(self.linear3(torch.cat([out1, out2], dim=-1)))
return fuse_prob * input1 + (1 - fuse_prob) * input2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (4 * x1 + (-8 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr1 + (4 * x1 + (-8 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 - tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp14, tmp17, tmp18)
tmp20 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp23 = tl.load(in_ptr0 + (4 * x1 + (-12 + x0)), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (4 * x1 + (-12 + x0)), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 * tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp20, tmp25, tmp26)
tmp28 = tl.where(tmp14, tmp19, tmp27)
tmp29 = tl.where(tmp9, tmp10, tmp28)
tmp30 = tl.where(tmp4, tmp5, tmp29)
tmp31 = tl.load(in_ptr2 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp33 = tmp15 - tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp14, tmp33, tmp34)
tmp36 = tl.load(in_ptr2 + (4 * x1 + (-12 + x0)), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp37 = tmp23 * tmp36
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp20, tmp37, tmp38)
tmp40 = tl.where(tmp14, tmp35, tmp39)
tmp41 = tl.where(tmp9, tmp31, tmp40)
tmp42 = tl.where(tmp4, tmp5, tmp41)
tl.store(out_ptr0 + x2, tmp30, xmask)
tl.store(out_ptr1 + x2, tmp42, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp15 = tl.load(in_ptr2 + (4 * x1 + (-4 + x0)), tmp12 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr3 + (-4 + x0), tmp12 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp17 = tmp15 + tmp16
tmp18 = triton_helpers.maximum(tmp8, tmp17)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp12, tmp18, tmp19)
tmp21 = tl.where(tmp4, tmp11, tmp20)
tl.store(out_ptr0 + x2, tmp21, xmask)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_2(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp6 = tl.load(in_ptr2 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = 1.0
tmp5 = tmp4 - tmp1
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 16), (16, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.
float32)
buf2 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(1024)](primals_1, primals_2, primals_5,
buf0, buf2, 1024, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 16), (16, 1), 0),
reinterpret_tensor(primals_3, (16, 4), (1, 16), 0), out=buf1)
del primals_3
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (64, 16), (16, 1), 0),
reinterpret_tensor(primals_6, (16, 4), (1, 16), 0), out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
triton_poi_fused_cat_1[grid(512)](buf1, primals_4, buf3, primals_7,
buf4, 512, XBLOCK=128, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf4, (64, 8), (
8, 1), 0), reinterpret_tensor(primals_8, (8, 4), (1, 8), 0),
alpha=1, beta=1, out=buf5)
del primals_9
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_rsub_sigmoid_2[grid(256)](buf5, primals_2,
primals_5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_3[grid(256)](buf3,
primals_7, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf3
del primals_7
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_3[grid(256)](buf1,
primals_4, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del primals_4
return buf6, primals_2, primals_5, reinterpret_tensor(buf0, (64, 16), (
16, 1), 0), reinterpret_tensor(buf2, (64, 16), (16, 1), 0
), reinterpret_tensor(buf4, (64, 8), (8, 1), 0
), buf5, primals_8, buf7, buf8
class FuseLayerNew(nn.Module):
def __init__(self, config):
super().__init__()
self.linear1 = nn.Linear(4 * config.hidden_size, config.hidden_size)
self.linear2 = nn.Linear(4 * config.hidden_size, config.hidden_size)
self.linear3 = nn.Linear(2 * config.hidden_size, config.hidden_size)
self.activation = nn.ReLU()
self.gate = nn.Sigmoid()
def forward(self, input_0, input_1, input_2):
primals_3 = self.linear1.weight
primals_4 = self.linear1.bias
primals_6 = self.linear2.weight
primals_7 = self.linear2.bias
primals_8 = self.linear3.weight
primals_9 = self.linear3.bias
primals_1 = input_0
primals_2 = input_1
primals_5 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| qinyiwei/MuTual | FuseLayer | false | 4,165 | [
"MIT"
] | 0 | 3bdd13c1388d6136b8944666dfd434870760cc93 | https://github.com/qinyiwei/MuTual/tree/3bdd13c1388d6136b8944666dfd434870760cc93 | from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, config):
super().__init__()
self.linear1 = nn.Linear(4 * config.hidden_size, config.hidden_size)
self.linear2 = nn.Linear(4 * config.hidden_size, config.hidden_size)
self.linear3 = nn.Linear(2 * config.hidden_size, config.hidden_size)
self.activation = nn.ReLU()
self.gate = nn.Sigmoid()
def forward(self, orig, input1, input2):
out1 = self.activation(self.linear1(torch.cat([orig, input1, orig -
input1, orig * input1], dim=-1)))
out2 = self.activation(self.linear2(torch.cat([orig, input2, orig -
input2, orig * input2], dim=-1)))
fuse_prob = self.gate(self.linear3(torch.cat([out1, out2], dim=-1)))
return fuse_prob * input1 + (1 - fuse_prob) * input2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return []
|
AbsModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/gn/cgnakgpc2ihihojtlb466su5scbp6ziuoraworb454o4qbzwpgnf.py
# Topologically Sorted Source Nodes: [abs_1], Original ATen: [aten.abs]
# Source node to ATen node mapping:
# abs_1 => abs_1
# Graph fragment:
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
triton_poi_fused_abs_0 = async_compile.triton('triton_poi_fused_abs_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl_math.abs(tmp0)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [abs_1], Original ATen: [aten.abs]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class AbsModule(torch.nn.Module):
def __init__(self):
super(AbsModule, self).__init__()
def forward(self, x):
return torch.abs(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl_math.abs(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class AbsModuleNew(torch.nn.Module):
def __init__(self):
super(AbsModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| mirecta/nncase | AbsModule | false | 4,166 | [
"Apache-2.0"
] | 0 | d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | https://github.com/mirecta/nncase/tree/d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | import torch
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.abs(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Tanh | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/zz/czz54ut75scrtht33wfs25yho3nmankwisvydcauscn44sw62gdt.py
# Topologically Sorted Source Nodes: [tanh, sub, mul, softplus, add, g], Original ATen: [aten.tanh, aten.sub, aten.mul, aten.softplus, aten.add]
# Source node to ATen node mapping:
# add => add
# g => mul_1
# mul => mul
# softplus => exp, gt, log1p, where
# sub => sub
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 0.6931471805599453), kwargs = {})
# %mul : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, -2), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 20), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %log1p), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %where), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, -2), kwargs = {})
triton_poi_fused_add_mul_softplus_sub_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_softplus_sub_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_softplus_sub_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_softplus_sub_tanh_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 0.6931471805599453
tmp3 = tmp0 - tmp2
tmp4 = -2.0
tmp5 = tmp0 * tmp4
tmp6 = 20.0
tmp7 = tmp5 > tmp6
tmp8 = tl_math.exp(tmp5)
tmp9 = libdevice.log1p(tmp8)
tmp10 = tl.where(tmp7, tmp5, tmp9)
tmp11 = tmp3 + tmp10
tmp12 = tmp11 * tmp4
tl.store(out_ptr0 + (x0), tmp1, xmask)
tl.store(out_ptr1 + (x0), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh, sub, mul, softplus, add, g], Original ATen: [aten.tanh, aten.sub, aten.mul, aten.softplus, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_softplus_sub_tanh_0.run(arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
class Tanh(torch.nn.Tanh):
"""
Class that extends ``torch.nn.Tanh`` additionally computing the log diagonal
blocks of the Jacobian.
"""
def forward(self, inputs, grad: 'torch.Tensor'=None):
"""
Parameters
----------
inputs : ``torch.Tensor``, required.
The input tensor.
grad : ``torch.Tensor``, optional (default = None).
The log diagonal blocks of the partial Jacobian of previous transformations.
Returns
-------
The output tensor and the log diagonal blocks of the partial log-Jacobian of previous
transformations combined with this transformation.
"""
g = -2 * (inputs - math.log(2) + torch.nn.functional.softplus(-2 *
inputs))
return torch.tanh(inputs), g.view(grad.shape
) + grad if grad is not None else g
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_softplus_sub_tanh_0(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 0.6931471805599453
tmp3 = tmp0 - tmp2
tmp4 = -2.0
tmp5 = tmp0 * tmp4
tmp6 = 20.0
tmp7 = tmp5 > tmp6
tmp8 = tl_math.exp(tmp5)
tmp9 = libdevice.log1p(tmp8)
tmp10 = tl.where(tmp7, tmp5, tmp9)
tmp11 = tmp3 + tmp10
tmp12 = tmp11 * tmp4
tl.store(out_ptr0 + x0, tmp1, xmask)
tl.store(out_ptr1 + x0, tmp12, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_softplus_sub_tanh_0[grid(256)](arg0_1,
buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0, buf1
class TanhNew(torch.nn.Tanh):
"""
Class that extends ``torch.nn.Tanh`` additionally computing the log diagonal
blocks of the Jacobian.
"""
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0], output[1]
| ralphc1212/BNAF | Tanh | false | 4,167 | [
"MIT"
] | 0 | b6e331aa96cdd4496b6eed6c6ce65512a99f4149 | https://github.com/ralphc1212/BNAF/tree/b6e331aa96cdd4496b6eed6c6ce65512a99f4149 | import math
import torch
class Model(torch.nn.Tanh):
"""
Class that extends ``torch.nn.Tanh`` additionally computing the log diagonal
blocks of the Jacobian.
"""
def forward(self, inputs, grad: 'torch.Tensor'=None):
"""
Parameters
----------
inputs : ``torch.Tensor``, required.
The input tensor.
grad : ``torch.Tensor``, optional (default = None).
The log diagonal blocks of the partial Jacobian of previous transformations.
Returns
-------
The output tensor and the log diagonal blocks of the partial log-Jacobian of previous
transformations combined with this transformation.
"""
g = -2 * (inputs - math.log(2) + torch.nn.functional.softplus(-2 *
inputs))
return torch.tanh(inputs), g.view(grad.shape
) + grad if grad is not None else g
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
MHA | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {})
# %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {})
# %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {})
# %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {})
# %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {})
# %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (x2), xmask)
tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = float("-inf")
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = (tmp4 != 0)
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = (tmp9 != 0)
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = (tmp15 != 0)
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = (tmp21 != 0)
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + (x2), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/zq/czqeiybdb6mlnwo4hmrayt3c44g7hbps2ftgdd7x2mv3sr2mwjbn.py
# Topologically Sorted Source Nodes: [projected_context_layer, add_1, layernormed_context_layer], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add_1 => add_1
# layernormed_context_layer => var_mean
# projected_context_layer => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %primals_10), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %add), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_1, [2]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (1))
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp13 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr2 + (2))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp20 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr2 + (3))
tmp23 = tl.broadcast_to(tmp22, [XBLOCK])
tmp4 = tmp1 + tmp3
tmp5 = tmp0 + tmp4
tmp10 = tmp7 + tmp9
tmp11 = tmp6 + tmp10
tmp12 = tmp5 + tmp11
tmp17 = tmp14 + tmp16
tmp18 = tmp13 + tmp17
tmp19 = tmp12 + tmp18
tmp24 = tmp21 + tmp23
tmp25 = tmp20 + tmp24
tmp26 = tmp19 + tmp25
tmp27 = 4.0
tmp28 = tmp26 / tmp27
tmp29 = tmp5 - tmp28
tmp30 = tmp29 * tmp29
tmp31 = tmp11 - tmp28
tmp32 = tmp31 * tmp31
tmp33 = tmp30 + tmp32
tmp34 = tmp18 - tmp28
tmp35 = tmp34 * tmp34
tmp36 = tmp33 + tmp35
tmp37 = tmp25 - tmp28
tmp38 = tmp37 * tmp37
tmp39 = tmp36 + tmp38
tmp40 = tmp39 / tmp27
tl.store(out_ptr0 + (x0), tmp28, xmask)
tl.store(out_ptr1 + (x0), tmp40, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/v3/cv3tynim3vywiualr2ksfo6o4q7dligi2wlt2nm2akwhqfizltjs.py
# Topologically Sorted Source Nodes: [projected_context_layer, add_1, layernormed_context_layer], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add_1 => add_1
# layernormed_context_layer => add_2, add_3, mul, mul_1, rsqrt, sub_1
# projected_context_layer => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %primals_10), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %add), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1.0), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_11), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {})
triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr6 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp6 = tmp4 - tmp5
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp6 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(buf2, primals_8, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
buf11 = reinterpret_tensor(buf9, (1, 16, 4), (64, 4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [einsum], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf10, (1, 16, 4), (0, 4, 1), 0), reinterpret_tensor(primals_9, (1, 4, 4), (0, 1, 4), 0), out=buf11)
buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [projected_context_layer, add_1, layernormed_context_layer], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_5.run(primals_3, buf11, primals_10, buf12, buf13, 16, grid=grid(16), stream=stream0)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [projected_context_layer, add_1, layernormed_context_layer], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_6.run(primals_3, buf11, primals_10, buf12, buf13, primals_11, primals_12, buf14, 64, grid=grid(64), stream=stream0)
del buf12
del buf13
del primals_12
return (buf14, primals_3, primals_10, primals_11, reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), buf11, reinterpret_tensor(buf10, (1, 4, 16), (64, 1, 4), 0), reinterpret_tensor(primals_9, (1, 4, 4), (4, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import math
import torch
import torch.nn as nn
class MHA(nn.Module):
def __init__(self, config):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.attention_head_size = (config.hidden_size // config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.
layer_norm_eps)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_ids_a, input_ids_b, attention_mask=None,
head_mask=None, output_attentions=False):
mixed_query_layer = self.query(input_ids_a)
mixed_key_layer = self.key(input_ids_b)
mixed_value_layer = self.value(input_ids_b)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
w = self.dense.weight.t().view(self.num_attention_heads, self.
attention_head_size, self.hidden_size)
b = self.dense.bias
projected_context_layer = torch.einsum('bfnd,ndh->bfh',
context_layer, w) + b
projected_context_layer_dropout = self.dropout(projected_context_layer)
layernormed_context_layer = self.LayerNorm(input_ids_a +
projected_context_layer_dropout)
return (layernormed_context_layer, attention_probs
) if output_attentions else (layernormed_context_layer,)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(num_attention_heads=4, hidden_size=
4, attention_probs_dropout_prob=0.5, layer_norm_eps=1)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + x2, xmask)
tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = float('-inf')
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4 != 0
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = tmp9 != 0
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = tmp15 != 0
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = tmp21 != 0
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + x2, tmp35, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + 1)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp13 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr2 + 2)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp20 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp21 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr2 + 3)
tmp23 = tl.broadcast_to(tmp22, [XBLOCK])
tmp4 = tmp1 + tmp3
tmp5 = tmp0 + tmp4
tmp10 = tmp7 + tmp9
tmp11 = tmp6 + tmp10
tmp12 = tmp5 + tmp11
tmp17 = tmp14 + tmp16
tmp18 = tmp13 + tmp17
tmp19 = tmp12 + tmp18
tmp24 = tmp21 + tmp23
tmp25 = tmp20 + tmp24
tmp26 = tmp19 + tmp25
tmp27 = 4.0
tmp28 = tmp26 / tmp27
tmp29 = tmp5 - tmp28
tmp30 = tmp29 * tmp29
tmp31 = tmp11 - tmp28
tmp32 = tmp31 * tmp31
tmp33 = tmp30 + tmp32
tmp34 = tmp18 - tmp28
tmp35 = tmp34 * tmp34
tmp36 = tmp33 + tmp35
tmp37 = tmp25 - tmp28
tmp38 = tmp37 * tmp37
tmp39 = tmp36 + tmp38
tmp40 = tmp39 / tmp27
tl.store(out_ptr0 + x0, tmp28, xmask)
tl.store(out_ptr1 + x0, tmp40, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr6 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp6 = tmp4 - tmp5
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp6 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_3[grid(16, 4)](buf2, primals_8, buf8, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_8
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_4[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf9, (1, 16, 4), (64, 4, 1), 0)
del buf9
extern_kernels.bmm(reinterpret_tensor(buf10, (1, 16, 4), (0, 4, 1),
0), reinterpret_tensor(primals_9, (1, 4, 4), (0, 1, 4), 0), out
=buf11)
buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused_add_native_layer_norm_5[grid(16)](primals_3, buf11,
primals_10, buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_6[grid(64)](primals_3, buf11,
primals_10, buf12, buf13, primals_11, primals_12, buf14, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del buf12
del buf13
del primals_12
return buf14, primals_3, primals_10, primals_11, reinterpret_tensor(
primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16,
1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0
), buf11, reinterpret_tensor(buf10, (1, 4, 16), (64, 1, 4), 0
), reinterpret_tensor(primals_9, (1, 4, 4), (4, 4, 1), 0)
class MHANew(nn.Module):
def __init__(self, config):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.attention_head_size = (config.hidden_size // config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.
layer_norm_eps)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_0, input_1):
primals_1 = self.query.weight
primals_2 = self.query.bias
primals_4 = self.key.weight
primals_5 = self.key.bias
primals_7 = self.value.weight
primals_8 = self.value.bias
primals_9 = self.dense.weight
primals_10 = self.dense.bias
primals_11 = self.LayerNorm.weight
primals_12 = self.LayerNorm.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
| qinyiwei/MuTual | MHA | false | 4,168 | [
"MIT"
] | 0 | 3bdd13c1388d6136b8944666dfd434870760cc93 | https://github.com/qinyiwei/MuTual/tree/3bdd13c1388d6136b8944666dfd434870760cc93 | from _paritybench_helpers import _mock_config
import math
import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, config):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.attention_head_size = (config.hidden_size // config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.
layer_norm_eps)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_ids_a, input_ids_b, attention_mask=None,
head_mask=None, output_attentions=False):
mixed_query_layer = self.query(input_ids_a)
mixed_key_layer = self.key(input_ids_b)
mixed_value_layer = self.value(input_ids_b)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
w = self.dense.weight.t().view(self.num_attention_heads, self.
attention_head_size, self.hidden_size)
b = self.dense.bias
projected_context_layer = torch.einsum('bfnd,ndh->bfh',
context_layer, w) + b
projected_context_layer_dropout = self.dropout(projected_context_layer)
layernormed_context_layer = self.LayerNorm(input_ids_a +
projected_context_layer_dropout)
return (layernormed_context_layer, attention_probs
) if output_attentions else (layernormed_context_layer,)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(num_attention_heads=4, hidden_size=
4, attention_probs_dropout_prob=0.5, layer_norm_eps=1)}]
|
CosModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/hn/chncdvnujauxq6f6q7jnanla4d6y3auixelm26y42jq3nuckgdxy.py
# Topologically Sorted Source Nodes: [cos], Original ATen: [aten.cos]
# Source node to ATen node mapping:
# cos => cos
# Graph fragment:
# %cos : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%arg0_1,), kwargs = {})
triton_poi_fused_cos_0 = async_compile.triton('triton_poi_fused_cos_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cos_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cos_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl_math.cos(tmp0)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cos], Original ATen: [aten.cos]
stream0 = get_raw_stream(0)
triton_poi_fused_cos_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class CosModule(torch.nn.Module):
def __init__(self):
super(CosModule, self).__init__()
def forward(self, x):
return torch.cos(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cos_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl_math.cos(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cos_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class CosModuleNew(torch.nn.Module):
def __init__(self):
super(CosModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| mirecta/nncase | CosModule | false | 4,169 | [
"Apache-2.0"
] | 0 | d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | https://github.com/mirecta/nncase/tree/d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | import torch
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.cos(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
PopArt | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ol/coleukbd4gfp6mi3s5pfvlzujqgup2l44vcgqarbw3lhhkduc6dj.py
# Topologically Sorted Source Nodes: [mul_, batch_mean, mul, add_, mul__1, pow_1, batch_sq_mean, mul_1, add__1], Original ATen: [aten.mul, aten.mean, aten.add, aten.pow]
# Source node to ATen node mapping:
# add_ => add
# add__1 => add_1
# batch_mean => mean
# batch_sq_mean => mean_1
# mul => mul_1
# mul_ => mul
# mul_1 => mul_3
# mul__1 => mul_2
# pow_1 => pow_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.99999), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [0]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 9.99999999995449e-06), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, 0.99999), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [0]), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 9.99999999995449e-06), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%arg1_1, %add), kwargs = {})
# %copy__1 : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%arg2_1, %add_1), kwargs = {})
triton_poi_fused_add_mean_mul_pow_0 = async_compile.triton('triton_poi_fused_add_mean_mul_pow_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_mul_pow_0', 'mutated_arg_names': ['in_ptr0', 'in_ptr2', 'out_ptr2', 'out_ptr3'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_mul_pow_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x0), xmask)
tmp6 = tl.load(in_ptr1 + (8 + x0), xmask)
tmp8 = tl.load(in_ptr1 + (12 + x0), xmask)
tmp15 = tl.load(in_ptr2 + (x0), xmask)
tmp1 = 0.99999
tmp2 = tmp0 * tmp1
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp9 = tmp7 + tmp8
tmp10 = 4.0
tmp11 = tmp9 / tmp10
tmp12 = 9.99999999995449e-06
tmp13 = tmp11 * tmp12
tmp14 = tmp2 + tmp13
tmp16 = tmp15 * tmp1
tmp17 = tmp3 * tmp3
tmp18 = tmp4 * tmp4
tmp19 = tmp17 + tmp18
tmp20 = tmp6 * tmp6
tmp21 = tmp19 + tmp20
tmp22 = tmp8 * tmp8
tmp23 = tmp21 + tmp22
tmp24 = tmp23 / tmp10
tmp25 = tmp24 * tmp12
tmp26 = tmp16 + tmp25
tl.store(out_ptr0 + (x0), tmp14, xmask)
tl.store(out_ptr1 + (x0), tmp26, xmask)
tl.store(out_ptr2 + (x0), tmp14, xmask)
tl.store(out_ptr3 + (x0), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/34/c34k5n6zlh6ctbtv6yhf3gt4istbg575siewxu3qdttnxbv6azmv.py
# Topologically Sorted Source Nodes: [sub_1, out], Original ATen: [aten.sub, aten.div]
# Source node to ATen node mapping:
# out => div_2
# sub_1 => sub_1
# Graph fragment:
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %unsqueeze), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %unsqueeze_1), kwargs = {})
triton_poi_fused_div_sub_1 = async_compile.triton('triton_poi_fused_div_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp12 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp4 = 0.99999
tmp5 = tmp3 * tmp4
tmp6 = 9.99999999995449e-06
tmp7 = tmp5 + tmp6
tmp8 = 1e-05
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tmp1 / tmp9
tmp11 = tmp0 - tmp10
tmp13 = tmp12 / tmp9
tmp14 = tmp10 * tmp10
tmp15 = tmp13 - tmp14
tmp16 = 0.01
tmp17 = triton_helpers.maximum(tmp15, tmp16)
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp11 / tmp18
tl.store(out_ptr0 + (x2), tmp19, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/de/cdel5yvcigdc3wxhc2izhof3tnqyjmddrnkds6neshcrqkaoursj.py
# Topologically Sorted Source Nodes: [mul__2, add__2], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# add__2 => add_2
# mul__2 => mul_4
# Graph fragment:
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg3_1, 0.99999), kwargs = {})
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 9.99999999995449e-06), kwargs = {})
# %copy__2 : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%arg3_1, %add_2), kwargs = {})
triton_poi_fused_add_mul_2 = async_compile.triton('triton_poi_fused_add_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_2', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 0.99999
tmp3 = tmp1 * tmp2
tmp4 = 9.99999999995449e-06
tmp5 = tmp3 + tmp4
tl.store(out_ptr1 + (tl.full([XBLOCK], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, ), (1, ))
assert_size_stride(arg2_1, (4, ), (1, ))
assert_size_stride(arg3_1, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul_, batch_mean, mul, add_, mul__1, pow_1, batch_sq_mean, mul_1, add__1], Original ATen: [aten.mul, aten.mean, aten.add, aten.pow]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mean_mul_pow_0.run(arg1_1, arg0_1, arg2_1, buf0, buf1, arg1_1, arg2_1, 4, grid=grid(4), stream=stream0)
del arg1_1
del arg2_1
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub_1, out], Original ATen: [aten.sub, aten.div]
triton_poi_fused_div_sub_1.run(arg0_1, buf0, arg3_1, buf1, buf2, 16, grid=grid(16), stream=stream0)
del arg0_1
del buf0
del buf1
# Topologically Sorted Source Nodes: [mul__2, add__2], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_2.run(arg3_1, arg3_1, 1, grid=grid(1), stream=stream0)
del arg3_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn as nn
class PopArt(nn.Module):
"""Normalize a vector of observations - across the first norm_axes dimensions"""
def __init__(self, input_shape, norm_axes=1, beta=0.99999,
per_element_update=False, epsilon=1e-05, device=torch.device('cpu')):
super(PopArt, self).__init__()
self.input_shape = input_shape
self.norm_axes = norm_axes
self.epsilon = epsilon
self.beta = beta
self.per_element_update = per_element_update
self.tpdv = dict(dtype=torch.float32, device=device)
self.running_mean = nn.Parameter(torch.zeros(input_shape),
requires_grad=False)
self.running_mean_sq = nn.Parameter(torch.zeros(input_shape),
requires_grad=False)
self.debiasing_term = nn.Parameter(torch.tensor(0.0), requires_grad
=False)
def reset_parameters(self):
self.running_mean.zero_()
self.running_mean_sq.zero_()
self.debiasing_term.zero_()
def running_mean_var(self):
debiased_mean = self.running_mean / self.debiasing_term.clamp(min=
self.epsilon)
debiased_mean_sq = self.running_mean_sq / self.debiasing_term.clamp(min
=self.epsilon)
debiased_var = (debiased_mean_sq - debiased_mean ** 2).clamp(min=0.01)
return debiased_mean, debiased_var
def forward(self, input_vector, train=True):
if type(input_vector) == np.ndarray:
input_vector = torch.from_numpy(input_vector)
input_vector = input_vector
if train:
detached_input = input_vector.detach()
batch_mean = detached_input.mean(dim=tuple(range(self.norm_axes)))
batch_sq_mean = (detached_input ** 2).mean(dim=tuple(range(self
.norm_axes)))
if self.per_element_update:
batch_size = np.prod(detached_input.size()[:self.norm_axes])
weight = self.beta ** batch_size
else:
weight = self.beta
self.running_mean.mul_(weight).add_(batch_mean * (1.0 - weight))
self.running_mean_sq.mul_(weight).add_(batch_sq_mean * (1.0 -
weight))
self.debiasing_term.mul_(weight).add_(1.0 * (1.0 - weight))
mean, var = self.running_mean_var()
out = (input_vector - mean[(None,) * self.norm_axes]) / torch.sqrt(var
)[(None,) * self.norm_axes]
return out
def denormalize(self, input_vector):
"""Transform normalized data back into original distribution"""
if type(input_vector) == np.ndarray:
input_vector = torch.from_numpy(input_vector)
input_vector = input_vector
mean, var = self.running_mean_var()
out = input_vector * torch.sqrt(var)[(None,) * self.norm_axes] + mean[
(None,) * self.norm_axes]
out = out.cpu().numpy()
return out
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_shape': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mean_mul_pow_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask)
tmp4 = tl.load(in_ptr1 + (4 + x0), xmask)
tmp6 = tl.load(in_ptr1 + (8 + x0), xmask)
tmp8 = tl.load(in_ptr1 + (12 + x0), xmask)
tmp15 = tl.load(in_ptr2 + x0, xmask)
tmp1 = 0.99999
tmp2 = tmp0 * tmp1
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp9 = tmp7 + tmp8
tmp10 = 4.0
tmp11 = tmp9 / tmp10
tmp12 = 9.99999999995449e-06
tmp13 = tmp11 * tmp12
tmp14 = tmp2 + tmp13
tmp16 = tmp15 * tmp1
tmp17 = tmp3 * tmp3
tmp18 = tmp4 * tmp4
tmp19 = tmp17 + tmp18
tmp20 = tmp6 * tmp6
tmp21 = tmp19 + tmp20
tmp22 = tmp8 * tmp8
tmp23 = tmp21 + tmp22
tmp24 = tmp23 / tmp10
tmp25 = tmp24 * tmp12
tmp26 = tmp16 + tmp25
tl.store(out_ptr0 + x0, tmp14, xmask)
tl.store(out_ptr1 + x0, tmp26, xmask)
tl.store(out_ptr2 + x0, tmp14, xmask)
tl.store(out_ptr3 + x0, tmp26, xmask)
@triton.jit
def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp12 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp4 = 0.99999
tmp5 = tmp3 * tmp4
tmp6 = 9.99999999995449e-06
tmp7 = tmp5 + tmp6
tmp8 = 1e-05
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tmp1 / tmp9
tmp11 = tmp0 - tmp10
tmp13 = tmp12 / tmp9
tmp14 = tmp10 * tmp10
tmp15 = tmp13 - tmp14
tmp16 = 0.01
tmp17 = triton_helpers.maximum(tmp15, tmp16)
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp11 / tmp18
tl.store(out_ptr0 + x2, tmp19, xmask)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 0.99999
tmp3 = tmp1 * tmp2
tmp4 = 9.99999999995449e-06
tmp5 = tmp3 + tmp4
tl.store(out_ptr1 + tl.full([XBLOCK], 0, tl.int32), tmp5, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4,), (1,))
assert_size_stride(arg2_1, (4,), (1,))
assert_size_stride(arg3_1, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mean_mul_pow_0[grid(4)](arg1_1, arg0_1, arg2_1,
buf0, buf1, arg1_1, arg2_1, 4, XBLOCK=4, num_warps=1, num_stages=1)
del arg1_1
del arg2_1
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_div_sub_1[grid(16)](arg0_1, buf0, arg3_1, buf1,
buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
del buf0
del buf1
triton_poi_fused_add_mul_2[grid(1)](arg3_1, arg3_1, 1, XBLOCK=1,
num_warps=1, num_stages=1)
del arg3_1
return buf2,
class PopArtNew(nn.Module):
"""Normalize a vector of observations - across the first norm_axes dimensions"""
def __init__(self, input_shape, norm_axes=1, beta=0.99999,
per_element_update=False, epsilon=1e-05, device=torch.device('cpu')):
super(PopArtNew, self).__init__()
self.input_shape = input_shape
self.norm_axes = norm_axes
self.epsilon = epsilon
self.beta = beta
self.per_element_update = per_element_update
self.tpdv = dict(dtype=torch.float32, device=device)
self.running_mean = nn.Parameter(torch.zeros(input_shape),
requires_grad=False)
self.running_mean_sq = nn.Parameter(torch.zeros(input_shape),
requires_grad=False)
self.debiasing_term = nn.Parameter(torch.tensor(0.0), requires_grad
=False)
def reset_parameters(self):
self.running_mean.zero_()
self.running_mean_sq.zero_()
self.debiasing_term.zero_()
def running_mean_var(self):
debiased_mean = self.running_mean / self.debiasing_term.clamp(min=
self.epsilon)
debiased_mean_sq = self.running_mean_sq / self.debiasing_term.clamp(min
=self.epsilon)
debiased_var = (debiased_mean_sq - debiased_mean ** 2).clamp(min=0.01)
return debiased_mean, debiased_var
def denormalize(self, input_vector):
"""Transform normalized data back into original distribution"""
if type(input_vector) == np.ndarray:
input_vector = torch.from_numpy(input_vector)
input_vector = input_vector
mean, var = self.running_mean_var()
out = input_vector * torch.sqrt(var)[(None,) * self.norm_axes] + mean[
(None,) * self.norm_axes]
out = out.cpu().numpy()
return out
def forward(self, input_0):
