file_path
stringlengths 7
180
| content
stringlengths 0
811k
| repo
stringclasses 11
values |
---|---|---|
python/tvm/relay/transform/infer_layout_utils.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, unused-argument, missing-docstring, unused-import
"""
Relay infer correct layout pass.
"""
import tvm
from tvm.runtime import Object
from . import _ffi_api
@tvm._ffi.register_object("relay._transform.InferCorrectLayoutOutput")
class InferCorrectLayoutOutput(Object):
"""An output structure to hold results from FInferCorrectLayout calls."""
def __init__(self, input_layouts, output_layouts, new_attrs):
self.__init_handle_by_constructor__(
_ffi_api.InferCorrectLayoutOutput, input_layouts, output_layouts, new_attrs
)
| https://github.com/zk-ml/tachikoma |
python/tvm/relay/transform/memory_plan.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=no-else-return,invalid-name,len-as-condition,too-many-nested-blocks
"""
A pass for manifesting explicit memory allocations.
"""
from typing import Optional, Dict, List, Tuple
from collections import defaultdict
import attr
from ..expr_functor import ExprMutator
from .. import op, expr
from ..function import Function
from ... import register_func, ir, cpu
from ..._ffi.runtime_ctypes import Device
from ... import IRModule
from .. import transform
from . import function_pass
def is_primitive(call):
return (
hasattr(call, "op")
and hasattr(call.op, "attrs")
and hasattr(call.op.attrs, "Primitive")
and int(call.op.attrs.Primitive) == 1
)
@attr.s(auto_attribs=True)
class Region:
"""
Represents a control-free allocation region.
The below pass groups sets of allocations into regions,
then replaces the region with a single allocation.
"""
var: expr.Var
size: expr.Expr
alignment: Optional[expr.Expr]
dtype: Optional[str]
device: Device
offsets: Dict[expr.Var, Tuple[expr.Expr, expr.Expr]]
@staticmethod
def empty(region_no):
zero = expr.const(0, dtype="int64")
assert len(zero.data.shape) == 0
region_var = expr.var(f"region{region_no}")
return Region(region_var, zero, None, None, None, {})
def grow(
self,
old_storage: expr.Var,
size: expr.Expr,
alignment: expr.Expr,
dev: Device,
dtype: str,
) -> None:
"""Grow the region by a given allocation as well as track the old storage
for later rewriting the program to use the allocated region.
"""
if self.dtype:
assert self.dtype == dtype, "must have matching dtypes in a region"
else:
self.dtype = dtype
if self.alignment:
assert ir.structural_equal(
self.alignment, alignment
), "must have matching alignments in a region"
else:
self.alignment = alignment
if self.device:
assert (
self.device.device_type == dev.device_type
and self.device.device_id == dev.device_id
), "must have matching device"
else:
assert dev
self.device = dev
new_size = (
(size + self.alignment - expr.const(1, "int64")) / self.alignment * self.alignment
)
# Record the offset at which we allocate the storage.
offset_var: expr.RelayExpr = expr.var(f"offset{len(self.offsets)}")
self.offsets[old_storage] = (offset_var, self.size)
self.size = self.size + new_size
def offset_for(self, alloc: expr.Expr) -> expr.Expr:
return self.offsets.get(alloc, [None])[0]
def to_expr(self, body: expr.Expr) -> expr.Expr:
"""
Generate the prelude code for a region, wrapping the body in it.
The prelude contains the single allocation for a region, and
all offset computations.
"""
if self.device is None:
self.device = cpu(0)
# Generate bindings for each and every size computation
# we must do this to maintain ANF.
bindings: List[Tuple[expr.Expr, expr.Expr]] = []
# First compute the total size.
total_size = expr.var(f"total_size{hash(body)}")
bindings.append((total_size, self.size))
# Allocate the entire region with a single call.
alloc = op.memory.alloc_storage(total_size, self.alignment, self.device, self.dtype)
bindings.append((self.var, alloc))
# Generate variables which contain all of the offset math.
# Ensure we constant evaluate away all the math here.
#
# In theory we can support dynamic offsets but this
# requires another round of memory planning and
# potentially colaescing.
for alloc in self.offsets:
(var, offset) = self.offsets[alloc]
bindings.append((var, offset))
body = mk_let(bindings, body)
return body
def iterative_let(let, each_binding, kont):
bindings = []
while isinstance(let, expr.Let):
lhs = let.var
rhs = let.value
bindings.append(each_binding(lhs, rhs))
let = let.body
return kont(bindings, let)
def mk_let(bindings, body):
for var, value in reversed(bindings):
assert var
assert value
assert body
body = expr.Let(var, value, body)
return body
def const_eval(mod, exp):
mod = IRModule.from_expr(exp, type_defs=mod.type_definitions)
mod = transform.FoldConstant()(mod)
return mod["main"]
class StorageCoalesce(ExprMutator):
"""
A pass for coalescing allocations into region/arena allocations.
After this pass each allocation comes from the same backing storage,
but will never overlap even in time, i.e. the allocations are just
packed into a contiguous block of memory.
A secondary part of memory planning will perform liveness analysis to
overlap these in time, i.e when an early tensor dies we will attempt
to reuse its slot.
"""
def __init__(self):
super().__init__()
self.regions = []
def enter_scope(self) -> None:
region_no = len(self.regions)
self.regions.append(defaultdict(lambda: Region.empty(region_no)))
def exit_scope(self, body: expr.Expr) -> expr.Expr:
"""When leaving a scope build a region allocation for the scope."""
dtype_region = self.regions.pop()
for _, region in reversed(list(dtype_region.items())):
if len(region.offsets) != 0:
body = region.to_expr(body)
return body
def current_region(self, dtype) -> Region:
current_scope = self.regions[-1]
return current_scope[dtype]
def new_region_and_offset(self, old_storage):
for dtype_region in reversed(self.regions):
for dtype in dtype_region:
region = dtype_region[dtype]
offset = region.offset_for(old_storage)
if offset:
return region, offset
raise Exception("could not find offset in any valid region")
def visit_function(self, fn):
"""Transform the function body to use region allocation scheme."""
func = fn
if getattr(func.attrs, "Primitive", 0) == 1:
return super().visit_function(func)
else:
self.enter_scope()
body = self.visit(func.body)
body = self.exit_scope(body)
return Function(
func.params,
body,
func.ret_type,
func.type_params,
func.attrs,
)
def visit_if(self, ite):
self.enter_scope()
true_branch = self.visit(ite.true_branch)
true_branch = self.exit_scope(true_branch)
self.enter_scope()
false_branch = self.visit(ite.false_branch)
false_branch = self.exit_scope(false_branch)
return expr.If(ite.cond, true_branch, false_branch)
def mk_let(self, dynamic_regions):
"""Let bind the dynamic regions"""
def _mk_let(bindings, body):
for var, value in reversed(bindings):
assert var
assert value is not None
assert body
body = expr.Let(var, value, body)
if var in dynamic_regions:
body = self.exit_scope(body)
return body
return _mk_let
def visit_let(self, let):
dynamic_regions = []
def _each_binding(lhs, rhs):
if isinstance(rhs, expr.Call) and rhs.op == op.op.get("memory.alloc_storage"):
return self.process_alloc_storage(dynamic_regions, lhs, rhs)
elif isinstance(rhs, expr.Call) and rhs.op == op.op.get("memory.alloc_tensor"):
return self.process_alloc_tensor(lhs, rhs)
else:
return lhs, rhs
result = iterative_let(let, _each_binding, self.mk_let(dynamic_regions))
assert result
return result
def process_alloc_storage(self, dynamic_regions, lhs, call):
"""Process alloc_storage"""
size, alignment = call.args
dtype = call.attrs.dtype
dev = Device(call.attrs.device_type, call.attrs.device_id)
if not isinstance(size, expr.Constant):
self.enter_scope()
dynamic_regions.append(lhs)
else:
# A new scope is created when entering a new region with different
# device device.
region = self.current_region(dtype)
if region.device and region.device.device_type != dev.device_type:
self.enter_scope()
dynamic_regions.append(lhs)
region = self.current_region(dtype)
region.grow(lhs, size, alignment, dev, dtype)
return lhs, region.var
def process_alloc_tensor(self, lhs, call):
"""Process alloc tensor. Region and offset are computed"""
storage, old_offset, shape = call.args
region, offset = self.new_region_and_offset(storage)
assert old_offset.data.numpy().item() == 0, "no offsets should yet be allocated"
return (
lhs,
expr.Call(call.op, [region.var, offset, shape], call.attrs),
)
class LiftConst(ExprMutator):
"""An internal pass to lift constants to the top level of function."""
def __init__(self):
self.i = 0
self.constants = []
self.top_level = True
super().__init__()
def visit_constant(self, const):
var = expr.var(f"const{self.i}")
self.i += 1
self.constants.append((var, const))
return var
def visit_function(self, fn):
if int(getattr(fn.attrs, "Primitive", 0)) == 1:
return fn
outer_constant = self.constants
self.constants = []
# Populates self.constants.
body = self.visit(fn.body)
body = mk_let(self.constants, body)
self.constants = outer_constant
return Function(fn.params, body, fn.ret_type, fn.type_params, fn.attrs)
def visit_let(self, let):
bindings = []
while isinstance(let, expr.Let):
new_var = self.visit(let.var)
new_val = self.visit(let.value)
bindings.append((new_var, new_val))
let = let.body
new_body = self.visit(let)
return mk_let(bindings, new_body)
@function_pass(opt_level=0)
class MemoryPlan:
"""An explicit pass wrapper around StorageCoalesce."""
def transform_function(self, func, mod, _):
mod.import_from_std("core.rly")
sc = StorageCoalesce()
func = sc.visit(func)
return func
register_func("relay.transform.MemoryPlan", MemoryPlan)
@function_pass(opt_level=0)
class LiftConstants:
"""An explicit pass wrapper around LiftConst."""
def transform_function(self, func, mod, _):
mod.import_from_std("core.rly")
func = LiftConst().visit(func)
return func
register_func("relay.transform.LiftConstants", LiftConstants)
| https://github.com/zk-ml/tachikoma |
python/tvm/relay/transform/mixed_precision.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=line-too-long,unused-argument
"""Default behavior for ops in mixed_precision pass. Import this file to use."""
from typing import List
from tvm.relay.op import register_mixed_precision_conversion
# MIXED_PRECISION_ALWAYS ops should always be done in lower precision due to the speed and memory
# savings. MIXED_PRECISION_FOLLOW ops can be done in lower precision but don't have speedups to
# justify a cast. MIXED_PRECISION_NEVER colored ops should not be done in lower precision due to
# numerical reasons.
MIXED_PRECISION_ALWAYS = 0
MIXED_PRECISION_FOLLOW = 1
MIXED_PRECISION_NEVER = 2
# Default lists inspired from TF's classifications:
# github.com/tensorflow/tensorflow/blob/v2.5.0/tensorflow/core/grappler/optimizers/auto_mixed_precision_lists.h
# They have a bias toward Nvidia Tensor Cores so modify lists per your hardware choice.
DEFAULT_ALWAYS_LIST = [
"nn.conv1d",
"nn.conv2d",
"nn.conv3d",
"nn.conv1d_transpose",
"nn.conv2d_transpose",
"nn.conv3d_transpose",
"nn.dense",
"nn.batch_matmul",
]
DEFAULT_FOLLOW_LIST = [
# These ops add new data or change shape
"nn.pad",
"nn.batch_flatten",
"concatenate",
"zeros",
"split",
"squeeze",
"transpose",
"expand_dims",
"reshape",
"dyn.reshape",
"broadcast_to_like",
"dyn.broadcast_to",
"strided_slice",
"dyn.strided_slice",
"take",
"argwhere",
"where",
"tile",
"dyn.tile",
"scatter",
"full",
"dyn.full",
"nn.depth_to_space",
# Comparison
"less",
"greater",
"less_equal",
"greater_equal",
# By definition copy and cast will depend on inputs for output.
"copy",
"cast",
"cast_like",
# Simple arithmetic
"add",
"subtract",
"multiply",
"divide",
"nn.bias_add",
"nn.batch_norm",
"sqrt",
"shape_of",
# Simple activations
"max",
"min",
"maximum",
"minimum",
"argmax",
"argmin",
"nn.relu",
"nn.leaky_relu",
"nn.prelu",
"nn.dropout",
# Complicated activations which saturate in a narrow range
"sigmoid",
"tanh",
"fast_tanh", # Some coefficients outside of representable range, but probably ok
"fast_exp",
"fast_erf",
"clip", # Usually safe, may result in oddity if clip greater than fp16 range
# Pooling operations
"nn.max_pool1d",
"nn.max_pool2d",
"nn.max_pool3d",
"nn.avg_pool1d",
"nn.avg_pool2d",
"nn.avg_pool3d",
# "nn.global_max_pool1d", # does not exist yet
"nn.global_max_pool2d",
# "nn.global_max_pool3d", # does not exist yet
"nn.adaptive_max_pool1d",
"nn.adaptive_max_pool2d",
"nn.adaptive_max_pool3d",
"image.resize2d",
]
DEFAULT_NEVER_LIST = [
# In general if |f(x)| >> |x| for expected inputs then put the op here.
"exp",
"power",
"nn.cross_entropy",
"nn.cross_entropy_with_logits",
"nn.softmax",
"nn.l2_normalize",
# Error function doesn't seem to be able to be lowered into fp16 version in llvm.
# Move to follow list when it does.
"erf",
# Do not allow arange arguments (begin/end) to be fp16. "end" can be a big fp32 number
# not representable in fp16.
"arange",
# Ops that could involve a large summation are not allowed in fp16.
"nn.global_avg_pool2d",
"nn.adaptive_avg_pool1d",
"nn.adaptive_avg_pool2d",
"nn.adaptive_avg_pool3d",
"sum",
"mean",
"variance",
"nn.layer_norm",
]
# Returns a decorator which registers for every given op, the function under FTVMMixedPrecisionConversionType
def register_func_to_op_list(list_ops: List):
def decorator(func):
for op_name in list_ops:
register_mixed_precision_conversion(op_name, func=func)
return decorator
def get_generic_out_dtypes(call_node: "relay.Call", mixed_precision_type: str) -> List[str]:
"""A function which returns output dtypes in a way which works for most ops.
Parameters
---------
call_node: relay.Call
The call node containing the op.
mixed_precision_type: str
The target type to run the operation in.
Returns
-------
output_dtypes : [str, str]
A list of two strings. The first represents the datatype used for accumulation
in the operation. The second represents the actual output datatype.
"""
# Assume support accumulation dtypes <---> has out_dtype attr.
# This is because there is no better way right now to tell which ops support accumulating
# at different data types.
# Some discussion here about making this better is here:
# https://discuss.tvm.apache.org/t/rfc-relay-fp32-fp16-model-support/9994/4?u=andrewzhaoluo
if hasattr(call_node.attrs, "out_dtype"):
# TODO (AndrewZhaoLuo): evaluate consistent support for mixed_type accumulators
# return ["float32", mixed_precision_type]
return [mixed_precision_type, mixed_precision_type]
# [accumulation_dtype, output_dtype] for the operations
return [mixed_precision_type, mixed_precision_type]
# Functions for FTVMMixedPrecisionConversionType which
# Take in CallNodes and a DType and returns a conversion type,
# an accumulation dtype, and an output_dtype.
@register_func_to_op_list(list_ops=DEFAULT_ALWAYS_LIST)
def generic_always_op(call_node: "relay.Call", mixed_precision_type: str) -> List:
return [MIXED_PRECISION_ALWAYS] + get_generic_out_dtypes(call_node, mixed_precision_type)
@register_func_to_op_list(list_ops=DEFAULT_FOLLOW_LIST)
def generic_follow_op(call_node: "relay.Call", mixed_precision_type: str) -> List:
return [MIXED_PRECISION_FOLLOW] + get_generic_out_dtypes(call_node, mixed_precision_type)
@register_func_to_op_list(list_ops=DEFAULT_NEVER_LIST)
def generic_never_op(call_node: "relay.Call", mixed_precision_type: str) -> List:
return [MIXED_PRECISION_NEVER] + get_generic_out_dtypes(call_node, mixed_precision_type)
| https://github.com/zk-ml/tachikoma |
python/tvm/relay/transform/recast.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Relay type recasting pass"""
import tvm
from tvm import relay
from tvm.ir import IRModule
from .transform import InferType
from ..analysis import count_layers
from ..expr_functor import ExprMutator, Call
class RecastMutator(ExprMutator):
"""Cast operations to the target type."""
def __init__(self, dtype, out_dtype, valid_ops, valid_op_count, skip_layers):
self.dtype = dtype
self.out_dtype = out_dtype
self.depth_count = 0
self.valid_ops = [relay.op.get(op) for op in valid_ops]
self.valid_op_count = valid_op_count
self.skip_layers = skip_layers
# Convert negative indices to positive ones.
for i, layer in enumerate(skip_layers):
if layer < 0:
skip_layers[i] = self.valid_op_count + layer
super().__init__()
def visit_call(self, call):
# Keep track of our current depth and layer count
# so we can know whether to skip this layer or not.
current_depth = self.depth_count
current_layer = self.valid_op_count - current_depth - 1
if call.op in self.valid_ops:
self.depth_count += 1
# Visit current call operation
new_fn = self.visit(call.op)
# Visit current arguments
args = []
for arg in call.args:
args.append(self.visit(arg))
self.depth_count = current_depth
# Downcast this op if its the correct type and not skipped.
if call.op in self.valid_ops and current_layer not in self.skip_layers:
# Recast inputs to specified type.
if call.op == relay.op.get("concatenate"):
if len(call.args) != 1 or not isinstance(call.args[0], relay.expr.Tuple):
return Call(new_fn, args, call.attrs)
tuple_args = [self.visit(arg) for arg in call.args[0].fields]
new_args = list()
for arg in tuple_args:
new_args.append(relay.cast(arg, dtype=self.dtype))
new_args = [relay.expr.Tuple(new_args)]
else:
args = [self.visit(arg) for arg in call.args]
new_args = list()
for arg in args:
new_args.append(relay.cast(arg, dtype=self.dtype))
# If out_dtype is in the attributes, we need to update it.
orig_dtype = None
if call.attrs is not None and "out_dtype" in call.attrs.keys():
new_attr_dict = {}
for attr in call.attrs.keys():
attr_value = call.attrs[attr]
if isinstance(attr_value, tvm.ir.container.Array):
attr_value = tuple(attr_value)
new_attr_dict[str(attr)] = attr_value
new_attr_dict["out_dtype"] = self.out_dtype
attr_type = str(call.attrs).split("(")[0]
new_attrs = tvm.ir.make_node(attr_type, **new_attr_dict)
if call.attrs["out_dtype"] != "":
orig_dtype = call.attrs["out_dtype"]
else:
new_attrs = call.attrs
if orig_dtype is None:
# Perform type inference to determine the original type.
new_mod = IRModule.from_expr(call)
new_mod = InferType()(new_mod)
checked_arg = new_mod["main"].body
orig_dtype = checked_arg.checked_type.dtype
# Recast the output for compatibility with other graph operations.
return relay.cast(Call(new_fn, new_args, new_attrs), orig_dtype)
# Otherwise return the unchanged call.
return Call(new_fn, args, call.attrs)
def recast(expr, dtype, out_dtype, ops=None, skip_layers=None):
"""Convert the types of operations in a graph to a new value.
