text
stringlengths 0
2.2M
|
---|
TEST(ExternalCall, Conv1d_int) {
|
// A similar test, but now using kInt tensors
|
BufHandle Input("Input", {1, 100, 115}, kInt);
|
BufHandle Weight("Weight", {100, 1, 7}, kInt);
|
BufHandle Bias("Bias", {100}, kInt);
|
BufHandle ResultBuf("Result", {1, 100, 115}, kInt);
|
int64_t stride = 1;
|
int64_t pad = 3;
|
int64_t dilation = 1;
|
int64_t groups = 100;
|
Tensor Result = Tensor(
|
ResultBuf.node(),
|
ExternalCall::make(
|
ResultBuf,
|
"nnc_aten_conv1d",
|
{Input, Weight, Bias},
|
{stride, pad, dilation, groups}));
|
LoopNest l({Result});
|
l.prepareForCodegen();
|
l.simplify();
|
auto options = at::TensorOptions()
|
.dtype(at::kInt)
|
.layout(at::kStrided)
|
.device(at::kCPU)
|
.requires_grad(false);
|
at::Tensor input = at::ones({1, 100, 115}, options) * 5;
|
at::Tensor weight = at::ones({100, 1, 7}, options) * 6;
|
at::Tensor bias = at::ones({100}, options) * 11;
|
at::Tensor ref =
|
at::conv1d(input, weight, bias, {stride}, {pad}, {dilation}, groups);
|
at::Tensor nnc_result;
|
std::vector<int32_t> input_buf(1 * 100 * 115, 5);
|
std::vector<int32_t> weight_buf(100 * 1 * 7, 6);
|
std::vector<int32_t> bias_buf(100, 11);
|
std::vector<int32_t> result_buf(1 * 100 * 115, -1);
|
#ifdef TORCH_ENABLE_LLVM
|
LLVMCodeGen llvm_codegen(l.root_stmt(), {Input, Weight, Bias, Result});
|
llvm_codegen.call({input_buf, weight_buf, bias_buf, result_buf});
|
nnc_result = at::from_blob(result_buf.data(), {1, 100, 115}, options);
|
ASSERT_TRUE(at::allclose(nnc_result, ref));
|
#endif
|
SimpleIREvaluator ir_eval(l.root_stmt(), {Input, Weight, Bias, Result});
|
ir_eval.call({input_buf, weight_buf, bias_buf, result_buf});
|
nnc_result = at::from_blob(result_buf.data(), {1, 100, 115}, options);
|
ASSERT_TRUE(at::allclose(nnc_result, ref));
|
}
|
TEST(ExternalCall, Conv1d_nobias_noargs) {
|
BufHandle Input("Input", {1, 1, 115}, kFloat);
|
BufHandle Weight("Weight", {10, 1, 7}, kFloat);
|
BufHandle ResultBuf("Result", {1, 10, 109}, kFloat);
|
Tensor Result = Tensor(
|
ResultBuf.node(),
|
ExternalCall::make(ResultBuf, "nnc_aten_conv1d", {Input, Weight}, {}));
|
LoopNest l({Result});
|
l.prepareForCodegen();
|
l.simplify();
|
auto options = at::TensorOptions()
|
.dtype(at::kFloat)
|
.layout(at::kStrided)
|
.device(at::kCPU)
|
.requires_grad(false);
|
at::Tensor input = at::ones({1, 1, 115}, options) * 5.f;
|
at::Tensor weight = at::ones({10, 1, 7}, options) * 6.f;
|
at::Tensor ref = at::conv1d(input, weight);
|
at::Tensor nnc_result;
|
std::vector<float> input_buf(1 * 1 * 115, 5.f);
|
std::vector<float> weight_buf(10 * 1 * 7, 6.f);
|
std::vector<float> result_buf(1 * 10 * 109, -1.f);
|
#ifdef TORCH_ENABLE_LLVM
|
LLVMCodeGen llvm_codegen(l.root_stmt(), {Input, Weight, Result});
|
llvm_codegen.call({input_buf, weight_buf, result_buf});
|
nnc_result = at::from_blob(result_buf.data(), {1, 10, 109}, options);
|
ASSERT_TRUE(at::allclose(nnc_result, ref));
|
#endif
|
SimpleIREvaluator ir_eval(l.root_stmt(), {Input, Weight, Result});
|
ir_eval.call({input_buf, weight_buf, result_buf});
|
nnc_result = at::from_blob(result_buf.data(), {1, 10, 109}, options);
|
ASSERT_TRUE(at::allclose(nnc_result, ref));
|
}
|
TEST(ExternalCall, Conv2d_float) {
|
BufHandle Input("Input", {1, 3, 224, 224}, kFloat);
|
BufHandle Weight("Weight", {16, 3, 3, 3}, kFloat);
|
BufHandle Bias("Bias", {16}, kFloat);
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.