arg1_1 = self.running_mean
arg2_1 = self.running_mean_sq
arg3_1 = self.debiasing_term
arg0_1 = input_0
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
| rainwangphy/TRPO-in-MARL | PopArt | false | 4,170 | [
"MIT"
] | 0 | 22229abba417708922ecf6455c1c5180dbe80391 | https://github.com/rainwangphy/TRPO-in-MARL/tree/22229abba417708922ecf6455c1c5180dbe80391 | import torch
import numpy as np
import torch.nn as nn
class Model(nn.Module):
"""Normalize a vector of observations - across the first norm_axes dimensions"""
def __init__(self, input_shape, norm_axes=1, beta=0.99999,
per_element_update=False, epsilon=1e-05, device=torch.device('cpu')):
super().__init__()
self.input_shape = input_shape
self.norm_axes = norm_axes
self.epsilon = epsilon
self.beta = beta
self.per_element_update = per_element_update
self.tpdv = dict(dtype=torch.float32, device=device)
self.running_mean = nn.Parameter(torch.zeros(input_shape),
requires_grad=False)
self.running_mean_sq = nn.Parameter(torch.zeros(input_shape),
requires_grad=False)
self.debiasing_term = nn.Parameter(torch.tensor(0.0), requires_grad
=False)
def reset_parameters(self):
self.running_mean.zero_()
self.running_mean_sq.zero_()
self.debiasing_term.zero_()
def running_mean_var(self):
debiased_mean = self.running_mean / self.debiasing_term.clamp(min=
self.epsilon)
debiased_mean_sq = self.running_mean_sq / self.debiasing_term.clamp(min
=self.epsilon)
debiased_var = (debiased_mean_sq - debiased_mean ** 2).clamp(min=0.01)
return debiased_mean, debiased_var
def forward(self, input_vector, train=True):
if type(input_vector) == np.ndarray:
input_vector = torch.from_numpy(input_vector)
input_vector = input_vector
if train:
detached_input = input_vector.detach()
batch_mean = detached_input.mean(dim=tuple(range(self.norm_axes)))
batch_sq_mean = (detached_input ** 2).mean(dim=tuple(range(self
.norm_axes)))
if self.per_element_update:
batch_size = np.prod(detached_input.size()[:self.norm_axes])
weight = self.beta ** batch_size
else:
weight = self.beta
self.running_mean.mul_(weight).add_(batch_mean * (1.0 - weight))
self.running_mean_sq.mul_(weight).add_(batch_sq_mean * (1.0 -
weight))
self.debiasing_term.mul_(weight).add_(1.0 * (1.0 - weight))
mean, var = self.running_mean_var()
out = (input_vector - mean[(None,) * self.norm_axes]) / torch.sqrt(var
)[(None,) * self.norm_axes]
return out
def denormalize(self, input_vector):
"""Transform normalized data back into original distribution"""
if type(input_vector) == np.ndarray:
input_vector = torch.from_numpy(input_vector)
input_vector = input_vector
mean, var = self.running_mean_var()
out = input_vector * torch.sqrt(var)[(None,) * self.norm_axes] + mean[
(None,) * self.norm_axes]
out = out.cpu().numpy()
return out
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4]
|
RegressionHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x_2 => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (1, 4), (4, 1))
assert_size_stride(primals_5, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [scores], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
return (reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import abc
import torch
import torch.nn as nn
from torch.nn.functional import *
import torch.utils.data.dataset
class BaseHead(nn.Module, metaclass=abc.ABCMeta):
"""Absract class for task heads"""
@abc.abstractmethod
def __init__(self):
super().__init__()
class RegressionHead(BaseHead):
def __init__(self, task, hidden_size, hidden_dropout_prob, **kwargs):
"""From RobertaClassificationHead"""
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(hidden_dropout_prob)
self.out_proj = nn.Linear(hidden_size, 1)
def forward(self, pooled):
x = self.dropout(pooled)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
scores = self.out_proj(x)
return scores
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'task': 4, 'hidden_size': 4, 'hidden_dropout_prob': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import abc
import torch.nn as nn
from torch.nn.functional import *
import torch.utils.data.dataset
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (1, 4), (4, 1))
assert_size_stride(primals_5, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(256)](buf1, primals_3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_5
return reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, primals_4
class BaseHead(nn.Module, metaclass=abc.ABCMeta):
"""Absract class for task heads"""
@abc.abstractmethod
def __init__(self):
super().__init__()
class RegressionHeadNew(BaseHead):
def __init__(self, task, hidden_size, hidden_dropout_prob, **kwargs):
"""From RobertaClassificationHead"""
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(hidden_dropout_prob)
self.out_proj = nn.Linear(hidden_size, 1)
def forward(self, input_0):
primals_2 = self.dense.weight
primals_3 = self.dense.bias
primals_4 = self.out_proj.weight
primals_5 = self.out_proj.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| mfk3138/jiant | RegressionHead | false | 4,171 | [
"MIT"
] | 0 | 6e67ff1ecb1bb98533c1019a86af4ad2c04c6a64 | https://github.com/mfk3138/jiant/tree/6e67ff1ecb1bb98533c1019a86af4ad2c04c6a64 | import abc
import torch
import torch.nn as nn
from torch.nn.functional import *
import torch.utils.data.dataset
class BaseHead(nn.Module, metaclass=abc.ABCMeta):
"""Absract class for task heads"""
@abc.abstractmethod
def __init__(self):
super().__init__()
class Model(BaseHead):
def __init__(self, task, hidden_size, hidden_dropout_prob, **kwargs):
"""From RobertaClassificationHead"""
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(hidden_dropout_prob)
self.out_proj = nn.Linear(hidden_size, 1)
def forward(self, pooled):
x = self.dropout(pooled)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
scores = self.out_proj(x)
return scores
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 0.5]
|
CeilModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/jw/cjwcwzevhosrcxbbaesipqcgq2ukvqv7x25yxindnqsrtbgwjxr5.py
# Topologically Sorted Source Nodes: [ceil], Original ATen: [aten.ceil]
# Source node to ATen node mapping:
# ceil => ceil
# Graph fragment:
# %ceil : [num_users=1] = call_function[target=torch.ops.aten.ceil.default](args = (%arg0_1,), kwargs = {})
triton_poi_fused_ceil_0 = async_compile.triton('triton_poi_fused_ceil_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_ceil_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_ceil_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.ceil(tmp0)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [ceil], Original ATen: [aten.ceil]
stream0 = get_raw_stream(0)
triton_poi_fused_ceil_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class CeilModule(torch.nn.Module):
def __init__(self):
super(CeilModule, self).__init__()
def forward(self, x):
return torch.ceil(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_ceil_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.ceil(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_ceil_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class CeilModuleNew(torch.nn.Module):
def __init__(self):
super(CeilModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| mirecta/nncase | CeilModule | false | 4,172 | [
"Apache-2.0"
] | 0 | d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | https://github.com/mirecta/nncase/tree/d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | import torch
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.ceil(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
AttFlowLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/m7/cm73ye3rwysw23wnpzkrwv2q3oc22z6lrp53ufnt5rzduw354yg2.py
# Topologically Sorted Source Nodes: [cated], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cated => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%expand_1, %expand_2, %mul], 3), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x2 = (xindex // 48)
x1 = (xindex // 12) % 4
x3 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x2) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr0 + ((4*x2) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 * tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp11, tmp16, tmp17)
tmp19 = tl.where(tmp9, tmp10, tmp18)
tmp20 = tl.where(tmp4, tmp5, tmp19)
tl.store(out_ptr0 + (x3), tmp20, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/dm/cdmkcxuzpnailvibeivaikqdr4zvashgzwju7qijhq5aizlo3aor.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ji/cjiygefycgrcl3qp3e3cixrthcidqgufhlzjivhqbjrxizgndkpt.py
# Topologically Sorted Source Nodes: [query_masks_1, S_softmax_row_1], Original ATen: [aten.repeat, aten.mul]
# Source node to ATen node mapping:
# S_softmax_row_1 => mul_1
# query_masks_1 => repeat
# Graph fragment:
# %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze_3, [1, 1, 4]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_1, %repeat), kwargs = {})
triton_poi_fused_mul_repeat_2 = async_compile.triton('triton_poi_fused_mul_repeat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_repeat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_repeat_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y0 = yindex % 4
x2 = xindex
y3 = yindex
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (4*y0), ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*y0)), ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*y0)), ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*y0)), ymask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (y0 + (16*y1)), ymask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (4 + y0 + (16*y1)), ymask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (8 + y0 + (16*y1)), ymask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (12 + y0 + (16*y1)), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tl_math.abs(tmp6)
tmp8 = tl.full([1, 1], 0, tl.int32)
tmp9 = tmp8 < tmp7
tmp10 = tmp9.to(tl.int8)
tmp11 = tmp7 < tmp8
tmp12 = tmp11.to(tl.int8)
tmp13 = tmp10 - tmp12
tmp14 = tmp13.to(tmp7.dtype)
tmp18 = tmp16 + tmp17
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp23 = tmp15 / tmp22
tmp24 = tmp23 * tmp14
tl.store(out_ptr0 + (x2 + (4*y3)), tmp14, xmask & ymask)
tl.store(out_ptr1 + (x2 + (4*y3)), tmp24, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/l7/cl77qua5363b6dd3lhnugzh5umogglbuwhkjf5dlh2nsbs5xf3ek.py
# Topologically Sorted Source Nodes: [attd, H], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# H => sum_5
# attd => mul_2
# Graph fragment:
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand_3, %permute_2), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [2]), kwargs = {})
triton_poi_fused_mul_sum_3 = async_compile.triton('triton_poi_fused_mul_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 4)
x0 = xindex % 4
x2 = (xindex // 16)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (4*x3), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x3)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x3)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x3)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + (x4), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/gh/cghwy7oftenebwpdau4pwxnzhxmboe2vlmimu7cq3yzlp2kegqe4.py
# Topologically Sorted Source Nodes: [G_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# G_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %sum_4], 2), kwargs = {})
triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x3 = (xindex // 8)
x1 = (xindex // 8) % 4
x2 = (xindex // 32)
x4 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x3) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x1 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.load(in_ptr0 + ((4*x3) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 * tmp10
tmp12 = tl.load(in_ptr1 + (4 + x1 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tmp12 * tmp10
tmp14 = tmp11 + tmp13
tmp15 = tl.load(in_ptr1 + (8 + x1 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp15 * tmp10
tmp17 = tmp14 + tmp16
tmp18 = tl.load(in_ptr1 + (12 + x1 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp19 = tmp18 * tmp10
tmp20 = tmp17 + tmp19
tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype)
tmp22 = tl.where(tmp6, tmp20, tmp21)
tmp23 = tl.where(tmp4, tmp5, tmp22)
tl.store(out_ptr0 + (x4), tmp23, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1, 12), (12, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [cated], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 768, grid=grid(768), stream=stream0)
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 12), (12, 1), 0), reinterpret_tensor(primals_3, (12, 1), (1, 12), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [query_masks_1, S_softmax_row_1], Original ATen: [aten.repeat, aten.mul]
triton_poi_fused_mul_repeat_2.run(primals_2, buf2, buf3, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf5 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [attd, H], Original ATen: [aten.mul, aten.sum]
triton_poi_fused_mul_sum_3.run(buf4, primals_1, buf5, 64, grid=grid(64), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [G_1], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(primals_1, buf4, buf6, 128, grid=grid(128), stream=stream0)
del buf4
return (buf6, buf5, primals_1, reinterpret_tensor(buf0, (64, 12), (12, 1), 0), buf1, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 12), (12, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class AttFlowLayer(nn.Module):
def __init__(self, embed_length):
super(AttFlowLayer, self).__init__()
self.embed_length = embed_length
self.alpha = nn.Linear(3 * embed_length, 1, bias=False)
def forward(self, context, query):
batch_size = context.shape[0]
query = query.unsqueeze(0).expand((batch_size, query.shape[0], self
.embed_length))
shape = batch_size, context.shape[1], query.shape[1], self.embed_length
context_extended = context.unsqueeze(2).expand(shape)
query_extended = query.unsqueeze(1).expand(shape)
multiplied = torch.mul(context_extended, query_extended)
cated = torch.cat((context_extended, query_extended, multiplied), 3)
S = self.alpha(cated).view(batch_size, context.shape[1], query.shape[1]
)
S_softmax_row = F.softmax(S, dim=1).permute(0, 2, 1)
F.softmax(S, dim=2)
query_masks = torch.sign(torch.abs(torch.sum(query, dim=-1)))
query_masks = torch.unsqueeze(query_masks, 2).repeat(1, 1, context.
size()[1])
S_softmax_row = S_softmax_row * query_masks
S_softmax_row_1 = S_softmax_row.unsqueeze(3).expand(S_softmax_row.
shape[0], S_softmax_row.shape[1], S_softmax_row.shape[2], self.
embed_length)
context_1 = context_extended.permute(0, 2, 1, 3)
attd = torch.mul(S_softmax_row_1, context_1)
G = torch.sum(attd, 1)
H = torch.sum(attd, 2)
G = torch.cat((context, G), 2)
return G, H
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embed_length': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x2 = xindex // 48
x1 = xindex // 12 % 4
x3 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x2 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr0 + (4 * x2 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 * tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp11, tmp16, tmp17)
tmp19 = tl.where(tmp9, tmp10, tmp18)
tmp20 = tl.where(tmp4, tmp5, tmp19)
tl.store(out_ptr0 + x3, tmp20, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_mul_repeat_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y0 = yindex % 4
x2 = xindex
y3 = yindex
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + 4 * y0, ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * y0), ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * y0), ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * y0), ymask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (y0 + 16 * y1), ymask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr1 + (4 + y0 + 16 * y1), ymask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr1 + (8 + y0 + 16 * y1), ymask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr1 + (12 + y0 + 16 * y1), ymask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tl_math.abs(tmp6)
tmp8 = tl.full([1, 1], 0, tl.int32)
tmp9 = tmp8 < tmp7
tmp10 = tmp9.to(tl.int8)
tmp11 = tmp7 < tmp8
tmp12 = tmp11.to(tl.int8)
tmp13 = tmp10 - tmp12
tmp14 = tmp13.to(tmp7.dtype)
tmp18 = tmp16 + tmp17
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp23 = tmp15 / tmp22
tmp24 = tmp23 * tmp14
tl.store(out_ptr0 + (x2 + 4 * y3), tmp14, xmask & ymask)
tl.store(out_ptr1 + (x2 + 4 * y3), tmp24, xmask & ymask)
@triton.jit
def triton_poi_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 4
x0 = xindex % 4
x2 = xindex // 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x3, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x3), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x3), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x4, tmp14, xmask)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x3 = xindex // 8
x1 = xindex // 8 % 4
x2 = xindex // 32
x4 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x3 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x1 + 16 * x2), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp10 = tl.load(in_ptr0 + (4 * x3 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 * tmp10
tmp12 = tl.load(in_ptr1 + (4 + x1 + 16 * x2), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp13 = tmp12 * tmp10
tmp14 = tmp11 + tmp13
tmp15 = tl.load(in_ptr1 + (8 + x1 + 16 * x2), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp15 * tmp10
tmp17 = tmp14 + tmp16
tmp18 = tl.load(in_ptr1 + (12 + x1 + 16 * x2), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp19 = tmp18 * tmp10
tmp20 = tmp17 + tmp19
tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype)
tmp22 = tl.where(tmp6, tmp20, tmp21)
tmp23 = tl.where(tmp4, tmp5, tmp22)
tl.store(out_ptr0 + x4, tmp23, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1, 12), (12, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(768)](primals_1, primals_2, buf0, 768,
XBLOCK=128, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 12), (12, 1), 0),
reinterpret_tensor(primals_3, (12, 1), (1, 12), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_mul_repeat_2[grid(16, 4)](primals_2, buf2, buf3,
buf4, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf5 = buf2
del buf2
triton_poi_fused_mul_sum_3[grid(64)](buf4, primals_1, buf5, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
triton_poi_fused_cat_4[grid(128)](primals_1, buf4, buf6, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del buf4
return buf6, buf5, primals_1, reinterpret_tensor(buf0, (64, 12), (12, 1), 0
), buf1, buf3
class AttFlowLayerNew(nn.Module):
def __init__(self, embed_length):
super(AttFlowLayerNew, self).__init__()
self.embed_length = embed_length
self.alpha = nn.Linear(3 * embed_length, 1, bias=False)
def forward(self, input_0, input_1):
primals_3 = self.alpha.weight
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
| qtxcm/Joint_NER_with_NTP | AttFlowLayer | false | 4,173 | [
"Apache-2.0"
] | 0 | 02f26f2cc891d36808b2e28f337cc4846524e5df | https://github.com/qtxcm/Joint_NER_with_NTP/tree/02f26f2cc891d36808b2e28f337cc4846524e5df | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, embed_length):
super().__init__()
self.embed_length = embed_length
self.alpha = nn.Linear(3 * embed_length, 1, bias=False)
def forward(self, context, query):
batch_size = context.shape[0]
query = query.unsqueeze(0).expand((batch_size, query.shape[0], self
.embed_length))
shape = batch_size, context.shape[1], query.shape[1], self.embed_length
context_extended = context.unsqueeze(2).expand(shape)
query_extended = query.unsqueeze(1).expand(shape)
multiplied = torch.mul(context_extended, query_extended)
cated = torch.cat((context_extended, query_extended, multiplied), 3)
S = self.alpha(cated).view(batch_size, context.shape[1], query.shape[1]
)
S_softmax_row = F.softmax(S, dim=1).permute(0, 2, 1)
F.softmax(S, dim=2)
query_masks = torch.sign(torch.abs(torch.sum(query, dim=-1)))
query_masks = torch.unsqueeze(query_masks, 2).repeat(1, 1, context.
size()[1])
S_softmax_row = S_softmax_row * query_masks
S_softmax_row_1 = S_softmax_row.unsqueeze(3).expand(S_softmax_row.
shape[0], S_softmax_row.shape[1], S_softmax_row.shape[2], self.
embed_length)
context_1 = context_extended.permute(0, 2, 1, 3)
attd = torch.mul(S_softmax_row_1, context_1)
G = torch.sum(attd, 1)
H = torch.sum(attd, 2)
G = torch.cat((context, G), 2)
return G, H
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4]
|
SqrtModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/57/c57r2k62dzemkboglo2dvxlbmsaebzf7ocnhy3ligubspzciluam.py
# Topologically Sorted Source Nodes: [sqrt], Original ATen: [aten.sqrt]
# Source node to ATen node mapping:
# sqrt => sqrt
# Graph fragment:
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%arg0_1,), kwargs = {})
triton_poi_fused_sqrt_0 = async_compile.triton('triton_poi_fused_sqrt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.sqrt(tmp0)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sqrt], Original ATen: [aten.sqrt]
stream0 = get_raw_stream(0)
triton_poi_fused_sqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class SqrtModule(torch.nn.Module):
def __init__(self):
super(SqrtModule, self).__init__()
def forward(self, x):
return torch.sqrt(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.sqrt(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_sqrt_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SqrtModuleNew(torch.nn.Module):
def __init__(self):
super(SqrtModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| mirecta/nncase | SqrtModule | false | 4,174 | [
"Apache-2.0"
] | 0 | d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | https://github.com/mirecta/nncase/tree/d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | import torch
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.sqrt(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
ReduceMaxModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/2g/c2gyye53nmbvgdfy2bkx3effugzplzsoahahjoxi5jbdqocc5h5r.py
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
# Source node to ATen node mapping:
# max_1 => max_1
# Graph fragment:
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.default](args = (%arg0_1,), kwargs = {})
triton_per_fused_max_0 = async_compile.triton('triton_per_fused_max_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_max_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_max_0(in_ptr0, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp1, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
stream0 = get_raw_stream(0)
triton_per_fused_max_0.run(arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class ReduceMaxModule(torch.nn.Module):
def __init__(self):
super(ReduceMaxModule, self).__init__()
def forward(self, x):
return torch.max(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_max_0(in_ptr0, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp1, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp3, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_max_0[grid(1)](arg0_1, buf0, 1, 256, num_warps=2,
num_stages=1)
del arg0_1
return buf0,
class ReduceMaxModuleNew(torch.nn.Module):
def __init__(self):
super(ReduceMaxModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| mirecta/nncase | ReduceMaxModule | false | 4,175 | [
"Apache-2.0"
] | 0 | d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | https://github.com/mirecta/nncase/tree/d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | import torch
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.max(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
NegModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/hk/chkwhavqfzukyktba7dvmj6ss52pfnxbzhqfb7gpkrye7sko7lrp.py
# Topologically Sorted Source Nodes: [neg], Original ATen: [aten.neg]
# Source node to ATen node mapping:
# neg => neg
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {})
triton_poi_fused_neg_0 = async_compile.triton('triton_poi_fused_neg_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_neg_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_neg_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = -tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [neg], Original ATen: [aten.neg]
stream0 = get_raw_stream(0)
triton_poi_fused_neg_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class NegModule(torch.nn.Module):
def __init__(self):
super(NegModule, self).__init__()
def forward(self, x):
return -x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_neg_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = -tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_neg_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class NegModuleNew(torch.nn.Module):
def __init__(self):
super(NegModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| mirecta/nncase | NegModule | false | 4,176 | [
"Apache-2.0"
] | 0 | d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | https://github.com/mirecta/nncase/tree/d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | import torch
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return -x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
FloorModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/c6/cc6vgxovztdx2wjzbxgaurezngk42rocush5evm6ny272baozkqb.py
# Topologically Sorted Source Nodes: [floor], Original ATen: [aten.floor]
# Source node to ATen node mapping:
# floor => floor
# Graph fragment:
# %floor : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%arg0_1,), kwargs = {})
triton_poi_fused_floor_0 = async_compile.triton('triton_poi_fused_floor_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_floor_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_floor_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.floor(tmp0)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [floor], Original ATen: [aten.floor]
stream0 = get_raw_stream(0)
triton_poi_fused_floor_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class FloorModule(torch.nn.Module):
def __init__(self):
super(FloorModule, self).__init__()
def forward(self, x):
return torch.floor(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_floor_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.floor(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_floor_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class FloorModuleNew(torch.nn.Module):
def __init__(self):
super(FloorModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| mirecta/nncase | FloorModule | false | 4,177 | [
"Apache-2.0"
] | 0 | d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | https://github.com/mirecta/nncase/tree/d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | import torch
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.floor(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
ReduceMeanModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/vz/cvzdeyzbjmguyc7weo3g2iu6knqdlesduaneomlvq4mxjrspo75o.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%arg0_1,), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = 256.0
tmp5 = tmp3 / tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class ReduceMeanModule(torch.nn.Module):
def __init__(self):
super(ReduceMeanModule, self).__init__()
def forward(self, x):
return torch.mean(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = 256.0
tmp5 = tmp3 / tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp5, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(1)](buf1, arg0_1, 1, 256, num_warps=2,
num_stages=1)
del arg0_1
return buf1,
class ReduceMeanModuleNew(torch.nn.Module):
def __init__(self):
super(ReduceMeanModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| mirecta/nncase | ReduceMeanModule | false | 4,178 | [
"Apache-2.0"
] | 0 | d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | https://github.com/mirecta/nncase/tree/d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | import torch
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.mean(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
ReduceMinModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/te/ctexuvw2isx52fs5zjgy6llp776ozripe67nlu2ms33aorhwliok.py
# Topologically Sorted Source Nodes: [min_1], Original ATen: [aten.min]
# Source node to ATen node mapping:
# min_1 => min_1
# Graph fragment:
# %min_1 : [num_users=1] = call_function[target=torch.ops.aten.min.default](args = (%arg0_1,), kwargs = {})
triton_per_fused_min_0 = async_compile.triton('triton_per_fused_min_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_min_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_min_0(in_ptr0, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(triton_helpers.min2(tmp1, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [min_1], Original ATen: [aten.min]
stream0 = get_raw_stream(0)
triton_per_fused_min_0.run(arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class ReduceMinModule(torch.nn.Module):
def __init__(self):
super(ReduceMinModule, self).__init__()
def forward(self, x):
return torch.min(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_min_0(in_ptr0, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(triton_helpers.min2(tmp1, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp3, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_min_0[grid(1)](arg0_1, buf0, 1, 256, num_warps=2,
num_stages=1)
del arg0_1
return buf0,
class ReduceMinModuleNew(torch.nn.Module):
def __init__(self):
super(ReduceMinModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| mirecta/nncase | ReduceMinModule | false | 4,179 | [
"Apache-2.0"
] | 0 | d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | https://github.com/mirecta/nncase/tree/d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | import torch
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.min(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
DenseSAGEConv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ia/ciadpx4ik7ocmsqscox73ya2qxek7ekkw25w6rijleysqp7lfliw.py
# Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# setitem => full_default, index_put
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %index_put : [num_users=2] = call_function[target=torch.ops.aten.index_put.default](args = (%primals_2, [None, %iota, %iota], %full_default), kwargs = {})
triton_poi_fused_index_put_lift_fresh_0 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/3a/c3ajks6gn2yuzdnbqm5gdhl6nslpowgffuevr4gjguhn4q6d6v4b.py
# Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# setitem => full_default, index_put
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %index_put : [num_users=2] = call_function[target=torch.ops.aten.index_put.default](args = (%primals_2, [None, %iota, %iota], %full_default), kwargs = {})
triton_poi_fused_index_put_lift_fresh_1 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_1', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = 1.0
tl.store(out_ptr0 + ((5*x0) + (16*x1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/y3/cy35gbcd6bgnd5eyw3uhjdcrbocdx6nthwpvgxcbrze5uqo6n2dp.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# out => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/f7/cf7frvp5h5tfdj7h2wqm2oydwprwzs74er32f2mngowdmgfjqre4.py
# Topologically Sorted Source Nodes: [sum_1, clamp, out_1], Original ATen: [aten.sum, aten.clamp, aten.div]
# Source node to ATen node mapping:
# clamp => clamp_min
# out_1 => div
# sum_1 => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%index_put, [-1], True), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_1, 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_2, %clamp_min), kwargs = {})
triton_poi_fused_clamp_div_sum_3 = async_compile.triton('triton_poi_fused_clamp_div_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_sum_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_sum_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 1.0
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tmp0 / tmp9
tl.store(in_out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5a/c5ainvzw5uinosmtjpfsqml2wdleittg5twoainmhbtwdqayr4sw.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out_3 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_4, %primals_4), kwargs = {})
triton_poi_fused_add_4 = async_compile.triton('triton_poi_fused_add_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.lift_fresh, aten.index_put]
stream0 = get_raw_stream(0)
triton_poi_fused_index_put_lift_fresh_0.run(primals_2, buf0, 64, grid=grid(64), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.lift_fresh, aten.index_put]
triton_poi_fused_index_put_lift_fresh_1.run(buf0, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf0, buf2, 256, grid=grid(256), stream=stream0)
buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), out=buf3)
del primals_1
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [sum_1, clamp, out_1], Original ATen: [aten.sum, aten.clamp, aten.div]
triton_poi_fused_clamp_div_sum_3.run(buf4, buf0, 256, grid=grid(256), stream=stream0)
del buf0
buf5 = reinterpret_tensor(buf2, (64, 4), (4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), primals_3, out=buf5)
del primals_3
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
triton_poi_fused_add_4.run(buf6, primals_4, 256, grid=grid(256), stream=stream0)
del primals_4
return (buf6, reinterpret_tensor(buf4, (4, 64), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn.functional as F
from torch.nn import Parameter
import torch.utils.data
def uniform(size, tensor):
bound = 1.0 / math.sqrt(size)
if tensor is not None:
tensor.data.uniform_(-bound, bound)
class DenseSAGEConv(torch.nn.Module):
"""See :class:`torch_geometric.nn.conv.SAGEConv`.