Note that this is primarily useful for testing performance of individual
operations at the new datatype. In a real setting, this pass will
almost certainly do a poor job converting from one datatype to another
as it just applies hard casting. For example, when recasting from float
to integer, many small values will simply be set to 0. Although this will
allow autotuning and benchmarking to produce proper timings at the new
data type, the output of the model will of course be heavily impacted.
Parameters
---------
expr: tvm.relay.Expr, tvm.relay.Function, or tvm.ir.IRModule
The original function that will have its type changed.
dtype: str
The target type to cast to.
out_dtype: str
The output type to cast to.
ops: List[str]
A list of operations that should have their type changed,
others will be left as is.
skip_layers: List[int]
A list of integers indicating operations that should
not have their type changed, counted starting with the
first valid operation encountered. Negative indices are
allowed and indicate starting at the last layer.
Returns
-------
output_expr : tvm.relay.Expr, tvm.relay.Function, or tvm.ir.IRModule
The graph after recasting to the specified datatype.
"""
return_mod = False
if isinstance(expr, tvm.ir.IRModule):
expr = expr["main"]
return_mod = True
if ops is None:
ops = ["nn.conv2d"]
if skip_layers is None:
skip_layers = []
layer_depth = count_layers(expr, ops)
recast_pass = RecastMutator(dtype, out_dtype, ops, layer_depth, skip_layers)
expr = recast_pass.visit(expr)
if return_mod:
return tvm.IRModule.from_expr(expr)
return expr
| https://github.com/zk-ml/tachikoma |
python/tvm/relay/transform/transform.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, unused-argument, missing-docstring, unused-import
"""
Relay pass transformation infrastructure.
"""
import functools
import inspect
import types
import warnings
import tvm.ir
from tvm import relay, te
from tvm.runtime import ndarray as _nd
from ..backend.utils import mangle_module_name
from . import _ffi_api
def build_config(opt_level=2, required_pass=None, disabled_pass=None, trace=None):
"""Configure the build behavior by setting config variables. This function
will be deprecated in TVM v0.7. Instead, we should directly use
tvm.transform.PassContext.
Parameters
----------
opt_level: int, optional
Optimization level. The optimization pass name and level are as the
following:
.. code-block:: python
OPT_PASS_LEVEL = {
"SimplifyInference": 0,
"OpFusion": 1,
"FoldConstant": 2,
"FoldScaleAxis": 3,
"AlterOpLayout": 3,
"CanonicalizeOps": 3,
"CanonicalizeCast": 3,
"EliminateCommonSubexpr": 3,
"CombineParallelConv2D": 4,
"CombineParallelDense": 4,
"CombineParallelBatchMatmul": 4,
"FastMath": 4
}
required_pass: set of str, optional
Optimization passes that are required regardless of optimization level.
disabled_pass: set of str, optional
Optimization passes to be disabled during optimization.
trace: Callable[[IRModule, PassInfo, bool], None]
A tracing function for debugging or introspection.
Returns
-------
pass_context: PassContext
The pass context for optimizations.
"""
warnings.warn(
"relay.build_config will be deprecated. Please use \
tvm.transform.PassContext directly",
DeprecationWarning,
)
return tvm.transform.PassContext(opt_level, required_pass, disabled_pass, trace)
@tvm._ffi.register_object("relay.FunctionPass")
class FunctionPass(tvm.ir.transform.Pass):
"""A pass that works on each tvm.relay.Function in a module. A function
pass class should be created through `function_pass`.
"""
def InferType():
"""Infer the type of an expr.
Returns
-------
ret : tvm.transform.Pass
The registered type inference pass.
"""
return _ffi_api.InferType()
def InferTypeLocal(expr):
"""Infer the type of a single expr, reusing type information to do so.
This populates the checked_type field in expr. We assume existing type information
in the graph is correct!
Parameters
----------
expr: relay.Expr
The expression we want to know the type of
Returns
-------
type: relay.Type
The type of the expression
"""
return _ffi_api.InferTypeLocal(expr)
def FoldScaleAxis():
"""Fold the scaling of axis into weights of conv2d/dense. This pass will
invoke both forward and backward scale folding.
Returns
-------
ret : tvm.transform.Pass
The registered pass to fold expressions.
Note
----
Internally, we will call backward_fold_scale_axis before using
forward_fold_scale_axis as backward folding targets the common conv->bn
pattern.
"""
return _ffi_api.FoldScaleAxis()
def BackwardFoldScaleAxis():
"""Backward fold axis scaling into weights of conv2d/dense.
Returns
-------
ret : tvm.transform.Pass
The registered pass to backward fold expressions.
Note
----
It is recommended to call backward_fold_scale_axis
before using forward_fold_scale_axis as backward folding targets the common
conv->bn pattern.
"""
return _ffi_api.BackwardFoldScaleAxis()
def RemoveUnusedFunctions(entry_functions=None):
"""Remove unused global relay functions in a relay module.
Parameters
----------
entry_functions: list[string]
The set of entry functions to start from.
Returns
-------
ret : tvm.transform.Pass
The registered pass to remove unused functions.
"""
if entry_functions is None:
entry_functions = ["main"]
return _ffi_api.RemoveUnusedFunctions(entry_functions)
def ForwardFoldScaleAxis():
"""Fold the scaling of axis into weights of conv2d/dense.
Returns
-------
ret : tvm.transform.Pass
The registered pass to forward fold expressions.
Note
----
It is recommended to call backward_fold_scale_axis
before using forward_fold_scale_axis, as backward folding targets the
common conv->bn pattern.
"""
return _ffi_api.ForwardFoldScaleAxis()
def SimplifyInference():
"""Simplify the data-flow graph for inference phase. An simplified expression
which is semantically equal to the input expression will be returned.
Note that batch norms will only be simplified if their result is indexed at
tuple index 0.
Returns
-------
ret: tvm.transform.Pass
The registered pass to perform operator simplification.
"""
return _ffi_api.SimplifyInference()
def FastMath():
"""Converts the expensive non linear functions to their fast but approximate counterparts.
Returns
-------
ret: tvm.transform.Pass
The registered pass to perform fast math operations.
"""
return _ffi_api.FastMath()
def CanonicalizeOps():
"""Canonicalize special operators to basic operators.
This can simplify followed analysis, e.g. expanding bias_add to
expand_dims and broadcast_add.
Returns
-------
ret: tvm.transform.Pass
The registered pass performing the canonicalization.
"""
return _ffi_api.CanonicalizeOps()
def DeadCodeElimination(inline_once=False, ignore_impurity=False):
"""Remove expressions that do not have any users (dead code).
Parameters
----------
inline_once: Optional[Bool]
Whether to inline a binding that is referenced exactly once.
ignore_impurity: Optional[Bool]
Whether to ignore possible side-effects in let-bound expressions.
Returns
-------
ret: tvm.transform.Pass
The registered pass that eliminates the dead code in a Relay program.
"""
return _ffi_api.DeadCodeElimination(inline_once, ignore_impurity)
def LazyGradientInit():
"""Reduces memory usage of gradient tensors
Parameters
----------
Returns
-------
ret: tvm.transform.Pass
A pass which delays and/or reduces memory allocation,
by lazily allocating 0 or one filled tensors.
"""
return _ffi_api.LazyGradientInit()
def FoldConstantExpr(expr, mod, fold_qnn=False):
"""Fold the constant expressions in a Relay program.
Parameters
----------
expr: Expr
The expression to fold
mod: IRModule
The module the expr lives in (for global calls)
fold_qnn: bool
Whether to fold constants for QNN operations.
Returns
-------
new_expr: Expr
The expr after Constant Folding
"""
return _ffi_api.FoldConstantExpr(expr, mod, fold_qnn)
def FoldConstant(fold_qnn=False):
"""Fold the constant expressions in a Relay program.
Because of backward compatibility reason it skips QNN primitives from folding by default.
There are some transformation passes like FakeQuantizationToInteger, which requires to keep QNN
primitives for constant subgraphs. Uncontrolled constant folding of QNN primitives may break
applicability of FakeQuantizationToInteger. We suggest to use FoldConstant pass with none
default fold_qnn=True value only when all other QNN sensitive passes were already applied.
Parameters
----------
fold_qnn: bool
Whether to fold constants for QNN operations.
Returns
-------
ret : tvm.transform.Pass
The registered pass for constant folding.
"""
return _ffi_api.FoldConstant(fold_qnn)
def FuseOps(fuse_opt_level=-1):
"""Fuse operators in an expr to a larger operator according to some rules.
Parameters
----------
fuse_opt_level : int
The level of fuse optimization. -1 indicates that the level will be
inferred from pass context.
Returns
-------
ret : tvm.transform.Pass
The registered pass for operator fusion.
"""
return _ffi_api.FuseOps(fuse_opt_level)
def DefuseOps():
"""The inverse operation of FuseOps. It transforms a fused program returned by FuseOps into the
program before FuseOps. (i.e., x == DefuseOps(FuseOps(x)))
Returns
-------
ret : tvm.transform.Pass
The registered pass for operator defusion.
"""
return _ffi_api.DefuseOps()
def CombineParallelConv2D(min_num_branches=3):
"""Combine multiple conv2d operators into one.
Parameters
----------
min_num_branches : int
The minimum number of required parallel branches for performing this
optimization.
Returns
-------
ret: tvm.transform.Pass
The registered pass that combines parallel conv2d operators.
"""
return _ffi_api.CombineParallelConv2D(min_num_branches)
def CombineParallelDense(min_num_branches=3, to_batch=True):
"""Combine multiple dense operators into one. For example:
.. code-block
data
/ \
dense (2,2) dense (2,2)
| |
elemwise/bcast (2,2) elemwise/bcast (2,2)
Would become:
.. code-block
data
|
batch_matmul+elemwise/bcast (2,2,2)
or (if to_batch=False)
.. code-block
data
|
dense+elemwise/bcast (2,2+2)
Parameters
----------
min_num_branches : int
The minimum number of required parallel branches for performing this
optimization.
to_batch_matmul : bool
If True, combine parallel dense ops into batch_matmul op.
If False, combine parallel dense ops into dense op.
Returns
-------
ret: tvm.transform.Pass
The registered pass that combines parallel dense operators.
"""
return _ffi_api.CombineParallelDense(min_num_branches, to_batch)
def CombineParallelBatchMatmul(min_num_branches=3):
"""Combine multiple batch matmul operators into one. For example:
.. code-block
data (1, 2, 3)
/ \
batch_matmul(data, (1, 4, 3)) batch_matmul(data, (1, 5, 3))
| |
elemwise/bcast (1, 2, 4) elemwise/bcast (1, 2, 5)
Would become:
.. code-block
data (1, 2, 3)
|
batch_matmul(data, (1, 4+5, 3))
|
elemwise/bcast (1 ,2, 4+5)
Parameters
----------
min_num_branches : int
The minimum number of required parallel branches for performing this
optimization.
Returns
-------
ret: tvm.transform.Pass
The registered pass that combines parallel dense operators.
"""
return _ffi_api.CombineParallelBatchMatmul(min_num_branches)
def BatchingOps():
"""Batching parallel operators into one for Conv2D, Dense and BatchMatmul.
Returns
-------
ret: tvm.transform.Pass
The sequential pass which apply batching for different operator types.
"""
return tvm.transform.Sequential(
[CombineParallelConv2D(), CombineParallelDense(), CombineParallelBatchMatmul()]
)
def AlterOpLayout():
"""Alternate the layouts of operators or replace primitive operators with
other expressions.
This pass can be used for computing convolution in custom layouts or
other general weight pre-transformation.
Returns
-------
ret : tvm.transform.Pass
The registered pass that alters the layout of operators.
"""
return _ffi_api.AlterOpLayout()
class LayoutConfig(object):
"""A structure for customizing the ConvertLayout pass."""
current = None
def __init__(self, skip_layers=None):
self.skip_counter = 0
self.skip_layers = skip_layers if skip_layers is not None else []
def check_skip(self):
skip = self.skip_counter in self.skip_layers
self.skip_counter += 1
return skip
def reset(self):
self.skip_counter = 0
self.skip_layers = []
def __enter__(self):
self._old_manager = LayoutConfig.current
LayoutConfig.current = self
return self
def __exit__(self, ptype, value, trace):
LayoutConfig.current = self._old_manager
def ConvertLayout(desired_layouts):
"""Given a dest layout, this pass transforms the expr such that most of the ops input data
layout is changed to the dest layout. In ideal situation, there are only 2 layout transforms,
one at the start and one at the end.
This pass is not a part of relay.build and is expected to be called between framework-relay
parser and relay.build call. This is very helpful for hardware backends that support/prefer only
type of data layout.
RFC - https://discuss.tvm.apache.org/t/layout-conversion-pass/4009
This pass uses most of the AlterOpLayout and InferCorrectLayout infrastructure. We can define
new layouts for conv2d ops for now. Most of the other operators try to adapt to their input
layout using the InferCorrectLayout infrastructure.
Parameters
----------
desired_layouts : map of op_name to list of layouts
Specify a mapping of operator names to a list of layouts to convert to, in the order
defined by the operator. An example for nn.conv2d could be: {"nn.conv2d", ["NHWC", "OHWI]},
where the first item in the list specifies the data layout and the second specifies the
kernel layout.
Returns
-------
pass: FunctionPass
The pass.
"""
return _ffi_api.ConvertLayout(desired_layouts)
def Legalize(legalize_map_attr_name="FTVMLegalize"):
"""Legalizes an expression with another expression.
This pass can be used to replace an expr with another expr for target
dependent optimizations. For example, one expr, though semnatically
equivalent to the other, can have better performance on a target. This pass
can be used to legalize the expr in a target-dependent manner.
Parameters
----------
legalize_map_attr_name : str
The Op's attr name which corresponds to the legalize rule function.
Returns
-------
ret : tvm.transform.Pass
The registered pass that rewrites an expr.
"""
return _ffi_api.Legalize(legalize_map_attr_name)
def MergeComposite(pattern_table):
"""Merge multiple operators into a single composite relay function.
Parameters
----------
pattern_table : List[Tuple[str, tvm.relay.dataflow_pattern.DFPattern, Function]]
A list of (pattern_name, pattern, check) tuples.
The order of the patterns in the list will determine the order
of priority in which they are matched.
'check' is a function to check whether an extracted pattern matches.
It can be implemented by pattern writer but if not specified it will
always return True.
Returns
-------
ret : tvm.transform.Pass
The registered pass that merges operators into a single composite
relay function.
"""
pattern_names = []
patterns = []
checks = []
for tup in pattern_table:
if len(tup) == 2:
pattern_name, pattern = tup
check = lambda extract: True
elif len(tup) == 3:
pattern_name, pattern, check = tup
pattern_names.append(pattern_name)
patterns.append(pattern)
checks.append(check)
return _ffi_api.MergeComposite(pattern_names, patterns, *checks)
def MergeCompilerRegions():
"""Merge together compiler regions.
Returns
-------
ret : tvm.transform.Pass
The registered pass that merges compiler regions.
"""
return _ffi_api.MergeCompilerRegions()
def ToANormalForm():
"""Turn Graph Normal Form expression into A Normal Form Expression.
The scope of the root expression is the global scope.
The scope of any non root expression is the least common ancestor of all it's scope.
Values are ordered by post-DFS order in each scope.
Returns
-------
ret : Union[tvm.transform.Pass, tvm.relay.Expr]
The registered pass that transforms an expression into A Normal Form.
"""
return _ffi_api.ToANormalForm()
def ToANormalFormExpr(e):
"""ToANormalForm, but on expression level.
Parameters
----------
e : Expr
The graph expression.
Returns
-------
ret : Expr
The transformed expresion.
