text
stringlengths 0
2.2M
|
---|
#ifdef TORCH_ENABLE_LLVM
|
LLVMCodeGen llvm_codegen(l.root_stmt(), {Input, Weight, Bias, Result});
|
llvm_codegen.call({input_buf, weight_buf, bias_buf, result_buf});
|
nnc_result = at::from_blob(result_buf.data(), {1, 16, 112, 112}, options);
|
ASSERT_TRUE(at::allclose(nnc_result, ref));
|
#endif
|
SimpleIREvaluator ir_eval(l.root_stmt(), {Input, Weight, Bias, Result});
|
ir_eval.call({input_buf, weight_buf, bias_buf, result_buf});
|
nnc_result = at::from_blob(result_buf.data(), {1, 16, 112, 112}, options);
|
ASSERT_TRUE(at::allclose(nnc_result, ref));
|
}
|
TEST(ExternalCall, Conv2d_nobias_noargs) {
|
BufHandle Input("Input", {1, 16, 112, 112}, kFloat);
|
BufHandle Weight("Weight", {16, 16, 1, 1}, kFloat);
|
BufHandle ResultBuf("Result", {1, 16, 112, 112}, kFloat);
|
Tensor Result = Tensor(
|
ResultBuf.node(),
|
ExternalCall::make(ResultBuf, "nnc_aten_conv2d", {Input, Weight}, {}));
|
LoopNest l({Result});
|
l.prepareForCodegen();
|
l.simplify();
|
auto options = at::TensorOptions()
|
.dtype(at::kFloat)
|
.layout(at::kStrided)
|
.device(at::kCPU)
|
.requires_grad(false);
|
at::Tensor input = at::ones({1, 16, 112, 112}, options) * 5.f;
|
at::Tensor weight = at::ones({16, 16, 1, 1}, options) * 6.f;
|
at::Tensor ref = at::conv2d(input, weight);
|
at::Tensor nnc_result;
|
std::vector<float> input_buf(1 * 16 * 112 * 112, 5.f);
|
std::vector<float> weight_buf(16 * 16 * 1 * 1, 6.f);
|
std::vector<float> result_buf(1 * 16 * 112 * 112, -1.f);
|
#ifdef TORCH_ENABLE_LLVM
|
LLVMCodeGen llvm_codegen(l.root_stmt(), {Input, Weight, Result});
|
llvm_codegen.call({input_buf, weight_buf, result_buf});
|
nnc_result = at::from_blob(result_buf.data(), {1, 16, 112, 112}, options);
|
ASSERT_TRUE(at::allclose(nnc_result, ref));
|
#endif
|
SimpleIREvaluator ir_eval(l.root_stmt(), {Input, Weight, Result});
|
ir_eval.call({input_buf, weight_buf, result_buf});
|
nnc_result = at::from_blob(result_buf.data(), {1, 16, 112, 112}, options);
|
ASSERT_TRUE(at::allclose(nnc_result, ref));
|
}
|
TEST(ExternalCall, Addmm_float) {
|
BufHandle Input("Input", {100, 300}, kFloat);
|
BufHandle Mat1("Mat1", {100, 200}, kFloat);
|
BufHandle Mat2("Mat2", {200, 300}, kFloat);
|
BufHandle ResultBuf("Result", {100, 300}, kFloat);
|
int64_t beta = 2;
|
int64_t alpha = 2;
|
Tensor Result = Tensor(
|
ResultBuf.node(),
|
ExternalCall::make(
|
ResultBuf, "nnc_aten_addmm", {Input, Mat1, Mat2}, {beta, alpha}));
|
LoopNest l({Result});
|
l.prepareForCodegen();
|
l.simplify();
|
auto options = at::TensorOptions()
|
.dtype(at::kFloat)
|
.layout(at::kStrided)
|
.device(at::kCPU)
|
.requires_grad(false);
|
at::Tensor input = at::ones({100, 300}, options) * 5.f;
|
at::Tensor mat1 = at::ones({100, 200}, options) * 6.f;
|
at::Tensor mat2 = at::ones({200, 300}, options) * 11.f;
|
at::Tensor ref = at::addmm(input, mat1, mat2, beta, alpha);
|
at::Tensor nnc_result;
|
std::vector<float> input_buf(100 * 300, 5.f);
|
std::vector<float> mat1_buf(100 * 200, 6.f);
|
std::vector<float> mat2_buf(200 * 300, 11.f);
|
std::vector<float> result_buf(100 * 300, -1.f);
|
#ifdef TORCH_ENABLE_LLVM
|
LLVMCodeGen llvm_codegen(l.root_stmt(), {Input, Mat1, Mat2, Result});
|
llvm_codegen.call({input_buf, mat1_buf, mat2_buf, result_buf});
|
nnc_result = at::from_blob(result_buf.data(), {100, 300}, options);
|
ASSERT_TRUE(at::allclose(nnc_result, ref));
|
#endif
|
SimpleIREvaluator ir_eval(l.root_stmt(), {Input, Mat1, Mat2, Result});
|
ir_eval.call({input_buf, mat1_buf, mat2_buf, result_buf});
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.