"""
def __init__(self, in_channels, out_channels, normalize=False, bias=True):
super(DenseSAGEConv, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.normalize = normalize
self.weight = Parameter(torch.Tensor(self.in_channels, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
uniform(self.in_channels, self.weight)
uniform(self.in_channels, self.bias)
def forward(self, x, adj, mask=None, add_loop=True):
"""
Args:
x (Tensor): Node feature tensor :math:`\\mathbf{X} \\in \\mathbb{R}^{B
\\times N \\times F}`, with batch-size :math:`B`, (maximum)
number of nodes :math:`N` for each graph, and feature
dimension :math:`F`.
adj (Tensor): Adjacency tensor :math:`\\mathbf{A} \\in \\mathbb{R}^{B
\\times N \\times N}`. The adjacency tensor is broadcastable in
the batch dimension, resulting in a shared adjacency matrix for
the complete batch.
mask (BoolTensor, optional): Mask matrix
:math:`\\mathbf{M} \\in {\\{ 0, 1 \\}}^{B \\times N}` indicating
the valid nodes for each graph. (default: :obj:`None`)
add_loop (bool, optional): If set to :obj:`False`, the layer will
not automatically add self-loops to the adjacency matrices.
(default: :obj:`True`)
"""
x = x.unsqueeze(0) if x.dim() == 2 else x
adj = adj.unsqueeze(0) if adj.dim() == 2 else adj
B, N, _ = adj.size()
if add_loop:
adj = adj.clone()
idx = torch.arange(N, dtype=torch.long, device=adj.device)
adj[:, idx, idx] = 1
out = torch.matmul(adj, x)
out = out / adj.sum(dim=-1, keepdim=True).clamp(min=1)
out = torch.matmul(out, self.weight)
if self.bias is not None:
out = out + self.bias
if self.normalize:
out = F.normalize(out, p=2, dim=-1)
if mask is not None:
out = out * mask.view(B, N, 1)
return out
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.
in_channels, self.out_channels)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import math
from torch.nn import Parameter
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_index_put_lift_fresh_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_1(out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
tmp0 = 1.0
tl.store(out_ptr0 + (5 * x0 + 16 * x1), tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_clamp_div_sum_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 1.0
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tmp0 / tmp9
tl.store(in_out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_index_put_lift_fresh_0[grid(64)](primals_2, buf0,
64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_2
triton_poi_fused_index_put_lift_fresh_1[grid(16)](buf0, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_2[grid(256)](buf0, buf2, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0),
out=buf3)
del primals_1
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
triton_poi_fused_clamp_div_sum_3[grid(256)](buf4, buf0, 256, XBLOCK
=128, num_warps=4, num_stages=1)
del buf0
buf5 = reinterpret_tensor(buf2, (64, 4), (4, 1), 0)
del buf2
extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0),
primals_3, out=buf5)
del primals_3
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused_add_4[grid(256)](buf6, primals_4, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_4
return buf6, reinterpret_tensor(buf4, (4, 64), (1, 4), 0)
def uniform(size, tensor):
bound = 1.0 / math.sqrt(size)
if tensor is not None:
tensor.data.uniform_(-bound, bound)
class DenseSAGEConvNew(torch.nn.Module):
"""See :class:`torch_geometric.nn.conv.SAGEConv`.
"""
def __init__(self, in_channels, out_channels, normalize=False, bias=True):
super(DenseSAGEConvNew, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.normalize = normalize
self.weight = Parameter(torch.Tensor(self.in_channels, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
uniform(self.in_channels, self.weight)
uniform(self.in_channels, self.bias)
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.
in_channels, self.out_channels)
def forward(self, input_0, input_1):
primals_3 = self.weight
primals_4 = self.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| rbshi/pytorch_geometric | DenseSAGEConv | false | 4,180 | [
"MIT"
] | 0 | fcfbad49219974689eb5c6e32365939ae09ace84 | https://github.com/rbshi/pytorch_geometric/tree/fcfbad49219974689eb5c6e32365939ae09ace84 | import math
import torch
import torch.nn.functional as F
from torch.nn import Parameter
import torch.utils.data
def uniform(size, tensor):
bound = 1.0 / math.sqrt(size)
if tensor is not None:
tensor.data.uniform_(-bound, bound)
class Model(torch.nn.Module):
"""See :class:`torch_geometric.nn.conv.SAGEConv`.
"""
def __init__(self, in_channels, out_channels, normalize=False, bias=True):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.normalize = normalize
self.weight = Parameter(torch.Tensor(self.in_channels, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
uniform(self.in_channels, self.weight)
uniform(self.in_channels, self.bias)
def forward(self, x, adj, mask=None, add_loop=True):
"""
Args:
x (Tensor): Node feature tensor :math:`\\mathbf{X} \\in \\mathbb{R}^{B
\\times N \\times F}`, with batch-size :math:`B`, (maximum)
number of nodes :math:`N` for each graph, and feature
dimension :math:`F`.
adj (Tensor): Adjacency tensor :math:`\\mathbf{A} \\in \\mathbb{R}^{B
\\times N \\times N}`. The adjacency tensor is broadcastable in
the batch dimension, resulting in a shared adjacency matrix for
the complete batch.
mask (BoolTensor, optional): Mask matrix
:math:`\\mathbf{M} \\in {\\{ 0, 1 \\}}^{B \\times N}` indicating
the valid nodes for each graph. (default: :obj:`None`)
add_loop (bool, optional): If set to :obj:`False`, the layer will
not automatically add self-loops to the adjacency matrices.
(default: :obj:`True`)
"""
x = x.unsqueeze(0) if x.dim() == 2 else x
adj = adj.unsqueeze(0) if adj.dim() == 2 else adj
B, N, _ = adj.size()
if add_loop:
adj = adj.clone()
idx = torch.arange(N, dtype=torch.long, device=adj.device)
adj[:, idx, idx] = 1
out = torch.matmul(adj, x)
out = out / adj.sum(dim=-1, keepdim=True).clamp(min=1)
out = torch.matmul(out, self.weight)
if self.bias is not None:
out = out + self.bias
if self.normalize:
out = F.normalize(out, p=2, dim=-1)
if mask is not None:
out = out * mask.view(B, N, 1)
return out
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.
in_channels, self.out_channels)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
ResizeModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/mu/cmuvk55i5jaogqzegecm2f6av4qp6q7xltpow4vdjrvr3zewdqft.py
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._unsafe_index]
# Source node to ATen node mapping:
# interpolate => _unsafe_index
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %unsqueeze, %convert_element_type_3]), kwargs = {})
triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 3
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 1.3333333333333333
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = 1.0
tmp8 = tmp6 * tmp7
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.load(in_ptr0 + (tmp9 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 4), (48, 12, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_0.run(arg0_1, buf0, 192, grid=grid(192), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class ResizeModule(torch.nn.Module):
def __init__(self):
super(ResizeModule, self).__init__()
def forward(self, x):
return torch.nn.functional.interpolate(x, size=(3, 4))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 3
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 1.3333333333333333
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = 1.0
tmp8 = tmp6 * tmp7
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.load(in_ptr0 + (tmp9 + 4 * tmp4 + 16 * x2), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp10, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 4), (48, 12, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_0[grid(192)](arg0_1, buf0, 192,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ResizeModuleNew(torch.nn.Module):
def __init__(self):
super(ResizeModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| mirecta/nncase | ResizeModule | false | 4,181 | [
"Apache-2.0"
] | 0 | d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | https://github.com/mirecta/nncase/tree/d2efa59677a26f4259b3b6a5b6ec05ea16d4e40c | import torch
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.nn.functional.interpolate(x, size=(3, 4))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
RMSELoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/yx/cyxdmyokzxt45ic6c6fyddkcnevrym6ifoi7i2wn4lazf555fmla.py
# Topologically Sorted Source Nodes: [mse_loss, add, loss], Original ATen: [aten.mse_loss, aten.add, aten.sqrt]
# Source node to ATen node mapping:
# add => add
# loss => sqrt
# mse_loss => mean, pow_1, sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 1e-06), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
triton_per_fused_add_mse_loss_sqrt_0 = async_compile.triton('triton_per_fused_add_mse_loss_sqrt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mse_loss_sqrt_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mse_loss_sqrt_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tmp9 = 1e-06
tmp10 = tmp8 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp11, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mse_loss, add, loss], Original ATen: [aten.mse_loss, aten.add, aten.sqrt]
stream0 = get_raw_stream(0)
triton_per_fused_add_mse_loss_sqrt_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.cuda
class RMSELoss(nn.Module):
def __init__(self, eps=1e-06):
super().__init__()
self.mse = nn.MSELoss()
self.eps = eps
def forward(self, yhat, y):
loss = torch.sqrt(self.mse(yhat, y) + self.eps)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
import torch.cuda
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mse_loss_sqrt_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tmp9 = 1e-06
tmp10 = tmp8 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_mse_loss_sqrt_0[grid(1)](buf1, arg1_1, arg0_1,
1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class RMSELossNew(nn.Module):
def __init__(self, eps=1e-06):
super().__init__()
self.mse = nn.MSELoss()
self.eps = eps
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| rgbayrak/multi-task-physio | RMSELoss | false | 4,182 | [
"MIT"
] | 0 | 01ea98f26cc9b96ec94105d5213cb1ef93673c2c | https://github.com/rgbayrak/multi-task-physio/tree/01ea98f26cc9b96ec94105d5213cb1ef93673c2c | import torch
from torch import nn
import torch.cuda
class Model(nn.Module):
def __init__(self, eps=1e-06):
super().__init__()
self.mse = nn.MSELoss()
self.eps = eps
def forward(self, yhat, y):
loss = torch.sqrt(self.mse(yhat, y) + self.eps)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
_ASPPModule | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/oz/coz6fmj736vfgop3c3tc2npllgadkhzqge4w27wvlnv3n7xdkrzi.py
# Topologically Sorted Source Nodes: [conv2d, h, conv2d_1, h_1], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# conv2d => convolution
# conv2d_1 => convolution_1
# h => add
# h_1 => add_1
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [4, 4], [4, 4], False, [0, 0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, 0), kwargs = {})
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [4, 4], [4, 4], False, [0, 0], 1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %convolution_1), kwargs = {})
triton_poi_fused_add_convolution_0 = async_compile.triton('triton_poi_fused_add_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x3), xmask)
tmp6 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp4 + tmp7
tl.store(in_out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(4, 4), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(4, 4), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, h, conv2d_1, h_1], Original ATen: [aten.convolution, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_convolution_0.run(buf2, primals_2, buf1, primals_5, 256, grid=grid(256), stream=stream0)
del buf1
del primals_2
del primals_5
return (buf2, primals_1, primals_3, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class _ASPPModule(nn.Module):
"""Atrous Spatial Pyramid Pooling"""
def __init__(self, in_channels, out_channels, pyramids):
super(_ASPPModule, self).__init__()
self.stages = nn.Module()
for i, (dilation, padding) in enumerate(zip(pyramids, pyramids)):
self.stages.add_module('c{}'.format(i), nn.Conv2d(in_channels=
in_channels, out_channels=out_channels, kernel_size=3,
stride=1, padding=padding, dilation=dilation, bias=True))
for m in self.stages.children():
nn.init.normal(m.weight, mean=0, std=0.01)
nn.init.constant(m.bias, 0)
def forward(self, x):
h = 0
for stage in self.stages.children():
h += stage(x)
return h
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'pyramids': [4, 4]}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x3, xmask)
tmp6 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp4 + tmp7
tl.store(in_out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(4, 4), dilation=(4, 4), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1,
1), padding=(4, 4), dilation=(4, 4), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_convolution_0[grid(256)](buf2, primals_2, buf1,
primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf1
del primals_2
del primals_5
return buf2, primals_1, primals_3, primals_4
class _ASPPModuleNew(nn.Module):
"""Atrous Spatial Pyramid Pooling"""
def __init__(self, in_channels, out_channels, pyramids):
super(_ASPPModuleNew, self).__init__()
self.stages = nn.Module()
for i, (dilation, padding) in enumerate(zip(pyramids, pyramids)):
self.stages.add_module('c{}'.format(i), nn.Conv2d(in_channels=
in_channels, out_channels=out_channels, kernel_size=3,
stride=1, padding=padding, dilation=dilation, bias=True))
for m in self.stages.children():
nn.init.normal(m.weight, mean=0, std=0.01)
nn.init.constant(m.bias, 0)
def forward(self, input_0):
primals_1 = self.stages.c0.weight
primals_2 = self.stages.c0.bias
primals_4 = self.stages.c1.weight
primals_5 = self.stages.c1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| reyuwei/deeplab-pytorch | _ASPPModule | false | 4,183 | [
"MIT"
] | 0 | f4e241c83be5f85f0f2e1be5d76160b8c2d7ec9a | https://github.com/reyuwei/deeplab-pytorch/tree/f4e241c83be5f85f0f2e1be5d76160b8c2d7ec9a | import torch
import torch.nn as nn
class Model(nn.Module):
"""Atrous Spatial Pyramid Pooling"""
def __init__(self, in_channels, out_channels, pyramids):
super().__init__()
self.stages = nn.Module()
for i, (dilation, padding) in enumerate(zip(pyramids, pyramids)):
self.stages.add_module('c{}'.format(i), nn.Conv2d(in_channels=
in_channels, out_channels=out_channels, kernel_size=3,
stride=1, padding=padding, dilation=dilation, bias=True))
for m in self.stages.children():
nn.init.normal(m.weight, mean=0, std=0.01)
nn.init.constant(m.bias, 0)
def forward(self, x):
h = 0
for stage in self.stages.children():
h += stage(x)
return h
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Net | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/3r/c3r7ph5att73dipkcfrogrkfa64hs77xgs7ymmvr2bgdn3qashwv.py
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2560
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 40
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/iv/civv6vlhko2ux7c426rjmrm4j2oqzgs4iug5lkpiqgkmgmccsaoo.py
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten._prelu_kernel]
# Source node to ATen node mapping:
# h2 => gt, mul, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %view_3), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_3, %mul), kwargs = {})
triton_poi_fused__prelu_kernel_1 = async_compile.triton('triton_poi_fused__prelu_kernel_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (0))
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp5 = tmp4 * tmp0
tmp6 = tl.where(tmp2, tmp0, tmp5)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xr/cxrxf4nkydknjv7xhdecpyrprhviagsqwicrk4lpp64qv2hkzaxp.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# y => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_6,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (40, 4), (4, 1))
assert_size_stride(primals_2, (40, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (20, 40), (40, 1))
assert_size_stride(primals_5, (20, ), (1, ))
assert_size_stride(primals_6, (1, ), (1, ))
assert_size_stride(primals_7, (1, 20), (20, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 40), (40, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 40), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 40), (640, 160, 40, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 40), (640, 160, 40, 1), torch.bool)
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 2560, grid=grid(2560), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [a2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 40), (40, 1), 0), reinterpret_tensor(primals_4, (40, 20), (1, 40), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.float32)
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten._prelu_kernel]
triton_poi_fused__prelu_kernel_1.run(buf2, primals_6, buf3, 1280, grid=grid(1280), stream=stream0)
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 20), (20, 1), 0), reinterpret_tensor(primals_7, (20, 1), (1, 20), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf5, primals_8, 64, grid=grid(64), stream=stream0)
del primals_8
return (buf5, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 40), (40, 1), 0), buf2, reinterpret_tensor(buf3, (64, 20), (20, 1), 0), buf5, primals_7, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((40, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((40, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((20, 40), (40, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 20), (20, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Net(nn.Module):
def __init__(self, input_size):
super(Net, self).__init__()
hlayer1 = int(input_size * 10)
hlayer2 = int(input_size * 10 / 2)
self.fc1 = nn.Linear(input_size, hlayer1)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hlayer1, hlayer2)
self.prelu = nn.PReLU(1)
self.out = nn.Linear(hlayer2, 1)
self.out_act = nn.Sigmoid()
def forward(self, input_):
a1 = self.fc1(input_)
h1 = self.relu1(a1)
a2 = self.fc2(h1)
h2 = self.prelu(a2)
a3 = self.out(h2)
y = self.out_act(a3)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 2560
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 40
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + 0)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp5 = tmp4 * tmp0
tmp6 = tl.where(tmp2, tmp0, tmp5)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (40, 4), (4, 1))
assert_size_stride(primals_2, (40,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (20, 40), (40, 1))
assert_size_stride(primals_5, (20,), (1,))
assert_size_stride(primals_6, (1,), (1,))
assert_size_stride(primals_7, (1, 20), (20, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 40), (40, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 40), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 40), (640, 160, 40, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 40), (640, 160, 40, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(2560)](buf1,
primals_2, buf6, 2560, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 40),
(40, 1), 0), reinterpret_tensor(primals_4, (40, 20), (1, 40), 0
), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.
float32)
triton_poi_fused__prelu_kernel_1[grid(1280)](buf2, primals_6, buf3,
1280, XBLOCK=128, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 20), (20, 1), 0),
reinterpret_tensor(primals_7, (20, 1), (1, 20), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf4
triton_poi_fused_sigmoid_2[grid(64)](buf5, primals_8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_8
return buf5, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 40), (40, 1), 0
), buf2, reinterpret_tensor(buf3, (64, 20), (20, 1), 0
), buf5, primals_7, primals_4, buf6
class NetNew(nn.Module):
def __init__(self, input_size):
super(NetNew, self).__init__()
hlayer1 = int(input_size * 10)
hlayer2 = int(input_size * 10 / 2)
self.fc1 = nn.Linear(input_size, hlayer1)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hlayer1, hlayer2)
self.prelu = nn.PReLU(1)
self.out = nn.Linear(hlayer2, 1)
self.out_act = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.prelu.weight
primals_7 = self.out.weight
primals_8 = self.out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| rcaborges/music-cold-start | Net | false | 4,184 | [
"Apache-2.0"
] | 0 | a2b321e8b5ef7b894b5e0659c5da2f9ae3df25d8 | https://github.com/rcaborges/music-cold-start/tree/a2b321e8b5ef7b894b5e0659c5da2f9ae3df25d8 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_size):
super().__init__()
hlayer1 = int(input_size * 10)
hlayer2 = int(input_size * 10 / 2)
self.fc1 = nn.Linear(input_size, hlayer1)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hlayer1, hlayer2)
self.prelu = nn.PReLU(1)
self.out = nn.Linear(hlayer2, 1)
self.out_act = nn.Sigmoid()
def forward(self, input_):
a1 = self.fc1(input_)
h1 = self.relu1(a1)
a2 = self.fc2(h1)
h2 = self.prelu(a2)
a3 = self.out(h2)
y = self.out_act(a3)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
L2Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/y6/cy6aqhph32itarpwtgx5qjowlirmvnog5lklkvzvyrzm32lsj5ce.py
# Topologically Sorted Source Nodes: [sub, norm], Original ATen: [aten.sub, aten.linalg_vector_norm]
# Source node to ATen node mapping:
# norm => pow_1, pow_2, sum_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
triton_per_fused_linalg_vector_norm_sub_0 = async_compile.triton('triton_per_fused_linalg_vector_norm_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_linalg_vector_norm_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = libdevice.sqrt(tmp6)
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp7, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, norm], Original ATen: [aten.sub, aten.linalg_vector_norm]
stream0 = get_raw_stream(0)
triton_per_fused_linalg_vector_norm_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class L2Loss(nn.Module):
"""
Compute the l2 distance
"""
def __init__(self):
super(L2Loss, self).__init__()
def forward(self, h_pred, h_target):
return torch.norm(h_target - h_pred, p=2)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_linalg_vector_norm_sub_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = libdevice.sqrt(tmp6)
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp7, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_linalg_vector_norm_sub_0[grid(1)](buf1, arg0_1,
arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class L2LossNew(nn.Module):
"""
Compute the l2 distance
"""
def __init__(self):
super(L2LossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| riokt/video-paragraph | L2Loss | false | 4,185 | [
"MIT"
] | 0 | 2da3298819e73809af495457db2cf1dfffad712f | https://github.com/riokt/video-paragraph/tree/2da3298819e73809af495457db2cf1dfffad712f | import torch
import torch.nn as nn
import torch.utils.data
class Model(nn.Module):
"""
Compute the l2 distance
"""
def __init__(self):
super().__init__()
def forward(self, h_pred, h_target):
return torch.norm(h_target - h_pred, p=2)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SNNBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/3v/c3vvsdebepwci3osuayfjd6mdvmqlxuf2mavb2vxjl3roihy4wsp.py
# Topologically Sorted Source Nodes: [outputs_1, selu], Original ATen: [aten.convolution, aten.elu]
# Source node to ATen node mapping:
# outputs_1 => convolution
# selu => expm1, gt, mul, mul_1, mul_2, where
# Graph fragment:
# %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0507009873554805), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.7580993408473766), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {})
triton_poi_fused_convolution_elu_0 = async_compile.triton('triton_poi_fused_convolution_elu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0507009873554805
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp2 * tmp7
tmp9 = libdevice.expm1(tmp8)
tmp10 = 1.7580993408473766
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp4, tmp6, tmp11)
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [outputs_1], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [outputs_1, selu], Original ATen: [aten.convolution, aten.elu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_elu_0.run(buf1, primals_3, buf2, 256, grid=grid(256), stream=stream0)
del primals_3
return (buf2, primals_1, primals_2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import math
import torch
from torch.nn import SELU
from torch.nn import AlphaDropout
from torch.nn import Identity
from torch.nn import Parameter
from torch.nn.functional import conv2d
class SNNBlock(Module):
"""Block for a self-normalizing fully-connected layer.
This block consists of:
* AlphaDropout
* Linear
* SELU
"""
def __init__(self, in_features: 'int', out_features: 'int', dropout:
'float'=0.0, activation: 'bool'=True):
"""Initialize the layers.
Args:
in_features: The no. of input features
out_features: The no. of output features
dropout: The probability of dropping out the inputs
activation: Whether to add the activation function
"""
super().__init__()
self.dropout = AlphaDropout(dropout)
self.activation = SELU() if activation else Identity()
stddev = math.sqrt(1 / in_features)
weight = torch.randn(out_features, in_features, 1, 1) * stddev
bias = torch.zeros(out_features)
self.weight = Parameter(weight)
self.bias = Parameter(bias)
def forward(self, inputs: 'torch.Tensor') ->torch.Tensor:
"""Get the block's outputs."""
outputs = self.dropout(inputs)
outputs = conv2d(outputs, self.weight, self.bias)
return self.activation(outputs)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch.nn import Module
import math
from torch.nn import SELU
from torch.nn import AlphaDropout
from torch.nn import Identity
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0507009873554805
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp2 * tmp7
tmp9 = libdevice.expm1(tmp8)
tmp10 = 1.7580993408473766
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp4, tmp6, tmp11)
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_elu_0[grid(256)](buf1, primals_3, buf2,
256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return buf2, primals_1, primals_2, buf1
class SNNBlockNew(Module):
"""Block for a self-normalizing fully-connected layer.
This block consists of:
* AlphaDropout
* Linear
* SELU
"""
def __init__(self, in_features: 'int', out_features: 'int', dropout:
'float'=0.0, activation: 'bool'=True):
"""Initialize the layers.
Args:
in_features: The no. of input features
out_features: The no. of output features
dropout: The probability of dropping out the inputs
activation: Whether to add the activation function
"""
super().__init__()
self.dropout = AlphaDropout(dropout)
self.activation = SELU() if activation else Identity()
stddev = math.sqrt(1 / in_features)
weight = torch.randn(out_features, in_features, 1, 1) * stddev
bias = torch.zeros(out_features)
self.weight = Parameter(weight)
self.bias = Parameter(bias)
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| rharish101/CIL-Project | SNNBlock | false | 4,186 | [
"MIT"
] | 0 | fed1be8b22bb4228329b719a301f74459a7bf13b | https://github.com/rharish101/CIL-Project/tree/fed1be8b22bb4228329b719a301f74459a7bf13b | from torch.nn import Module
import math
import torch
from torch.nn import SELU
from torch.nn import AlphaDropout
from torch.nn import Identity
from torch.nn import Parameter
from torch.nn.functional import conv2d
class Model(Module):
"""Block for a self-normalizing fully-connected layer.
This block consists of:
* AlphaDropout
* Linear
* SELU
"""
def __init__(self, in_features: 'int', out_features: 'int', dropout:
'float'=0.0, activation: 'bool'=True):
"""Initialize the layers.
Args:
in_features: The no. of input features
out_features: The no. of output features
dropout: The probability of dropping out the inputs
activation: Whether to add the activation function
"""
super().__init__()
self.dropout = AlphaDropout(dropout)
self.activation = SELU() if activation else Identity()
stddev = math.sqrt(1 / in_features)
weight = torch.randn(out_features, in_features, 1, 1) * stddev
bias = torch.zeros(out_features)
self.weight = Parameter(weight)
self.bias = Parameter(bias)
def forward(self, inputs: 'torch.Tensor') ->torch.Tensor:
"""Get the block's outputs."""
outputs = self.dropout(inputs)
outputs = conv2d(outputs, self.weight, self.bias)
return self.activation(outputs)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
FinalPool | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/2l/c2lm5wvy5varadxpp77k6lvi6yjwzernwi4uqg6gmabg2nygeeur.py
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
# Source node to ATen node mapping:
# max_1 => getitem
# Graph fragment:
# %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%max_1, 0), kwargs = {})
triton_poi_fused_max_0 = async_compile.triton('triton_poi_fused_max_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
stream0 = get_raw_stream(0)
triton_poi_fused_max_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
class FinalPool(torch.nn.Module):
def __init__(self):
super(FinalPool, self).__init__()
def forward(self, input):
"""
input : Tensor of shape (batch size, T, Cin)
Outputs a Tensor of shape (batch size, Cin).
"""
return input.max(dim=1)[0]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class FinalPoolNew(torch.nn.Module):
def __init__(self):
super(FinalPoolNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| praesc/end-to-end-SLU | FinalPool | false | 4,187 | [
"Apache-2.0"
] | 0 | c4e8a5be0ea6a8d93ea7cfd3a5bdab0560c50848 | https://github.com/praesc/end-to-end-SLU/tree/c4e8a5be0ea6a8d93ea7cfd3a5bdab0560c50848 | import torch
import torch.utils.data
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
"""
input : Tensor of shape (batch size, T, Cin)
Outputs a Tensor of shape (batch size, Cin).