"""
return _ffi_api.ToANormalFormExpr(e)
def ToBasicBlockNormalForm():
"""Turn an expression to Basic Block Normal Form.
We define a block as a group of expressions implied by the scope structure.
Each graph node can only belong to a single block.
For any value that is being used in multiple blocks, it has to be referred
by a Var which is defined in a block, whose scope is the least common ancestor
of blocks this value is used.
Returns
-------
ret: tvm.transform.Pass
The registered pass that transforms an expression into Basic Block Normal Form.
"""
return _ffi_api.ToBasicBlockNormalForm()
def ToCPS(expr, mod=None):
"""
Turn expression into continuation passing style(CPS).
Every intermediate compute will be passed to a continuation.
Returns
-------
result: tvm.transform.Pass
The registered pass that transforms an expression into CPS.
"""
return _ffi_api.to_cps(expr, mod)
def EtaExpand(expand_constructor=False, expand_global_var=False):
"""Add abstraction over a constructor or global variable bound to a function
Parameters
----------
expand_constructor: bool
Whether to expand constructors.
expand_global_var: bool
Whether to expand global variables.
Returns
-------
ret: tvm.transform.Pass
The registered pass that eta expands an expression.
"""
return _ffi_api.EtaExpand(expand_constructor, expand_global_var)
def ToGraphNormalForm():
"""Turn a Relay program in A Normal Form into Graph Normal Form
Returns
-------
ret : tvm.transform.Pass
The registered pass that transforms an expression into Graph Normal Form.
"""
return _ffi_api.ToGraphNormalForm()
def EliminateCommonSubexpr(fskip=None):
"""Eliminate common subexpressions.
Parameters
----------
fskip: Callable
The callback function that decides whether an expression should be
skipped.
Returns
-------
ret : tvm.transform.Pass
The registered pass that eliminates common subexpressions.
"""
return _ffi_api.EliminateCommonSubexpr(fskip)
def PartialEvaluate():
"""Evaluate the static fragment of the code.
Note
----
This transformation could be either `Module -> Module` or `Expr -> Expr`.
It will directly transform the input expression to a new one if the target
expression is provided. Otherwise, it will rely on the pass manager to
carry out transformation.
Returns
-------
ret: tvm.transform.Pass
The registered pass that performs partial evaluation on an expression.
"""
return _ffi_api.PartialEvaluate()
def CanonicalizeCast():
"""
Canonicalize cast expressions to make operator fusion more efficient.
Returns
-------
ret : tvm.transform.Pass
The registered pass that canonicalizes cast expression.
"""
return _ffi_api.CanonicalizeCast()
def LambdaLift():
"""
Lift the closure to global function.
Returns
-------
ret : tvm.transform.Pass
The registered pass that lifts the lambda function.
"""
return _ffi_api.LambdaLift()
def PartitionGraph(mod_name="default", bind_constants=True):
"""Partition a Relay program into regions that can be executed on different
backends.
Parameters
----------
mod_name : string
Controls the prefix of the name of each partitioned subraph.
If `mod_name` is None, then `tvmgen_` prefix is used.
Otherwise, `tvmgen_mod_name_` prefix is used.
bind_constants: bool
Whether or not to bind constants in partitioned subgraphs. Note that the codegen needs
to maintain the bound constants; Otherwise the constants will be maintained by
the metadata module. So it is recommended for C-source based codegens to
set bind_constants=False to avoid embedding large constants in a C source file.
Returns
-------
ret: tvm.transform.Pass
The registered pass that partitions the Relay program.
"""
mod_name = mangle_module_name(mod_name)
return _ffi_api.PartitionGraph(mod_name, bind_constants)
def AnnotateTarget(targets, include_non_call_ops=True):
"""Annotate ops in an experession with a provied compiler/target and then
use it for codegen.
Parameters
----------
targets : str or List[str]
The list of target compilers used for codegen.
include_non_call_ops : boolean
If True then non-call ops also will be annotated with targets
If False then non-call ops will not be processed
Returns
-------
ret : tvm.transform.Pass
The annotated pass that wrapps ops with subgraph_start and
subgraph_end.
"""
if isinstance(targets, str):
targets = [targets]
return _ffi_api.AnnotateTarget(
[tvm.runtime.container.String(t) for t in targets], include_non_call_ops
)
def DynamicToStatic():
"""If possible, convert tvm.relay.dynamic* ops to static versions
Returns
-------
ret : tvm.transform.Pass
The registered pass for dynamic->static conversion.
"""
return _ffi_api.DynamicToStatic()
def Inline():
"""Perform inlining on the given Relay IR module. The global functions that
are marked as `inline` should be always inlined. A cost model will be
needed in the future to decide if it is profitable to inline the function.
Returns
-------
ret: tvm.transform.Pass
The registered pass that performs inlining for a Relay IR module.
"""
return _ffi_api.Inline()
def gradient(expr, mod=None, mode="higher_order"):
"""
Transform the input function,
returning a function that calculate the original result,
paired with gradient of the input.
Parameters
----------
expr : tvm.relay.Expr
The input expression, which is a Function or a GlobalVar.
mod : Optional[tvm.IRModule]
mode : Optional[String]
The mode of the automatic differentiation algorithm.
'first_order' only works on first order code, but will not produce
reference nor closure.
'higher_order' works on all code using reference and closure.
Returns
-------
expr : tvm.relay.Expr
The transformed expression.
"""
if mode == "first_order":
warnings.warn(
"using transform.gradient for first-order AD is deprecated, please use the"
"FirstOrderGradient module pass",
DeprecationWarning,
)
if mod is not None:
raise RuntimeError(
"to run first-order AD on a module, please use the FirstOrderGradient module pass."
)
return FirstOrderGradient()(tvm.IRModule.from_expr(expr))["main"]
if mode == "higher_order":
return _ffi_api.gradient(expr, mod)
raise Exception("unknown mode")
def FirstOrderGradient():
"""
Transforms all global functions in the module to return the original result, paired with the
gradients of the inputs. This pass transforms each global function independently and does not
support interprocedural AD. Additionally, this pass does not support any control-flow or
references, and should only be used on pure data-flow graphs.
Returns
-------
ret : tvm.transform.Pass
The registered FirstOrderGradient pass.
"""
return _ffi_api.FirstOrderGradient()
def Defunctionalization(func, mod):
"""
Performs defunctionalization on func,
transforming func from a higher-order program to a first-order program.
At each call site, the function is cloned and type parameters are substituted in.
Function arguments are encoded as datatypes
and additional apply functions are used for application.
Parameters
----------
func : tvm.relay.Function
The input function, which should not be polymorphic or be higher-order.
This is because all types must be known and we can't encode function arguments
to the program itself.
mod : tvm.IRModule
The IRModule containing function and type definitions,
which is also mutated during this pass.
Returns
-------
expr : tvm.relay.Function
The output function.
"""
return _ffi_api.Defunctionalization(func, mod)
def to_cps(func, mod=None):
"""
Turn expression into CPS expression.
Every intermediate compute will be passed to a continuation.
Parameters
----------
func: tvm.relay.Function
The input function.
mod: Optional[tvm.IRModule]
The global module.
Returns
-------
result: tvm.relay.Function
The output function.
"""
use_mod = mod if mod is not None else tvm.ir.IRModule()
return _ffi_api.to_cps(func, use_mod)
def un_cps(func):
"""
Turn an cps function into a Function without the continuation argument.
Note that this will not give the exact same interface as before cps:
If the input/output is higher order, they will still be in cps form.
Parameters
----------
func: tvm.relay.Function
The input function
Returns
-------
result: tvm.relay.Function
The output function
"""
return _ffi_api.un_cps(func)
def _wrap_class_function_pass(pass_cls, pass_info):
"""Wrap a python class as function pass"""
class PyFunctionPass(FunctionPass):
"""Internal wrapper class to create a class instance."""
def __init__(self, *args, **kwargs):
# initialize handle in cass pass_cls creation failed.fg
self.handle = None
inst = pass_cls(*args, **kwargs)
# it is important not to capture self to
# avoid a cyclic dependency
def _pass_func(func, mod, ctx):
return inst.transform_function(func, mod, ctx)
self.__init_handle_by_constructor__(_ffi_api.MakeFunctionPass, _pass_func, pass_info)
self._inst = inst
def __getattr__(self, name):
# fall back to instance attribute if there is not any
return self._inst.__getattribute__(name)
functools.update_wrapper(PyFunctionPass.__init__, pass_cls.__init__)
PyFunctionPass.__name__ = pass_cls.__name__
PyFunctionPass.__doc__ = pass_cls.__doc__
PyFunctionPass.__module__ = pass_cls.__module__
return PyFunctionPass
def function_pass(pass_func=None, opt_level=None, name=None, required=None):
"""Decorate a function pass.
This function returns a callback when pass_func
is provided. Otherwise, it returns the created function pass using the
given optimization function.
Parameters
----------
pass_func : Optional[Callable[(Function, Module, PassContext) -> Function]]
The transformation function or class.
opt_level : int
The optimization level of this module pass.
name : Optional[str]
The name of the function pass. The name could be empty. In this case, the
name of the optimization function will be used as the pass name.
required : Optional[List[str]]
The list of passes that the module pass is dependent on.
Returns
-------
create_function_pass : Union[Callable, FunctionPass]
A decorator will be returned if pass_func is not provided,
otherwise return the decorated result.
The returned decorator has two behaviors depending on the input:
A new FunctionPass will be returned when we decorate a pass function.
A new FunctionPass class will be returned when we decorate a class type.
Examples
--------
The following code block decorates a function pass class.
.. code-block:: python
@relay.transform.function_pass(opt_level=1)
class TestReplaceFunc:
def __init__(self, new_func):
self.new_func = new_func
def transform_function(self, func, mod, ctx):
# just for demo purposes
# transform func to new_func
return self.new_func
x = relay.var("x", shape=(10, 20))
f1 = relay.Function([x], x)
f2 = relay.Function([x], relay.log(x))
# fpass is now a special pass that replaces every
# function to f1
fpass = TestReplaceFunc(f1)
# now every function in input_mod is replaced by f1
res_mod = fpass(input_mod)
The following code creates a function pass by decorating
a user defined transform function.
.. code-block:: python
@relay.transform.function_pass(opt_level=2)
def transform(func, mod, ctx):
# my transformations here.
return func
function_pass = transform
assert isinstance(function_pass, transform.FunctionPass)
assert function_pass.info.opt_level == 2
# Given a module m, the optimization could be invoked as the follwoing:
updated_mod = function_pass(m)
# Now constant folding should have been applied to every function in
# the provided module m. And the updated module will be returned.
"""
if opt_level is None:
raise ValueError("Please provide opt_level for the function pass.")
required = required if required else []
if not isinstance(required, (list, tuple)):
raise TypeError("Required is expected to be the type of " + "list/tuple.")
def create_function_pass(pass_arg):
"""Internal function that creates a function pass"""
fname = name if name else pass_arg.__name__
info = tvm.transform.PassInfo(opt_level, fname, required)
if inspect.isclass(pass_arg):
return _wrap_class_function_pass(pass_arg, info)
if not isinstance(pass_arg, (types.FunctionType, types.LambdaType)):
raise TypeError("pass_func must be a callable for Module pass")
return _ffi_api.MakeFunctionPass(pass_arg, info)
if pass_func:
return create_function_pass(pass_func)
return create_function_pass
@function_pass(opt_level=1)
class ChangeBatch:
"""
Change the batch size.
Parameters
----------
data: Dict[relay.Var, int]
A dictionary of all the params to change.
The keys are all params, and the values are which dimension hold the batch.
batch_size: int
The batch size to change to.
Returns
-------
pass: FunctionPass
The pass.
"""
def __init__(self, data, batch_size=16):
self.data = data
self.batch_size = batch_size
def transform_function(self, func, mod, ctx):
func = relay.Function(func.params, func.body, None, func.type_params, func.attrs)
change_batch = self
class ChangeBatchMutator(tvm.relay.ExprMutator):
def visit_var(self, var):
if var in change_batch.data:
ty = var.type_annotation
new_shape = list(ty.shape)
new_shape[change_batch.data[var]] = change_batch.batch_size
return relay.Var(var.name_hint, relay.TensorType(new_shape, ty.dtype))
return var
return ChangeBatchMutator().visit(func)
def DenseToSparse(weight_name, weight_shape):
"""
Rewrite qualified ```nn.dense operation``` to ```nn.sparse_dense```
This pass is used in ```data_dep_optimization.bsr_dense```
Parameters of this pass is generated by ```analysis.sparse_dense.process_params```
Parameters
----------
weight_name: Array[String]
Names of weights which qualified sparse contrains
weight_shape: Array[Array[IntImm]]
Weights shape in BSR format.
Returns
-------
ret : tvm.transform.Pass
The registered DenseToSparse pass.
"""
return _ffi_api.DenseToSparse(weight_name, weight_shape)
def Conv2dToSparse(weight_name, weight_shape, layout, kernel_size):
"""
Rewrite qualified ```nn.conv2d operation``` to ```nn.sparse_conv2d```
Parameters
----------
weight_name: Array[String]
Names of weights which qualified sparse contrains
weight_shape: Array[Array[IntImm]]
Weights shape in BSR format.
layout : str
layout of data
Returns
-------
ret : tvm.transform.Pass
The registered DenseToSparse pass.
"""
return _ffi_api.Conv2dToSparse(weight_name, weight_shape, layout, kernel_size)
def Conv2dToSparse2(layout, kernel_size, blocksize, sparsity_threshold):
"""
Rewrite freezed ```nn.conv2d``` operation to ```nn.sparse_conv2d```
Parameters
----------
layout : str
layout of data
kernel_size : int
kernel size of conv2d
Returns
-------
ret : tvm.transform.Pass
The registered DenseToSparse pass.
"""
return _ffi_api.Conv2dToSparse2(layout, kernel_size, *blocksize, sparsity_threshold)
def SimplifyFCTranspose(target_weight_name):
"""
Rewrite ```y = nn.dense(x, transpose(w, [1, 0]))``` to ```y = nn.dense(x, wt)```
This pass is used in ```data_dep_optimization.simplify_fc_transpose```
Parameters
----------
weight_name: Array[String]
Names of weights which qualified ```y = nn.dense(x, transpose(w, [1, 0]))```
This parameter is generated by ```analysis.search_fc_transpose``` function
Returns
-------
ret : tvm.transform.Pass
The registered SimplifyFCTranspose pass.
"""
return _ffi_api.SimplifyFCTranspose(target_weight_name)
def SimplifyExpr():
"""
Simplify the Relay expression, including merging consecutive reshapes.
Returns
-------
ret : tvm.transform.Pass
The registered SimplifyExpr pass.
"""
return _ffi_api.SimplifyExpr()
def PlanDevices(config):
"""
Uses existing "on_device" and "device_copy" calls to infer the virtual device on which
every Relay sub-expression should run and the result stored. Captures the result of that
analysis using new "on_device" and "device_copy" calls. Sub-expressions which are
not otherwise constrained are assigned to the default primitive virtual device describe by
config. However data and computations which must be hosted on a CPU (such as shapes and
shape functions) use the host virtual device of the config.
Parameters
----------
config : tvm.CompilationConfig
The compilation configuration, specifying available targets and default devices.
Returns
-------
ret : tvm.transforms.Pass
The pass.
"""
return _ffi_api.PlanDevices(config)
def ManifestLifetimes():
"""
Manifest the lifetimes of variables after allocations have been manifested, by inserting kill
operations once variables become dead.
"""
return _ffi_api.ManifestLifetimes()
def FoldExplicitPadding():
"""
FoldExplicitPadding finds explict padding before an op that can support
implicit padding and fuses them.
Returns
-------
ret : tvm.transform.Pass
The registered ImplicitPadding pass.
"""
return _ffi_api.FoldExplicitPadding()
def AnnotateSpans():
"""
Annotate a program with span information by first generating its textual
representation and then parsing it back into a Relay AST annotated with
span information.
Returns
-------
ret : tvm.transform.Pass
The registered AnnotateSpans pass.
"""
return _ffi_api.AnnotateSpans()
def FakeQuantizationToInteger(hard_fail=False, use_qat=False):
# pylint: disable=anomalous-backslash-in-string
"""
Find regions of the graph of the form
.. code-block:: text
x w
| |
dq dq
\\ /
op1
|
op2
|
q
where ``q == qnn.quantize`` and ``dq = qnn.dequantize``
and rewrite them into integer versions of ``op1`` and ``op2``
Rules for rewriting indivdual ops are in fake_quantization_to_integer.py
Parameters
----------
hard_fail : boolean
How do deal with errors during graph rewriting.
If true, raise an error.
If false, skip rewriting the subgraph.
use_qat : boolean
To perform an additional QAT pass - convert enabled operations with dequantized inputs.
Example: in the graph above op2 is not registered with the FakeQuantizationToInteger
attribute, op1 operation can still be converted. Converted pattern below:
.. code-block:: text
x w
| |
\\ /
op1
|
dq
|
op2
|
q
Returns
-------
ret : tvm.transform.Pass
The registered FakeQuantizationToInteger pass.
"""
return _ffi_api.FakeQuantizationToInteger(hard_fail, use_qat)
def FlattenAtrousConv():
# pylint: disable=anomalous-backslash-in-string
"""
The purpose of this pass is to find a sequence of space_to_batch_nd-conv2d-batch_to_space_nd
operations:
.. code-block:: text
x w
| |
s2b |
\\ /
conv2d
|
b2s
and convert them into subgraphs with a convolution with the modified "dilation" and
recalculated "padding" parameters.
