text
stringlengths 0
2.2M
|
---|
BufHandle ResultBuf("Result", {1, 16, 112, 112}, kFloat);
|
int64_t stride = 2;
|
int64_t pad = 1;
|
int64_t dilation = 1;
|
int64_t groups = 1;
|
Tensor Result = Tensor(
|
ResultBuf.node(),
|
ExternalCall::make(
|
ResultBuf,
|
"nnc_aten_conv2d",
|
{Input, Weight, Bias},
|
{stride, stride, pad, pad, dilation, dilation, groups}));
|
LoopNest l({Result});
|
l.prepareForCodegen();
|
l.simplify();
|
auto options = at::TensorOptions()
|
.dtype(at::kFloat)
|
.layout(at::kStrided)
|
.device(at::kCPU)
|
.requires_grad(false);
|
at::Tensor input = at::ones({1, 3, 224, 224}, options) * 5.f;
|
at::Tensor weight = at::ones({16, 3, 3, 3}, options) * 6.f;
|
at::Tensor bias = at::ones({16}, options) * 11.f;
|
at::Tensor ref = at::conv2d(
|
input,
|
weight,
|
bias,
|
{stride, stride},
|
{pad, pad},
|
{dilation, dilation},
|
groups);
|
at::Tensor nnc_result;
|
std::vector<float> input_buf(1 * 3 * 224 * 224, 5.f);
|
std::vector<float> weight_buf(16 * 3 * 3 * 3, 6.f);
|
std::vector<float> bias_buf(16, 11.f);
|
std::vector<float> result_buf(1 * 16 * 112 * 112, -1.f);
|
#ifdef TORCH_ENABLE_LLVM
|
LLVMCodeGen llvm_codegen(l.root_stmt(), {Input, Weight, Bias, Result});
|
llvm_codegen.call({input_buf, weight_buf, bias_buf, result_buf});
|
nnc_result = at::from_blob(result_buf.data(), {1, 16, 112, 112}, options);
|
ASSERT_TRUE(at::allclose(nnc_result, ref));
|
#endif
|
SimpleIREvaluator ir_eval(l.root_stmt(), {Input, Weight, Bias, Result});
|
ir_eval.call({input_buf, weight_buf, bias_buf, result_buf});
|
nnc_result = at::from_blob(result_buf.data(), {1, 16, 112, 112}, options);
|
ASSERT_TRUE(at::allclose(nnc_result, ref));
|
}
|
TEST(ExternalCall, Conv2d_int) {
|
// A similar test, but now using kInt tensors
|
BufHandle Input("Input", {1, 3, 224, 224}, kInt);
|
BufHandle Weight("Weight", {16, 3, 3, 3}, kInt);
|
BufHandle Bias("Bias", {16}, kInt);
|
BufHandle ResultBuf("Result", {1, 16, 112, 112}, kInt);
|
int64_t stride = 2;
|
int64_t pad = 1;
|
int64_t dilation = 1;
|
int64_t groups = 1;
|
Tensor Result = Tensor(
|
ResultBuf.node(),
|
ExternalCall::make(
|
ResultBuf,
|
"nnc_aten_conv2d",
|
{Input, Weight, Bias},
|
{stride, stride, pad, pad, dilation, dilation, groups}));
|
LoopNest l({Result});
|
l.prepareForCodegen();
|
l.simplify();
|
auto options = at::TensorOptions()
|
.dtype(at::kInt)
|
.layout(at::kStrided)
|
.device(at::kCPU)
|
.requires_grad(false);
|
at::Tensor input = at::ones({1, 3, 224, 224}, options) * 5;
|
at::Tensor weight = at::ones({16, 3, 3, 3}, options) * 6;
|
at::Tensor bias = at::ones({16}, options) * 11;
|
at::Tensor ref = at::conv2d(
|
input,
|
weight,
|
bias,
|
{stride, stride},
|
{pad, pad},
|
{dilation, dilation},
|
groups);
|
at::Tensor nnc_result;
|
std::vector<int32_t> input_buf(1 * 3 * 224 * 224, 5);
|
std::vector<int32_t> weight_buf(16 * 3 * 3 * 3, 6);
|
std::vector<int32_t> bias_buf(16, 11);
|
std::vector<int32_t> result_buf(1 * 16 * 112 * 112, -1);
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.