"""
return input.max(dim=1)[0]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
CAE_ENC | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/up/cupulppb6gntt36vlwmxuai5yj6kvwpdqsf65wjj4wwaeiqznte5.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128, 32], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 96
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (75*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/r5/cr5let6yjntwkbf53jd4yeoeuy4icu7yjffx67o3n62pxqegfu3x.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16384], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 9216
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (9216*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (27648*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/wv/cwvtp6qflpb42kxrujmda5zselv7wvkz3fgp2tryo2ftsisaildr.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = (yindex // 32)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/nw/cnwm6ljuusoqjcwr2jdx6p2ue7ldghxjdr3oe62stiuqhsboiczy.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ih/cihu7ohoiwwrblocurozhw6ihpzbq4oc43mseo4n6wd7ronp74tw.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 32768
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ey/cey36bgs6g2apcnkbmcyb3mgwrmlwqo7ii2urswj2s7xug2b6vd6.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 294912
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yk/cykctorrec6eir5voyiww3rywrxmgwa2xwnqzir4b533l7drbod7.py
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 147456
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hn/chnqxsbpdcydes3bxc5ps42z2metuyzhpekxbhujatygtq4f5ybn.py
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 73728
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qq/cqqf5ziagqrsfofh46ahz27lxllvs6jbsxrxgxamizbkuqtrbfe7.py
# Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# x_3 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_8 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 64], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 36
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = (yindex // 256)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (9216*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + (36*y3)), tmp4, xmask)
tl.store(out_ptr1 + (y0 + (256*x2) + (9216*y1)), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (32, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 3, 96, 96), (27648, 9216, 96, 1))
assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (256, ), (1, ))
assert_size_stride(primals_10, (1000, 9216), (9216, 1))
assert_size_stride(primals_11, (1000, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((32, 3, 5, 5), (75, 1, 15, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 96, 25, grid=grid(96, 25), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 3, 96, 96), (27648, 1, 288, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 12, 9216, grid=grid(12, 9216), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_4, buf2, 2048, 9, grid=grid(2048, 9), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_6, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0)
del primals_6
buf4 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_8, buf4, 32768, 9, grid=grid(32768, 9), stream=stream0)
del primals_8
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 32, 48, 48), (73728, 1, 1536, 32))
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_5.run(buf6, primals_2, 294912, grid=grid(294912), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, buf2, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 64, 24, 24), (36864, 1, 1536, 64))
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf8, primals_5, 147456, grid=grid(147456), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, buf3, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 128, 12, 12), (18432, 1, 1536, 128))
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_7.run(buf10, primals_7, 73728, grid=grid(73728), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf10, buf4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 256, 6, 6), (9216, 1, 1536, 256))
buf12 = empty_strided_cuda((4, 256, 6, 6), (9216, 36, 6, 1), torch.float32)
buf14 = empty_strided_cuda((4, 256, 6, 6), (9216, 1, 1536, 256), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_8.run(buf11, primals_9, buf12, buf14, 1024, 36, grid=grid(1024, 36), stream=stream0)
del buf11
del primals_9
buf13 = empty_strided_cuda((4, 1000), (1000, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf12, (4, 9216), (9216, 1), 0), reinterpret_tensor(primals_10, (9216, 1000), (1, 9216), 0), alpha=1, beta=1, out=buf13)
del primals_11
return (buf13, buf0, buf1, buf2, buf3, buf4, buf6, buf8, buf10, reinterpret_tensor(buf12, (4, 9216), (9216, 1), 0), primals_10, buf14, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 96, 96), (27648, 9216, 96, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((1000, 9216), (9216, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((1000, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class CAE_ENC(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=5, padding=2, stride=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2)
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2)
self.fc1 = nn.Linear(256 * 6 * 6, 1000)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = x.view(-1, 256 * 6 * 6)
x = self.fc1(x)
return x
def get_inputs():
return [torch.rand([4, 3, 96, 96])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 96
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 75 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 12
xnumel = 9216
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 9216 * y3), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 27648 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.
constexpr):
xnumel = 36
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = yindex // 256
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 9216 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + 36 * y3), tmp4, xmask)
tl.store(out_ptr1 + (y0 + 256 * x2 + 9216 * y1), tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (32, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 3, 96, 96), (27648, 9216, 96, 1))
assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (256,), (1,))
assert_size_stride(primals_10, (1000, 9216), (9216, 1))
assert_size_stride(primals_11, (1000,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((32, 3, 5, 5), (75, 1, 15, 3), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(96, 25)](primals_1, buf0, 96, 25, XBLOCK=32,
YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 3, 96, 96), (27648, 1, 288, 3), torch
.float32)
triton_poi_fused_1[grid(12, 9216)](primals_3, buf1, 12, 9216,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.
float32)
triton_poi_fused_2[grid(2048, 9)](primals_4, buf2, 2048, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
triton_poi_fused_3[grid(8192, 9)](primals_6, buf3, 8192, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_4[grid(32768, 9)](primals_8, buf4, 32768, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf5 = extern_kernels.convolution(buf1, buf0, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 32, 48, 48), (73728, 1, 1536, 32))
buf6 = buf5
del buf5
triton_poi_fused_convolution_relu_5[grid(294912)](buf6, primals_2,
294912, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf7 = extern_kernels.convolution(buf6, buf2, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 64, 24, 24), (36864, 1, 1536, 64))
buf8 = buf7
del buf7
triton_poi_fused_convolution_relu_6[grid(147456)](buf8, primals_5,
147456, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf9 = extern_kernels.convolution(buf8, buf3, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 128, 12, 12), (18432, 1, 1536, 128))
buf10 = buf9
del buf9
triton_poi_fused_convolution_relu_7[grid(73728)](buf10, primals_7,
73728, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf11 = extern_kernels.convolution(buf10, buf4, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 256, 6, 6), (9216, 1, 1536, 256))
buf12 = empty_strided_cuda((4, 256, 6, 6), (9216, 36, 6, 1), torch.
float32)
buf14 = empty_strided_cuda((4, 256, 6, 6), (9216, 1, 1536, 256),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_8[grid(1024, 36)](
buf11, primals_9, buf12, buf14, 1024, 36, XBLOCK=64, YBLOCK=8,
num_warps=4, num_stages=1)
del buf11
del primals_9
buf13 = empty_strided_cuda((4, 1000), (1000, 1), torch.float32)
extern_kernels.addmm(primals_11, reinterpret_tensor(buf12, (4, 9216
), (9216, 1), 0), reinterpret_tensor(primals_10, (9216, 1000),
(1, 9216), 0), alpha=1, beta=1, out=buf13)
del primals_11
return (buf13, buf0, buf1, buf2, buf3, buf4, buf6, buf8, buf10,
reinterpret_tensor(buf12, (4, 9216), (9216, 1), 0), primals_10, buf14)
class CAE_ENCNew(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=5, padding=2, stride=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2)
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2)
self.fc1 = nn.Linear(256 * 6 * 6, 1000)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.fc1.weight
primals_11 = self.fc1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| positivevaib/semi-supervised-imagenet-classification | CAE_ENC | false | 4,188 | [
"MIT"
] | 0 | 4fb6427f5a72951c1b866a1ddbc2599811bb5770 | https://github.com/positivevaib/semi-supervised-imagenet-classification/tree/4fb6427f5a72951c1b866a1ddbc2599811bb5770 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=5, padding=2, stride=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2)
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2)
self.fc1 = nn.Linear(256 * 6 * 6, 1000)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = x.view(-1, 256 * 6 * 6)
x = self.fc1(x)
return x
def get_inputs():
return [torch.rand([4, 3, 96, 96])]
def get_init_inputs():
return []
|
PSA_p | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/l2/cl2ne4geqkszldz224l7hhcrcj4fumq5pt3lxp454c46zva5qjqs.py
# Topologically Sorted Source Nodes: [context_mask_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# context_mask_2 => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [2], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/mj/cmjkp7ajowfgqys7puj4r62dapqlmqnxd75735zspl5ujhk6wbu5.py
# Topologically Sorted Source Nodes: [avg_x], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# avg_x => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%convolution_3, [-1, -2], True), kwargs = {})
triton_per_fused_mean_1 = async_compile.triton('triton_per_fused_mean_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[8, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 8
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/i7/ci7umzuzokfj7fo6e5444gnobrg3hrcxwbinehhhgwglrqvzgzui.py
# Topologically Sorted Source Nodes: [context_4], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# context_4 => amax_1, exp_1, sub_1, sum_2
# Graph fragment:
# %amax_1 : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%bmm_1, [2], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm_1, %amax_1), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [2], True), kwargs = {})
triton_per_fused__softmax_2 = async_compile.triton('triton_per_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp4, xmask)
tl.store(out_ptr1 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/my/cmypyznookobb2k7gii75erk7jiic2ciobkgdpi4gamceyy2d2jq.py
# Topologically Sorted Source Nodes: [mask_ch, out, mask_sp, out_1, out_2], Original ATen: [aten.sigmoid, aten.mul, aten.add]
# Source node to ATen node mapping:
# mask_ch => sigmoid
# mask_sp => sigmoid_1
# out => mul
# out_1 => mul_1
# out_2 => add
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_2,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sigmoid), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_10,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sigmoid_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul), kwargs = {})
triton_poi_fused_add_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
x4 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr4 + (x4), xmask, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tl.sigmoid(tmp6)
tmp8 = tmp0 * tmp7
tmp10 = tl.sigmoid(tmp9)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 + tmp11
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1))
assert_size_stride(primals_5, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_6, (2, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [input_x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1))
# Topologically Sorted Source Nodes: [context_mask], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_2, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf4 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_mask_2], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_per_fused__softmax_0.run(buf1, buf4, 4, 16, grid=grid(4), stream=stream0)
buf5 = empty_strided_cuda((4, 2, 1), (2, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [context], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 2, 16), (32, 16, 1), 0), reinterpret_tensor(buf4, (4, 16, 1), (16, 1, 16), 0), out=buf5)
# Topologically Sorted Source Nodes: [context_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 2, 1, 1), (2, 1, 1, 1), 0), primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 1, 1), (4, 1, 1, 1))
# Topologically Sorted Source Nodes: [g_x], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(primals_2, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 2, 4, 4), (32, 16, 4, 1))
buf8 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32)
buf10 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [avg_x], Original ATen: [aten.mean]
triton_per_fused_mean_1.run(buf10, buf7, 8, 16, grid=grid(8), stream=stream0)
del buf7
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(primals_2, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 2, 4, 4), (32, 16, 4, 1))
buf11 = reinterpret_tensor(buf1, (4, 1, 16), (16, 16, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [context_3], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf10, (4, 1, 2), (2, 0, 1), 0), reinterpret_tensor(buf9, (4, 2, 16), (32, 16, 1), 0), out=buf11)
buf12 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
buf13 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_4], Original ATen: [aten._softmax]
triton_per_fused__softmax_2.run(buf11, buf12, buf13, 4, 16, grid=grid(4), stream=stream0)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mask_ch, out, mask_sp, out_1, out_2], Original ATen: [aten.sigmoid, aten.mul, aten.add]
triton_poi_fused_add_mul_sigmoid_3.run(primals_2, buf11, buf12, buf13, buf6, buf14, 256, grid=grid(256), stream=stream0)
return (buf14, primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, buf4, reinterpret_tensor(buf5, (4, 2, 1, 1), (2, 1, 1, 1), 0), buf6, buf11, buf12, buf13, reinterpret_tensor(buf10, (4, 2, 1), (2, 1, 1), 0), reinterpret_tensor(buf9, (4, 16, 2), (32, 1, 16), 0), reinterpret_tensor(buf0, (4, 16, 2), (32, 1, 16), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 2, 1, 1), (2, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch._utils
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
def kaiming_init(module, a=0, mode='fan_out', nonlinearity='relu', bias=0,
distribution='normal'):
assert distribution in ['uniform', 'normal']
if distribution == 'uniform':
nn.init.kaiming_uniform_(module.weight, a=a, mode=mode,
nonlinearity=nonlinearity)
else:
nn.init.kaiming_normal_(module.weight, a=a, mode=mode, nonlinearity
=nonlinearity)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
class PSA_p(nn.Module):
def __init__(self, inplanes, planes, kernel_size=1, stride=1):
super(PSA_p, self).__init__()
self.inplanes = inplanes
self.inter_planes = planes // 2
self.planes = planes
self.kernel_size = kernel_size
self.stride = stride
self.padding = (kernel_size - 1) // 2
self.conv_q_right = nn.Conv2d(self.inplanes, 1, kernel_size=1,
stride=stride, padding=0, bias=False)
self.conv_v_right = nn.Conv2d(self.inplanes, self.inter_planes,
kernel_size=1, stride=stride, padding=0, bias=False)
self.conv_up = nn.Conv2d(self.inter_planes, self.planes,
kernel_size=1, stride=1, padding=0, bias=False)
self.softmax_right = nn.Softmax(dim=2)
self.sigmoid = nn.Sigmoid()
self.conv_q_left = nn.Conv2d(self.inplanes, self.inter_planes,
kernel_size=1, stride=stride, padding=0, bias=False)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv_v_left = nn.Conv2d(self.inplanes, self.inter_planes,
kernel_size=1, stride=stride, padding=0, bias=False)
self.softmax_left = nn.Softmax(dim=2)
self.reset_parameters()
def reset_parameters(self):
kaiming_init(self.conv_q_right, mode='fan_in')
kaiming_init(self.conv_v_right, mode='fan_in')
kaiming_init(self.conv_q_left, mode='fan_in')
kaiming_init(self.conv_v_left, mode='fan_in')
self.conv_q_right.inited = True
self.conv_v_right.inited = True
self.conv_q_left.inited = True
self.conv_v_left.inited = True
def spatial_pool(self, x):
input_x = self.conv_v_right(x)
batch, channel, height, width = input_x.size()
input_x = input_x.view(batch, channel, height * width)
context_mask = self.conv_q_right(x)
context_mask = context_mask.view(batch, 1, height * width)
context_mask = self.softmax_right(context_mask)
context = torch.matmul(input_x, context_mask.transpose(1, 2))
context = context.unsqueeze(-1)
context = self.conv_up(context)
mask_ch = self.sigmoid(context)
out = x * mask_ch
return out
def channel_pool(self, x):
g_x = self.conv_q_left(x)
batch, channel, height, width = g_x.size()
avg_x = self.avg_pool(g_x)
batch, channel, avg_x_h, avg_x_w = avg_x.size()
avg_x = avg_x.view(batch, channel, avg_x_h * avg_x_w).permute(0, 2, 1)
theta_x = self.conv_v_left(x).view(batch, self.inter_planes, height *
width)
context = torch.matmul(avg_x, theta_x)
context = self.softmax_left(context)
context = context.view(batch, 1, height, width)
mask_sp = self.sigmoid(context)
out = x * mask_sp
return out
def forward(self, x):
context_channel = self.spatial_pool(x)
context_spatial = self.channel_pool(x)
out = context_spatial + context_channel
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inplanes': 4, 'planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch._utils
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask)
@triton.jit
def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 8
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
tl.store(out_ptr1 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
x4 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr4 + x4, xmask, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tl.sigmoid(tmp6)
tmp8 = tmp0 * tmp7
tmp10 = tl.sigmoid(tmp9)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 + tmp11
tl.store(out_ptr0 + x3, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1))
assert_size_stride(primals_5, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_6, (2, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1))
buf1 = extern_kernels.convolution(primals_2, primals_3, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf4 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__softmax_0[grid(4)](buf1, buf4, 4, 16, XBLOCK=1,
num_warps=2, num_stages=1)
buf5 = empty_strided_cuda((4, 2, 1), (2, 1, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 2, 16), (32, 16, 1),
0), reinterpret_tensor(buf4, (4, 16, 1), (16, 1, 16), 0), out=buf5)
buf6 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 2, 1,
1), (2, 1, 1, 1), 0), primals_4, stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 1, 1), (4, 1, 1, 1))
buf7 = extern_kernels.convolution(primals_2, primals_5, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 2, 4, 4), (32, 16, 4, 1))
buf8 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32)
buf10 = buf8
del buf8
triton_per_fused_mean_1[grid(8)](buf10, buf7, 8, 16, XBLOCK=8,
num_warps=2, num_stages=1)
del buf7
buf9 = extern_kernels.convolution(primals_2, primals_6, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 2, 4, 4), (32, 16, 4, 1))
buf11 = reinterpret_tensor(buf1, (4, 1, 16), (16, 16, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf10, (4, 1, 2), (2, 0, 1),
0), reinterpret_tensor(buf9, (4, 2, 16), (32, 16, 1), 0), out=buf11
)
buf12 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
buf13 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
triton_per_fused__softmax_2[grid(4)](buf11, buf12, buf13, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_sigmoid_3[grid(256)](primals_2, buf11,
buf12, buf13, buf6, buf14, 256, XBLOCK=128, num_warps=4,
num_stages=1)
return (buf14, primals_1, primals_2, primals_3, primals_4, primals_5,
primals_6, buf4, reinterpret_tensor(buf5, (4, 2, 1, 1), (2, 1, 1, 1
), 0), buf6, buf11, buf12, buf13, reinterpret_tensor(buf10, (4, 2,
1), (2, 1, 1), 0), reinterpret_tensor(buf9, (4, 16, 2), (32, 1, 16),
0), reinterpret_tensor(buf0, (4, 16, 2), (32, 1, 16), 0))
def kaiming_init(module, a=0, mode='fan_out', nonlinearity='relu', bias=0,
distribution='normal'):
assert distribution in ['uniform', 'normal']
if distribution == 'uniform':
nn.init.kaiming_uniform_(module.weight, a=a, mode=mode,
nonlinearity=nonlinearity)
else:
nn.init.kaiming_normal_(module.weight, a=a, mode=mode, nonlinearity
=nonlinearity)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
class PSA_pNew(nn.Module):
def __init__(self, inplanes, planes, kernel_size=1, stride=1):
super(PSA_pNew, self).__init__()
self.inplanes = inplanes
self.inter_planes = planes // 2
self.planes = planes
self.kernel_size = kernel_size
self.stride = stride
self.padding = (kernel_size - 1) // 2
self.conv_q_right = nn.Conv2d(self.inplanes, 1, kernel_size=1,
stride=stride, padding=0, bias=False)
self.conv_v_right = nn.Conv2d(self.inplanes, self.inter_planes,
kernel_size=1, stride=stride, padding=0, bias=False)
self.conv_up = nn.Conv2d(self.inter_planes, self.planes,
kernel_size=1, stride=1, padding=0, bias=False)
self.softmax_right = nn.Softmax(dim=2)
self.sigmoid = nn.Sigmoid()
self.conv_q_left = nn.Conv2d(self.inplanes, self.inter_planes,
kernel_size=1, stride=stride, padding=0, bias=False)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv_v_left = nn.Conv2d(self.inplanes, self.inter_planes,
kernel_size=1, stride=stride, padding=0, bias=False)
self.softmax_left = nn.Softmax(dim=2)
self.reset_parameters()
def reset_parameters(self):
kaiming_init(self.conv_q_right, mode='fan_in')
kaiming_init(self.conv_v_right, mode='fan_in')
kaiming_init(self.conv_q_left, mode='fan_in')
kaiming_init(self.conv_v_left, mode='fan_in')
self.conv_q_right.inited = True
self.conv_v_right.inited = True
self.conv_q_left.inited = True
self.conv_v_left.inited = True
def spatial_pool(self, x):
input_x = self.conv_v_right(x)
batch, channel, height, width = input_x.size()
input_x = input_x.view(batch, channel, height * width)
context_mask = self.conv_q_right(x)
context_mask = context_mask.view(batch, 1, height * width)
context_mask = self.softmax_right(context_mask)
context = torch.matmul(input_x, context_mask.transpose(1, 2))
context = context.unsqueeze(-1)
context = self.conv_up(context)
mask_ch = self.sigmoid(context)
out = x * mask_ch
return out
def channel_pool(self, x):
g_x = self.conv_q_left(x)
batch, channel, height, width = g_x.size()
avg_x = self.avg_pool(g_x)
batch, channel, avg_x_h, avg_x_w = avg_x.size()
avg_x = avg_x.view(batch, channel, avg_x_h * avg_x_w).permute(0, 2, 1)
theta_x = self.conv_v_left(x).view(batch, self.inter_planes, height *
width)
context = torch.matmul(avg_x, theta_x)
context = self.softmax_left(context)
context = context.view(batch, 1, height, width)
mask_sp = self.sigmoid(context)
out = x * mask_sp
return out
def forward(self, input_0):
primals_3 = self.conv_q_right.weight
primals_1 = self.conv_v_right.weight
primals_4 = self.conv_up.weight
primals_5 = self.conv_q_left.weight
primals_6 = self.conv_v_left.weight
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| realphongha/human-pose-estimation.pytorch | PSA_p | false | 4,189 | [
"MIT"
] | 0 | 29b106d3e6c6e12325a7d4bca4abc56ecbc12b1f | https://github.com/realphongha/human-pose-estimation.pytorch/tree/29b106d3e6c6e12325a7d4bca4abc56ecbc12b1f | import torch
import torch.nn as nn
import torch._utils
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
def kaiming_init(module, a=0, mode='fan_out', nonlinearity='relu', bias=0,
distribution='normal'):
assert distribution in ['uniform', 'normal']
if distribution == 'uniform':
nn.init.kaiming_uniform_(module.weight, a=a, mode=mode,
nonlinearity=nonlinearity)
else:
nn.init.kaiming_normal_(module.weight, a=a, mode=mode, nonlinearity
=nonlinearity)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
class Model(nn.Module):
def __init__(self, inplanes, planes, kernel_size=1, stride=1):
super().__init__()
self.inplanes = inplanes
self.inter_planes = planes // 2
self.planes = planes
self.kernel_size = kernel_size
self.stride = stride
self.padding = (kernel_size - 1) // 2
self.conv_q_right = nn.Conv2d(self.inplanes, 1, kernel_size=1,
stride=stride, padding=0, bias=False)
self.conv_v_right = nn.Conv2d(self.inplanes, self.inter_planes,
kernel_size=1, stride=stride, padding=0, bias=False)
self.conv_up = nn.Conv2d(self.inter_planes, self.planes,
kernel_size=1, stride=1, padding=0, bias=False)
self.softmax_right = nn.Softmax(dim=2)
self.sigmoid = nn.Sigmoid()
self.conv_q_left = nn.Conv2d(self.inplanes, self.inter_planes,
kernel_size=1, stride=stride, padding=0, bias=False)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv_v_left = nn.Conv2d(self.inplanes, self.inter_planes,
kernel_size=1, stride=stride, padding=0, bias=False)
self.softmax_left = nn.Softmax(dim=2)
self.reset_parameters()
def reset_parameters(self):
kaiming_init(self.conv_q_right, mode='fan_in')
kaiming_init(self.conv_v_right, mode='fan_in')
kaiming_init(self.conv_q_left, mode='fan_in')
kaiming_init(self.conv_v_left, mode='fan_in')
self.conv_q_right.inited = True
self.conv_v_right.inited = True
self.conv_q_left.inited = True
self.conv_v_left.inited = True
def spatial_pool(self, x):
input_x = self.conv_v_right(x)
batch, channel, height, width = input_x.size()
input_x = input_x.view(batch, channel, height * width)
context_mask = self.conv_q_right(x)
context_mask = context_mask.view(batch, 1, height * width)
context_mask = self.softmax_right(context_mask)
context = torch.matmul(input_x, context_mask.transpose(1, 2))
context = context.unsqueeze(-1)
context = self.conv_up(context)
mask_ch = self.sigmoid(context)
out = x * mask_ch
return out
def channel_pool(self, x):
g_x = self.conv_q_left(x)
batch, channel, height, width = g_x.size()
avg_x = self.avg_pool(g_x)
batch, channel, avg_x_h, avg_x_w = avg_x.size()
avg_x = avg_x.view(batch, channel, avg_x_h * avg_x_w).permute(0, 2, 1)
theta_x = self.conv_v_left(x).view(batch, self.inter_planes, height *
width)
context = torch.matmul(avg_x, theta_x)
context = self.softmax_left(context)
context = context.view(batch, 1, height, width)
mask_sp = self.sigmoid(context)
out = x * mask_sp
return out
def forward(self, x):
context_channel = self.spatial_pool(x)
context_spatial = self.channel_pool(x)
out = context_spatial + context_channel
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
ContrastiveLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/bd/cbdsxlyts4mwuqli5273sdktccdtyxdoznohbs5msxdngmxo6b6p.py
# Topologically Sorted Source Nodes: [similarity], Original ATen: [aten.linalg_vector_norm]
# Source node to ATen node mapping:
# similarity => pow_1, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%expand_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-2], True), kwargs = {})
triton_poi_fused_linalg_vector_norm_0 = async_compile.triton('triton_poi_fused_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_linalg_vector_norm_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 8) % 8
x2 = (xindex // 64)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x2 + (64*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x2 + (64*((-4) + x1))), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp11 = tmp10 * tmp10
tmp12 = tl.load(in_ptr0 + (16 + x2 + (64*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr1 + (16 + x2 + (64*((-4) + x1))), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp12, tmp13)
tmp15 = tmp14 * tmp14
tmp16 = tmp11 + tmp15
tmp17 = tl.load(in_ptr0 + (32 + x2 + (64*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr1 + (32 + x2 + (64*((-4) + x1))), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp19 = tl.where(tmp4, tmp17, tmp18)
tmp20 = tmp19 * tmp19
tmp21 = tmp16 + tmp20
tmp22 = tl.load(in_ptr0 + (48 + x2 + (64*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr1 + (48 + x2 + (64*((-4) + x1))), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.where(tmp4, tmp22, tmp23)
tmp25 = tmp24 * tmp24
tmp26 = tmp21 + tmp25
tl.store(out_ptr0 + (x3), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/y5/cy5rrcntt7relb3pmc2gjnh2h677irtorxmfeyf2x2fi5bz26m2e.py
# Topologically Sorted Source Nodes: [similarity], Original ATen: [aten.linalg_vector_norm]
# Source node to ATen node mapping:
# similarity => pow_3, sum_2
# Graph fragment:
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%expand, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [-2], True), kwargs = {})
triton_poi_fused_linalg_vector_norm_1 = async_compile.triton('triton_poi_fused_linalg_vector_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_linalg_vector_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_linalg_vector_norm_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x2 = (xindex // 64)
x3 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x2 + (64*x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x2 + (64*((-4) + x0))), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp11 = tmp10 * tmp10
tmp12 = tl.load(in_ptr0 + (16 + x2 + (64*x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr1 + (16 + x2 + (64*((-4) + x0))), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp12, tmp13)
tmp15 = tmp14 * tmp14
tmp16 = tmp11 + tmp15
tmp17 = tl.load(in_ptr0 + (32 + x2 + (64*x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr1 + (32 + x2 + (64*((-4) + x0))), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp19 = tl.where(tmp4, tmp17, tmp18)
tmp20 = tmp19 * tmp19
tmp21 = tmp16 + tmp20
tmp22 = tl.load(in_ptr0 + (48 + x2 + (64*x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr1 + (48 + x2 + (64*((-4) + x0))), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.where(tmp4, tmp22, tmp23)
tmp25 = tmp24 * tmp24
tmp26 = tmp21 + tmp25
tl.store(out_ptr0 + (x3), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/3z/c3zco4vmq5jt6zbk3k66bqdx3yy3xituhdcuecs3ydyr77tw7xrg.py
# Topologically Sorted Source Nodes: [similarity], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
# Source node to ATen node mapping:
# similarity => clamp_min, clamp_min_1, div, div_1, mul, pow_2, pow_4
# Graph fragment:
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1.1920928955078125e-07), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%expand_1, %clamp_min), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_4, 1.1920928955078125e-07), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%expand, %clamp_min_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div), kwargs = {})
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_2 = async_compile.triton('triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 32) % 8
x1 = (xindex // 8) % 4
x3 = (xindex // 256)
x0 = xindex % 8
x4 = (xindex // 32)
x5 = xindex
tmp11 = tl.load(in_ptr2 + (x0 + (8*x4)), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr3 + (x0 + (8*x4)), None, eviction_policy='evict_last')
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3 + (16*x1) + (64*x2)), tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x3 + (16*x1) + (64*((-4) + x2))), tmp6, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1.1920928955078125e-07
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp10 / tmp14
tmp16 = x0
tmp17 = tmp16 >= tmp1
tmp18 = tmp16 < tmp3
tmp19 = tl.load(in_ptr0 + (x3 + (16*x1) + (64*x0)), tmp18, eviction_policy='evict_last', other=0.0)
tmp20 = tmp16 >= tmp3
tmp21 = tmp16 < tmp7
tmp22 = tl.load(in_ptr1 + (x3 + (16*x1) + (64*((-4) + x0))), tmp20, eviction_policy='evict_last', other=0.0)
tmp23 = tl.where(tmp18, tmp19, tmp22)
tmp25 = libdevice.sqrt(tmp24)
tmp26 = triton_helpers.maximum(tmp25, tmp13)
tmp27 = tmp23 / tmp26
tmp28 = tmp15 * tmp27
tl.store(out_ptr0 + (x5), tmp28, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/bp/cbpoftbr55ldmytwdwnljolr3bm6phi3m3fy2gdpelwrlzc3rjz7.py
# Topologically Sorted Source Nodes: [mask_nd, neg_inf, similarity, similarity_1, log_softmax], Original ATen: [aten.repeat, aten.mul, aten.sum, aten.where, aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, sum_4
# mask_nd => repeat
# neg_inf => full_default_2
# similarity => sum_3
# similarity_1 => where_1
# Graph fragment:
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze_3, [4, 4, 1, 1]), kwargs = {})
# %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 8, 8], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-2]), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%repeat, %full_default_2, %sum_3), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_1, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_per_fused__log_softmax_mul_repeat_sum_where_3 = async_compile.triton('triton_per_fused__log_softmax_mul_repeat_sum_where_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[128, 8],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mul_repeat_sum_where_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_mul_repeat_sum_where_3(in_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 128
rnumel = 8
RBLOCK: tl.constexpr = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex % 8
r2 = rindex
x3 = xindex
tmp7 = tl.load(in_ptr0 + (r2 + (32*x3)), xmask, other=0.0)
tmp8 = tl.load(in_ptr0 + (8 + r2 + (32*x3)), xmask, other=0.0)
tmp10 = tl.load(in_ptr0 + (16 + r2 + (32*x3)), xmask, other=0.0)
tmp12 = tl.load(in_ptr0 + (24 + r2 + (32*x3)), xmask, other=0.0)
tmp0 = x0
tmp1 = r2
tmp2 = tmp0 == tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = (tmp5 != 0)
tmp9 = tmp7 + tmp8
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp14 = float("-inf")
tmp15 = tl.where(tmp6, tmp14, tmp13)
tmp16 = tmp15 * tmp3
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, float("-inf"))
tmp20 = triton_helpers.max2(tmp19, 1)[:, None]
tmp21 = tmp16 - tmp20
tmp22 = tmp21 * tmp3
tmp23 = tl_math.exp(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.where(xmask, tmp24, 0)
tmp27 = tl.sum(tmp26, 1)[:, None]
tl.store(out_ptr1 + (r2 + (8*x3)), tmp22, xmask)
tl.store(out_ptr2 + (x3), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/y3/cy3k5lieetpk5flruwavi2d2gc32r4qn2etbkrjewl4nxsi7syai.py
# Topologically Sorted Source Nodes: [positive_pairs], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# positive_pairs => cat_1
# Graph fragment:
# %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%diagonal, %diagonal_1], -1), kwargs = {})
triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (4 + (9*x0) + (64*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (8*x1)), xmask)
tmp2 = tl_math.log(tmp1)
tmp3 = tmp0 - tmp2
tl.store(out_ptr0 + (x0 + (8*x1)), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/jh/cjhuzffkbppfabjw57yx4gc736wd25ordnwa2tnw54urj2v72l3i.py
# Topologically Sorted Source Nodes: [positive_pairs], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# positive_pairs => cat_1
# Graph fragment:
# %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%diagonal, %diagonal_1], -1), kwargs = {})
triton_poi_fused_cat_5 = async_compile.triton('triton_poi_fused_cat_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (32 + (9*x0) + (64*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4 + x0 + (8*x1)), xmask)
tmp2 = tl_math.log(tmp1)
tmp3 = tmp0 - tmp2
tl.store(out_ptr0 + (x0 + (8*x1)), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/c4/cc435nlek6ugsevb7ct35myrjq6775utyhoih5vzjurusq7oobkk.py
# Topologically Sorted Source Nodes: [mean, neg], Original ATen: [aten.mean, aten.neg]
# Source node to ATen node mapping:
# mean => mean
# neg => neg
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%cat_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {})
triton_per_fused_mean_neg_6 = async_compile.triton('triton_per_fused_mean_neg_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 128],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_neg_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_neg_6(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 128
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = 128.0
tmp5 = tmp3 / tmp4
tmp6 = -tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 1, 8), (256, 64, 8, 1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [similarity], Original ATen: [aten.linalg_vector_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_linalg_vector_norm_0.run(arg0_1, arg1_1, buf0, 1024, grid=grid(1024), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 8, 1, 8), (256, 64, 8, 1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [similarity], Original ATen: [aten.linalg_vector_norm]
triton_poi_fused_linalg_vector_norm_1.run(arg0_1, arg1_1, buf1, 1024, grid=grid(1024), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 8, 4, 8), (1024, 256, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [similarity], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_2.run(arg0_1, arg1_1, buf0, buf1, buf2, 4096, grid=grid(4096), stream=stream0)
del arg0_1
del arg1_1
del buf0
buf4 = reinterpret_tensor(buf1, (4, 4, 8, 8), (256, 64, 8, 1), 0); del buf1 # reuse
buf5 = empty_strided_cuda((4, 4, 8, 1), (32, 8, 1, 128), torch.float32)
# Topologically Sorted Source Nodes: [mask_nd, neg_inf, similarity, similarity_1, log_softmax], Original ATen: [aten.repeat, aten.mul, aten.sum, aten.where, aten._log_softmax]
triton_per_fused__log_softmax_mul_repeat_sum_where_3.run(buf2, buf4, buf5, 128, 8, grid=grid(128), stream=stream0)
del buf2
buf8 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
buf6 = reinterpret_tensor(buf8, (4, 4, 4), (32, 8, 1), 0) # alias
# Topologically Sorted Source Nodes: [positive_pairs], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(buf4, buf5, buf6, 64, grid=grid(64), stream=stream0)
buf7 = reinterpret_tensor(buf8, (4, 4, 4), (32, 8, 1), 4) # alias
# Topologically Sorted Source Nodes: [positive_pairs], Original ATen: [aten.cat]
triton_poi_fused_cat_5.run(buf4, buf5, buf7, 64, grid=grid(64), stream=stream0)
del buf4
del buf5
buf9 = empty_strided_cuda((), (), torch.float32)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [mean, neg], Original ATen: [aten.mean, aten.neg]
triton_per_fused_mean_neg_6.run(buf10, buf8, 1, 128, grid=grid(1), stream=stream0)
del buf6
del buf7
del buf8
return (buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
from torch.nn import LogSoftmax
from torch.nn.functional import cosine_similarity
class ContrastiveLoss(Module):
"""A contrastive loss adapted from SimCLR.