Returns
-------
ret : tvm.transform.Pass
The registered FlattenAtrousConv pass.
"""
return _ffi_api.FlattenAtrousConv()
def ToMixedPrecision(mixed_precision_type="float16", missing_op_mode=1):
"""
Automatic mixed precision rewriter. Rewrite an FP32 relay graph into a version
where as many operations as possible are in the target mixed_precision_type.
Parameters
----------
mixed_precision_type: str
The target datatype to transform operations in the graph to use.
missing_op_mode: int
Determines how to handle ops not registered with FTVMMixedPrecisionConversionType
0: Does not allow any missing ops. Will throw errors when encountering any.
1: Allow missing ops but emit warnings.
2: Allow missing ops and silently ignore them.
relay.ToMixedPrecision.keep_orig_output_dtype: boolean
Defines if outputs should be retained in original data type or convert to
mixed_precision_type. By default this parameter is False and transformation
modifies the data types of outputs to mixed_precision_type.
This parameter is not part of explicit arguments of the transformation, but should
be passed through tvm.transform.PassContext.
Returns
-------
ret : tvm.transform.Pass
The registered pass.
"""
if missing_op_mode < 0 or missing_op_mode > 2:
raise ValueError("Missing op mode is either 0, 1, or 2")
return _ffi_api.ToMixedPrecision(mixed_precision_type, missing_op_mode)
def SplitArgs(max_function_args):
"""Split function with huge number of arguments to smaller pieces.
Returns
-------
ret : tvm.transform.Pass
The registered pass for constant folding.
"""
return _ffi_api.SplitArgs(max_function_args)
def OutlineCompilerFunctionsWithExistingGlobalSymbols(compiler_filter=""):
"""Outlines all literal functions in direct call positions which have a "Compiler"
attribute.
The outlined functions are bound to unique global vars according to their existing
"global_symbol" attribute. At most one function with the same global symbol is outlined.
If compiler_filter is non-empty only functions with that as their attribute value are
outlined.
This pass may be useful for external codegen using the "RelayToTIR" custom pass mechanism
to prepare the IRModule before custom lowering.
Parameters
----------
compiler_filter : String
If non-empty, the "Compiler" attribute to filter on.
Returns
-------
ret : tvm.transform.Pass
The pass.
"""
return _ffi_api.OutlineCompilerFunctionsWithExistingGlobalSymbols(compiler_filter)
def MarkCompilerFunctionsAsExtern(compiler_filter=""):
"""Marks all global functions which have a "Compiler" attribute matching
compiler_filter as 'extern'.
The function's attributes are replaced with a single "Extern" attribute, and
all calls to the function are switched to use the 'call_lowered' calling convention.
If compiler_filter is non-empty only functions with that as their attribute value are
outlined.
This pass may be useful for external codegen using the "RelayToTIR" custom pass mechanism to
cleanup the IRModule after custom lowering.
Parameters
----------
compiler_filter : String
If non-empty, the "Compiler" attribute to filter on.
Returns
-------
ret : tvm.transform.Pass
The pass.
"""
return _ffi_api.MarkCompilerFunctionsAsExtern(compiler_filter)
def CapturePostDfsIndexInSpans():
"""Captures the post-dfs index and dominator post-dfs index of (most) expression nodes in
their span, in the form "index:<post-dfs index>:<dominator post-dfs index>".
This is useful for debugging since a) it helps identify pretty-printed sub-expressions within
the overall model and b) the indexes are heavily used by Collage for its compact representation
of sub-graphs.
Note that Op and Constructor nodes are not changed even though they are assigned an
post-dfs index.
Returns
-------
ret : tvm.transform.Pass
The pass.
"""
return _ffi_api.CapturePostDfsIndexInSpans()
def InlineCompilerFunctionsBoundTo(global_vars):
"""Inlines all global functions bound to a global var in global_vars.
Both the global "Compiler" attributed function, and any calls to "Composite" functions it its
body are inlined.
This pass may be useful for external codegen which needs to undo partitioning based on
properties of the entire partition.
Parameters
----------
global_vars : Array[tvm.relay.GlobalVar]
The global vars of all 'Compiler' functions to inline.
Returns
-------
ret : tvm.transform.Pass
The pass.
"""
return _ffi_api.InlineCompilerFunctionsBoundTo(global_vars)
def CollagePartition(config, cost_estimator=None):
"""Partition the bodies of all functions according to the available targets so as to
minimize model latency. See https://github.com/apache/tvm-rfcs/blob/main/rfcs/0062-collage.md.
Parameters
----------
config : CompilationConfig
The available targets.
cost_estimator : CostEstimator, optional
The custom cost estimator to use for costing each candidate partition.
Returns
-------
ret : tvm.transform.Pass
The pass.
"""
if cost_estimator is None:
cost_estimator = relay.collage.CostEstimator()
return _ffi_api.CollagePartition(config, cost_estimator)
def DivToMul():
"""Transform division by a constant to multiplication by the inverse of the constant"""
return _ffi_api.DivToMul()
| https://github.com/zk-ml/tachikoma |
python/tvm/relay/ty.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, unused-import
"""The type nodes of the Relay language."""
from tvm.ir import Type, TypeKind, TypeVar, GlobalTypeVar
from tvm.ir import TypeConstraint, FuncType, TupleType, IncompleteType
from tvm.ir import TypeCall, TypeRelation, TensorType, RelayRefType as RefType
from .base import RelayNode
from . import _ffi_api
Any = _ffi_api.Any
def is_dynamic(tensor_type):
"""Check whether type has any or symbolic variables as a shape.
tensor_type : Type
The type to be inspected
Returns
-------
has_any : bool
The check result.
"""
return _ffi_api.IsDynamic(tensor_type)
def ShapeVar(name):
"""A helper which constructs a type var of which the shape kind.
Parameters
----------
name : str
Returns
-------
type_var : tvm.relay.TypeVar
The shape variable.
"""
return TypeVar(name, kind=TypeKind.ShapeVar)
def scalar_type(dtype):
"""Creates a scalar type.
This function returns TensorType((), dtype)
Parameters
----------
dtype : str
The content data type.
Returns
-------
s_type : tvm.relay.TensorType
The result type.
"""
return TensorType((), dtype)
| https://github.com/zk-ml/tachikoma |
python/tvm/relay/type_functor.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""The type functor of Relay."""
from .ty import (
TypeVar,
IncompleteType,
TensorType,
FuncType,
TupleType,
TypeRelation,
RefType,
GlobalTypeVar,
TypeCall,
)
from .adt import TypeData
class TypeFunctor:
"""
An abstract visitor defined over Type.
Defines the default dispatch over types.
"""
def __init__(self):
# TODO(weberlo): make type vars hashable, so we can memoize
pass
# pylint: disable=no-else-return
def visit(self, typ):
"""Apply the visitor to a type."""
if isinstance(typ, TypeVar):
return self.visit_type_var(typ)
elif isinstance(typ, IncompleteType):
return self.visit_incomplete_type(typ)
elif isinstance(typ, TensorType):
return self.visit_tensor_type(typ)
elif isinstance(typ, FuncType):
return self.visit_func_type(typ)
elif isinstance(typ, TupleType):
return self.visit_tuple_type(typ)
elif isinstance(typ, TypeRelation):
return self.visit_type_relation(typ)
elif isinstance(typ, RefType):
return self.visit_ref_type(typ)
elif isinstance(typ, GlobalTypeVar):
return self.visit_global_type_var(typ)
elif isinstance(typ, TypeCall):
return self.visit_type_call(typ)
elif isinstance(typ, TypeData):
return self.visit_type_data(typ)
else:
raise Exception("unhandled case: {0}".format(type(typ)))
def visit_type_var(self, _):
raise NotImplementedError()
def visit_incomplete_type(self, _):
raise NotImplementedError()
def visit_tensor_type(self, _):
raise NotImplementedError()
def visit_func_type(self, _):
raise NotImplementedError()
def visit_tuple_type(self, _):
raise NotImplementedError()
def visit_type_relation(self, _):
raise NotImplementedError()
def visit_ref_type(self, _):
raise NotImplementedError()
def visit_global_type_var(self, _):
raise NotImplementedError()
def visit_type_call(self, _):
raise NotImplementedError()
def visit_type_data(self, _):
raise NotImplementedError()
class TypeVisitor(TypeFunctor):
"""
A visitor over Type.
The default behavior recursively traverses the AST.
"""
def visit_type_var(self, tv):
pass
def visit_incomplete_type(self, it):
pass
def visit_tensor_type(self, tt):
pass
def visit_func_type(self, ft):
for arg_type in ft.arg_types:
self.visit(arg_type)
self.visit(ft.ret_type)
for type_param in getattr(ft, "type_params", []):
self.visit(type_param)
for type_constraint in getattr(ft, "type_constraints", []):
self.visit(type_constraint)
def visit_tuple_type(self, tt):
for field in tt.fields:
self.visit(field)
def visit_type_relation(self, tr):
for arg in tr.args:
self.visit(arg)
def visit_ref_type(self, rt):
self.visit(rt.value)
def visit_global_type_var(self, gtv):
pass
def visit_type_call(self, tc):
self.visit(tc.func)
for arg in tc.args:
self.visit(arg)
def visit_type_data(self, td):
self.visit(td.header)
for type_var in td.type_vars:
self.visit(type_var)
class TypeMutator(TypeFunctor):
"""
A functional visitor over Type.
The default behavior recursively traverses the AST
and reconstructs the AST.
"""
def visit_type_var(self, tv):
return TypeVar(tv.name_hint, tv.kind)
def visit_incomplete_type(self, it):
return IncompleteType(it.kind)
def visit_tensor_type(self, tt):
return TensorType(tt.shape, tt.dtype)
def visit_func_type(self, ft):
new_arg_types = [self.visit(arg_type) for arg_type in ft.arg_types]
new_ret_type = self.visit(ft.ret_type)
new_type_params = [self.visit(type_param) for type_param in getattr(ft, "type_params", [])]
new_type_constraints = [
self.visit(type_constraint) for type_constraint in getattr(ft, "type_constraints", [])
]
return FuncType(new_arg_types, new_ret_type, new_type_params, new_type_constraints)
def visit_tuple_type(self, tt):
return TupleType([self.visit(field) for field in tt.fields])
def visit_type_relation(self, tr):
return TypeRelation(tr.func, [self.visit(arg) for arg in tr.args], tr.num_inputs, tr.attrs)
def visit_ref_type(self, rt):
return RefType(self.visit(rt.value))
def visit_global_type_var(self, gtv):
return GlobalTypeVar(gtv.name_hint, gtv.kind)
def visit_type_call(self, tc):
return TypeCall(self.visit(tc.func), [self.visit(arg) for arg in tc.args])
def visit_type_data(self, td):
return TypeData(
self.visit(td.header),
[self.visit(type_var) for type_var in td.type_vars],
td.constructors,
)
| https://github.com/zk-ml/tachikoma |
python/tvm/rpc/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Lightweight TVM RPC module.
RPC enables connect to a remote server, upload and launch functions.
This is useful to for cross-compile and remote testing,
The compiler stack runs on local server, while we use RPC server
to run on remote runtime which don't have a compiler available.
The test program compiles the program on local server,
upload and run remote RPC server, get the result back to verify correctness.
"""
from .server import Server
from .client import connect, connect_tracker
from .client import RPCSession, LocalSession, PopenSession, TrackerSession
from .minrpc import with_minrpc
| https://github.com/zk-ml/tachikoma |
python/tvm/rpc/_ffi_api.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""FFI APIs for tvm.rpc"""
import tvm._ffi
tvm._ffi._init_api("rpc", __name__)
| https://github.com/zk-ml/tachikoma |
python/tvm/rpc/base.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Base definitions for RPC."""
# pylint: disable=invalid-name
import socket
import time
import json
import errno
import struct
import random
import logging
from .._ffi.base import py_str
# Magic header for RPC data plane
RPC_MAGIC = 0xFF271
# magic header for RPC tracker(control plane)
RPC_TRACKER_MAGIC = 0x2F271
# sucess response
RPC_CODE_SUCCESS = RPC_MAGIC + 0
# duplicate key in proxy
RPC_CODE_DUPLICATE = RPC_MAGIC + 1
# cannot found matched key in server
RPC_CODE_MISMATCH = RPC_MAGIC + 2
logger = logging.getLogger("RPCServer")
class TrackerCode(object):
"""Enumeration code for the RPC tracker"""
FAIL = -1
SUCCESS = 0
PING = 1
STOP = 2
PUT = 3
REQUEST = 4
UPDATE_INFO = 5
SUMMARY = 6
GET_PENDING_MATCHKEYS = 7
RPC_SESS_MASK = 128
# Use "127.0.0.1" or "::1" if there is a need to force ip4 or ip6
# connection for "localhost".
def get_addr_family(addr):
res = socket.getaddrinfo(addr[0], addr[1], 0, 0, socket.IPPROTO_TCP)
return res[0][0]
def recvall(sock, nbytes):
"""Receive all nbytes from socket.
Parameters
----------
sock: Socket
The socket
nbytes : int
Number of bytes to be received.
"""
res = []
nread = 0
while nread < nbytes:
chunk = sock.recv(min(nbytes - nread, 1024))
if not chunk:
raise IOError("connection reset")
nread += len(chunk)
res.append(chunk)
return b"".join(res)
def sendjson(sock, data):
"""send a python value to remote via json
Parameters
----------
sock : Socket
The socket
data : object
Python value to be sent.
"""
data = json.dumps(data)
sock.sendall(struct.pack("<i", len(data)))
sock.sendall(data.encode("utf-8"))
def recvjson(sock):
"""receive python value from remote via json
Parameters
----------
sock : Socket
The socket
Returns
-------
value : object
The value received.
"""
size = struct.unpack("<i", recvall(sock, 4))[0]
data = json.loads(py_str(recvall(sock, size)))
return data
def random_key(prefix, cmap=None):
"""Generate a random key
Parameters
----------
prefix : str
The string prefix
cmap : dict
Conflict map
Returns
-------
key : str
The generated random key
"""
if cmap:
while True:
key = prefix + str(random.random())
if key not in cmap:
return key
else:
return prefix + str(random.random())
def connect_with_retry(addr, timeout=60, retry_period=5):
"""Connect to a TPC address with retry
This function is only reliable to short period of server restart.
Parameters
----------
addr : tuple
address tuple
timeout : float
Timeout during retry
retry_period : float
Number of seconds before we retry again.
"""
tstart = time.time()
while True:
try:
sock = socket.socket(get_addr_family(addr), socket.SOCK_STREAM)
sock.connect(addr)
return sock
except socket.error as sock_err:
if sock_err.args[0] not in (errno.ECONNREFUSED,):
raise sock_err
period = time.time() - tstart
if period > timeout:
raise RuntimeError("Failed to connect to server %s" % str(addr))
logger.warning(
"Cannot connect to tracker %s, retry in %g secs...", str(addr), retry_period
)
time.sleep(retry_period)
| https://github.com/zk-ml/tachikoma |
python/tvm/rpc/client.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""RPC client tools"""
import os
import socket
import stat
import struct
import time
import tvm._ffi
from tvm._ffi.base import TVMError
from tvm.contrib import utils
from tvm.runtime import ndarray as nd
from tvm._ffi.runtime_ctypes import Device
from . import _ffi_api, base, server
class RPCSession(object):
"""RPC Client session module
Do not directly create the object, call connect
"""
# pylint: disable=invalid-name
def __init__(self, sess):
self._sess = sess
self._tbl_index = _ffi_api.SessTableIndex(sess)
self._remote_funcs = {}
def system_lib(self):
"""Get system-wide library module.
Returns
-------
module : runtime.Module
The system-wide library module.
See Also
--------
tvm.runtime.system_lib
"""
return self.get_function("runtime.SystemLib")()
def get_function(self, name):
"""Get function from the session.
Parameters
----------
name : str
The name of the function
Returns
-------
f : Function
The result function.
"""
return self._sess.get_function(name)
def device(self, dev_type, dev_id=0):
"""Construct a remote device.
Parameters
----------
dev_type: int or str
dev_id: int, optional
Returns
-------
dev: Device
The corresponding encoded remote device.
"""
dev = nd.device(dev_type, dev_id)
encode = (self._tbl_index + 1) * base.RPC_SESS_MASK
dev.device_type += encode
dev._rpc_sess = self
return dev
def upload(self, data, target=None):
"""Upload file to remote runtime temp folder
Parameters
----------
data : str or bytearray
The file name or binary in local to upload.
target : str, optional
The path in remote
"""
if isinstance(data, bytearray):
if not target:
raise ValueError("target must present when file is a bytearray")
blob = data
else:
blob = bytearray(open(data, "rb").read())
if not target:
target = os.path.basename(data)
if "upload" not in self._remote_funcs:
self._remote_funcs["upload"] = self.get_function("tvm.rpc.server.upload")
self._remote_funcs["upload"](target, blob)
def download(self, path):
"""Download file from remote temp folder.
Parameters
----------
path : str
The relative location to remote temp folder.
Returns
-------
blob : bytearray
The result blob from the file.
"""
if "download" not in self._remote_funcs:
self._remote_funcs["download"] = self.get_function("tvm.rpc.server.download")
return self._remote_funcs["download"](path)
def remove(self, path):
"""Remove file from remote temp folder.
Parameters
----------
path: str
The relative location to remote temp folder.