Link to SimCLR: https://arxiv.org/abs/2002.05709v3.
"""
def __init__(self, temperature: 'float'=1.0):
"""Save hyper-params."""
super().__init__()
self.temperature = temperature
self._log_softmax_fn = LogSoftmax(dim=-1)
def forward(self, inputs: 'torch.Tensor', targets: 'torch.Tensor'
) ->torch.Tensor:
"""Get the loss."""
inputs = inputs.permute(2, 3, 0, 1)
targets = targets.permute(2, 3, 0, 1)
batch_size = inputs.shape[-2]
left = torch.cat([inputs, targets], -2).unsqueeze(-1)
right = left.permute(0, 1, 4, 3, 2)
similarity = cosine_similarity(left, right, dim=-2, eps=torch.finfo
(left.dtype).eps)
mask = torch.eye(2 * batch_size, device=similarity.device).bool()
mask_nd = mask.unsqueeze(0).unsqueeze(0).tile(*similarity.shape[:2],
1, 1)
neg_inf = float('-inf') * torch.ones_like(similarity)
similarity = torch.where(mask_nd, neg_inf, similarity)
log_softmax = self._log_softmax_fn(similarity / self.temperature)
positive_pairs = torch.cat([torch.diagonal(log_softmax, offset=
batch_size, dim1=-2, dim2=-1), torch.diagonal(log_softmax,
offset=-batch_size, dim1=-2, dim2=-1)], -1)
return -positive_pairs.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn import Module
from torch.nn import LogSoftmax
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_linalg_vector_norm_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x2 = xindex // 64
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x2 + 64 * x1), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x2 + 64 * (-4 + x1)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp11 = tmp10 * tmp10
tmp12 = tl.load(in_ptr0 + (16 + x2 + 64 * x1), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr1 + (16 + x2 + 64 * (-4 + x1)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp12, tmp13)
tmp15 = tmp14 * tmp14
tmp16 = tmp11 + tmp15
tmp17 = tl.load(in_ptr0 + (32 + x2 + 64 * x1), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr1 + (32 + x2 + 64 * (-4 + x1)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp19 = tl.where(tmp4, tmp17, tmp18)
tmp20 = tmp19 * tmp19
tmp21 = tmp16 + tmp20
tmp22 = tl.load(in_ptr0 + (48 + x2 + 64 * x1), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr1 + (48 + x2 + 64 * (-4 + x1)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp24 = tl.where(tmp4, tmp22, tmp23)
tmp25 = tmp24 * tmp24
tmp26 = tmp21 + tmp25
tl.store(out_ptr0 + x3, tmp26, xmask)
@triton.jit
def triton_poi_fused_linalg_vector_norm_1(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x2 = xindex // 64
x3 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x2 + 64 * x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x2 + 64 * (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp11 = tmp10 * tmp10
tmp12 = tl.load(in_ptr0 + (16 + x2 + 64 * x0), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr1 + (16 + x2 + 64 * (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp12, tmp13)
tmp15 = tmp14 * tmp14
tmp16 = tmp11 + tmp15
tmp17 = tl.load(in_ptr0 + (32 + x2 + 64 * x0), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr1 + (32 + x2 + 64 * (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp19 = tl.where(tmp4, tmp17, tmp18)
tmp20 = tmp19 * tmp19
tmp21 = tmp16 + tmp20
tmp22 = tl.load(in_ptr0 + (48 + x2 + 64 * x0), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr1 + (48 + x2 + 64 * (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp24 = tl.where(tmp4, tmp22, tmp23)
tmp25 = tmp24 * tmp24
tmp26 = tmp21 + tmp25
tl.store(out_ptr0 + x3, tmp26, xmask)
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_2(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 32 % 8
x1 = xindex // 8 % 4
x3 = xindex // 256
x0 = xindex % 8
x4 = xindex // 32
x5 = xindex
tmp11 = tl.load(in_ptr2 + (x0 + 8 * x4), None, eviction_policy='evict_last'
)
tmp24 = tl.load(in_ptr3 + (x0 + 8 * x4), None, eviction_policy='evict_last'
)
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3 + 16 * x1 + 64 * x2), tmp4,
eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x3 + 16 * x1 + 64 * (-4 + x2)), tmp6,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1.1920928955078125e-07
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp10 / tmp14
tmp16 = x0
tmp18 = tmp16 < tmp3
tmp19 = tl.load(in_ptr0 + (x3 + 16 * x1 + 64 * x0), tmp18,
eviction_policy='evict_last', other=0.0)
tmp20 = tmp16 >= tmp3
tmp22 = tl.load(in_ptr1 + (x3 + 16 * x1 + 64 * (-4 + x0)), tmp20,
eviction_policy='evict_last', other=0.0)
tmp23 = tl.where(tmp18, tmp19, tmp22)
tmp25 = libdevice.sqrt(tmp24)
tmp26 = triton_helpers.maximum(tmp25, tmp13)
tmp27 = tmp23 / tmp26
tmp28 = tmp15 * tmp27
tl.store(out_ptr0 + x5, tmp28, None)
@triton.jit
def triton_per_fused__log_softmax_mul_repeat_sum_where_3(in_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 128
RBLOCK: tl.constexpr = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex % 8
r2 = rindex
x3 = xindex
tmp7 = tl.load(in_ptr0 + (r2 + 32 * x3), xmask, other=0.0)
tmp8 = tl.load(in_ptr0 + (8 + r2 + 32 * x3), xmask, other=0.0)
tmp10 = tl.load(in_ptr0 + (16 + r2 + 32 * x3), xmask, other=0.0)
tmp12 = tl.load(in_ptr0 + (24 + r2 + 32 * x3), xmask, other=0.0)
tmp0 = x0
tmp1 = r2
tmp2 = tmp0 == tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = tmp5 != 0
tmp9 = tmp7 + tmp8
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp14 = float('-inf')
tmp15 = tl.where(tmp6, tmp14, tmp13)
tmp16 = tmp15 * tmp3
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, float('-inf'))
tmp20 = triton_helpers.max2(tmp19, 1)[:, None]
tmp21 = tmp16 - tmp20
tmp22 = tmp21 * tmp3
tmp23 = tl_math.exp(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.where(xmask, tmp24, 0)
tmp27 = tl.sum(tmp26, 1)[:, None]
tl.store(out_ptr1 + (r2 + 8 * x3), tmp22, xmask)
tl.store(out_ptr2 + x3, tmp27, xmask)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + (4 + 9 * x0 + 64 * x1), xmask, eviction_policy
='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 8 * x1), xmask)
tmp2 = tl_math.log(tmp1)
tmp3 = tmp0 - tmp2
tl.store(out_ptr0 + (x0 + 8 * x1), tmp3, xmask)
@triton.jit
def triton_poi_fused_cat_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + (32 + 9 * x0 + 64 * x1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4 + x0 + 8 * x1), xmask)
tmp2 = tl_math.log(tmp1)
tmp3 = tmp0 - tmp2
tl.store(out_ptr0 + (x0 + 8 * x1), tmp3, xmask)
@triton.jit
def triton_per_fused_mean_neg_6(in_out_ptr0, in_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = 128.0
tmp5 = tmp3 / tmp4
tmp6 = -tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp6, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 1, 8), (256, 64, 8, 1024, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_linalg_vector_norm_0[grid(1024)](arg0_1, arg1_1,
buf0, 1024, XBLOCK=256, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 8, 1, 8), (256, 64, 8, 1024, 1),
torch.float32)
triton_poi_fused_linalg_vector_norm_1[grid(1024)](arg0_1, arg1_1,
buf1, 1024, XBLOCK=128, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 8, 4, 8), (1024, 256, 32, 8, 1),
torch.float32)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_2[grid(4096)](
arg0_1, arg1_1, buf0, buf1, buf2, 4096, XBLOCK=128, num_warps=4,
num_stages=1)
del arg0_1
del arg1_1
del buf0
buf4 = reinterpret_tensor(buf1, (4, 4, 8, 8), (256, 64, 8, 1), 0)
del buf1
buf5 = empty_strided_cuda((4, 4, 8, 1), (32, 8, 1, 128), torch.float32)
triton_per_fused__log_softmax_mul_repeat_sum_where_3[grid(128)](buf2,
buf4, buf5, 128, 8, XBLOCK=8, num_warps=2, num_stages=1)
del buf2
buf8 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
buf6 = reinterpret_tensor(buf8, (4, 4, 4), (32, 8, 1), 0)
triton_poi_fused_cat_4[grid(64)](buf4, buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf7 = reinterpret_tensor(buf8, (4, 4, 4), (32, 8, 1), 4)
triton_poi_fused_cat_5[grid(64)](buf4, buf5, buf7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf4
del buf5
buf9 = empty_strided_cuda((), (), torch.float32)
buf10 = buf9
del buf9
triton_per_fused_mean_neg_6[grid(1)](buf10, buf8, 1, 128, XBLOCK=1,
num_warps=2, num_stages=1)
del buf6
del buf7
del buf8
return buf10,
class ContrastiveLossNew(Module):
"""A contrastive loss adapted from SimCLR.
Link to SimCLR: https://arxiv.org/abs/2002.05709v3.
"""
def __init__(self, temperature: 'float'=1.0):
"""Save hyper-params."""
super().__init__()
self.temperature = temperature
self._log_softmax_fn = LogSoftmax(dim=-1)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| rharish101/CIL-Project | ContrastiveLoss | false | 4,190 | [
"MIT"
] | 0 | fed1be8b22bb4228329b719a301f74459a7bf13b | https://github.com/rharish101/CIL-Project/tree/fed1be8b22bb4228329b719a301f74459a7bf13b | from torch.nn import Module
import torch
from torch.nn import LogSoftmax
from torch.nn.functional import cosine_similarity
class Model(Module):
"""A contrastive loss adapted from SimCLR.
Link to SimCLR: https://arxiv.org/abs/2002.05709v3.
"""
def __init__(self, temperature: 'float'=1.0):
"""Save hyper-params."""
super().__init__()
self.temperature = temperature
self._log_softmax_fn = LogSoftmax(dim=-1)
def forward(self, inputs: 'torch.Tensor', targets: 'torch.Tensor'
) ->torch.Tensor:
"""Get the loss."""
inputs = inputs.permute(2, 3, 0, 1)
targets = targets.permute(2, 3, 0, 1)
batch_size = inputs.shape[-2]
left = torch.cat([inputs, targets], -2).unsqueeze(-1)
right = left.permute(0, 1, 4, 3, 2)
similarity = cosine_similarity(left, right, dim=-2, eps=torch.finfo
(left.dtype).eps)
mask = torch.eye(2 * batch_size, device=similarity.device).bool()
mask_nd = mask.unsqueeze(0).unsqueeze(0).tile(*similarity.shape[:2],
1, 1)
neg_inf = float('-inf') * torch.ones_like(similarity)
similarity = torch.where(mask_nd, neg_inf, similarity)
log_softmax = self._log_softmax_fn(similarity / self.temperature)
positive_pairs = torch.cat([torch.diagonal(log_softmax, offset=
batch_size, dim1=-2, dim2=-1), torch.diagonal(log_softmax,
offset=-batch_size, dim1=-2, dim2=-1)], -1)
return -positive_pairs.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
FilterNorm | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/oy/coysefd7hs2x7ufqvotgvhtsdqfeomxrrtusr5lre2lyxoe4u3on.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# x_4 => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 0.25), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 / tmp1
tmp3 = tmp0 - tmp2
tmp4 = tmp3 / tmp1
tmp5 = tmp3 - tmp4
tmp6 = tmp5 * tmp5
tmp7 = 0.0
tmp8 = tmp6 / tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp10 = 1e-10
tmp11 = tmp9 + tmp10
tmp12 = tmp3 / tmp11
tmp13 = 0.25
tmp14 = tmp12 * tmp13
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn.init import calculate_gain
import torch.nn.parallel
class FilterNorm(nn.Module):
def __init__(self, in_channels, kernel_size, filter_type, nonlinearity=
'linear', running_std=False, running_mean=False):
assert filter_type in ('spatial', 'channel')
assert in_channels >= 1
super(FilterNorm, self).__init__()
self.in_channels = in_channels
self.filter_type = filter_type
self.runing_std = running_std
self.runing_mean = running_mean
std = calculate_gain(nonlinearity) / kernel_size
if running_std:
self.std = nn.Parameter(torch.randn(in_channels * kernel_size **
2) * std, requires_grad=True)
else:
self.std = std
if running_mean:
self.mean = nn.Parameter(torch.randn(in_channels * kernel_size **
2), requires_grad=True)
def forward(self, x):
if self.filter_type == 'spatial':
b, _, h, w = x.size()
x = x.reshape(b, self.in_channels, -1, h, w)
x = x - x.mean(dim=2).reshape(b, self.in_channels, 1, h, w)
x = x / (x.std(dim=2).reshape(b, self.in_channels, 1, h, w) + 1e-10
)
x = x.reshape(b, _, h, w)
if self.runing_std:
x = x * self.std[None, :, None, None]
else:
x = x * self.std
if self.runing_mean:
x = x + self.mean[None, :, None, None]
elif self.filter_type == 'channel':
b = x.size(0)
c = self.in_channels
x = x.reshape(b, c, -1)
x = x - x.mean(dim=2).reshape(b, c, 1)
x = x / (x.std(dim=2).reshape(b, c, 1) + 1e-10)
x = x.reshape(b, -1)
if self.runing_std:
x = x * self.std[None, :]
else:
x = x * self.std
if self.runing_mean:
x = x + self.mean[None, :]
else:
raise RuntimeError('Unsupported filter type {}'.format(self.
filter_type))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'kernel_size': 4, 'filter_type': 'spatial'}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn.init import calculate_gain
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 / tmp1
tmp3 = tmp0 - tmp2
tmp4 = tmp3 / tmp1
tmp5 = tmp3 - tmp4
tmp6 = tmp5 * tmp5
tmp7 = 0.0
tmp8 = tmp6 / tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp10 = 1e-10
tmp11 = tmp9 + tmp10
tmp12 = tmp3 / tmp11
tmp13 = 0.25
tmp14 = tmp12 * tmp13
tl.store(out_ptr0 + x0, tmp14, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class FilterNormNew(nn.Module):
def __init__(self, in_channels, kernel_size, filter_type, nonlinearity=
'linear', running_std=False, running_mean=False):
assert filter_type in ('spatial', 'channel')
assert in_channels >= 1
super(FilterNormNew, self).__init__()
self.in_channels = in_channels
self.filter_type = filter_type
self.runing_std = running_std
self.runing_mean = running_mean
std = calculate_gain(nonlinearity) / kernel_size
if running_std:
self.std = nn.Parameter(torch.randn(in_channels * kernel_size **
2) * std, requires_grad=True)
else:
self.std = std
if running_mean:
self.mean = nn.Parameter(torch.randn(in_channels * kernel_size **
2), requires_grad=True)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| rightchose/ddfnet | FilterNorm | false | 4,191 | [
"MIT"
] | 0 | 44a2f63933c1784a53f26a10c1157a164d044485 | https://github.com/rightchose/ddfnet/tree/44a2f63933c1784a53f26a10c1157a164d044485 | import torch
import torch.nn as nn
from torch.nn.init import calculate_gain
import torch.nn.parallel
class Model(nn.Module):
def __init__(self, in_channels, kernel_size, filter_type, nonlinearity=
'linear', running_std=False, running_mean=False):
assert filter_type in ('spatial', 'channel')
assert in_channels >= 1
super().__init__()
self.in_channels = in_channels
self.filter_type = filter_type
self.runing_std = running_std
self.runing_mean = running_mean
std = calculate_gain(nonlinearity) / kernel_size
if running_std:
self.std = nn.Parameter(torch.randn(in_channels * kernel_size **
2) * std, requires_grad=True)
else:
self.std = std
if running_mean:
self.mean = nn.Parameter(torch.randn(in_channels * kernel_size **
2), requires_grad=True)
def forward(self, x):
if self.filter_type == 'spatial':
b, _, h, w = x.size()
x = x.reshape(b, self.in_channels, -1, h, w)
x = x - x.mean(dim=2).reshape(b, self.in_channels, 1, h, w)
x = x / (x.std(dim=2).reshape(b, self.in_channels, 1, h, w) + 1e-10
)
x = x.reshape(b, _, h, w)
if self.runing_std:
x = x * self.std[None, :, None, None]
else:
x = x * self.std
if self.runing_mean:
x = x + self.mean[None, :, None, None]
elif self.filter_type == 'channel':
b = x.size(0)
c = self.in_channels
x = x.reshape(b, c, -1)
x = x - x.mean(dim=2).reshape(b, c, 1)
x = x / (x.std(dim=2).reshape(b, c, 1) + 1e-10)
x = x.reshape(b, -1)
if self.runing_std:
x = x * self.std[None, :]
else:
x = x * self.std
if self.runing_mean:
x = x + self.mean[None, :]
else:
raise RuntimeError('Unsupported filter type {}'.format(self.
filter_type))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Actor | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ny/cnypuz6rdcqyosbq44yrkvgetwzcx5aimtm2otjefdozh6djwmbs.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 22400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 350
x2 = (xindex // 1400)
x3 = xindex % 1400
tmp0 = tl.load(in_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3 + (1408*x2)), tmp4, xmask)
tl.store(out_ptr1 + (x3 + (1408*x2)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/a7/ca7itahqn4npvtxn47ssgtnzbb5wspi7og6hkfbgqajlducqojzj.py
# Topologically Sorted Source Nodes: [x, linear_1], Original ATen: [aten.relu, aten.view]
# Source node to ATen node mapping:
# linear_1 => view_2
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu, [64, 350]), kwargs = {})
triton_poi_fused_relu_view_1 = async_compile.triton('triton_poi_fused_relu_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 22400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 350
x1 = (xindex // 350)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (350*(x1 % 4)) + (1408*(x1 // 4))), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/64/c64g5uxk2a5hbzuhd6oikla2gb5eyfjjb6kbh7btzswha52gl5ex.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 19200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 300
x2 = (xindex // 1200)
x3 = xindex % 1200
tmp0 = tl.load(in_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3 + (1216*x2)), tmp4, xmask)
tl.store(out_ptr1 + (x3 + (1280*x2)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/4h/c4h6r6vefoeuinm5eqv2d6wqmfj2mnjacalp633y3m6bnseb2bnk.py
# Topologically Sorted Source Nodes: [x_1, linear_2], Original ATen: [aten.relu, aten.view]
# Source node to ATen node mapping:
# linear_2 => view_4
# x_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %view_4 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu_1, [64, 300]), kwargs = {})
triton_poi_fused_relu_view_3 = async_compile.triton('triton_poi_fused_relu_view_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_view_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 19200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 300
x1 = (xindex // 300)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (300*(x1 % 4)) + (1216*(x1 // 4))), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/sa/csaylv5emhu4uiv5yhtinatofvastyg3cyphls36vbeytuwim32w.py
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
triton_poi_fused_tanh_4 = async_compile.triton('triton_poi_fused_tanh_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (350, 4), (4, 1))
assert_size_stride(primals_2, (350, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (300, 350), (350, 1))
assert_size_stride(primals_5, (300, ), (1, ))
assert_size_stride(primals_6, (4, 300), (300, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 350), (350, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 350), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 350), (5632, 1408, 350, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 350), (5632, 1408, 350, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf0, primals_2, buf1, buf9, 22400, grid=grid(22400), stream=stream0)
del primals_2
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x, linear_1], Original ATen: [aten.relu, aten.view]
triton_poi_fused_relu_view_1.run(buf1, buf2, 22400, grid=grid(22400), stream=stream0)
del buf1
buf3 = empty_strided_cuda((64, 300), (300, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (350, 300), (1, 350), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf3, primals_5, buf4, buf8, 19200, grid=grid(19200), stream=stream0)
del primals_5
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [x_1, linear_2], Original ATen: [aten.relu, aten.view]
triton_poi_fused_relu_view_3.run(buf4, buf5, 19200, grid=grid(19200), stream=stream0)
del buf4
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf5, reinterpret_tensor(primals_6, (300, 4), (1, 300), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
triton_poi_fused_tanh_4.run(buf7, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, buf5, buf7, primals_6, buf8, primals_4, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((350, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((350, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((300, 350), (350, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((300, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 300), (300, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class Actor(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=350,
fc2_units=300):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
"""
super(Actor, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, state):
"""Build an actor (policy) network that maps states -> actions."""
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
return torch.tanh(self.fc3(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 22400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 350
x2 = xindex // 1400
x3 = xindex % 1400
tmp0 = tl.load(in_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3 + 1408 * x2), tmp4, xmask)
tl.store(out_ptr1 + (x3 + 1408 * x2), tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 22400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 350
x1 = xindex // 350
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 350 * (x1 % 4) + 1408 * (x1 // 4)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 19200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 300
x2 = xindex // 1200
x3 = xindex % 1200
tmp0 = tl.load(in_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3 + 1216 * x2), tmp4, xmask)
tl.store(out_ptr1 + (x3 + 1280 * x2), tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 19200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 300
x1 = xindex // 300
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 300 * (x1 % 4) + 1216 * (x1 // 4)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_tanh_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (350, 4), (4, 1))
assert_size_stride(primals_2, (350,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (300, 350), (350, 1))
assert_size_stride(primals_5, (300,), (1,))
assert_size_stride(primals_6, (4, 300), (300, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 350), (350, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 350), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 350), (5632, 1408, 350, 1),
torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 350), (5632, 1408, 350, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(22400)](buf0,
primals_2, buf1, buf9, 22400, XBLOCK=256, num_warps=4, num_stages=1
)
del primals_2
buf2 = buf0
del buf0
triton_poi_fused_relu_view_1[grid(22400)](buf1, buf2, 22400, XBLOCK
=256, num_warps=4, num_stages=1)
del buf1
buf3 = empty_strided_cuda((64, 300), (300, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (350, 300), (
1, 350), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1),
torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(19200)](buf3,
primals_5, buf4, buf8, 19200, XBLOCK=256, num_warps=4, num_stages=1
)
del primals_5
buf5 = buf3
del buf3
triton_poi_fused_relu_view_3[grid(19200)](buf4, buf5, 19200, XBLOCK
=256, num_warps=4, num_stages=1)
del buf4
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(buf5, reinterpret_tensor(primals_6, (300, 4), (1,
300), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
triton_poi_fused_tanh_4[grid(256)](buf7, primals_7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_7
return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf2, buf5, buf7, primals_6, buf8, primals_4, buf9
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class ActorNew(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=350,
fc2_units=300):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
"""
super(ActorNew, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| ricklentz/deep-reinforcement-learning | Actor | false | 4,192 | [
"MIT"
] | 0 | 4a034a955c64a630e0fd72f4380d81e2c25a4c68 | https://github.com/ricklentz/deep-reinforcement-learning/tree/4a034a955c64a630e0fd72f4380d81e2c25a4c68 | import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class Model(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=350,
fc2_units=300):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
"""
super().__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, state):
"""Build an actor (policy) network that maps states -> actions."""
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
return torch.tanh(self.fc3(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
TransformerLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/52/c525by6g4qqvzpkamxv56vfyu6zlvbqfepthe4npppzrrv2boata.py
# Topologically Sorted Source Nodes: [means, x_zeromean], Original ATen: [aten.mean, aten.sub]
# Source node to ATen node mapping:
# means => mean
# x_zeromean => sub
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/jb/cjbxtrhaay7rotsyysuftg23isdvjimy5xsuoa3afjgeuvhmcet3.py
# Topologically Sorted Source Nodes: [pow_1, variances, add, sqrt, x, mul, x_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# mul => mul
# pow_1 => pow_1
# sqrt => sqrt
# variances => mean_1
# x => div
# x_1 => add_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-12), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
triton_poi_fused_add_div_mean_mul_pow_sqrt_1 = async_compile.triton('triton_poi_fused_add_div_mean_mul_pow_sqrt_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_pow_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp7 * tmp7
tmp9 = tmp6 + tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = 4.0
tmp14 = tmp12 / tmp13
tmp15 = 1e-12
tmp16 = tmp14 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp1 / tmp17
tmp19 = tmp0 * tmp18
tmp21 = tmp19 + tmp20
tl.store(out_ptr0 + (x2), tmp21, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/uc/cucgrga44gtlwzw6ehoy4jrwzm5fghn3ljf7iugmdjhe6m7mjcas.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_4, %primals_5, %primals_6],), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((-4) + x0), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((-8) + x0), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x0), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7v/c7vmyyo5wxjwhczncwe26c5vvxpnuc4d63pyhv44adhxrqqhbkd6.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# multi_head_attention_forward => cat_2
# Graph fragment:
# %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_5, %repeat_1],), kwargs = {})
triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 16)
x3 = xindex % 16
x0 = xindex % 4
x4 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3 + (16*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 5, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x4), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hr/chreiskn3cjyo3eff2gsxuz7ampglelwlsrzs7kmnwjm4l5lzi5w.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multi_head_attention_forward => mul_1
# Graph fragment:
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {})
triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = x2 % 4
tmp2 = tl.full([1], 0, tl.int64)
tmp3 = tmp1 >= tmp2
tmp4 = tl.full([1], 4, tl.int64)
tmp5 = tmp1 < tmp4
tmp6 = tl.load(in_ptr0 + (x0 % 4), tmp5 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp1 >= tmp4
tmp8 = tl.full([1], 8, tl.int64)
tmp9 = tmp1 < tmp8
tmp10 = tmp7 & tmp9
tmp11 = tl.load(in_ptr1 + ((-4) + (x0 % 4)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp1 >= tmp8
tmp13 = tl.full([1], 12, tl.int64)
tmp14 = tmp1 < tmp13
tmp15 = tl.load(in_ptr2 + ((-8) + (x0 % 4)), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp10, tmp11, tmp15)
tmp17 = tl.where(tmp5, tmp6, tmp16)
tmp18 = tmp0 + tmp17
tmp19 = 1.0
tmp20 = tmp18 * tmp19
tl.store(in_out_ptr0 + (x2), tmp20, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/qq/cqqiwi6cphov3y4cw45pihso7kygfbxrztamsxi6ywv3sllhzvz5.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, exp, sub_1, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (5*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (5*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (5*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (5*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (5*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp0 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp1 - tmp8
tmp12 = tl_math.exp(tmp11)
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp8
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ti/ctik3dxqudjbuxk6lecrd6cxqp5ncnz6kele7crpn6ziyqip447n.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, div_1, exp, sub_1, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 5)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp3 / tmp4
tl.store(in_out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/na/cnaxt66xj2zhaned4fgx5elukrpsiq623ib46puxb6rcdh4iismy.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# multi_head_attention_forward => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_7 = async_compile.triton('triton_poi_fused_clone_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yx/cyx6uhp26itou7morodlakbwephiwz7r7jx56snt2ukwrojhlmfp.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# multi_head_attention_forward => mean_2
# Graph fragment:
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view_11, [1]), kwargs = {})
triton_poi_fused_mean_8 = async_compile.triton('triton_poi_fused_mean_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 20
x1 = (xindex // 20)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (80*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (20 + x0 + (80*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (40 + x0 + (80*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (60 + x0 + (80*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hu/chuhaqnv3eocytas2o5zkt2laav3cpr7gqx5s2m2tsctpi2kooe7.py
# Topologically Sorted Source Nodes: [x_3, means_1, x_zeromean_1, pow_2, variances_1], Original ATen: [aten.add, aten.mean, aten.sub, aten.pow]
# Source node to ATen node mapping:
# means_1 => mean_3
# pow_2 => pow_2
# variances_1 => mean_4
# x_3 => add_2
# x_zeromean_1 => sub_2
# Graph fragment:
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_10), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_2, [-1], True), kwargs = {})
# %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %mean_3), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {})
# %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_2, [-1], True), kwargs = {})
triton_poi_fused_add_mean_pow_sub_9 = async_compile.triton('triton_poi_fused_add_mean_pow_sub_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_pow_sub_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_pow_sub_9(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ps/cpsrkyasbkreyck4njrazduiuuaugpsanaxlzzqhnuxs7rd6xtwj.py
# Topologically Sorted Source Nodes: [x_3, means_1, x_zeromean_1, add_3, sqrt_1, x_4, mul_1, x_5], Original ATen: [aten.add, aten.mean, aten.sub, aten.sqrt, aten.div, aten.mul]
# Source node to ATen node mapping:
# add_3 => add_3
# means_1 => mean_3
# mul_1 => mul_2
# sqrt_1 => sqrt_1
# x_3 => add_2
# x_4 => div_2
# x_5 => add_4
# x_zeromean_1 => sub_2
# Graph fragment:
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_10), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_2, [-1], True), kwargs = {})
# %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %mean_3), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_4, 1e-12), kwargs = {})
# %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_3,), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, %sqrt_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_14, %div_2), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_15), kwargs = {})
triton_poi_fused_add_div_mean_mul_sqrt_sub_10 = async_compile.triton('triton_poi_fused_add_div_mean_mul_sqrt_sub_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_sqrt_sub_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_sqrt_sub_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x2), xmask)
tmp4 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp7 = 1e-12
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp10 = tmp5 / tmp9
tmp11 = tmp0 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/in/cingjrjcsnplp4mnf7j3qaenyi3g6h7mejtd6hllewoqj33nanxc.py
# Topologically Sorted Source Nodes: [mul_2, truediv_2, erf, add_5, x_6], Original ATen: [aten.mul, aten.div, aten.erf, aten.add]
# Source node to ATen node mapping:
# add_5 => add_5
# erf => erf
# mul_2 => mul_3
# truediv_2 => div_3
# x_6 => mul_4
# Graph fragment:
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_13, 0.5), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_13, 1.4142135623730951), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div_3,), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %add_5), kwargs = {})
triton_poi_fused_add_div_erf_mul_11 = async_compile.triton('triton_poi_fused_add_div_erf_mul_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mul_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_erf_mul_11(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/55/c55kf6uasfvlyi4fs3esg22nysynhdxbi47sxnyfzfqq64pxh7xj.py
# Topologically Sorted Source Nodes: [x_3, x_8], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x_3 => add_2
# x_8 => add_6
# Graph fragment:
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_10), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %view_15), kwargs = {})
triton_poi_fused_add_12 = async_compile.triton('triton_poi_fused_add_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_12(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_out_ptr0 + (x2), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_8, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, 4), (4, 1))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (4, ), (1, ))
assert_size_stride(primals_16, (4, 4), (4, 1))
assert_size_stride(primals_17, (4, ), (1, ))
assert_size_stride(primals_18, (4, 4), (4, 1))
assert_size_stride(primals_19, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [means, x_zeromean], Original ATen: [aten.mean, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_sub_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, variances, add, sqrt, x, mul, x_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul]
triton_poi_fused_add_div_mean_mul_pow_sqrt_1.run(primals_2, buf0, primals_3, buf1, 64, grid=grid(64), stream=stream0)
del primals_2
del primals_3
buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((12, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(primals_4, primals_5, primals_6, buf3, 12, grid=grid(12), stream=stream0)
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(buf3, (4, ), (1, ), 4), reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(buf3, (4, ), (1, ), 8), reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5)
del buf3
buf6 = empty_strided_cuda((5, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.cat]
triton_poi_fused_cat_3.run(buf5, primals_8, buf6, 80, grid=grid(80), stream=stream0)
del primals_8
buf7 = reinterpret_tensor(buf2, (16, 4, 1), (1, 16, 64), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
triton_poi_fused_mul_4.run(buf7, primals_4, primals_5, primals_6, 64, grid=grid(64), stream=stream0)
del primals_4
del primals_5
del primals_6
buf8 = empty_strided_cuda((5, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.cat]
triton_poi_fused_cat_3.run(buf4, primals_7, buf8, 80, grid=grid(80), stream=stream0)
del primals_7
buf9 = empty_strided_cuda((16, 4, 5), (20, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf7, reinterpret_tensor(buf8, (16, 1, 5), (1, 0, 16), 0), out=buf9)
buf10 = reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 64), 0); del buf4 # reuse
buf11 = reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 64), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_5.run(buf9, buf10, buf11, 64, grid=grid(64), stream=stream0)
buf12 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_6.run(buf12, buf10, buf11, 320, grid=grid(320), stream=stream0)
buf13 = reinterpret_tensor(buf11, (16, 4, 1), (4, 1, 1), 0); del buf11 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf12, reinterpret_tensor(buf6, (16, 5, 1), (1, 16, 0), 0), out=buf13)
buf14 = reinterpret_tensor(buf10, (4, 16, 1), (16, 1, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
triton_poi_fused_clone_7.run(buf13, buf14, 4, 16, grid=grid(4, 16), stream=stream0)
buf15 = reinterpret_tensor(buf13, (16, 4), (4, 1), 0); del buf13 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15)
del primals_10
buf16 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mean]
triton_poi_fused_mean_8.run(buf12, buf16, 80, grid=grid(80), stream=stream0)
buf17 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [x_3, means_1, x_zeromean_1, pow_2, variances_1], Original ATen: [aten.add, aten.mean, aten.sub, aten.pow]
triton_poi_fused_add_mean_pow_sub_9.run(primals_1, buf15, buf17, buf18, 16, grid=grid(16), stream=stream0)
buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3, means_1, x_zeromean_1, add_3, sqrt_1, x_4, mul_1, x_5], Original ATen: [aten.add, aten.mean, aten.sub, aten.sqrt, aten.div, aten.mul]
triton_poi_fused_add_div_mean_mul_sqrt_sub_10.run(primals_14, primals_1, buf15, buf17, buf18, primals_15, buf19, 64, grid=grid(64), stream=stream0)
del buf17
del buf18
del primals_15
buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_17, reinterpret_tensor(buf19, (16, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf20)
del primals_17
buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, truediv_2, erf, add_5, x_6], Original ATen: [aten.mul, aten.div, aten.erf, aten.add]
triton_poi_fused_add_div_erf_mul_11.run(buf20, buf21, 64, grid=grid(64), stream=stream0)
buf22 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf21, (16, 4), (4, 1), 0), reinterpret_tensor(primals_18, (4, 4), (1, 4), 0), out=buf22)
buf23 = reinterpret_tensor(buf22, (4, 4, 4), (16, 4, 1), 0); del buf22 # reuse
# Topologically Sorted Source Nodes: [x_3, x_8], Original ATen: [aten.add]
triton_poi_fused_add_12.run(buf23, primals_1, buf15, primals_19, 64, grid=grid(64), stream=stream0)
del primals_19
return (buf23, buf16, primals_1, primals_14, reinterpret_tensor(buf1, (16, 4), (4, 1), 0), buf12, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), buf15, reinterpret_tensor(buf19, (16, 4), (4, 1), 0), buf20, reinterpret_tensor(buf21, (16, 4), (4, 1), 0), primals_18, primals_16, primals_9, reinterpret_tensor(buf6, (16, 1, 5), (1, 1, 16), 0), reinterpret_tensor(buf7, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf8, (16, 5, 1), (1, 16, 1), 0), primals_13, primals_12, primals_11, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import uuid
from torch import Tensor
from typing import Tuple
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional
from typing import Dict
from torch.nn import Parameter
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different
(and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def utils_softmax(x, dim: 'int', onnx_trace: 'bool'=False):
if onnx_trace:
return F.softmax(x.float(), dim=dim)
else:
return F.softmax(x, dim=dim, dtype=torch.float32)
def with_incremental_state(cls):
cls.__bases__ = (FairseqIncrementalState,) + tuple(b for b in cls.
__bases__ if b != FairseqIncrementalState)
return cls
class ESM1LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12, affine=True):
"""Construct a layernorm layer in the TF style (eps inside the sqrt)."""
super().__init__()
self.hidden_size = (hidden_size,) if isinstance(hidden_size, int
) else tuple(hidden_size)
self.eps = eps
self.affine = bool(affine)
if self.affine:
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
else:
self.weight, self.bias = None, None
def forward(self, x):
dims = tuple(-(i + 1) for i in range(len(self.hidden_size)))
means = x.mean(dims, keepdim=True)
x_zeromean = x - means
variances = x_zeromean.pow(2).mean(dims, keepdim=True)
x = x_zeromean / torch.sqrt(variances + self.eps)
if self.affine:
x = self.weight * x + self.bias
return x
class FairseqIncrementalState(object):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.init_incremental_state()
def init_incremental_state(self):
self._incremental_state_id = str(uuid.uuid4())
def _get_full_incremental_state_key(self, key: 'str') ->str:
return '{}.{}'.format(self._incremental_state_id, key)
def get_incremental_state(self, incremental_state:
'Optional[Dict[str, Dict[str, Optional[Tensor]]]]', key: 'str'
) ->Optional[Dict[str, Optional[Tensor]]]:
"""Helper for getting incremental state for an nn.Module."""
full_key = self._get_full_incremental_state_key(key)
if incremental_state is None or full_key not in incremental_state:
return None
return incremental_state[full_key]
def set_incremental_state(self, incremental_state:
'Optional[Dict[str, Dict[str, Optional[Tensor]]]]', key: 'str',
value: 'Dict[str, Optional[Tensor]]') ->Optional[Dict[str, Dict[str,
Optional[Tensor]]]]:
"""Helper for setting incremental state for an nn.Module."""
if incremental_state is not None:
full_key = self._get_full_incremental_state_key(key)
incremental_state[full_key] = value
return incremental_state
@with_incremental_state
class MultiheadAttention(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=
0.0, bias=True, add_bias_kv=False, add_zero_attn=False,
self_attention=False, encoder_decoder_attention=False):
super().__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads'
self.scaling = self.head_dim ** -0.5
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and value to be of the same size'
self.k_proj = nn.Linear(self.kdim, embed_dim, bias=bias)
self.v_proj = nn.Linear(self.vdim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.reset_parameters()
self.onnx_trace = False
self.enable_torch_version = False
if hasattr(F, 'multi_head_attention_forward'):
self.enable_torch_version = True
else:
self.enable_torch_version = False
def prepare_for_onnx_export_(self):
self.onnx_trace = True
def reset_parameters(self):
if self.qkv_same_dim:
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
else:
nn.init.xavier_uniform_(self.k_proj.weight)
nn.init.xavier_uniform_(self.v_proj.weight)
nn.init.xavier_uniform_(self.q_proj.weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.out_proj.bias is not None:
nn.init.constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None:
nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None:
nn.init.xavier_normal_(self.bias_v)
def forward(self, query, key: 'Optional[Tensor]', value:
'Optional[Tensor]', key_padding_mask: 'Optional[Tensor]'=None,
incremental_state:
'Optional[Dict[str, Dict[str, Optional[Tensor]]]]'=None,
need_weights: 'bool'=True, static_kv: 'bool'=False, attn_mask:
'Optional[Tensor]'=None, before_softmax: 'bool'=False,
need_head_weights: 'bool'=False) ->Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if (self.enable_torch_version and not self.onnx_trace and
incremental_state is None and not static_kv and not torch.jit.
is_scripting() and not need_head_weights):
assert key is not None and value is not None
return F.multi_head_attention_forward(query, key, value, self.
embed_dim, self.num_heads, torch.empty([0]), torch.cat((
self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
self.bias_k, self.bias_v, self.add_zero_attn, self.dropout,
self.out_proj.weight, self.out_proj.bias, self.training,
key_padding_mask, need_weights, attn_mask,
use_separate_proj_weight=True, q_proj_weight=self.q_proj.
weight, k_proj_weight=self.k_proj.weight, v_proj_weight=
self.v_proj.weight)
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if saved_state is not None and 'prev_key' in saved_state:
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
elif self.encoder_decoder_attention:
q = self.q_proj(query)
if key is None:
assert value is None
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
assert key is not None and value is not None
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(
attn_mask.size(0), 1)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat([key_padding_mask,
key_padding_mask.new_zeros(key_padding_mask.size(0), 1)
], dim=1)
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim
).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim
).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim
).transpose(0, 1)
if saved_state is not None:
if 'prev_key' in saved_state:
_prev_key = saved_state['prev_key']
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.
head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
if 'prev_value' in saved_state:
_prev_value = saved_state['prev_value']
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1,
self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
prev_key_padding_mask: 'Optional[Tensor]' = None
if 'prev_key_padding_mask' in saved_state:
prev_key_padding_mask = saved_state['prev_key_padding_mask']
assert k is not None and v is not None
key_padding_mask = (MultiheadAttention.
_append_prev_key_padding_mask(key_padding_mask=
key_padding_mask, prev_key_padding_mask=
prev_key_padding_mask, batch_size=bsz, src_len=k.size(1),
static_kv=static_kv))
saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self.
head_dim)
saved_state['prev_value'] = v.view(bsz, self.num_heads, -1,
self.head_dim)
saved_state['prev_key_padding_mask'] = key_padding_mask
assert incremental_state is not None
incremental_state = self._set_input_buffer(incremental_state,
saved_state)
assert k is not None
src_len = k.size(1)
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
assert v is not None
src_len += 1
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])],
dim=1)
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])],
dim=1)
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(
attn_mask.size(0), 1)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat([key_padding_mask, torch.zeros
(key_padding_mask.size(0), 1).type_as(key_padding_mask)
], dim=1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = MultiheadAttention.apply_sparse_mask(attn_weights,
tgt_len, src_len, bsz)
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len,
src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
if self.onnx_trace:
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
attn_weights += attn_mask
if key_padding_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len,
src_len)
attn_weights = attn_weights.masked_fill(key_padding_mask.
unsqueeze(1).unsqueeze(2), float('-inf'))
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len,
src_len)
if before_softmax:
return attn_weights, v
attn_weights_float = utils_softmax(attn_weights, dim=-1, onnx_trace
=self.onnx_trace)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=
self.dropout, training=self.training)
assert v is not None
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.
head_dim]
if self.onnx_trace and attn.size(1) == 1:
attn = attn.contiguous().view(tgt_len, bsz, embed_dim)
else:
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz,
embed_dim)
attn = self.out_proj(attn)
attn_weights: 'Optional[Tensor]' = None
if need_weights:
attn_weights = attn_weights_float.view(bsz, self.num_heads,
tgt_len, src_len).transpose(1, 0)
if not need_head_weights:
attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights
@staticmethod
def _append_prev_key_padding_mask(key_padding_mask: 'Optional[Tensor]',
prev_key_padding_mask: 'Optional[Tensor]', batch_size: 'int',
src_len: 'int', static_kv: 'bool') ->Optional[Tensor]:
if prev_key_padding_mask is not None and static_kv:
new_key_padding_mask = prev_key_padding_mask
elif prev_key_padding_mask is not None and key_padding_mask is not None:
new_key_padding_mask = torch.cat([prev_key_padding_mask.float(),
key_padding_mask.float()], dim=1)
elif prev_key_padding_mask is not None:
filler = torch.zeros((batch_size, src_len -
prev_key_padding_mask.size(1)), device=
prev_key_padding_mask.device)
new_key_padding_mask = torch.cat([prev_key_padding_mask.float(),
filler.float()], dim=1)
elif key_padding_mask is not None:
filler = torch.zeros((batch_size, src_len - key_padding_mask.
size(1)), device=key_padding_mask.device)
new_key_padding_mask = torch.cat([filler.float(),
key_padding_mask.float()], dim=1)
else:
new_key_padding_mask = prev_key_padding_mask
return new_key_padding_mask
@torch.jit.export
def reorder_incremental_state(self, incremental_state:
'Dict[str, Dict[str, Optional[Tensor]]]', new_order: 'Tensor'):
"""Reorder buffered internal state (for incremental generation)."""
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
for k in input_buffer.keys():
input_buffer_k = input_buffer[k]
if input_buffer_k is not None:
if self.encoder_decoder_attention and input_buffer_k.size(0
) == new_order.size(0):
break
input_buffer[k] = input_buffer_k.index_select(0, new_order)
incremental_state = self._set_input_buffer(incremental_state,
input_buffer)
return incremental_state
def _get_input_buffer(self, incremental_state:
'Optional[Dict[str, Dict[str, Optional[Tensor]]]]') ->Dict[str,
Optional[Tensor]]:
result = self.get_incremental_state(incremental_state, 'attn_state')
if result is not None:
return result
else:
empty_result: 'Dict[str, Optional[Tensor]]' = {}
return empty_result
def _set_input_buffer(self, incremental_state:
'Dict[str, Dict[str, Optional[Tensor]]]', buffer:
'Dict[str, Optional[Tensor]]'):
return self.set_incremental_state(incremental_state, 'attn_state',
buffer)
def apply_sparse_mask(attn_weights, tgt_len: 'int', src_len: 'int', bsz:
'int'):
return attn_weights
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + '.' if name != '' else ''
items_to_add = {}
keys_to_remove = []
for k in state_dict.keys():
if k.endswith(prefix + 'in_proj_weight'):
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + 'q_proj.weight'] = state_dict[k][:dim]
items_to_add[prefix + 'k_proj.weight'] = state_dict[k][dim:
2 * dim]
items_to_add[prefix + 'v_proj.weight'] = state_dict[k][2 * dim:
]
keys_to_remove.append(k)
k_bias = prefix + 'in_proj_bias'
if k_bias in state_dict.keys():
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + 'q_proj.bias'] = state_dict[k_bias][:
dim]
items_to_add[prefix + 'k_proj.bias'] = state_dict[k_bias][
dim:2 * dim]
items_to_add[prefix + 'v_proj.bias'] = state_dict[k_bias][
2 * dim:]
keys_to_remove.append(prefix + 'in_proj_bias')
for k in keys_to_remove:
del state_dict[k]
for key, value in items_to_add.items():
state_dict[key] = value
class TransformerLayer(nn.Module):
"""Transformer layer block."""
def __init__(self, embed_dim, ffn_embed_dim, attention_heads,
add_bias_kv=True, use_esm1b_layer_norm=False):
super().__init__()
self.embed_dim = embed_dim
self.ffn_embed_dim = ffn_embed_dim
self.attention_heads = attention_heads
self._init_submodules(add_bias_kv, use_esm1b_layer_norm)
def _init_submodules(self, add_bias_kv, use_esm1b_layer_norm):
BertLayerNorm = (ESM1bLayerNorm if use_esm1b_layer_norm else
ESM1LayerNorm)
self.self_attn = MultiheadAttention(self.embed_dim, self.
attention_heads, add_bias_kv=add_bias_kv, add_zero_attn=False)
self.self_attn_layer_norm = BertLayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, self.ffn_embed_dim)
self.fc2 = nn.Linear(self.ffn_embed_dim, self.embed_dim)
self.final_layer_norm = BertLayerNorm(self.embed_dim)
def forward(self, x, self_attn_mask=None, self_attn_padding_mask=None,
need_head_weights=False):
residual = x
x = self.self_attn_layer_norm(x)
x, attn = self.self_attn(query=x, key=x, value=x, key_padding_mask=
self_attn_padding_mask, need_weights=True, need_head_weights=
need_head_weights, attn_mask=self_attn_mask)
x = residual + x
residual = x
x = self.final_layer_norm(x)
x = gelu(self.fc1(x))
x = self.fc2(x)
x = residual + x
return x, attn
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'embed_dim': 4, 'ffn_embed_dim': 4, 'attention_heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import uuid
from torch import Tensor
from typing import Tuple
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional
from typing import Dict
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp7 * tmp7
tmp9 = tmp6 + tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = 4.0
tmp14 = tmp12 / tmp13
tmp15 = 1e-12
tmp16 = tmp14 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp1 / tmp17
tmp19 = tmp0 * tmp18
tmp21 = tmp19 + tmp20
tl.store(out_ptr0 + x2, tmp21, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (-4 + x0), tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (-8 + x0), tmp11 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x0, tmp16, xmask)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 16
x3 = xindex % 16
x0 = xindex % 4
x4 = xindex
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3 + 16 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 5, tl.int64)
tmp9 = tl.load(in_ptr1 + x0, tmp6 & xmask, eviction_policy='evict_last',
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x4, tmp10, xmask)
@triton.jit
def triton_poi_fused_mul_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = x2 % 4
tl.full([1], 0, tl.int64)
tmp4 = tl.full([1], 4, tl.int64)
tmp5 = tmp1 < tmp4
tmp6 = tl.load(in_ptr0 + x0 % 4, tmp5 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp7 = tmp1 >= tmp4
tmp8 = tl.full([1], 8, tl.int64)
tmp9 = tmp1 < tmp8
tmp10 = tmp7 & tmp9
tmp11 = tl.load(in_ptr1 + (-4 + x0 % 4), tmp10 & xmask, eviction_policy
='evict_last', other=0.0)
tmp12 = tmp1 >= tmp8
tl.full([1], 12, tl.int64)
tmp15 = tl.load(in_ptr2 + (-8 + x0 % 4), tmp12 & xmask, eviction_policy
='evict_last', other=0.0)
tmp16 = tl.where(tmp10, tmp11, tmp15)
tmp17 = tl.where(tmp5, tmp6, tmp16)
tmp18 = tmp0 + tmp17
tmp19 = 1.0
tmp20 = tmp18 * tmp19
tl.store(in_out_ptr0 + x2, tmp20, xmask)
@triton.jit
def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 5 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 5 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 5 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 5 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + 5 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp0 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp1 - tmp8
tmp12 = tl_math.exp(tmp11)
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp8
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp22, xmask)
@triton.jit
def triton_poi_fused__softmax_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 5
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp3 / tmp4
tl.store(in_out_ptr0 + x2, tmp5, xmask)
@triton.jit
def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_mean_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 20
x1 = xindex // 20
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 80 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (20 + x0 + 80 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (40 + x0 + 80 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (60 + x0 + 80 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_mean_pow_sub_9(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_sqrt_sub_10(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x2, xmask)
tmp4 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp7 = 1e-12
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp10 = tmp5 / tmp9
tmp11 = tmp0 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_add_div_erf_mul_11(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_12(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_out_ptr0 + x2, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_8, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, 4), (4, 1))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (4,), (1,))
assert_size_stride(primals_16, (4, 4), (4, 1))
assert_size_stride(primals_17, (4,), (1,))
assert_size_stride(primals_18, (4, 4), (4, 1))
assert_size_stride(primals_19, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_sub_0[grid(64)](primals_1, buf0, 64, XBLOCK=
64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_pow_sqrt_1[grid(64)](primals_2,
buf0, primals_3, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_2
del primals_3
buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0)
del buf0
extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((12,), (1,), torch.float32)
triton_poi_fused_cat_2[grid(12)](primals_4, primals_5, primals_6,
buf3, 12, XBLOCK=16, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(buf3, (4,), (1,), 4),
reinterpret_tensor(buf1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), alpha=1,
beta=1, out=buf4)
buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(buf3, (4,), (1,), 8),
reinterpret_tensor(buf1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1,
beta=1, out=buf5)
del buf3
buf6 = empty_strided_cuda((5, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_cat_3[grid(80)](buf5, primals_8, buf6, 80, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_8
buf7 = reinterpret_tensor(buf2, (16, 4, 1), (1, 16, 64), 0)
del buf2
triton_poi_fused_mul_4[grid(64)](buf7, primals_4, primals_5,
primals_6, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_4
del primals_5
del primals_6
buf8 = empty_strided_cuda((5, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_cat_3[grid(80)](buf4, primals_7, buf8, 80, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_7
buf9 = empty_strided_cuda((16, 4, 5), (20, 5, 1), torch.float32)
extern_kernels.bmm(buf7, reinterpret_tensor(buf8, (16, 1, 5), (1, 0,
16), 0), out=buf9)
buf10 = reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 64), 0)
del buf4
buf11 = reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 64), 0)
del buf5
triton_poi_fused__softmax_5[grid(64)](buf9, buf10, buf11, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf12 = buf9
del buf9
triton_poi_fused__softmax_6[grid(320)](buf12, buf10, buf11, 320,
XBLOCK=256, num_warps=4, num_stages=1)
buf13 = reinterpret_tensor(buf11, (16, 4, 1), (4, 1, 1), 0)
del buf11
extern_kernels.bmm(buf12, reinterpret_tensor(buf6, (16, 5, 1), (1,
16, 0), 0), out=buf13)
buf14 = reinterpret_tensor(buf10, (4, 16, 1), (16, 1, 1), 0)
del buf10
triton_poi_fused_clone_7[grid(4, 16)](buf13, buf14, 4, 16, XBLOCK=
16, YBLOCK=4, num_warps=1, num_stages=1)
buf15 = reinterpret_tensor(buf13, (16, 4), (4, 1), 0)
del buf13
extern_kernels.addmm(primals_10, reinterpret_tensor(buf14, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf15)
del primals_10
buf16 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.float32)
triton_poi_fused_mean_8[grid(80)](buf12, buf16, 80, XBLOCK=128,
num_warps=4, num_stages=1)
buf17 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused_add_mean_pow_sub_9[grid(16)](primals_1, buf15,
buf17, buf18, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_sqrt_sub_10[grid(64)](primals_14,
primals_1, buf15, buf17, buf18, primals_15, buf19, 64, XBLOCK=
64, num_warps=1, num_stages=1)
del buf17
del buf18
del primals_15
buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_17, reinterpret_tensor(buf19, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf20)
del primals_17
buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_erf_mul_11[grid(64)](buf20, buf21, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf22 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf21, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_18, (4, 4), (1, 4), 0), out=buf22)
buf23 = reinterpret_tensor(buf22, (4, 4, 4), (16, 4, 1), 0)
del buf22
triton_poi_fused_add_12[grid(64)](buf23, primals_1, buf15,
primals_19, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_19
return buf23, buf16, primals_1, primals_14, reinterpret_tensor(buf1, (
16, 4), (4, 1), 0), buf12, reinterpret_tensor(buf14, (16, 4), (4, 1), 0
), buf15, reinterpret_tensor(buf19, (16, 4), (4, 1), 0
), buf20, reinterpret_tensor(buf21, (16, 4), (4, 1), 0
), primals_18, primals_16, primals_9, reinterpret_tensor(buf6, (16,
1, 5), (1, 1, 16), 0), reinterpret_tensor(buf7, (16, 1, 4), (1, 1,
16), 0), reinterpret_tensor(buf8, (16, 5, 1), (1, 16, 1), 0
), primals_13, primals_12, primals_11
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different
(and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def utils_softmax(x, dim: 'int', onnx_trace: 'bool'=False):
if onnx_trace:
return F.softmax(x.float(), dim=dim)
else:
return F.softmax(x, dim=dim, dtype=torch.float32)
def with_incremental_state(cls):
cls.__bases__ = (FairseqIncrementalState,) + tuple(b for b in cls.