"""
if "remove" not in self._remote_funcs:
self._remote_funcs["remove"] = self.get_function("tvm.rpc.server.remove")
self._remote_funcs["remove"](path)
def load_module(self, path):
"""Load a remote module, the file need to be uploaded first.
Parameters
----------
path : str
The relative location to remote temp folder.
Returns
-------
m : Module
The remote module containing remote function.
"""
return _ffi_api.LoadRemoteModule(self._sess, path)
def download_linked_module(self, path):
"""Link a module in the remote and download it.
Parameters
----------
path : str
The relative location to remote temp folder.
Returns
-------
blob : bytearray
The result blob from the file.
Note
----
This function can be helpful when a linker
is not available on the local client.
Examples
--------
.. code-block:: python
mod = build_module_with_cross_compilation()
# export the module as tar because a local linker is not available
mod.export_library("lib.tar")
remote.upload("lib.tar")
# invoke the linker on the remote to link the module as a library
# note that the library can only run on the same env as the remote
with open("lib.so", "wb") as file:
file.write(remote.download_linked_module("lib.tar"))
"""
if "download_linked_module" not in self._remote_funcs:
self._remote_funcs["download_linked_module"] = self.get_function(
"tvm.rpc.server.download_linked_module"
)
return self._remote_funcs["download_linked_module"](path)
def cpu(self, dev_id=0):
"""Construct CPU device."""
return self.device(Device.kDLCPU, dev_id)
def cuda(self, dev_id=0):
"""Construct CUDA GPU device."""
return self.device(Device.kDLCUDA, dev_id)
def cl(self, dev_id=0):
"""Construct OpenCL device."""
return self.device(Device.kDLOpenCL, dev_id)
def vulkan(self, dev_id=0):
"""Construct Vulkan device."""
return self.device(Device.kDLVulkan, dev_id)
def metal(self, dev_id=0):
"""Construct Metal device."""
return self.device(Device.kDLMetal, dev_id)
def rocm(self, dev_id=0):
"""Construct ROCm device."""
return self.device(Device.kDLROCM, dev_id)
def ext_dev(self, dev_id=0):
"""Construct extension device."""
return self.device(Device.kDLExtDev, dev_id)
def hexagon(self, dev_id=0):
"""Construct Hexagon device."""
return self.device(Device.kDLHexagon, dev_id)
def webgpu(self, dev_id=0):
"""Construct WebGPU device."""
return self.device(Device.kDLWebGPU, dev_id)
class LocalSession(RPCSession):
"""RPCSession interface backed by local environment.
This class can be used to implement functions that
need to be ran both locally and remotely.
"""
def __init__(self):
self._temp = server._server_env([])
RPCSession.__init__(self, _ffi_api.LocalSession())
@tvm._ffi.register_func("rpc.PopenSession")
def _popen_session(binary):
temp = utils.tempdir()
if isinstance(binary, (bytes, bytearray)):
path_exec = temp.relpath("server.minrpc")
with open(path_exec, "wb") as outfile:
outfile.write(binary)
os.chmod(path_exec, stat.S_IXUSR | stat.S_IRUSR)
path_exec = os.path.abspath(path_exec)
else:
path_exec = os.path.abspath(binary)
if not os.path.isfile(path_exec):
raise RuntimeError(f"{path_exec} does not exist.")
if not os.access(path_exec, os.X_OK):
raise RuntimeError(f"{path_exec} is not executable.")
sess = _ffi_api.CreatePipeClient(path_exec)
return sess
class PopenSession(RPCSession):
"""RPCSession interface backed by popen.
Parameters
----------
binary : List[Union[str, bytes]]
The binary to be executed.
"""
def __init__(self, binary):
RPCSession.__init__(self, _popen_session(binary))
class TrackerSession(object):
"""Tracker client session.
Parameters
----------
addr : tuple
The address tuple
"""
def __init__(self, addr):
self._addr = addr
self._sock = None
self._connect()
def __del__(self):
self.close()
def _connect(self):
self._sock = base.connect_with_retry(self._addr)
self._sock.sendall(struct.pack("<i", base.RPC_TRACKER_MAGIC))
magic = struct.unpack("<i", base.recvall(self._sock, 4))[0]
if magic != base.RPC_TRACKER_MAGIC:
raise RuntimeError("%s is not RPC Tracker" % str(self._addr))
def close(self):
"""Close the tracker connection."""
if self._sock:
self._sock.close()
self._sock = None
def summary(self):
"""Get the summary dict of the tracker."""
base.sendjson(self._sock, [base.TrackerCode.SUMMARY])
value = base.recvjson(self._sock)
if value[0] != base.TrackerCode.SUCCESS:
raise RuntimeError("Invalid return value %s" % str(value))
return value[1]
def text_summary(self):
"""Get a text summary of the tracker."""
data = self.summary()
total_ct = {}
res = ""
res += "Server List\n"
res += "------------------------------\n"
res += "server-address key\n"
res += "------------------------------\n"
sorted_server = sorted(data["server_info"], key=lambda x: x["key"])
for item in sorted_server:
addr = item["addr"]
res += "%21s " % ":".join(map(str, addr))
res += item["key"] + "\n"
key = item["key"].split(":")[1] # 'server:rasp3b` -> 'rasp3b'
if key not in total_ct:
total_ct[key] = 0
total_ct[key] += 1
res += "------------------------------\n"
res += "\n"
# compute max length of device key
queue_info = data["queue_info"]
keys = list(queue_info.keys())
if keys:
keys.sort()
max_key_len = max([len(k) for k in keys])
else:
max_key_len = 0
res += "Queue Status\n"
title = ("%%-%ds" % max_key_len + " total free pending\n") % "key"
separate_line = "-" * len(title) + "\n"
res += separate_line + title + separate_line
for k in keys:
total = total_ct.get(k, 0)
free, pending = queue_info[k]["free"], queue_info[k]["pending"]
if total or pending:
res += ("%%-%ds" % max_key_len + " %-5d %-4d %-7d\n") % (
k,
total,
free,
pending,
)
res += separate_line
return res
def request(
self, key, priority=1, session_timeout=0, max_retry=5, session_constructor_args=None
):
"""Request a new connection from the tracker.
Parameters
----------
key : str
The type key of the device.
priority : int, optional
The priority of the request.
session_timeout : float, optional
The duration of the session, allows server to kill
the connection when duration is longer than this value.
When duration is zero, it means the request must always be kept alive.
max_retry : int, optional
Maximum number of times to retry before give up.
session_constructor_args : list, optional
List of additional arguments to passed as the remote session constructor.
The first element of the list is always a string specifying the name of
the session constructor, the following args are the positional args to that function.
"""
last_err = None
for _ in range(max_retry):
try:
if self._sock is None:
self._connect()
base.sendjson(self._sock, [base.TrackerCode.REQUEST, key, "", priority])
value = base.recvjson(self._sock)
if value[0] != base.TrackerCode.SUCCESS:
raise RuntimeError("Invalid return value %s" % str(value))
url, port, matchkey = value[1]
return connect(
url,
port,
matchkey,
session_timeout,
session_constructor_args=session_constructor_args,
)
except socket.error as err:
self.close()
last_err = err
except TVMError as err:
last_err = err
raise RuntimeError(
"Cannot request %s after %d retry, last_error:%s" % (key, max_retry, str(last_err))
)
def request_and_run(self, key, func, priority=1, session_timeout=0, max_retry=2):
"""Request a resource from tracker and run the func.
This function safe-guard rare server node dropout during execution.
In such case, a new resource will be requested and func will be ran again.
Parameters
----------
key : str
The type key of the device.
func : function of session -> value
A stateless function
priority : int, optional
The priority of the request.
session_timeout : float, optional
The duration of the session, allows server to kill
the connection when duration is longer than this value.
When duration is zero, it means the request must always be kept alive.
max_retry : int, optional
Maximum number of times to retry the function before give up.
"""
last_err = None
for _ in range(max_retry):
try:
sess = self.request(key, priority=priority, session_timeout=session_timeout)
tstart = time.time()
return func(sess)
except TVMError as err:
duration = time.time() - tstart
# roughly estimate if the error is due to timeout termination
if session_timeout and duration >= session_timeout * 0.95:
raise RuntimeError("Session timeout when running %s" % func.__name__)
last_err = err
raise RuntimeError(
"Failed to run on %s after %d retry, last_error:%s" % (key, max_retry, str(last_err))
)
def connect(
url, port, key="", session_timeout=0, session_constructor_args=None, enable_logging=False
):
"""Connect to RPC Server
Parameters
----------
url : str
The url of the host
port : int
The port to connect to
key : str, optional
Additional key to match server
session_timeout : float, optional
The duration of the session in seconds, allows server to kill
the connection when duration is longer than this value.
When duration is zero, it means the request must always be kept alive.
session_constructor_args: List
List of additional arguments to passed as the remote session constructor.
The first element of the list is always a string specifying the name of
the session constructor, the following args are the positional args to that function.
enable_logging: boolean
flag to enable/disable logging. Logging is disabled by default.
Returns
-------
sess : RPCSession
The connected session.
Examples
--------
Normal usage
.. code-block:: python
client = rpc.connect(server_url, server_port, server_key)
Session_constructor can be used to customize the session in the remote
The following code connects to a remote internal server via a proxy
by constructing another RPCClientSession on the proxy machine and use that
as the serving session of the proxy endpoint.
.. code-block:: python
client_via_proxy = rpc.connect(
proxy_server_url, proxy_server_port, proxy_server_key, enable_logging
session_constructor_args=[
"rpc.Connect", internal_url, internal_port, internal_key, internal_logging])
"""
try:
if session_timeout:
key += " -timeout=%s" % str(session_timeout)
session_constructor_args = session_constructor_args if session_constructor_args else []
if not isinstance(session_constructor_args, (list, tuple)):
raise TypeError("Expect the session constructor to be a list or tuple")
sess = _ffi_api.Connect(url, port, key, enable_logging, *session_constructor_args)
except NameError:
raise RuntimeError("Please compile with USE_RPC=1")
return RPCSession(sess)
def connect_tracker(url, port):
"""Connect to a RPC tracker
Parameters
----------
url : str
The url of the host
port : int
The port to connect to
Returns
-------
sess : TrackerSession
The connected tracker session.
"""
return TrackerSession((url, port))
| https://github.com/zk-ml/tachikoma |
python/tvm/rpc/minrpc.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Utils to path."""
import os
from tvm._ffi import libinfo
from tvm.contrib import cc
def find_minrpc_server_libpath(server="posix_popen_server"):
"""Get the path of minrpc server libary.
Parameters
----------
server : str
The kind of built in minrpc server.
Returns
-------
path : str
The path to the min server library.
"""
curr_dir = os.path.dirname(os.path.realpath(os.path.expanduser(__file__)))
source_dir = os.path.abspath(os.path.join(curr_dir, "..", "..", ".."))
minrpc_dir = os.path.join(source_dir, "src", "runtime", "minrpc")
path = os.path.join(minrpc_dir, server, ("%s.cc" % server))
candidates = [path]
if not os.path.isfile(path):
raise RuntimeError("Cannot find minserver %s, in candidates %s" % (server, candidates))
return minrpc_dir, path
def with_minrpc(compile_func, server="posix_popen_server", runtime="libtvm"):
"""Attach the compiler function with minrpc related options.
Parameters
----------
compile_func : Union[str, Callable[[str, str, Optional[str]], None]]
The compilation function to decorate.
server : str
The server type.
runtime : str
The runtime library.
Returns
-------
fcompile : function
The return compilation.
"""
minrpc_dir, server_path = find_minrpc_server_libpath(server)
runtime_path = libinfo.find_lib_path([runtime, runtime + ".so", runtime + ".dylib"])[0]
runtime_dir = os.path.abspath(os.path.dirname(runtime_path))
options = ["-std=c++17"]
# Make sure the rpath to the libtvm is set so we can do local tests.
# Note that however, this approach won't work on remote.
# Always recommend to link statically.
options += ["-Wl,-rpath=" + runtime_dir]
options += ["-I" + path for path in libinfo.find_include_path()]
options += ["-I" + minrpc_dir]
fcompile = cc.cross_compiler(
compile_func, options=options, add_files=[server_path, runtime_path]
)
fcompile.__name__ = "with_minrpc"
fcompile.need_system_lib = True
return fcompile
| https://github.com/zk-ml/tachikoma |
python/tvm/rpc/proxy.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""RPC proxy, allows both client/server to connect and match connection.
In normal RPC, client directly connect to server's IP address.
Sometimes this cannot be done when server do not have a static address.
RPCProxy allows both client and server connect to the proxy server,
the proxy server will forward the message between the client and server.
"""
# pylint: disable=unused-variable, unused-argument
import os
import asyncio
import logging
import socket
import threading
import errno
import struct
import time
try:
import tornado
from tornado import gen
from tornado import websocket
from tornado import ioloop
from . import tornado_util
except ImportError as error_msg:
raise ImportError(
"RPCProxy module requires tornado package %s. Try 'pip install tornado'." % error_msg
)
from tvm.contrib.popen_pool import PopenWorker
from . import _ffi_api
from . import base
from .base import TrackerCode
from .server import _server_env
from .._ffi.base import py_str
class ForwardHandler(object):
"""Forward handler to forward the message."""
def _init_handler(self):
"""Initialize handler."""
self._init_message = bytes()
self._init_req_nbytes = 4
self._magic = None
self.timeout = None
self._rpc_key_length = None
self._done = False
self._proxy = ProxyServerHandler.current
assert self._proxy
self.rpc_key = None
self.match_key = None
self.forward_proxy = None
self.alloc_time = None
def __del__(self):
logging.info("Delete %s...", self.name())
def name(self):
"""Name of this connection."""
return "RPCConnection"
def _init_step(self, message):
if self._magic is None:
assert len(message) == 4
self._magic = struct.unpack("<i", message)[0]
if self._magic != base.RPC_MAGIC:
logging.info("Invalid RPC magic from %s", self.name())
self.close()
self._init_req_nbytes = 4
elif self._rpc_key_length is None:
assert len(message) == 4
self._rpc_key_length = struct.unpack("<i", message)[0]
self._init_req_nbytes = self._rpc_key_length
elif self.rpc_key is None:
assert len(message) == self._rpc_key_length
self.rpc_key = py_str(message)
# match key is used to do the matching
self.match_key = self.rpc_key[7:].split()[0]
self.on_start()
else:
assert False
def on_start(self):
"""Event when the initialization is completed"""
self._proxy.handler_ready(self)
def on_data(self, message):
"""on data"""
assert isinstance(message, bytes)
if self.forward_proxy:
self.forward_proxy.send_data(message)
else:
while message and self._init_req_nbytes > len(self._init_message):
nbytes = self._init_req_nbytes - len(self._init_message)
self._init_message += message[:nbytes]
message = message[nbytes:]
if self._init_req_nbytes == len(self._init_message):
temp = self._init_message
self._init_req_nbytes = 0
self._init_message = bytes()
self._init_step(temp)
if message:
logging.info("Invalid RPC protocol, too many bytes %s", self.name())
self.close()
def on_error(self, err):
logging.info("%s: Error in RPC %s", self.name(), err)
self.close_pair()
def close_pair(self):
if self.forward_proxy:
self.forward_proxy.signal_close()
self.forward_proxy = None
self.close()
def on_close_event(self):
"""on close event"""
assert not self._done
logging.info("RPCProxy:on_close_event %s ...", self.name())
if self.match_key:
key = self.match_key
if self._proxy._client_pool.get(key, None) == self:
self._proxy._client_pool.pop(key)
if self._proxy._server_pool.get(key, None) == self:
self._proxy._server_pool.pop(key)
self._done = True
self.forward_proxy = None
class TCPHandler(tornado_util.TCPHandler, ForwardHandler):
"""Event driven TCP handler."""
def __init__(self, sock, addr):
super(TCPHandler, self).__init__(sock)
self._init_handler()
self.addr = addr
def name(self):
return "TCPSocketProxy:%s:%s" % (str(self.addr[0]), self.rpc_key)
def send_data(self, message, binary=True):
self.write_message(message, True)
def on_message(self, message):
self.on_data(message)
def on_close(self):
logging.info("RPCProxy: on_close %s ...", self.name())
self._close_process = True
if self.forward_proxy:
self.forward_proxy.signal_close()
self.forward_proxy = None
self.on_close_event()
class WebSocketHandler(websocket.WebSocketHandler, ForwardHandler):
"""Handler for websockets."""
def __init__(self, *args, **kwargs):
super(WebSocketHandler, self).__init__(*args, **kwargs)
self._init_handler()
def name(self):
return "WebSocketProxy:%s" % (self.rpc_key)
def on_message(self, message):
self.on_data(message)
def data_received(self, _):
raise NotImplementedError()
def send_data(self, message):
try:
self.write_message(message, True)
except websocket.WebSocketClosedError as err:
self.on_error(err)
def on_close(self):
logging.info("RPCProxy: on_close %s ...", self.name())
if self.forward_proxy:
self.forward_proxy.signal_close()
self.forward_proxy = None
self.on_close_event()
def signal_close(self):
self.close()
class RequestHandler(tornado.web.RequestHandler):
"""Handles html request."""
def __init__(self, *args, **kwargs):
file_path = kwargs.pop("file_path")
if file_path.endswith("html"):
self.page = open(file_path).read()
web_port = kwargs.pop("rpc_web_port", None)
if web_port:
self.page = self.page.replace(
"ws://localhost:9190/ws", "ws://localhost:%d/ws" % web_port
)
else:
self.page = open(file_path, "rb").read()
super(RequestHandler, self).__init__(*args, **kwargs)
def data_received(self, _):
pass
def get(self, *args, **kwargs):
self.write(self.page)
class ProxyServerHandler(object):
"""Internal proxy server handler class."""