__bases__ if b != FairseqIncrementalState)
return cls
class ESM1LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12, affine=True):
"""Construct a layernorm layer in the TF style (eps inside the sqrt)."""
super().__init__()
self.hidden_size = (hidden_size,) if isinstance(hidden_size, int
) else tuple(hidden_size)
self.eps = eps
self.affine = bool(affine)
if self.affine:
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
else:
self.weight, self.bias = None, None
def forward(self, x):
dims = tuple(-(i + 1) for i in range(len(self.hidden_size)))
means = x.mean(dims, keepdim=True)
x_zeromean = x - means
variances = x_zeromean.pow(2).mean(dims, keepdim=True)
x = x_zeromean / torch.sqrt(variances + self.eps)
if self.affine:
x = self.weight * x + self.bias
return x
class FairseqIncrementalState(object):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.init_incremental_state()
def init_incremental_state(self):
self._incremental_state_id = str(uuid.uuid4())
def _get_full_incremental_state_key(self, key: 'str') ->str:
return '{}.{}'.format(self._incremental_state_id, key)
def get_incremental_state(self, incremental_state:
'Optional[Dict[str, Dict[str, Optional[Tensor]]]]', key: 'str'
) ->Optional[Dict[str, Optional[Tensor]]]:
"""Helper for getting incremental state for an nn.Module."""
full_key = self._get_full_incremental_state_key(key)
if incremental_state is None or full_key not in incremental_state:
return None
return incremental_state[full_key]
def set_incremental_state(self, incremental_state:
'Optional[Dict[str, Dict[str, Optional[Tensor]]]]', key: 'str',
value: 'Dict[str, Optional[Tensor]]') ->Optional[Dict[str, Dict[str,
Optional[Tensor]]]]:
"""Helper for setting incremental state for an nn.Module."""
if incremental_state is not None:
full_key = self._get_full_incremental_state_key(key)
incremental_state[full_key] = value
return incremental_state
@with_incremental_state
class MultiheadAttention(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=
0.0, bias=True, add_bias_kv=False, add_zero_attn=False,
self_attention=False, encoder_decoder_attention=False):
super().__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads'
self.scaling = self.head_dim ** -0.5
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and value to be of the same size'
self.k_proj = nn.Linear(self.kdim, embed_dim, bias=bias)
self.v_proj = nn.Linear(self.vdim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.reset_parameters()
self.onnx_trace = False
self.enable_torch_version = False
if hasattr(F, 'multi_head_attention_forward'):
self.enable_torch_version = True
else:
self.enable_torch_version = False
def prepare_for_onnx_export_(self):
self.onnx_trace = True
def reset_parameters(self):
if self.qkv_same_dim:
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
else:
nn.init.xavier_uniform_(self.k_proj.weight)
nn.init.xavier_uniform_(self.v_proj.weight)
nn.init.xavier_uniform_(self.q_proj.weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.out_proj.bias is not None:
nn.init.constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None:
nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None:
nn.init.xavier_normal_(self.bias_v)
def forward(self, query, key: 'Optional[Tensor]', value:
'Optional[Tensor]', key_padding_mask: 'Optional[Tensor]'=None,
incremental_state:
'Optional[Dict[str, Dict[str, Optional[Tensor]]]]'=None,
need_weights: 'bool'=True, static_kv: 'bool'=False, attn_mask:
'Optional[Tensor]'=None, before_softmax: 'bool'=False,
need_head_weights: 'bool'=False) ->Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if (self.enable_torch_version and not self.onnx_trace and
incremental_state is None and not static_kv and not torch.jit.
is_scripting() and not need_head_weights):
assert key is not None and value is not None
return F.multi_head_attention_forward(query, key, value, self.
embed_dim, self.num_heads, torch.empty([0]), torch.cat((
self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
self.bias_k, self.bias_v, self.add_zero_attn, self.dropout,
self.out_proj.weight, self.out_proj.bias, self.training,
key_padding_mask, need_weights, attn_mask,
use_separate_proj_weight=True, q_proj_weight=self.q_proj.
weight, k_proj_weight=self.k_proj.weight, v_proj_weight=
self.v_proj.weight)
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if saved_state is not None and 'prev_key' in saved_state:
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
elif self.encoder_decoder_attention:
q = self.q_proj(query)
if key is None:
assert value is None
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
assert key is not None and value is not None
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(
attn_mask.size(0), 1)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat([key_padding_mask,
key_padding_mask.new_zeros(key_padding_mask.size(0), 1)
], dim=1)
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim
).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim
).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim
).transpose(0, 1)
if saved_state is not None:
if 'prev_key' in saved_state:
_prev_key = saved_state['prev_key']
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.
head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
if 'prev_value' in saved_state:
_prev_value = saved_state['prev_value']
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1,
self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
prev_key_padding_mask: 'Optional[Tensor]' = None
if 'prev_key_padding_mask' in saved_state:
prev_key_padding_mask = saved_state['prev_key_padding_mask']
assert k is not None and v is not None
key_padding_mask = (MultiheadAttention.
_append_prev_key_padding_mask(key_padding_mask=
key_padding_mask, prev_key_padding_mask=
prev_key_padding_mask, batch_size=bsz, src_len=k.size(1),
static_kv=static_kv))
saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self.
head_dim)
saved_state['prev_value'] = v.view(bsz, self.num_heads, -1,
self.head_dim)
saved_state['prev_key_padding_mask'] = key_padding_mask
assert incremental_state is not None
incremental_state = self._set_input_buffer(incremental_state,
saved_state)
assert k is not None
src_len = k.size(1)
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
assert v is not None
src_len += 1
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])],
dim=1)
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])],
dim=1)
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(
attn_mask.size(0), 1)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat([key_padding_mask, torch.zeros
(key_padding_mask.size(0), 1).type_as(key_padding_mask)
], dim=1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = MultiheadAttention.apply_sparse_mask(attn_weights,
tgt_len, src_len, bsz)
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len,
src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
if self.onnx_trace:
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
attn_weights += attn_mask
if key_padding_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len,
src_len)
attn_weights = attn_weights.masked_fill(key_padding_mask.
unsqueeze(1).unsqueeze(2), float('-inf'))
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len,
src_len)
if before_softmax:
return attn_weights, v
attn_weights_float = utils_softmax(attn_weights, dim=-1, onnx_trace
=self.onnx_trace)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=
self.dropout, training=self.training)
assert v is not None
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.
head_dim]
if self.onnx_trace and attn.size(1) == 1:
attn = attn.contiguous().view(tgt_len, bsz, embed_dim)
else:
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz,
embed_dim)
attn = self.out_proj(attn)
attn_weights: 'Optional[Tensor]' = None
if need_weights:
attn_weights = attn_weights_float.view(bsz, self.num_heads,
tgt_len, src_len).transpose(1, 0)
if not need_head_weights:
attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights
@staticmethod
def _append_prev_key_padding_mask(key_padding_mask: 'Optional[Tensor]',
prev_key_padding_mask: 'Optional[Tensor]', batch_size: 'int',
src_len: 'int', static_kv: 'bool') ->Optional[Tensor]:
if prev_key_padding_mask is not None and static_kv:
new_key_padding_mask = prev_key_padding_mask
elif prev_key_padding_mask is not None and key_padding_mask is not None:
new_key_padding_mask = torch.cat([prev_key_padding_mask.float(),
key_padding_mask.float()], dim=1)
elif prev_key_padding_mask is not None:
filler = torch.zeros((batch_size, src_len -
prev_key_padding_mask.size(1)), device=
prev_key_padding_mask.device)
new_key_padding_mask = torch.cat([prev_key_padding_mask.float(),
filler.float()], dim=1)
elif key_padding_mask is not None:
filler = torch.zeros((batch_size, src_len - key_padding_mask.
size(1)), device=key_padding_mask.device)
new_key_padding_mask = torch.cat([filler.float(),
key_padding_mask.float()], dim=1)
else:
new_key_padding_mask = prev_key_padding_mask
return new_key_padding_mask
@torch.jit.export
def reorder_incremental_state(self, incremental_state:
'Dict[str, Dict[str, Optional[Tensor]]]', new_order: 'Tensor'):
"""Reorder buffered internal state (for incremental generation)."""
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
for k in input_buffer.keys():
input_buffer_k = input_buffer[k]
if input_buffer_k is not None:
if self.encoder_decoder_attention and input_buffer_k.size(0
) == new_order.size(0):
break
input_buffer[k] = input_buffer_k.index_select(0, new_order)
incremental_state = self._set_input_buffer(incremental_state,
input_buffer)
return incremental_state
def _get_input_buffer(self, incremental_state:
'Optional[Dict[str, Dict[str, Optional[Tensor]]]]') ->Dict[str,
Optional[Tensor]]:
result = self.get_incremental_state(incremental_state, 'attn_state')
if result is not None:
return result
else:
empty_result: 'Dict[str, Optional[Tensor]]' = {}
return empty_result
def _set_input_buffer(self, incremental_state:
'Dict[str, Dict[str, Optional[Tensor]]]', buffer:
'Dict[str, Optional[Tensor]]'):
return self.set_incremental_state(incremental_state, 'attn_state',
buffer)
def apply_sparse_mask(attn_weights, tgt_len: 'int', src_len: 'int', bsz:
'int'):
return attn_weights
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + '.' if name != '' else ''
items_to_add = {}
keys_to_remove = []
for k in state_dict.keys():
if k.endswith(prefix + 'in_proj_weight'):
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + 'q_proj.weight'] = state_dict[k][:dim]
items_to_add[prefix + 'k_proj.weight'] = state_dict[k][dim:
2 * dim]
items_to_add[prefix + 'v_proj.weight'] = state_dict[k][2 * dim:
]
keys_to_remove.append(k)
k_bias = prefix + 'in_proj_bias'
if k_bias in state_dict.keys():
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + 'q_proj.bias'] = state_dict[k_bias][:
dim]
items_to_add[prefix + 'k_proj.bias'] = state_dict[k_bias][
dim:2 * dim]
items_to_add[prefix + 'v_proj.bias'] = state_dict[k_bias][
2 * dim:]
keys_to_remove.append(prefix + 'in_proj_bias')
for k in keys_to_remove:
del state_dict[k]
for key, value in items_to_add.items():
state_dict[key] = value
class TransformerLayerNew(nn.Module):
"""Transformer layer block."""
def __init__(self, embed_dim, ffn_embed_dim, attention_heads,
add_bias_kv=True, use_esm1b_layer_norm=False):
super().__init__()
self.embed_dim = embed_dim
self.ffn_embed_dim = ffn_embed_dim
self.attention_heads = attention_heads
self._init_submodules(add_bias_kv, use_esm1b_layer_norm)
def _init_submodules(self, add_bias_kv, use_esm1b_layer_norm):
BertLayerNorm = (ESM1bLayerNorm if use_esm1b_layer_norm else
ESM1LayerNorm)
self.self_attn = MultiheadAttention(self.embed_dim, self.
attention_heads, add_bias_kv=add_bias_kv, add_zero_attn=False)
self.self_attn_layer_norm = BertLayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, self.ffn_embed_dim)
self.fc2 = nn.Linear(self.ffn_embed_dim, self.embed_dim)
self.final_layer_norm = BertLayerNorm(self.embed_dim)
def forward(self, input_0):
primals_7 = self.self_attn.bias_k
primals_8 = self.self_attn.bias_v
primals_9 = self.self_attn.k_proj.weight
primals_2 = self.self_attn.k_proj.bias
primals_11 = self.self_attn.v_proj.weight
primals_3 = self.self_attn.v_proj.bias
primals_12 = self.self_attn.q_proj.weight
primals_4 = self.self_attn.q_proj.bias
primals_13 = self.self_attn.out_proj.weight
primals_5 = self.self_attn.out_proj.bias
primals_6 = self.self_attn_layer_norm.weight
primals_10 = self.self_attn_layer_norm.bias
primals_16 = self.fc1.weight
primals_14 = self.fc1.bias
primals_18 = self.fc2.weight
primals_15 = self.fc2.bias
primals_17 = self.final_layer_norm.weight
primals_19 = self.final_layer_norm.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19])
return output[0], output[1]
| qinwang-ai/Contact-Distil | TransformerLayer | false | 4,193 | [
"Apache-2.0"
] | 0 | 5e98389de70e0d9c4d16bd91ca1326689dc220a6 | https://github.com/qinwang-ai/Contact-Distil/tree/5e98389de70e0d9c4d16bd91ca1326689dc220a6 | import math
import torch
import uuid
from torch import Tensor
from typing import Tuple
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional
from typing import Dict
from torch.nn import Parameter
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different
(and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def utils_softmax(x, dim: 'int', onnx_trace: 'bool'=False):
if onnx_trace:
return F.softmax(x.float(), dim=dim)
else:
return F.softmax(x, dim=dim, dtype=torch.float32)
def with_incremental_state(cls):
cls.__bases__ = (FairseqIncrementalState,) + tuple(b for b in cls.
__bases__ if b != FairseqIncrementalState)
return cls
class ESM1LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12, affine=True):
"""Construct a layernorm layer in the TF style (eps inside the sqrt)."""
super().__init__()
self.hidden_size = (hidden_size,) if isinstance(hidden_size, int
) else tuple(hidden_size)
self.eps = eps
self.affine = bool(affine)
if self.affine:
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
else:
self.weight, self.bias = None, None
def forward(self, x):
dims = tuple(-(i + 1) for i in range(len(self.hidden_size)))
means = x.mean(dims, keepdim=True)
x_zeromean = x - means
variances = x_zeromean.pow(2).mean(dims, keepdim=True)
x = x_zeromean / torch.sqrt(variances + self.eps)
if self.affine:
x = self.weight * x + self.bias
return x
class FairseqIncrementalState(object):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.init_incremental_state()
def init_incremental_state(self):
self._incremental_state_id = str(uuid.uuid4())
def _get_full_incremental_state_key(self, key: 'str') ->str:
return '{}.{}'.format(self._incremental_state_id, key)
def get_incremental_state(self, incremental_state:
'Optional[Dict[str, Dict[str, Optional[Tensor]]]]', key: 'str'
) ->Optional[Dict[str, Optional[Tensor]]]:
"""Helper for getting incremental state for an nn.Module."""
full_key = self._get_full_incremental_state_key(key)
if incremental_state is None or full_key not in incremental_state:
return None
return incremental_state[full_key]
def set_incremental_state(self, incremental_state:
'Optional[Dict[str, Dict[str, Optional[Tensor]]]]', key: 'str',
value: 'Dict[str, Optional[Tensor]]') ->Optional[Dict[str, Dict[str,
Optional[Tensor]]]]:
"""Helper for setting incremental state for an nn.Module."""
if incremental_state is not None:
full_key = self._get_full_incremental_state_key(key)
incremental_state[full_key] = value
return incremental_state
@with_incremental_state
class MultiheadAttention(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=
0.0, bias=True, add_bias_kv=False, add_zero_attn=False,
self_attention=False, encoder_decoder_attention=False):
super().__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embe
# ... truncated (>4000 chars) for memory efficiency |
MLP | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/bn/cbnew222tzmfnb6gyjabhnjtqqg4g3zgcay65lkbdxe3r5dtwlns.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x_1 => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = libdevice.tanh(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/hc/chcijhyx3lu745bcg6v7r4hf3yavmj7r7bm3wkq6rxzlxn7d6d2q.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x_3 => tanh_1
# Graph fragment:
# %tanh_1 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 128), (128, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, 8192, grid=grid(8192), stream=stream0)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_3, (128, 4), (1, 128), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf3, 256, grid=grid(256), stream=stream0)
return (buf3, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf1, buf3, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch as th
import torch.nn as nn
class MLP(nn.Module):
def __init__(self, input_size, output_size, hidden=128):
super(MLP, self).__init__()
self.linear1 = nn.Linear(input_size, hidden, bias=False)
self.linear2 = nn.Linear(hidden, output_size, bias=False)
def forward(self, x):
x = self.linear1(x)
x = th.tanh(x)
x = self.linear2(x)
x = th.tanh(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = libdevice.tanh(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, None)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 128), (128, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(8192)](buf1, 8192, XBLOCK=256,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0),
reinterpret_tensor(primals_3, (128, 4), (1, 128), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused_tanh_1[grid(256)](buf3, 256, XBLOCK=128, num_warps
=4, num_stages=1)
return buf3, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0
), buf1, buf3, primals_3
class MLPNew(nn.Module):
def __init__(self, input_size, output_size, hidden=128):
super(MLPNew, self).__init__()
self.linear1 = nn.Linear(input_size, hidden, bias=False)
self.linear2 = nn.Linear(hidden, output_size, bias=False)
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_3 = self.linear2.weight
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ngoby/cherry | MLP | false | 4,194 | [
"Apache-2.0"
] | 0 | ec88bac03bf3ac3fae1010c5db8329db595dc5d6 | https://github.com/ngoby/cherry/tree/ec88bac03bf3ac3fae1010c5db8329db595dc5d6 | import torch
import torch as th
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_size, output_size, hidden=128):
super().__init__()
self.linear1 = nn.Linear(input_size, hidden, bias=False)
self.linear2 = nn.Linear(hidden, output_size, bias=False)
def forward(self, x):
x = self.linear1(x)
x = th.tanh(x)
x = self.linear2(x)
x = th.tanh(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
EncoderLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/xx/cxxsy7adcakcv5c6imnaqsvf3ebhgbph77vaoembzakbqdrjycbc.py
# Topologically Sorted Source Nodes: [mean, sub, mul, std, add, truediv, norm], Original ATen: [aten.mean, aten.sub, aten.mul, aten.std, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# mean => mean
# mul => mul
# norm => add_1
# std => sqrt, var
# sub => sub
# truediv => div
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_2, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %mean), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sub), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_2, [-1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_3), kwargs = {})
triton_poi_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp0 * tmp11
tmp13 = tmp2 - tmp10
tmp14 = tmp13 * tmp13
tmp15 = tmp3 - tmp10
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp5 - tmp10
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = tmp7 - tmp10
tmp22 = tmp21 * tmp21
tmp23 = tmp20 + tmp22
tmp24 = 3.0
tmp25 = tmp23 / tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = 1e-06
tmp28 = tmp26 + tmp27
tmp29 = tmp12 / tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + (x2), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/mh/cmhet4vfl4jlxtge4zzaaa2nugvxpr5f4ge7rs72qwe2aow7vxwy.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/pv/cpvxifzinnau3xu6vyqheclzr6mcqs5g6lyequacfqmznapjidec.py
# Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq]
# Source node to ATen node mapping:
# eq => eq
# Graph fragment:
# %eq : [num_users=2] = call_function[target=torch.ops.aten.eq.Scalar](args = (%unsqueeze, 0), kwargs = {})
triton_poi_fused_eq_2 = async_compile.triton('triton_poi_fused_eq_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2i/c2i57js6jak6bynwgyueladupcbb2qpciiu6btv5dj64tjdpelzi.py
# Topologically Sorted Source Nodes: [scores, scores_1, scores_2], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# scores => div_1
# scores_1 => full_default, where
# scores_2 => amax, exp, sub_1, sum_1
# Graph fragment:
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1000000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div_1), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_div_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (4*x3), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + (4*x3)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + (4*x3)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + (4*x3)), xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -1000000000.0
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp6, tmp4, tmp8)
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tmp12 * tmp2
tmp14 = tl.where(tmp11, tmp4, tmp13)
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tmp17 * tmp2
tmp19 = tl.where(tmp16, tmp4, tmp18)
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp9 - tmp20
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = tmp14 - tmp20
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tmp19 - tmp20
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp28 + tmp30
tl.store(out_ptr0 + (x3), tmp20, xmask)
tl.store(out_ptr1 + (x3), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rw/crwno6mlbzllxkax3dzrhb3xva3g3yd52nkztijmiyd6omrsilpe.py
# Topologically Sorted Source Nodes: [scores, scores_1, scores_2], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# scores => div_1
# scores_1 => full_default, where
# scores_2 => amax, div_2, exp, sub_1
# Graph fragment:
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1000000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div_1), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_div_masked_fill_4 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 64)
x4 = xindex % 16
x5 = xindex
x6 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x4 + (16*x3)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + (x5), xmask)
tmp6 = tl.load(in_ptr1 + (x6), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (x6), xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -1000000000.0
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp7 = tmp5 - tmp6
tmp8 = tl_math.exp(tmp7)
tmp10 = tmp8 / tmp9
tl.store(in_out_ptr0 + (x5), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/we/cwe54p4p4jvwbdktkpj3wy2coheu6f3r3dgvi7ozm7xjfk4mgbwx.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ez/cezumc4bfxcfwb2v57uxko3oual5p4k5atbughboziniozdii3kw.py
# Topologically Sorted Source Nodes: [x, mean_1, std_1], Original ATen: [aten.add, aten.mean, aten.std]
# Source node to ATen node mapping:
# mean_1 => mean_1
# std_1 => var_1
# x => add_2
# Graph fragment:
# %add_2 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %view_17), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_2, [-1], True), kwargs = {})
# %var_1 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%add_2, [-1]), kwargs = {correction: 1.0, keepdim: True})
triton_poi_fused_add_mean_std_6 = async_compile.triton('triton_poi_fused_add_mean_std_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_std_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_std_6(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = 3.0
tmp29 = tmp27 / tmp28
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(in_out_ptr0 + (x0), tmp29, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/44/c44nsundpysjinc27mkdhx3tcd7nqj5ir3mp6sd7nqx3ryqium46.py
# Topologically Sorted Source Nodes: [x, mean_1, sub_1, mul_1, std_1, add_3, truediv_2, norm_1], Original ATen: [aten.add, aten.mean, aten.sub, aten.mul, aten.std, aten.div]
# Source node to ATen node mapping:
# add_3 => add_3
# mean_1 => mean_1
# mul_1 => mul_1
# norm_1 => add_4
# std_1 => sqrt_1
# sub_1 => sub_2
# truediv_2 => div_3
# x => add_2
# Graph fragment:
# %add_2 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %view_17), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_2, [-1], True), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %mean_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_13, %sub_2), kwargs = {})
# %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var_1,), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt_1, 1e-06), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add_3), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_3, %primals_14), kwargs = {})
triton_poi_fused_add_div_mean_mul_std_sub_7 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x2), xmask)
tmp4 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp6 = tmp0 * tmp5
tmp8 = libdevice.sqrt(tmp7)
tmp9 = 1e-06
tmp10 = tmp8 + tmp9
tmp11 = tmp6 / tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rv/crvf2y3myjmfsbbg2ubhxgcshxxvsclo3cxqhn4x2kt2s5qfl37x.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_19,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_8 = async_compile.triton('triton_poi_fused_relu_threshold_backward_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_8(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/x7/cx7y3kua2bihmqz24vhzuizsgkwgtdcyxynklnn7saro6oxogdky.py
# Topologically Sorted Source Nodes: [x, x_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x => add_2
# x_3 => add_5
# Graph fragment:
# %add_2 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %view_17), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %view_21), kwargs = {})
triton_poi_fused_add_9 = async_compile.triton('triton_poi_fused_add_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_out_ptr0 + (x2), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (2048, 4), (4, 1))
assert_size_stride(primals_16, (2048, ), (1, ))
assert_size_stride(primals_17, (4, 2048), (2048, 1))
assert_size_stride(primals_18, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, sub, mul, std, add, truediv, norm], Original ATen: [aten.mean, aten.sub, aten.mul, aten.std, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mean_mul_std_sub_0.run(primals_1, primals_2, primals_3, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
del primals_3
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf2, primals_7, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_7
buf5 = reinterpret_tensor(buf2, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf1, primals_5, buf5, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf7 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq]
triton_poi_fused_eq_2.run(primals_10, buf7, 64, grid=grid(64), stream=stream0)
del primals_10
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse
buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [scores, scores_1, scores_2], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_div_masked_fill_3.run(buf7, buf6, buf8, buf9, 64, grid=grid(64), stream=stream0)
buf10 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [scores, scores_1, scores_2], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_div_masked_fill_4.run(buf10, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0)
buf11 = reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf3, primals_9, buf11, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_9
buf12 = reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf10, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf11, (16, 4, 1), (4, 1, 0), 0), out=buf12)
buf13 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_5.run(buf12, buf13, 16, 4, grid=grid(16, 4), stream=stream0)
buf14 = reinterpret_tensor(buf12, (16, 4), (4, 1), 0); del buf12 # reuse
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_12, reinterpret_tensor(buf13, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf14)
del primals_12
buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf17 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [x, mean_1, std_1], Original ATen: [aten.add, aten.mean, aten.std]
triton_poi_fused_add_mean_std_6.run(buf17, primals_2, buf14, buf15, 16, grid=grid(16), stream=stream0)
buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, mean_1, sub_1, mul_1, std_1, add_3, truediv_2, norm_1], Original ATen: [aten.add, aten.mean, aten.sub, aten.mul, aten.std, aten.div]
triton_poi_fused_add_div_mean_mul_std_sub_7.run(primals_13, primals_2, buf14, buf15, buf17, primals_14, buf18, 64, grid=grid(64), stream=stream0)
del buf15
del buf17
del primals_14
buf19 = empty_strided_cuda((16, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 2048), (1, 4), 0), out=buf19)
buf20 = reinterpret_tensor(buf19, (4, 4, 2048), (8192, 2048, 1), 0); del buf19 # reuse
buf23 = empty_strided_cuda((4, 4, 2048), (8192, 2048, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_8.run(buf20, primals_16, buf23, 32768, grid=grid(32768), stream=stream0)
del primals_16
buf21 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf20, (16, 2048), (2048, 1), 0), reinterpret_tensor(primals_17, (2048, 4), (1, 2048), 0), out=buf21)
buf22 = reinterpret_tensor(buf21, (4, 4, 4), (16, 4, 1), 0); del buf21 # reuse
# Topologically Sorted Source Nodes: [x, x_3], Original ATen: [aten.add]
triton_poi_fused_add_9.run(buf22, primals_2, buf14, primals_18, 64, grid=grid(64), stream=stream0)
del primals_18
return (buf22, primals_2, primals_13, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf7, buf10, reinterpret_tensor(buf13, (16, 4), (4, 1), 0), buf14, reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(buf20, (16, 2048), (2048, 1), 0), primals_17, buf23, primals_15, primals_11, reinterpret_tensor(buf11, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0), primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn.functional as F
import torch.nn as nn
def attention(q, k, v, d_k, mask=None, dropout=None):
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1000000000.0)
scores = F.softmax(scores, dim=-1)
if dropout is not None:
scores = dropout(scores)
output = torch.matmul(scores, v)
return output
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff=2048, dropout=0.1):
super().__init__()
self.linear_1 = nn.Linear(d_model, d_ff)
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(d_ff, d_model)
def forward(self, x):
x = self.dropout(F.relu(self.linear_1(x)))
x = self.linear_2(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, heads, d_model, dropout=0.1):
super().__init__()
self.d_model = d_model
self.d_k = d_model // heads
self.h = heads
self.q_linear = nn.Linear(d_model, d_model)
self.v_linear = nn.Linear(d_model, d_model)
self.k_linear = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
self.out = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
bs = q.size(0)
k = self.k_linear(k).view(bs, -1, self.h, self.d_k)
q = self.q_linear(q).view(bs, -1, self.h, self.d_k)
v = self.v_linear(v).view(bs, -1, self.h, self.d_k)
k = k.transpose(1, 2)
q = q.transpose(1, 2)
v = v.transpose(1, 2)
scores = attention(q, k, v, self.d_k, mask, self.dropout)
concat = scores.transpose(1, 2).contiguous().view(bs, -1, self.d_model)
output = self.out(concat)
return output
class Norm(nn.Module):
def __init__(self, d_model, eps=1e-06):
super().__init__()
self.size = d_model
self.alpha = nn.Parameter(torch.ones(self.size))
self.bias = nn.Parameter(torch.zeros(self.size))
self.eps = eps
def forward(self, x):
norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) / (x.std(dim
=-1, keepdim=True) + self.eps) + self.bias
return norm
class EncoderLayer(nn.Module):
def __init__(self, d_model, heads, dropout=0.1):
super().__init__()
self.norm_1 = Norm(d_model)
self.norm_2 = Norm(d_model)
self.attn = MultiHeadAttention(heads, d_model, dropout=dropout)
self.ff = FeedForward(d_model, dropout=dropout)
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x, mask):
x2 = self.norm_1(x)
x = x + self.dropout_1(self.attn(x2, x2, x2, mask))
x2 = self.norm_2(x)
x = x + self.dropout_2(self.ff(x2))
return x
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import torch.nn.functional as F
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp0 * tmp11
tmp13 = tmp2 - tmp10
tmp14 = tmp13 * tmp13
tmp15 = tmp3 - tmp10
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp5 - tmp10
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = tmp7 - tmp10
tmp22 = tmp21 * tmp21
tmp23 = tmp20 + tmp22
tmp24 = 3.0
tmp25 = tmp23 / tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = 1e-06
tmp28 = tmp26 + tmp27
tmp29 = tmp12 / tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_eq_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_3(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4 * x0 + 16 * x2), xmask, eviction_policy=
'evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + 4 * x3, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy
='evict_last').to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + 4 * x3), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last').to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last').to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -1000000000.0
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp6, tmp4, tmp8)
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tmp12 * tmp2
tmp14 = tl.where(tmp11, tmp4, tmp13)
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tmp17 * tmp2
tmp19 = tl.where(tmp16, tmp4, tmp18)
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp9 - tmp20
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = tmp14 - tmp20
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tmp19 - tmp20
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp28 + tmp30
tl.store(out_ptr0 + x3, tmp20, xmask)
tl.store(out_ptr1 + x3, tmp31, xmask)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_4(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 64
x4 = xindex % 16
x5 = xindex
x6 = xindex // 4
tmp0 = tl.load(in_ptr0 + (x4 + 16 * x3), xmask, eviction_policy=
'evict_last').to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + x5, xmask)
tmp6 = tl.load(in_ptr1 + x6, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + x6, xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -1000000000.0
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp7 = tmp5 - tmp6
tmp8 = tl_math.exp(tmp7)
tmp10 = tmp8 / tmp9
tl.store(in_out_ptr0 + x5, tmp10, xmask)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_mean_std_6(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = 3.0
tmp29 = tmp27 / tmp28
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(in_out_ptr0 + x0, tmp29, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_7(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x2, xmask)
tmp4 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp6 = tmp0 * tmp5
tmp8 = libdevice.sqrt(tmp7)
tmp9 = 1e-06
tmp10 = tmp8 + tmp9
tmp11 = tmp6 / tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_8(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_out_ptr0 + x2, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17, primals_18
) = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (2048, 4), (4, 1))
assert_size_stride(primals_16, (2048,), (1,))
assert_size_stride(primals_17, (4, 2048), (2048, 1))
assert_size_stride(primals_18, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mean_mul_std_sub_0[grid(64)](primals_1,
primals_2, primals_3, buf0, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_1
del primals_3
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_1[grid(16, 4)](buf2, primals_7, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_7
buf5 = reinterpret_tensor(buf2, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf2
triton_poi_fused_clone_1[grid(16, 4)](buf1, primals_5, buf5, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf7 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.bool)
triton_poi_fused_eq_2[grid(64)](primals_10, buf7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_10
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf1
buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_div_masked_fill_3[grid(64)](buf7, buf6,
buf8, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf10 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
triton_poi_fused__softmax_div_masked_fill_4[grid(256)](buf10, buf7,
buf8, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf11 = reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf9
triton_poi_fused_clone_1[grid(16, 4)](buf3, primals_9, buf11, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_9
buf12 = reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 1), 0)
del buf3
extern_kernels.bmm(reinterpret_tensor(buf10, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf11, (16, 4, 1), (4, 1, 0), 0), out=buf12)
buf13 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf8
triton_poi_fused_clone_5[grid(16, 4)](buf12, buf13, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf14 = reinterpret_tensor(buf12, (16, 4), (4, 1), 0)
del buf12
extern_kernels.addmm(primals_12, reinterpret_tensor(buf13, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf14)
del primals_12
buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf17 = buf16
del buf16
triton_poi_fused_add_mean_std_6[grid(16)](buf17, primals_2, buf14,
buf15, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_std_sub_7[grid(64)](primals_13,
primals_2, buf14, buf15, buf17, primals_14, buf18, 64, XBLOCK=
64, num_warps=1, num_stages=1)
del buf15
del buf17
del primals_14
buf19 = empty_strided_cuda((16, 2048), (2048, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_15, (4, 2048), (1, 4), 0), out=buf19)
buf20 = reinterpret_tensor(buf19, (4, 4, 2048), (8192, 2048, 1), 0)
del buf19
buf23 = empty_strided_cuda((4, 4, 2048), (8192, 2048, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_8[grid(32768)](buf20,
primals_16, buf23, 32768, XBLOCK=128, num_warps=4, num_stages=1)
del primals_16
buf21 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf20, (16, 2048), (2048, 1),
0), reinterpret_tensor(primals_17, (2048, 4), (1, 2048), 0),
out=buf21)
buf22 = reinterpret_tensor(buf21, (4, 4, 4), (16, 4, 1), 0)
del buf21
triton_poi_fused_add_9[grid(64)](buf22, primals_2, buf14,
primals_18, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_18
return buf22, primals_2, primals_13, reinterpret_tensor(buf0, (16, 4),
(4, 1), 0), buf7, buf10, reinterpret_tensor(buf13, (16, 4), (4, 1), 0
), buf14, reinterpret_tensor(buf18, (16, 4), (4, 1), 0
), reinterpret_tensor(buf20, (16, 2048), (2048, 1), 0
), primals_17, buf23, primals_15, primals_11, reinterpret_tensor(buf11,
(16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 1, 4), (4,
1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0
), primals_8, primals_6, primals_4
def attention(q, k, v, d_k, mask=None, dropout=None):
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1000000000.0)
scores = F.softmax(scores, dim=-1)
if dropout is not None:
scores = dropout(scores)
output = torch.matmul(scores, v)
return output
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff=2048, dropout=0.1):
super().__init__()
self.linear_1 = nn.Linear(d_model, d_ff)
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(d_ff, d_model)
def forward(self, x):
x = self.dropout(F.relu(self.linear_1(x)))
x = self.linear_2(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, heads, d_model, dropout=0.1):
super().__init__()
self.d_model = d_model
self.d_k = d_model // heads
self.h = heads
self.q_linear = nn.Linear(d_model, d_model)
self.v_linear = nn.Linear(d_model, d_model)
self.k_linear = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
self.out = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
bs = q.size(0)
k = self.k_linear(k).view(bs, -1, self.h, self.d_k)
q = self.q_linear(q).view(bs, -1, self.h, self.d_k)
v = self.v_linear(v).view(bs, -1, self.h, self.d_k)
k = k.transpose(1, 2)
q = q.transpose(1, 2)
v = v.transpose(1, 2)
scores = attention(q, k, v, self.d_k, mask, self.dropout)
concat = scores.transpose(1, 2).contiguous().view(bs, -1, self.d_model)
output = self.out(concat)
return output
class Norm(nn.Module):
def __init__(self, d_model, eps=1e-06):
super().__init__()
self.size = d_model
self.alpha = nn.Parameter(torch.ones(self.size))
self.bias = nn.Parameter(torch.zeros(self.size))
self.eps = eps
def forward(self, x):
norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) / (x.std(dim
=-1, keepdim=True) + self.eps) + self.bias
return norm
class EncoderLayerNew(nn.Module):
def __init__(self, d_model, heads, dropout=0.1):
super().__init__()
self.norm_1 = Norm(d_model)
self.norm_2 = Norm(d_model)
self.attn = MultiHeadAttention(heads, d_model, dropout=dropout)
self.ff = FeedForward(d_model, dropout=dropout)
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, input_0, input_1):
primals_1 = self.norm_1.alpha
primals_3 = self.norm_1.bias
primals_5 = self.norm_2.alpha
primals_7 = self.norm_2.bias
primals_4 = self.attn.q_linear.weight
primals_9 = self.attn.q_linear.bias
primals_6 = self.attn.v_linear.weight
primals_12 = self.attn.v_linear.bias
primals_8 = self.attn.k_linear.weight
primals_13 = self.attn.k_linear.bias
primals_11 = self.attn.out.weight
primals_14 = self.attn.out.bias
primals_15 = self.ff.linear_1.weight
primals_16 = self.ff.linear_1.bias
primals_17 = self.ff.linear_2.weight
primals_18 = self.ff.linear_2.bias
primals_2 = input_0
primals_10 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18])
return output[0]
| rcasero/Transformer | EncoderLayer | false | 4,195 | [
"Apache-2.0"
] | 0 | 82f51e04f80634d56b134e0ac87f67d6ba8c736a | https://github.com/rcasero/Transformer/tree/82f51e04f80634d56b134e0ac87f67d6ba8c736a | import math
import torch
import torch.nn.functional as F
import torch.nn as nn
def attention(q, k, v, d_k, mask=None, dropout=None):
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1000000000.0)
scores = F.softmax(scores, dim=-1)
if dropout is not None:
scores = dropout(scores)
output = torch.matmul(scores, v)
return output
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff=2048, dropout=0.1):
super().__init__()
self.linear_1 = nn.Linear(d_model, d_ff)
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(d_ff, d_model)
def forward(self, x):
x = self.dropout(F.relu(self.linear_1(x)))
x = self.linear_2(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, heads, d_model, dropout=0.1):
super().__init__()
self.d_model = d_model
self.d_k = d_model // heads
self.h = heads
self.q_linear = nn.Linear(d_model, d_model)
self.v_linear = nn.Linear(d_model, d_model)
self.k_linear = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
self.out = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
bs = q.size(0)
k = self.k_linear(k).view(bs, -1, self.h, self.d_k)
q = self.q_linear(q).view(bs, -1, self.h, self.d_k)
v = self.v_linear(v).view(bs, -1, self.h, self.d_k)
k = k.transpose(1, 2)
q = q.transpose(1, 2)
v = v.transpose(1, 2)
scores = attention(q, k, v, self.d_k, mask, self.dropout)
concat = scores.transpose(1, 2).contiguous().view(bs, -1, self.d_model)
output = self.out(concat)
return output
class Norm(nn.Module):
def __init__(self, d_model, eps=1e-06):
super().__init__()
self.size = d_model
self.alpha = nn.Parameter(torch.ones(self.size))
self.bias = nn.Parameter(torch.zeros(self.size))
self.eps = eps
def forward(self, x):
norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) / (x.std(dim
=-1, keepdim=True) + self.eps) + self.bias
return norm
class Model(nn.Module):
def __init__(self, d_model, heads, dropout=0.1):
super().__init__()
self.norm_1 = Norm(d_model)
self.norm_2 = Norm(d_model)
self.attn = MultiHeadAttention(heads, d_model, dropout=dropout)
self.ff = FeedForward(d_model, dropout=dropout)
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x, mask):
x2 = self.norm_1(x)
x = x + self.dropout_1(self.attn(x2, x2, x2, mask))
x2 = self.norm_2(x)
x = x + self.dropout_2(self.ff(x2))
return x
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
ResidualBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/tp/ctpzszvfnvtd5ojaacosoetsfrtkj6wdllzm3am7qstqgarfm24q.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/sl/csliarpndhsybo23yhfn5b2r4tprynajz5cbsvye42aegbnyzw43.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d]
# Source node to ATen node mapping:
# pad => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_3, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_1 = async_compile.triton('triton_poi_fused_reflection_pad2d_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 512
xnumel = 36
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex % 6
x3 = (xindex // 6)
y4 = yindex
x5 = xindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x2))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x3))))) + (16*y4)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x5) + (4608*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/cb/ccbds54cwkyq7jqwdqg7hx7relsicbkumz4trv6nl3ctaehzsqoy.py
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# a => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/eo/ceolj4dwu42mgxponwssjmza5ue5guayvvryjnz2a2vloax4vori.py
# Topologically Sorted Source Nodes: [b], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# b => repeat
# Graph fragment:
# %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_4, [4]), kwargs = {})
triton_poi_fused_repeat_3 = async_compile.triton('triton_poi_fused_repeat_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 % 128), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ur/curvfbwmi645mrjxmsitrqloj337hb7jgoszjdazdm3fu5onhv7j.py
# Topologically Sorted Source Nodes: [b], Original ATen: [aten._native_batch_norm_legit]
# Source node to ATen node mapping:
# b => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_per_fused__native_batch_norm_legit_4 = async_compile.triton('triton_per_fused__native_batch_norm_legit_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[512, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 512
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + ((128*r1) + (2048*(x0 // 128)) + (x0 % 128)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 16.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp21, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/b6/cb62h45xeorztkchbbud4ergezhaevkxyrm5hlrnnvjvvrxpwkbf.py
# Topologically Sorted Source Nodes: [c, pad_1], Original ATen: [aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# c => relu
# pad_1 => _unsafe_index_2, _unsafe_index_3
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_relu_5 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_relu_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 18432
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = (xindex // 128) % 6
x2 = (xindex // 768) % 6
x3 = (xindex // 4608)
x5 = xindex
tmp0 = tl.load(in_ptr0 + (1920 + x0 + ((-512)*(tl_math.abs((-3) + (tl_math.abs((-1) + x2))))) + ((-128)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (2048*x3)), None)
tmp1 = tl.load(in_ptr1 + (x0 + (128*x3)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + (128*x3)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0 + (128*x3)), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0 + (128*x3)), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tl.store(out_ptr0 + (x5), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/5q/c5qgfwiigbzef3lqmapljnhxdetz6djls4rbpjpdmw5uk6vbnkhk.py
# Topologically Sorted Source Nodes: [e, add, relu_1], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.add, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# add => add_4
# e => add_2, repeat_2, rsqrt_1, var_mean_1
# relu_1 => relu_1
# Graph fragment:
# %repeat_2 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_8, [4]), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_3), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_4,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_per_fused__native_batch_norm_legit_add_relu_repeat_threshold_backward_6 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_relu_repeat_threshold_backward_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[512, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*i1', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_relu_repeat_threshold_backward_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_relu_repeat_threshold_backward_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, out_ptr5, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 512
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex
r1 = rindex
x2 = xindex % 128
x3 = (xindex // 128)
tmp0 = tl.load(in_ptr0 + (x0 % 128), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + ((128*r1) + (2048*(x0 // 128)) + (x0 % 128)), xmask, other=0.0)
tmp23 = tl.load(in_ptr1 + (x2 + (128*r1) + (2048*x3)), xmask, other=0.0)
tmp27 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr3 + (r1 + (16*x0)), xmask, other=0.0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 / tmp10
tmp12 = tmp2 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.where(xmask, tmp14, 0)
tmp17 = tl.sum(tmp16, 1)[:, None]
tmp18 = 16.0
tmp19 = tmp17 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp24 = tmp23 - tmp11
tmp25 = tmp24 * tmp22
tmp26 = tmp25 * tmp0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp31 = tl.full([1, 1], 0, tl.int32)
tmp32 = triton_helpers.maximum(tmp31, tmp30)
tmp33 = 0.0
tmp34 = tmp32 <= tmp33
tl.store(out_ptr0 + (x0), tmp0, xmask)
tl.store(out_ptr3 + (x0), tmp22, xmask)
tl.store(out_ptr4 + (r1 + (16*x0)), tmp32, xmask)
tl.store(out_ptr5 + (x2 + (128*r1) + (2048*x3)), tmp34, xmask)
tl.store(out_ptr1 + (x0), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_2, (128, ), (1, ))
assert_size_stride(primals_3, (4, 128, 4, 4), (2048, 16, 4, 1))
assert_size_stride(primals_4, (128, ), (1, ))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (128, ), (1, ))
assert_size_stride(primals_9, (128, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(primals_6, buf1, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_6
buf2 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_1.run(primals_3, buf2, 512, 36, grid=grid(512, 36), stream=stream0)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 128, 4, 4), (2048, 1, 512, 128))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf4, primals_2, 8192, grid=grid(8192), stream=stream0)
del primals_2
buf5 = empty_strided_cuda((512, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [b], Original ATen: [aten.repeat]
triton_poi_fused_repeat_3.run(primals_4, buf5, 512, grid=grid(512), stream=stream0)
del primals_4
buf6 = empty_strided_cuda((512, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [b], Original ATen: [aten.repeat]
triton_poi_fused_repeat_3.run(primals_5, buf6, 512, grid=grid(512), stream=stream0)
del primals_5
buf7 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf8 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf10 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [b], Original ATen: [aten._native_batch_norm_legit]
triton_per_fused__native_batch_norm_legit_4.run(buf10, buf4, buf7, 512, 16, grid=grid(512), stream=stream0)
buf11 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.float32)
# Topologically Sorted Source Nodes: [c, pad_1], Original ATen: [aten.relu, aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_relu_5.run(buf4, buf7, buf10, buf5, buf6, buf11, 18432, grid=grid(18432), stream=stream0)
# Topologically Sorted Source Nodes: [d], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 128, 4, 4), (2048, 1, 512, 128))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf13, primals_7, 8192, grid=grid(8192), stream=stream0)
del primals_7
buf14 = empty_strided_cuda((512, ), (1, ), torch.float32)
buf15 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf18 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf19 = empty_strided_cuda((4, 128, 4, 4), (2048, 16, 4, 1), torch.float32)
buf20 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.bool)
# Topologically Sorted Source Nodes: [e, add, relu_1], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.add, aten.relu, aten.threshold_backward]
triton_per_fused__native_batch_norm_legit_add_relu_repeat_threshold_backward_6.run(primals_8, buf13, primals_9, primals_3, buf14, buf15, buf18, buf19, buf20, 512, 16, grid=grid(512), stream=stream0)
del primals_3
del primals_8
del primals_9
return (buf19, buf0, buf1, buf2, buf4, buf5, buf6, buf7, buf10, buf11, buf13, buf14, reinterpret_tensor(buf18, (512, ), (1, ), 0), buf20, reinterpret_tensor(buf15, (1, 512, 1, 1), (512, 1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class ResidualBlock(nn.Module):
"""
Vanilla convolutional residual block from seminal paper by He et al.
Use of instance normalization suggested by Ulyanov et al. in
https://arxiv.org/pdf/1607.08022.pdf%C2%A0%C2%A0%C2%A0%C2%A0.
"""
def __init__(self, filters=128):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(filters, filters, (3, 3), padding=(1, 1),
padding_mode='reflect')
self.in_norm1 = nn.InstanceNorm2d(filters, affine=True)
self.conv2 = nn.Conv2d(filters, filters, (3, 3), padding=(1, 1),
padding_mode='reflect')
self.in_norm2 = nn.InstanceNorm2d(filters, affine=True)
def forward(self, x):
a = self.conv1(x)
b = self.in_norm1(a)
c = F.relu(b)
d = self.conv2(c)
e = self.in_norm2(d)
return F.relu(e + x)
def get_inputs():
return [torch.rand([4, 128, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_reflection_pad2d_1(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 512
xnumel = 36
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex % 6
x3 = xindex // 6
y4 = yindex
x5 = xindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 +
x2)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x3)) + 16 * y4),
xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + 128 * x5 + 4608 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, None)
@triton.jit
def triton_poi_fused_repeat_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0 % 128, xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_4(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 512
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (128 * r1 + 2048 * (x0 // 128) + x0 % 128),
xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 16.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp21, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused_reflection_pad2d_relu_5(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = xindex // 128 % 6
x2 = xindex // 768 % 6
x3 = xindex // 4608
x5 = xindex
tmp0 = tl.load(in_ptr0 + (1920 + x0 + -512 * tl_math.abs(-3 + tl_math.
abs(-1 + x2)) + -128 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) +
2048 * x3), None)
tmp1 = tl.load(in_ptr1 + (x0 + 128 * x3), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + 128 * x3), None, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr3 + (x0 + 128 * x3), None, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr4 + (x0 + 128 * x3), None, eviction_policy=
'evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tl.store(out_ptr0 + x5, tmp10, None)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_relu_repeat_threshold_backward_6(
in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3,
out_ptr4, out_ptr5, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 512
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex
r1 = rindex
x2 = xindex % 128
x3 = xindex // 128
tmp0 = tl.load(in_ptr0 + x0 % 128, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (128 * r1 + 2048 * (x0 // 128) + x0 % 128),
xmask, other=0.0)
tmp23 = tl.load(in_ptr1 + (x2 + 128 * r1 + 2048 * x3), xmask, other=0.0)
tmp27 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr3 + (r1 + 16 * x0), xmask, other=0.0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tl.where(xmask, tmp2, 0)
tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 / tmp10
tmp12 = tmp2 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.where(xmask, tmp14, 0)
tmp17 = tl.sum(tmp16, 1)[:, None]
tmp18 = 16.0
tmp19 = tmp17 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp24 = tmp23 - tmp11
tmp25 = tmp24 * tmp22
tmp26 = tmp25 * tmp0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp31 = tl.full([1, 1], 0, tl.int32)
tmp32 = triton_helpers.maximum(tmp31, tmp30)
tmp33 = 0.0
tmp34 = tmp32 <= tmp33
tl.store(out_ptr0 + x0, tmp0, xmask)
tl.store(out_ptr3 + x0, tmp22, xmask)
tl.store(out_ptr4 + (r1 + 16 * x0), tmp32, xmask)
tl.store(out_ptr5 + (x2 + 128 * r1 + 2048 * x3), tmp34, xmask)
tl.store(out_ptr1 + x0, tmp11, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 128, 4, 4), (2048, 16, 4, 1))
assert_size_stride(primals_4, (128,), (1,))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (128,), (1,))
assert_size_stride(primals_9, (128,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16384, 9)](primals_1, buf0, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_0[grid(16384, 9)](primals_6, buf1, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf2 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128),
torch.float32)
triton_poi_fused_reflection_pad2d_1[grid(512, 36)](primals_3, buf2,
512, 36, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
buf3 = extern_kernels.convolution(buf2, buf0, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 128, 4, 4), (2048, 1, 512, 128))
buf4 = buf3
del buf3
triton_poi_fused_convolution_2[grid(8192)](buf4, primals_2, 8192,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf5 = empty_strided_cuda((512,), (1,), torch.float32)
triton_poi_fused_repeat_3[grid(512)](primals_4, buf5, 512, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_4
buf6 = empty_strided_cuda((512,), (1,), torch.float32)
triton_poi_fused_repeat_3[grid(512)](primals_5, buf6, 512, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_5
buf7 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch
.float32)
buf8 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch
.float32)
buf10 = buf8
del buf8
triton_per_fused__native_batch_norm_legit_4[grid(512)](buf10, buf4,
buf7, 512, 16, XBLOCK=8, num_warps=2, num_stages=1)
buf11 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128),
torch.float32)
triton_poi_fused_reflection_pad2d_relu_5[grid(18432)](buf4, buf7,
buf10, buf5, buf6, buf11, 18432, XBLOCK=256, num_warps=4,
num_stages=1)
buf12 = extern_kernels.convolution(buf11, buf1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 128, 4, 4), (2048, 1, 512, 128))
buf13 = buf12
del buf12
triton_poi_fused_convolution_2[grid(8192)](buf13, primals_7, 8192,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf14 = empty_strided_cuda((512,), (1,), torch.float32)
buf15 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf18 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf19 = empty_strided_cuda((4, 128, 4, 4), (2048, 16, 4, 1), torch.
float32)
buf20 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128),
torch.bool)
triton_per_fused__native_batch_norm_legit_add_relu_repeat_threshold_backward_6[
grid(512)](primals_8, buf13, primals_9, primals_3, buf14, buf15,
buf18, buf19, buf20, 512, 16, XBLOCK=8, num_warps=2, num_stages=1)
del primals_3
del primals_8
del primals_9
return (buf19, buf0, buf1, buf2, buf4, buf5, buf6, buf7, buf10, buf11,
buf13, buf14, reinterpret_tensor(buf18, (512,), (1,), 0), buf20,
reinterpret_tensor(buf15, (1, 512, 1, 1), (512, 1, 1, 1), 0))
class ResidualBlockNew(nn.Module):
"""
Vanilla convolutional residual block from seminal paper by He et al.
Use of instance normalization suggested by Ulyanov et al. in
https://arxiv.org/pdf/1607.08022.pdf%C2%A0%C2%A0%C2%A0%C2%A0.
"""
def __init__(self, filters=128):
super(ResidualBlockNew, self).__init__()
self.conv1 = nn.Conv2d(filters, filters, (3, 3), padding=(1, 1),
padding_mode='reflect')
self.in_norm1 = nn.InstanceNorm2d(filters, affine=True)
self.conv2 = nn.Conv2d(filters, filters, (3, 3), padding=(1, 1),
padding_mode='reflect')
self.in_norm2 = nn.InstanceNorm2d(filters, affine=True)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.in_norm1.weight
primals_5 = self.in_norm1.bias
primals_6 = self.conv2.weight
primals_7 = self.conv2.bias
primals_8 = self.in_norm2.weight
primals_9 = self.in_norm2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| rileypsmith/Fast-Style-Transfer | ResidualBlock | false | 4,196 | [
"MIT"
] | 0 | 8b2164f8bc6d63530f914610b6c5c5c1b0f4ffd5 | https://github.com/rileypsmith/Fast-Style-Transfer/tree/8b2164f8bc6d63530f914610b6c5c5c1b0f4ffd5 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""
Vanilla convolutional residual block from seminal paper by He et al.
Use of instance normalization suggested by Ulyanov et al. in
https://arxiv.org/pdf/1607.08022.pdf%C2%A0%C2%A0%C2%A0%C2%A0.
"""
def __init__(self, filters=128):
super().__init__()
self.conv1 = nn.Conv2d(filters, filters, (3, 3), padding=(1, 1),
padding_mode='reflect')
self.in_norm1 = nn.InstanceNorm2d(filters, affine=True)
self.conv2 = nn.Conv2d(filters, filters, (3, 3), padding=(1, 1),
padding_mode='reflect')
self.in_norm2 = nn.InstanceNorm2d(filters, affine=True)
def forward(self, x):
a = self.conv1(x)
b = self.in_norm1(a)
c = F.relu(b)
d = self.conv2(c)
e = self.in_norm2(d)
return F.relu(e + x)
def get_inputs():
return [torch.rand([4, 128, 4, 4])]
def get_init_inputs():
return []
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.