current = None
def __init__(
self,
sock,
listen_port,
web_port,
timeout_client,
timeout_server,
tracker_addr,
index_page=None,
resource_files=None,
):
assert ProxyServerHandler.current is None
ProxyServerHandler.current = self
if web_port:
handlers = [
(r"/ws", WebSocketHandler),
]
if index_page:
handlers.append(
(r"/", RequestHandler, {"file_path": index_page, "rpc_web_port": web_port})
)
logging.info("Serving RPC index html page at http://localhost:%d", web_port)
resource_files = resource_files if resource_files else []
for fname in resource_files:
basename = os.path.basename(fname)
pair = (r"/%s" % basename, RequestHandler, {"file_path": fname})
handlers.append(pair)
logging.info(pair)
self.app = tornado.web.Application(handlers)
self.app.listen(web_port)
self.sock = sock
self.sock.setblocking(0)
self.loop = ioloop.IOLoop.current()
def event_handler(_, events):
self._on_event(events)
self.loop.add_handler(self.sock.fileno(), event_handler, self.loop.READ)
self._client_pool = {}
self._server_pool = {}
self.timeout_alloc = 5
self.timeout_client = timeout_client
self.timeout_server = timeout_server
# tracker information
self._listen_port = listen_port
self._tracker_addr = tracker_addr
self._tracker_conn = None
self._tracker_pending_puts = []
self._key_set = set()
self.update_tracker_period = 2
if tracker_addr:
logging.info("Tracker address:%s", str(tracker_addr))
def _callback():
self._update_tracker(True)
self.loop.call_later(self.update_tracker_period, _callback)
logging.info("RPCProxy: Websock port bind to %d", web_port)
def _on_event(self, _):
while True:
try:
conn, addr = self.sock.accept()
TCPHandler(conn, addr)
except socket.error as err:
if err.args[0] in (errno.EAGAIN, errno.EWOULDBLOCK):
break
def _pair_up(self, lhs, rhs):
lhs.forward_proxy = rhs
rhs.forward_proxy = lhs
lhs.send_data(struct.pack("<i", base.RPC_CODE_SUCCESS))
lhs.send_data(struct.pack("<i", len(rhs.rpc_key)))
lhs.send_data(rhs.rpc_key.encode("utf-8"))
rhs.send_data(struct.pack("<i", base.RPC_CODE_SUCCESS))
rhs.send_data(struct.pack("<i", len(lhs.rpc_key)))
rhs.send_data(lhs.rpc_key.encode("utf-8"))
logging.info("Pairup connect %s and %s", lhs.name(), rhs.name())
def _regenerate_server_keys(self, keys):
"""Regenerate keys for server pool"""
keyset = set(self._server_pool.keys())
new_keys = []
# re-generate the server match key, so old information is invalidated.
for key in keys:
rpc_key, _ = key.split(":")
handle = self._server_pool[key]
del self._server_pool[key]
new_key = base.random_key(rpc_key + ":", keyset)
self._server_pool[new_key] = handle
keyset.add(new_key)
new_keys.append(new_key)
return new_keys
def _update_tracker(self, period_update=False):
"""Update information on tracker."""
try:
if self._tracker_conn is None:
self._tracker_conn = socket.socket(
base.get_addr_family(self._tracker_addr), socket.SOCK_STREAM
)
self._tracker_conn.connect(self._tracker_addr)
self._tracker_conn.sendall(struct.pack("<i", base.RPC_TRACKER_MAGIC))
magic = struct.unpack("<i", base.recvall(self._tracker_conn, 4))[0]
if magic != base.RPC_TRACKER_MAGIC:
self.loop.stop()
raise RuntimeError("%s is not RPC Tracker" % str(self._tracker_addr))
# just connect to tracker, need to update all keys
self._tracker_pending_puts = self._server_pool.keys()
if self._tracker_conn and period_update:
# periodically update tracker information
# regenerate key if the key is not in tracker anymore
# and there is no in-coming connection after timeout_alloc
base.sendjson(self._tracker_conn, [TrackerCode.GET_PENDING_MATCHKEYS])
pending_keys = set(base.recvjson(self._tracker_conn))
update_keys = []
for k, v in self._server_pool.items():
if k not in pending_keys:
if v.alloc_time is None:
v.alloc_time = time.time()
elif time.time() - v.alloc_time > self.timeout_alloc:
update_keys.append(k)
v.alloc_time = None
if update_keys:
logging.info(
"RPCProxy: No incoming conn on %s, regenerate keys...", str(update_keys)
)
new_keys = self._regenerate_server_keys(update_keys)
self._tracker_pending_puts += new_keys
need_update_info = False
# report new connections
for key in self._tracker_pending_puts:
rpc_key = key.split(":")[0]
base.sendjson(
self._tracker_conn, [TrackerCode.PUT, rpc_key, (self._listen_port, key), None]
)
assert base.recvjson(self._tracker_conn) == TrackerCode.SUCCESS
if rpc_key not in self._key_set:
self._key_set.add(rpc_key)
need_update_info = True
if need_update_info:
keylist = "[" + ",".join(self._key_set) + "]"
cinfo = {"key": "server:proxy" + keylist, "addr": [None, self._listen_port]}
base.sendjson(self._tracker_conn, [TrackerCode.UPDATE_INFO, cinfo])
assert base.recvjson(self._tracker_conn) == TrackerCode.SUCCESS
self._tracker_pending_puts = []
except (socket.error, IOError) as err:
logging.info(
"Lost tracker connection: %s, try reconnect in %g sec",
str(err),
self.update_tracker_period,
)
self._tracker_conn.close()
self._tracker_conn = None
self._regenerate_server_keys(self._server_pool.keys())
if period_update:
def _callback():
self._update_tracker(True)
self.loop.call_later(self.update_tracker_period, _callback)
def _handler_ready_tracker_mode(self, handler):
"""tracker mode to handle handler ready."""
if handler.rpc_key.startswith("server:"):
key = base.random_key(handler.match_key + ":", self._server_pool)
handler.match_key = key
self._server_pool[key] = handler
self._tracker_pending_puts.append(key)
self._update_tracker()
else:
if handler.match_key in self._server_pool:
self._pair_up(self._server_pool.pop(handler.match_key), handler)
else:
handler.send_data(struct.pack("<i", base.RPC_CODE_MISMATCH))
handler.signal_close()
def _handler_ready_proxy_mode(self, handler):
"""Normal proxy mode when handler is ready."""
if handler.rpc_key.startswith("server:"):
pool_src, pool_dst = self._client_pool, self._server_pool
timeout = self.timeout_server
else:
pool_src, pool_dst = self._server_pool, self._client_pool
timeout = self.timeout_client
key = handler.match_key
if key in pool_src:
self._pair_up(pool_src.pop(key), handler)
return
if key not in pool_dst:
pool_dst[key] = handler
def cleanup():
"""Cleanup client connection if timeout"""
if pool_dst.get(key, None) == handler:
logging.info(
"Timeout client connection %s, cannot find match key=%s",
handler.name(),
key,
)
pool_dst.pop(key)
handler.send_data(struct.pack("<i", base.RPC_CODE_MISMATCH))
handler.signal_close()
self.loop.call_later(timeout, cleanup)
else:
logging.info("Duplicate connection with same key=%s", key)
handler.send_data(struct.pack("<i", base.RPC_CODE_DUPLICATE))
handler.signal_close()
def handler_ready(self, handler):
"""Report handler to be ready."""
logging.info("Handler ready %s", handler.name())
if self._tracker_addr:
self._handler_ready_tracker_mode(handler)
else:
self._handler_ready_proxy_mode(handler)
def run(self):
"""Run the proxy server"""
ioloop.IOLoop.current().start()
def _proxy_server(
listen_sock,
listen_port,
web_port,
timeout_client,
timeout_server,
tracker_addr,
index_page,
resource_files,
):
asyncio.set_event_loop(asyncio.new_event_loop())
handler = ProxyServerHandler(
listen_sock,
listen_port,
web_port,
timeout_client,
timeout_server,
tracker_addr,
index_page,
resource_files,
)
handler.run()
class PopenProxyServerState(object):
"""Internal PopenProxy State for Popen"""
current = None
def __init__(
self,
host,
port=9091,
port_end=9199,
web_port=0,
timeout_client=600,
timeout_server=600,
tracker_addr=None,
index_page=None,
resource_files=None,
):
sock = socket.socket(base.get_addr_family((host, port)), socket.SOCK_STREAM)
self.port = None
for my_port in range(port, port_end):
try:
sock.bind((host, my_port))
self.port = my_port
break
except socket.error as sock_err:
if sock_err.errno in [errno.EADDRINUSE]:
continue
raise sock_err
if not self.port:
raise ValueError("cannot bind to any port in [%d, %d)" % (port, port_end))
logging.info("RPCProxy: client port bind to %s:%d", host, self.port)
sock.listen(1)
self.thread = threading.Thread(
target=_proxy_server,
args=(
sock,
self.port,
web_port,
timeout_client,
timeout_server,
tracker_addr,
index_page,
resource_files,
),
)
# start the server in a different thread
# so we can return the port directly
self.thread.start()
def _popen_start_proxy_server(
host,
port=9091,
port_end=9199,
web_port=0,
timeout_client=600,
timeout_server=600,
tracker_addr=None,
index_page=None,
resource_files=None,
):
# This is a function that will be sent to the
# Popen worker to run on a separate process.
# Create and start the server in a different thread
state = PopenProxyServerState(
host,
port,
port_end,
web_port,
timeout_client,
timeout_server,
tracker_addr,
index_page,
resource_files,
)
PopenProxyServerState.current = state
# returns the port so that the main can get the port number.
return state.port
class Proxy(object):
"""Start RPC proxy server on a separate process.
Python implementation based on PopenWorker.
Parameters
----------
host : str
The host url of the server.
port : int
The TCP port to be bind to
port_end : int, optional
The end TCP port to search
web_port : int, optional
The http/websocket port of the server.
timeout_client : float, optional
Timeout of client until it sees a matching connection.
timeout_server : float, optional
Timeout of server until it sees a matching connection.
tracker_addr: Tuple (str, int) , optional
The address of RPC Tracker in tuple (host, ip) format.
If is not None, the server will register itself to the tracker.
index_page : str, optional
Path to an index page that can be used to display at proxy index.
resource_files : str, optional
Path to local resources that can be included in the http request
"""
def __init__(
self,
host,
port=9091,
port_end=9199,
web_port=0,
timeout_client=600,
timeout_server=600,
tracker_addr=None,
index_page=None,
resource_files=None,
):
self.proc = PopenWorker()
# send the function
self.proc.send(
_popen_start_proxy_server,
[
host,
port,
port_end,
web_port,
timeout_client,
timeout_server,
tracker_addr,
index_page,
resource_files,
],
)
# receive the port
self.port = self.proc.recv()
self.host = host
def terminate(self):
"""Terminate the server process"""
if self.proc:
logging.info("Terminating Proxy Server...")
self.proc.kill()
self.proc = None
def __del__(self):
self.terminate()
def websocket_proxy_server(url, key=""):
"""Create a RPC server that uses an websocket that connects to a proxy.
Parameters
----------
url : str
The url to be connected.
key : str
The key to identify the server.
"""
def create_on_message(conn):
def _fsend(data):
data = bytes(data)
conn.write_message(data, binary=True)
return len(data)
on_message = _ffi_api.CreateEventDrivenServer(_fsend, "WebSocketProxyServer", "%toinit")
return on_message
@gen.coroutine
def _connect(key):
conn = yield websocket.websocket_connect(url)
on_message = create_on_message(conn)
temp = _server_env(None)
# Start connecton
conn.write_message(struct.pack("<i", base.RPC_MAGIC), binary=True)
key = "server:" + key
conn.write_message(struct.pack("<i", len(key)), binary=True)
conn.write_message(key.encode("utf-8"), binary=True)
msg = yield conn.read_message()
assert len(msg) >= 4
magic = struct.unpack("<i", msg[:4])[0]
if magic == base.RPC_CODE_DUPLICATE:
raise RuntimeError("key: %s has already been used in proxy" % key)
if magic == base.RPC_CODE_MISMATCH:
logging.info("RPCProxy do not have matching client key %s", key)
elif magic != base.RPC_CODE_SUCCESS:
raise RuntimeError("%s is not RPC Proxy" % url)
msg = msg[4:]
logging.info("Connection established with remote")
if msg:
on_message(bytearray(msg), 3)
while True:
try:
msg = yield conn.read_message()
if msg is None:
break
on_message(bytearray(msg), 3)
except websocket.WebSocketClosedError as err:
break
logging.info("WebSocketProxyServer closed...")
temp.remove()
ioloop.IOLoop.current().stop()
ioloop.IOLoop.current().spawn_callback(_connect, key)
ioloop.IOLoop.current().start()
| https://github.com/zk-ml/tachikoma |
python/tvm/rpc/server.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""RPC server implementation.
Note
----
Server is TCP based with the following protocol:
- Initial handshake to the peer
- [RPC_MAGIC, keysize(int32), key-bytes]
- The key is in format
- {server|client}:device-type[:random-key] [-timeout=timeout]
"""
# pylint: disable=invalid-name
import ctypes
import socket
import select
import struct
import logging
import threading
import multiprocessing
import time
import errno
import tvm._ffi
from tvm._ffi.base import py_str
from tvm._ffi.libinfo import find_lib_path
from tvm.runtime.module import load_module as _load_module
from tvm.contrib import utils
from tvm.contrib.popen_pool import PopenWorker
from . import _ffi_api
from . import base
# pylint: disable=unused-import
from . import testing
from .base import TrackerCode
logger = logging.getLogger("RPCServer")
console_handler = logging.StreamHandler()
console_handler.setFormatter(
logging.Formatter(
fmt="%(asctime)s.%(msecs)03d %(levelname)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S"
)
)
logger.addHandler(console_handler)
logger.setLevel(logging.INFO)
logger.propagate = False
def _server_env(load_library, work_path=None):
"""Server environment function return temp dir"""
if work_path:
temp = work_path
else:
temp = utils.tempdir()
# pylint: disable=unused-variable
@tvm._ffi.register_func("tvm.rpc.server.workpath", override=True)
def get_workpath(path):
return temp.relpath(path)
@tvm._ffi.register_func("tvm.rpc.server.load_module", override=True)
def load_module(file_name):
"""Load module from remote side."""
path = temp.relpath(file_name)
m = _load_module(path)
logger.info("load_module %s", path)
return m
@tvm._ffi.register_func("tvm.rpc.server.download_linked_module", override=True)
def download_linked_module(file_name):
"""Load module from remote side."""
# pylint: disable=import-outside-toplevel
path = temp.relpath(file_name)
if path.endswith(".o"):
# Extra dependencies during runtime.
from tvm.contrib import cc as _cc
_cc.create_shared(path + ".so", path)
path += ".so"
elif path.endswith(".tar"):
# Extra dependencies during runtime.
from tvm.contrib import cc as _cc, tar as _tar
tar_temp = utils.tempdir(custom_path=path.replace(".tar", ""))
_tar.untar(path, tar_temp.temp_dir)
files = [tar_temp.relpath(x) for x in tar_temp.listdir()]
_cc.create_shared(path + ".so", files)
path += ".so"
elif path.endswith(".dylib") or path.endswith(".so"):
pass
else:
raise RuntimeError("Do not know how to link %s" % file_name)
logger.info("Send linked module %s to client", path)
return bytearray(open(path, "rb").read())
libs = []
load_library = load_library.split(":") if load_library else []
for file_name in load_library:
file_name = find_lib_path(file_name)[0]
libs.append(ctypes.CDLL(file_name, ctypes.RTLD_GLOBAL))
logger.info("Load additional library %s", file_name)
temp.libs = libs
return temp
def _serve_loop(sock, addr, load_library, work_path=None):
"""Server loop"""
sockfd = sock.fileno()
temp = _server_env(load_library, work_path)
_ffi_api.ServerLoop(sockfd)
if not work_path:
temp.remove()
logger.info("Finish serving %s", addr)
def _parse_server_opt(opts):
# parse client options
ret = {}
for kv in opts:
if kv.startswith("-timeout="):
ret["timeout"] = float(kv[9:])
return ret
def _listen_loop(sock, port, rpc_key, tracker_addr, load_library, custom_addr):
"""Listening loop of the server."""
def _accept_conn(listen_sock, tracker_conn, ping_period=2):
"""Accept connection from the other places.
Parameters
----------
listen_sock: Socket
The socket used by listening process.
tracker_conn : connection to tracker
Tracker connection
ping_period : float, optional
ping tracker every k seconds if no connection is accepted.
"""
old_keyset = set()
# Report resource to tracker
if tracker_conn:
matchkey = base.random_key(rpc_key + ":")
base.sendjson(tracker_conn, [TrackerCode.PUT, rpc_key, (port, matchkey), custom_addr])
assert base.recvjson(tracker_conn) == TrackerCode.SUCCESS
else:
matchkey = rpc_key
unmatch_period_count = 0
unmatch_timeout = 4
# Wait until we get a valid connection
while True:
if tracker_conn:
trigger = select.select([listen_sock], [], [], ping_period)
if not listen_sock in trigger[0]:
base.sendjson(tracker_conn, [TrackerCode.GET_PENDING_MATCHKEYS])
pending_keys = base.recvjson(tracker_conn)
old_keyset.add(matchkey)
# if match key not in pending key set
# it means the key is acquired by a client but not used.
if matchkey not in pending_keys:
unmatch_period_count += 1
else:
unmatch_period_count = 0
# regenerate match key if key is acquired but not used for a while
if unmatch_period_count * ping_period > unmatch_timeout + ping_period:
logger.info("no incoming connections, regenerate key ...")
matchkey = base.random_key(rpc_key + ":", old_keyset)
base.sendjson(
tracker_conn, [TrackerCode.PUT, rpc_key, (port, matchkey), custom_addr]
)
assert base.recvjson(tracker_conn) == TrackerCode.SUCCESS
unmatch_period_count = 0
continue
conn, addr = listen_sock.accept()
magic = struct.unpack("<i", base.recvall(conn, 4))[0]
if magic != base.RPC_MAGIC:
conn.close()
continue
keylen = struct.unpack("<i", base.recvall(conn, 4))[0]
key = py_str(base.recvall(conn, keylen))
arr = key.split()
expect_header = "client:" + matchkey
server_key = "server:" + rpc_key
if arr[0] != expect_header:
conn.sendall(struct.pack("<i", base.RPC_CODE_MISMATCH))
conn.close()
logger.warning("mismatch key from %s", addr)
continue
conn.sendall(struct.pack("<i", base.RPC_CODE_SUCCESS))
conn.sendall(struct.pack("<i", len(server_key)))
conn.sendall(server_key.encode("utf-8"))
return conn, addr, _parse_server_opt(arr[1:])
# Server logic
tracker_conn = None
while True:
try:
# step 1: setup tracker and report to tracker
if tracker_addr and tracker_conn is None:
tracker_conn = base.connect_with_retry(tracker_addr)
tracker_conn.sendall(struct.pack("<i", base.RPC_TRACKER_MAGIC))
magic = struct.unpack("<i", base.recvall(tracker_conn, 4))[0]
if magic != base.RPC_TRACKER_MAGIC:
raise RuntimeError("%s is not RPC Tracker" % str(tracker_addr))
# report status of current queue
cinfo = {"key": "server:" + rpc_key, "addr": (custom_addr, port)}
base.sendjson(tracker_conn, [TrackerCode.UPDATE_INFO, cinfo])
assert base.recvjson(tracker_conn) == TrackerCode.SUCCESS
# step 2: wait for in-coming connections
conn, addr, opts = _accept_conn(sock, tracker_conn)
except (socket.error, IOError):
# retry when tracker is dropped
if tracker_conn:
tracker_conn.close()
tracker_conn = None
continue
except RuntimeError as exc:
raise exc
# step 3: serving
work_path = utils.tempdir()
logger.info("connection from %s", addr)
server_proc = multiprocessing.Process(
target=_serve_loop, args=(conn, addr, load_library, work_path)
)
server_proc.start()
# close from our side.
conn.close()
# wait until server process finish or timeout
server_proc.join(opts.get("timeout", None))
if server_proc.is_alive():
logger.info("Timeout in RPC session, kill..")
# pylint: disable=import-outside-toplevel
import psutil
parent = psutil.Process(server_proc.pid)
# terminate worker children
for child in parent.children(recursive=True):
child.terminate()
# terminate the worker
server_proc.terminate()
work_path.remove()
def _connect_proxy_loop(addr, key, load_library):
key = "server:" + key
retry_count = 0
max_retry = 5
retry_period = 5
while True:
try:
sock = socket.socket(base.get_addr_family(addr), socket.SOCK_STREAM)
sock.connect(addr)
sock.sendall(struct.pack("<i", base.RPC_MAGIC))
sock.sendall(struct.pack("<i", len(key)))
sock.sendall(key.encode("utf-8"))
magic = struct.unpack("<i", base.recvall(sock, 4))[0]
if magic == base.RPC_CODE_DUPLICATE:
raise RuntimeError("key: %s has already been used in proxy" % key)
if magic == base.RPC_CODE_MISMATCH:
logger.warning("RPCProxy do not have matching client key %s", key)
elif magic != base.RPC_CODE_SUCCESS:
raise RuntimeError("%s is not RPC Proxy" % str(addr))
keylen = struct.unpack("<i", base.recvall(sock, 4))[0]
remote_key = py_str(base.recvall(sock, keylen))
opts = _parse_server_opt(remote_key.split()[1:])
logger.info("connected to %s", str(addr))
process = multiprocessing.Process(target=_serve_loop, args=(sock, addr, load_library))
process.start()
sock.close()
process.join(opts.get("timeout", None))
if process.is_alive():
logger.info("Timeout in RPC session, kill..")
process.terminate()
retry_count = 0
except (socket.error, IOError) as err:
retry_count += 1
logger.warning("Error encountered %s, retry in %g sec", str(err), retry_period)
if retry_count > max_retry:
raise RuntimeError("Maximum retry error: last error: %s" % str(err))
time.sleep(retry_period)
class PopenRPCServerState(object):
"""Internal PopenRPCServer State"""
current = None
def __init__(
self,
host,
port=9091,
port_end=9199,
is_proxy=False,
tracker_addr=None,
key="",
load_library=None,
custom_addr=None,
silent=False,
):
# start update
self.host = host
self.port = port
self.libs = []
self.custom_addr = custom_addr
if silent:
logger.setLevel(logging.ERROR)
if not is_proxy:
sock = socket.socket(base.get_addr_family((host, port)), socket.SOCK_STREAM)
self.port = None
for my_port in range(port, port_end):
try:
sock.bind((host, my_port))
self.port = my_port
break
except socket.error as sock_err:
if sock_err.errno in [errno.EADDRINUSE]:
continue
raise sock_err
if not self.port:
raise ValueError("cannot bind to any port in [%d, %d)" % (port, port_end))
logger.info("bind to %s:%d", host, self.port)
sock.listen(1)
self.sock = sock
self.thread = threading.Thread(
target=_listen_loop,
args=(self.sock, self.port, key, tracker_addr, load_library, self.custom_addr),
)
self.thread.start()
else:
self.thread = threading.Thread(
target=_connect_proxy_loop, args=((host, port), key, load_library)
)
self.thread.start()
def _popen_start_rpc_server(
host,
port=9091,
port_end=9199,
is_proxy=False,
tracker_addr=None,
key="",
load_library=None,
custom_addr=None,
silent=False,
no_fork=False,
server_init_callback=None,
):
if no_fork:
multiprocessing.set_start_method("spawn")
if server_init_callback:
server_init_callback()
# This is a function that will be sent to the
# Popen worker to run on a separate process.
# Create and start the server in a different thread
state = PopenRPCServerState(
host, port, port_end, is_proxy, tracker_addr, key, load_library, custom_addr, silent
)
PopenRPCServerState.current = state
# returns the port so that the main can get the port number.
return state.port
class Server(object):
"""Start RPC server on a separate process.
This is a simple python implementation based on multi-processing.
It is also possible to implement a similar C based server with
TVM runtime which does not depend on the python.
Parameters
----------
host : str
The host url of the server.
port : int
The port to be bind to
port_end : int, optional
The end port to search
is_proxy : bool, optional
Whether the address specified is a proxy.
If this is true, the host and port actually corresponds to the
address of the proxy server.
tracker_addr: Tuple (str, int) , optional
The address of RPC Tracker in tuple(host, ip) format.
If is not None, the server will register itself to the tracker.
key : str, optional
The key used to identify the device type in tracker.
load_library : str, optional
List of additional libraries to be loaded during execution.
custom_addr: str, optional
Custom IP Address to Report to RPC Tracker
silent: bool, optional
Whether run this server in silent mode.
no_fork: bool, optional
Whether forbid fork in multiprocessing.
server_init_callback: Callable, optional
Additional initialization function when starting the server.
Note
----
The RPC server only sees functions in the tvm namespace.
To bring additional custom functions to the server env, you can use server_init_callback.
.. code:: python
def server_init_callback():
import tvm
# must import mypackage here
import mypackage
tvm.register_func("function", mypackage.func)
server = rpc.Server(host, server_init_callback=server_init_callback)
"""
def __init__(
self,
host="0.0.0.0",
port=9091,
port_end=9199,
is_proxy=False,
tracker_addr=None,
key="",
load_library=None,
custom_addr=None,
silent=False,
no_fork=False,
server_init_callback=None,
):
try:
if _ffi_api.ServerLoop is None:
raise RuntimeError("Please compile with USE_RPC=1")
except NameError:
raise RuntimeError("Please compile with USE_RPC=1")
self.proc = PopenWorker()
# send the function
self.proc.send(
_popen_start_rpc_server,
[
host,
port,
port_end,
is_proxy,
tracker_addr,
key,
load_library,
custom_addr,
silent,
no_fork,
server_init_callback,
],
)
# receive the port
self.port = self.proc.recv()
self.host = host
def terminate(self):
"""Terminate the server process"""
if self.proc:
self.proc.kill()
self.proc = None
def __del__(self):
self.terminate()
| https://github.com/zk-ml/tachikoma |
python/tvm/rpc/server_ios_launcher.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Python wrapper for running a RPC Server through iOS RPC
on the iOS simulator using the simctl command line tool.
"""
# pylint: disable=invalid-name
import os
import json
import time
import threading
import subprocess
from enum import Enum
from typing import Dict, List, AnyStr
class OSName(Enum):
"""The names of the operating systems available on the simulator."""
iOS = "iOS"
tvOS = "tvOS"
watchOS = "watchOS"
class IOSDevice(Enum):
"""The names of available iOS devices."""
iPhone = "iPhone"
iPod = "iPod"
iPad = "iPad"
class RPCServerMode(Enum):
"""Server modes available in the iOS RPC application."""
standalone = "standalone"
proxy = "proxy"
tracker = "tracker"
def get_list_of_available_simulators() -> Dict[AnyStr, List]:
"""
List of simulators available on the system. Simulators are presented as a dictionary.
The dictionary key is the name of the operating system of the simulator.
The dictionary value is a list of all simulators with a given operating system.
"""
with subprocess.Popen(
"xcrun simctl list devices available --json",
shell=True,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
) as proc:
out, _ = proc.communicate()
available_simulators = json.loads(out)["devices"]
available_simulators = {
key: value for key, value in available_simulators.items() if value != []
}
return available_simulators
def grep_by_system(available_devices: Dict[AnyStr, List], system_name: OSName) -> List[Dict]:
"""Search for simulators that use the target operating system."""
def find_index_of_substr(search_field: List[AnyStr], target: AnyStr) -> int:
for i, item in enumerate(search_field):
if target in item:
return i
raise ValueError("Search field doesn't content target")
keys = list(available_devices.keys())
return available_devices[keys[find_index_of_substr(keys, system_name.value)]]
def grep_by_device(available_devices: List[Dict], device_name: IOSDevice) -> List[Dict]:
"""Search for simulators that emulate a given device."""
return [item for item in available_devices if device_name.value in item["name"]]
def get_device_uid(target_device: Dict) -> AnyStr:
"""Get a unique device ID."""
return target_device["udid"]
def check_call_with_runtime_error(cmd: AnyStr, error_message: AnyStr) -> None:
"""Calling the function `subprocess.check_call` and catching its possible thrown exception."""
try:
subprocess.check_call(cmd.split(" "))
except subprocess.CalledProcessError as called_process_error:
raise called_process_error from RuntimeError(error_message)
def boot_device(udid: AnyStr) -> None:
"""Boot the device by its unique ID."""
cmd = f"xcrun simctl boot {udid}"
error_message = f"Failed to boot device with unique id: {udid}"
check_call_with_runtime_error(cmd, error_message)
if not is_booted(udid):
raise RuntimeError(error_message)
def shutdown_device(udid: AnyStr) -> None:
"""Shutdown the device by its unique ID."""
cmd = f"xcrun simctl shutdown {udid}"
error_message = f"Failed to shut down device with unique id: {udid}"
check_call_with_runtime_error(cmd, error_message)
if not is_turned_off(udid):
raise RuntimeError(error_message)
def deploy_bundle_to_simulator(udid: AnyStr, bundle_path: AnyStr) -> None:
"""Deploy iOS RPC bundle <bundle_path> to simulator with its unique ID <udid>."""
check_call_with_runtime_error(
cmd=f"xcrun simctl install {udid} {bundle_path}",
error_message=f"Failed to deploy bundle <{bundle_path}> to device with unique id: {udid}",
)
def delete_bundle_from_simulator(udid: AnyStr, bundle_id: AnyStr) -> None:
"""Delete iOS RPC bundle <bundle_id> from simulator with its unique ID <udid>."""
check_call_with_runtime_error(
cmd=f"xcrun simctl uninstall {udid} {bundle_id}",
error_message=f"Failed to uninstall bundle <{bundle_id}> "
f"from device with unique id: {udid}",
)
def launch_ios_rpc(
udid: AnyStr, bundle_id: AnyStr, host_url: AnyStr, host_port: int, key: AnyStr, mode: AnyStr
): # pylint: disable=too-many-arguments, consider-using-with
"""
Launch iOS RPC application on simulator with No UI interconnection.
udid : str
Unique device ID.
bundle_id : str
iOS RPC bundle ID.
host_url : str
The tracker/proxy address.
host_port : int
The tracker/proxy port.
key : str
The key used to identify the device type in tracker.
mode : str
Server mode. See RPCServerMode.
"""
cmd = (
f"xcrun simctl launch --console {udid} {bundle_id}"
f" --immediate_connect"
f" --host_url={host_url}"
f" --host_port={host_port}"
f" --key={key}"
f" --server_mode={mode}"
f" --verbose"
)
proc = subprocess.Popen(
cmd.split(" "),
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
bufsize=1,
universal_newlines=True,
)
return proc
def terminate_ios_rpc(udid: AnyStr, bundle_id: AnyStr) -> None:
"""Terminate iOS RPC application."""
check_call_with_runtime_error(
cmd=f"xcrun simctl terminate {udid} {bundle_id}",
error_message=f"Failed to terminate bundle <{bundle_id}> "
f"from device with unique id: {udid}",
)
def is_booted(udid: AnyStr) -> bool:
"""Check that the device has booted."""
device = find_device(udid)
return device["state"] == "Booted"
def is_turned_off(udid: AnyStr) -> bool:
"""Check that the device has turned off."""
device = find_device(udid)
return device["state"] == "Shutdown"
def check_booted_device(devices: List[Dict]) -> Dict:
"""Check if there is already a booted device. If so, return this device."""
for device in devices:
if device["state"] == "Booted":
return device
return {}
def find_device(udid: AnyStr) -> Dict:
"""Find device by its unique ID."""
return_value = {}
available_devices = get_list_of_available_simulators()
for devices in available_devices.values():
for device in devices:
if device["udid"] == udid:
return_value = device
return return_value
class ServerIOSLauncher:
"""
Python wrapper for launch iOS RPC to simulator.
mode : str
Server mode. See RPCServerMode.
host : str
The tracker/proxy address.
port : int
The tracker/proxy port.
key : str
The key used to identify the device type in tracker.
"""
booted_devices = []
bundle_id = os.environ.get("BUNDLE_ID")
bundle_path = os.environ.get("BUNDLE_PATH")
class ConsoleMarkers(Enum):
"""
Marker-messages that iOS RPC Server should print to the console output
when its states change (see apps/ios_rpc/tvmrpc/RPCServer.mm).
STOPPED : str
iOS RPC Server process was stopped
CALLSTACK : str
Call stack if RPC Server was stopped with an error.
CONNECTED : str
RPC Server reports that it successfully connected.
SERVER_IP : str
IP on which RPC Server started (for standalone mode).
SERVER_PORT : str
HOST on which RPC Server started (for standalone mode).
"""
STOPPED = "PROCESS_STOPPED"
CALLSTACK = "First throw call stack"
CONNECTED = "[IOS-RPC] STATE: 2"
SERVER_IP = "[IOS-RPC] IP: "
SERVER_PORT = "[IOS-RPC] PORT: "
def __init__(self, mode, host, port, key):
if not ServerIOSLauncher.is_compatible_environment():
raise RuntimeError(
"Can't create ServerIOSLauncher instance."
" No environment variables set for iOS RPC Server."
)
self.host = host
self.port = port
self.external_booted_device = None
if not ServerIOSLauncher.booted_devices:
self._boot_or_find_booted_device()
self.udid = get_device_uid(
self.external_booted_device
if self.external_booted_device is not None
else ServerIOSLauncher.booted_devices[-1]
)
self.bundle_was_deployed = False
deploy_bundle_to_simulator(self.udid, self.bundle_path)
self.bundle_was_deployed = True
self.server_was_started = False
self.launch_process = launch_ios_rpc(self.udid, self.bundle_id, host, port, key, mode)
self._wait_launch_complete(
waiting_time=60,
hz=10,
should_print_host_and_port=mode == RPCServerMode.standalone.value,
)
self.server_was_started = True
def terminate(self):
"""Terminate iOS RPC server."""
if self.bundle_was_deployed and self.server_was_started:
try:
terminate_ios_rpc(self.udid, self.bundle_id)
self.launch_process.terminate()
self.server_was_started = False
except RuntimeError as e:
print(e)
if self.bundle_was_deployed:
try:
delete_bundle_from_simulator(self.udid, self.bundle_id)
self.bundle_was_deployed = False
except RuntimeError as e:
print(e)
def __del__(self):
self.terminate()
@staticmethod
def is_compatible_environment():
"""Check that the current environment has the required variables."""
return bool(os.environ.get("BUNDLE_ID")) and bool(os.environ.get("BUNDLE_PATH"))
@staticmethod
def shutdown_booted_devices():
"""Shutdown simulators that have been booted using this class."""
for device_meta in ServerIOSLauncher.booted_devices:
try:
shutdown_device(get_device_uid(device_meta))
except RuntimeError as e:
print(e)
ServerIOSLauncher.booted_devices = []
def _boot_or_find_booted_device(self):
"""
Boot the required simulator if there is no suitable booted simulator
among the available simulators. If there is a suitable booted simulator,
then take it as a simulator to which the iOS RPC application will be deployed.
"""
target_system = OSName.iOS
target_device_type = IOSDevice.iPhone
available_devices = get_list_of_available_simulators()
if not available_devices:
raise ValueError("No devices available in this environment")
target_devices = grep_by_system(available_devices, target_system)
if not target_devices:
raise ValueError(f"No available simulators for target system: {target_system.value}")
target_devices = grep_by_device(target_devices, target_device_type)
if not target_devices:
raise ValueError(
f"No available simulators for target device type: {target_device_type.value}"
)
maybe_booted = check_booted_device(target_devices)
if maybe_booted:
self.external_booted_device = maybe_booted
else:
take_latest_model = True
target_device = target_devices[-1 if take_latest_model else 0]
boot_device(get_device_uid(target_device))
ServerIOSLauncher.booted_devices.append(target_device)
def _wait_launch_complete(self, waiting_time, hz, should_print_host_and_port=False):
# pylint: disable=too-many-locals
"""
Wait for the iOS RPC server to start.
waiting_time : int
The maximum waiting time during which it is necessary
to receive a message from RPC Server.
hz : int
The frequency of checking (in hertz) messages from RPC Server.
Checks for messages from the server will occur every 1 / hz second.
should_print_host_and_port : bool
A flag that indicates that RPC Server should print the host and port
on which it was started.
Used for standalone mode.
"""
class Switch:
"""A simple helper class for boolean switching."""
def __init__(self):
self._on = False
def toggle(self):
"""Toggle flag."""
self._on = not self._on
@property
def on(self):
"""Flag of this switch."""
return self._on
def watchdog():
for _ in range(waiting_time * hz):
time.sleep(1.0 / hz)
if switch_have_data.on:
break
if not switch_have_data.on:
self.launch_process.terminate()
switch_process_was_terminated.toggle()
switch_have_data = Switch()
switch_process_was_terminated = Switch()
watchdog_thread = threading.Thread(target=watchdog)
host, port = None, None
watchdog_thread.start()
for line in self.launch_process.stdout:
if not switch_have_data.on:
switch_have_data.toggle()
found = str(line).find(ServerIOSLauncher.ConsoleMarkers.STOPPED.value)
if found != -1:
raise RuntimeError("[ERROR] Crash during RCP Server launch.. ")
found = str(line).find(ServerIOSLauncher.ConsoleMarkers.CALLSTACK.value)
if found != -1:
raise RuntimeError("[ERROR] Crash during RCP Server launch.. ")
found = str(line).find(ServerIOSLauncher.ConsoleMarkers.SERVER_IP.value)
if found != -1:
ip = str(line)[
found + len(ServerIOSLauncher.ConsoleMarkers.SERVER_IP.value) :
].rstrip("\n")
host = ip
found = str(line).find(ServerIOSLauncher.ConsoleMarkers.SERVER_PORT.value)
if found != -1:
port = str(line)[
found + len(ServerIOSLauncher.ConsoleMarkers.SERVER_PORT.value) :
].rstrip("\n")
port = int(port)
if str(line).find(ServerIOSLauncher.ConsoleMarkers.CONNECTED.value) != -1:
# rpc server reports that it successfully connected
break
watchdog_thread.join()
if switch_process_was_terminated.on:
raise TimeoutError("Can't get a response from the iOS Server.")
if should_print_host_and_port:
if host is None or port is None:
raise RuntimeError("No messages with actual host and port.")
self.port = port
class ServerIOSContextManager:
"""
Context manager for ServerIOSLauncher.
To work with ServerIOSLauncher, it is preferable to use this class
so that the terminate method is called in any case.
"""
def __init__(self, mode, host, port, key):
self.__mode = mode
self.__host = host
self.__port = port
self.__key = key
self.__ios_rpc_server_launcher = None
def __enter__(self):
self.__ios_rpc_server_launcher = ServerIOSLauncher(
self.__mode, self.__host, self.__port, self.__key
)
return self.__ios_rpc_server_launcher
def __exit__(self, exc_type, exc_val, exc_tb):
if self.__ios_rpc_server_launcher is not None:
self.__ios_rpc_server_launcher.terminate()
self.__ios_rpc_server_launcher = None
| https://github.com/zk-ml/tachikoma |
python/tvm/rpc/testing.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name,unnecessary-comprehension
""" Testing functions for the RPC server."""
import numpy as np
import tvm
# RPC test functions to be registered for unit-tests purposes
@tvm.register_func("rpc.test.addone")
def _addone(x):
return x + 1
@tvm.register_func("rpc.test.strcat")
def _strcat(name, x):
return "%s:%d" % (name, x)
@tvm.register_func("rpc.test.except")
def _remotethrow(name):
raise ValueError("%s" % name)
@tvm.register_func("rpc.test.runtime_str_concat")
def _strcat(x, y):
return x + y
@tvm.register_func("rpc.test.remote_array_func")
def _remote_array_func(y):
x = np.ones((3, 4))
np.testing.assert_equal(y.numpy(), x)
@tvm.register_func("rpc.test.add_to_lhs")
def _add_to_lhs(x):
return lambda y: x + y
@tvm.register_func("rpc.test.remote_return_nd")
def _my_module(name):
# Use closure to check the ref counter correctness
nd = tvm.nd.array(np.zeros(10).astype("float32"))
if name == "get_arr":
return lambda: nd
if name == "ref_count":
return lambda: tvm.testing.object_use_count(nd)
if name == "get_elem":
return lambda idx: nd.numpy()[idx]
if name == "get_arr_elem":
return lambda arr, idx: arr.numpy()[idx]
raise RuntimeError("unknown name")
| https://github.com/zk-ml/tachikoma |
python/tvm/rpc/tornado_util.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Utilities used in tornado."""
import socket
import errno
from tornado import ioloop
class TCPHandler(object):
"""TCP socket handler backed tornado event loop.
Parameters
----------
sock : Socket
The TCP socket, will set it to non-blocking mode.
"""
def __init__(self, sock):
self._sock = sock
self._ioloop = ioloop.IOLoop.current()
self._sock.setblocking(0)
self._pending_write = []
self._signal_close = False
def _event_handler(_, events):
self._event_handler(events)
self._ioloop.add_handler(
self._sock.fileno(), _event_handler, self._ioloop.READ | self._ioloop.ERROR
)
def signal_close(self):
"""Signal the handler to close.
The handler will be closed after the existing
pending message are sent to the peer.
"""
if not self._pending_write:
self.close()
else:
self._signal_close = True
def close(self):
"""Close the socket"""
if self._sock is not None:
try:
self._ioloop.remove_handler(self._sock.fileno())
self._sock.close()
except socket.error:
pass
self._sock = None
self.on_close()
def write_message(self, message, binary=True):
assert binary
if self._sock is None:
raise IOError("socket is already closed")
self._pending_write.append(message)
self._update_write()
def _event_handler(self, events):
"""centeral event handler"""
if (events & self._ioloop.ERROR) or (events & self._ioloop.READ):
if self._update_read() and (events & self._ioloop.WRITE):
self._update_write()
elif events & self._ioloop.WRITE:
self._update_write()
def _update_write(self):
"""Update the state on write"""
while self._pending_write:
try:
msg = self._pending_write[0]
if self._sock is None:
return
nsend = self._sock.send(msg)
if nsend != len(msg):
self._pending_write[0] = msg[nsend:]
else:
self._pending_write.pop(0)
except socket.error as err:
if err.args[0] in (errno.EAGAIN, errno.EWOULDBLOCK):
break
self.on_error(err)
if self._pending_write:
self._ioloop.update_handler(
self._sock.fileno(), self._ioloop.READ | self._ioloop.ERROR | self._ioloop.WRITE
)
else:
if self._signal_close:
self.close()
else:
self._ioloop.update_handler(
self._sock.fileno(), self._ioloop.READ | self._ioloop.ERROR
)
def _update_read(self):
"""Update state when there is read event"""
try:
msg = bytes(self._sock.recv(4096))
if msg:
self.on_message(msg)
return True
# normal close, remote is closed
self.close()
except socket.error as err:
if err.args[0] in (errno.EAGAIN, errno.EWOULDBLOCK):
pass
else:
self.on_error(err)
return False
| https://github.com/zk-ml/tachikoma |
python/tvm/rpc/tracker.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""RPC Tracker, tracks and distributes the TVM RPC resources.
This folder implements the tracker server logic.
Note
----
Tracker is a TCP based rest api with the following protocol:
- Initial handshake to the peer
- RPC_TRACKER_MAGIC
- Normal message: [size(int32), json-data]
- Each message is initiated by the client, and the tracker replies with a json.
List of available APIs:
- PING: check if tracker is alive
- input: [TrackerCode.PING]
- return: TrackerCode.SUCCESS
- PUT: report resource to tracker
- input: [TrackerCode.PUT, [port, match-key]]
- return: TrackerCode.SUCCESS
- note: match-key is a randomly generated identify the resource during connection.
- REQUEST: request a new resource from tracker
- input: [TrackerCode.REQUEST, [key, user, priority]]
- return: [TrackerCode.SUCCESS, [url, port, match-key]]
"""
# pylint: disable=invalid-name
import asyncio
import heapq
import logging
import socket
import threading
import errno
import struct
import json
from tvm.contrib.popen_pool import PopenWorker
try:
from tornado import ioloop
from . import tornado_util
except ImportError as error_msg:
raise ImportError(
"RPCTracker module requires tornado package %s. Try 'pip install tornado'." % error_msg
)
from .._ffi.base import py_str
from . import base
from .base import RPC_TRACKER_MAGIC, TrackerCode
logger = logging.getLogger("RPCTracker")
console_handler = logging.StreamHandler()
console_handler.setFormatter(
logging.Formatter(
fmt="%(asctime)s.%(msecs)03d %(levelname)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S"
)
)
logger.addHandler(console_handler)
logger.setLevel(logging.INFO)
logger.propagate = False
class Scheduler(object):
"""Abstract interface of scheduler."""
def put(self, value):
"""Push a resource into the scheduler.
This function can trigger callbacks in the scheduler.
Parameters
----------
value : object
The resource to be put in the scheduler.
"""
raise NotImplementedError()
def request(self, user, priority, callback):
"""Request a resource.
Parameters
----------
user : str
The user who is requesting the resource.
priority : int
The job priority
callback : function: value->bool
Callback function to receive an resource when ready
returns True if the resource is consumed.
"""
raise NotImplementedError()
def remove(self, value):
"""Remove a resource in the scheduler
Parameters
----------
value: object
The resource to remove
"""
def summary(self):
"""Get summary information of the scheduler."""
raise NotImplementedError()
class PriorityScheduler(Scheduler):
"""Priority based scheduler, FIFO based on request order"""
def __init__(self, key):
self._key = key
self._request_cnt = 0
self._lock = threading.Lock()
self._values = []
self._requests = []
def _schedule(self):
while self._requests and self._values:
value = self._values.pop(0)
item = heapq.heappop(self._requests)
callback = item[-1]
if callback(value[1:]):
value[0].pending_matchkeys.remove(value[-1])
else:
self._values.append(value)
def put(self, value):
self._values.append(value)
self._schedule()
def request(self, user, priority, callback):
with self._lock:
heapq.heappush(self._requests, (-priority, self._request_cnt, callback))
self._request_cnt += 1
self._schedule()
def remove(self, value):
if value in self._values:
self._values.remove(value)
self._schedule()
def summary(self):
"""Get summary information of the scheduler."""
return {"free": len(self._values), "pending": len(self._requests)}
class TCPEventHandler(tornado_util.TCPHandler):
"""Base asynchronize message handler.
The tracker and client follows a simple message protocol.
The message is in form [nbytes(int32)] [json-str].
All the information is packed in json-str
"""
def __init__(self, tracker, sock, addr):
super(TCPEventHandler, self).__init__(sock)
self._data = bytearray()
self._tracker = tracker
self._msg_size = 0
self._addr = addr
self._init_req_nbytes = 4
self._info = {}
# list of pending match keys that has not been used.
self.pending_matchkeys = set()
self._tracker._connections.add(self)
self.put_values = []
def name(self):
"""name of connection"""
return "TCPSocket: %s" % str(self._addr)
def summary(self):
"""Summary of this connection"""
return self._info
def _init_conn(self, message):
"""Initialize the connection"""
if len(message) != 4:
logger.warning("Invalid connection from %s", self.name())
self.close()
magic = struct.unpack("<i", message)[0]
if magic != RPC_TRACKER_MAGIC:
logger.warning("Invalid magic from %s", self.name())
self.close()
self.write_message(struct.pack("<i", RPC_TRACKER_MAGIC), binary=True)
self._init_req_nbytes = 0
def on_message(self, message):
"""Callback when a message is received.
Parameters
----------
message : bytearray
The bytes received
"""
assert isinstance(message, bytes)
if self._init_req_nbytes:
self._init_conn(message)
return
self._data += message
while True:
if self._msg_size == 0:
if len(self._data) >= 4:
self._msg_size = struct.unpack("<i", self._data[:4])[0]
else:
return
if self._msg_size != 0 and len(self._data) >= self._msg_size + 4:
msg = py_str(bytes(self._data[4 : 4 + self._msg_size]))
del self._data[: 4 + self._msg_size]
self._msg_size = 0
# pylint: disable=broad-except
self.call_handler(json.loads(msg))
else:
return
def ret_value(self, data):
"""return value to the output"""
data = json.dumps(data)
self.write_message(struct.pack("<i", len(data)), binary=True)
self.write_message(data.encode("utf-8"), binary=True)
def call_handler(self, args):
"""Event handler when json request arrives."""
code = args[0]
if code == TrackerCode.PUT:
key = args[1]
port, matchkey = args[2]
self.pending_matchkeys.add(matchkey)
# got custom address (from rpc server)
if len(args) >= 4 and args[3] is not None:
value = (self, args[3], port, matchkey)
else:
value = (self, self._addr[0], port, matchkey)
self._tracker.put(key, value)
self.put_values.append(value)
self.ret_value(TrackerCode.SUCCESS)
elif code == TrackerCode.REQUEST:
key = args[1]
user = args[2]
priority = args[3]
def _cb(value):
# if the connection is already closed
if not self._sock:
return False
try:
self.ret_value([TrackerCode.SUCCESS, value])
except (socket.error, IOError):
return False
return True
self._tracker.request(key, user, priority, _cb)
elif code == TrackerCode.PING:
self.ret_value(TrackerCode.SUCCESS)
elif code == TrackerCode.GET_PENDING_MATCHKEYS:
self.ret_value(list(self.pending_matchkeys))
elif code == TrackerCode.STOP:
# safe stop tracker
if self._tracker._stop_key == args[1]:
self.ret_value(TrackerCode.SUCCESS)
self._tracker.stop()
else:
self.ret_value(TrackerCode.FAIL)
elif code == TrackerCode.UPDATE_INFO:
info = args[1]
assert isinstance(info, dict)
if info["addr"][0] is None:
info["addr"][0] = self._addr[0]
self._info.update(info)
self.ret_value(TrackerCode.SUCCESS)
elif code == TrackerCode.SUMMARY:
status = self._tracker.summary()
self.ret_value([TrackerCode.SUCCESS, status])
else:
logger.warning("Unknown tracker code %d", code)
self.close()
def on_close(self):
self._tracker.close(self)
def on_error(self, err):
logger.warning("%s: Error in RPC Tracker: %s", self.name(), err)
self.close()
class TrackerServerHandler(object):
"""Tracker that tracks the resources."""
def __init__(self, sock, stop_key):
self._scheduler_map = {}
self._sock = sock
self._sock.setblocking(0)
self._ioloop = ioloop.IOLoop.current()
self._stop_key = stop_key
self._connections = set()
def _event_handler(_, events):
self._on_event(events)
self._ioloop.add_handler(self._sock.fileno(), _event_handler, self._ioloop.READ)
def _on_event(self, _):
while True:
try:
conn, addr = self._sock.accept()
TCPEventHandler(self, conn, addr)
except socket.error as err:
if err.args[0] in (errno.EAGAIN, errno.EWOULDBLOCK):
break
def create_scheduler(self, key):
"""Create a new scheduler."""
return PriorityScheduler(key)
def put(self, key, value):
"""Report a new resource to the tracker."""
if key not in self._scheduler_map:
self._scheduler_map[key] = self.create_scheduler(key)
self._scheduler_map[key].put(value)
def request(self, key, user, priority, callback):
"""Request a new resource."""
if key not in self._scheduler_map:
self._scheduler_map[key] = self.create_scheduler(key)
self._scheduler_map[key].request(user, priority, callback)
def close(self, conn):
self._connections.remove(conn)
if "key" in conn._info:
for value in conn.put_values:
_, _, _, key = value
rpc_key = key.split(":")[0]
self._scheduler_map[rpc_key].remove(value)
def stop(self):
"""Safely stop tracker."""
for conn in list(self._connections):
conn.close()
self._sock.close()
self._ioloop.stop()
def summary(self):
"""Return a dict summarizing current status."""
qinfo = {}
for k, v in self._scheduler_map.items():
qinfo[k] = v.summary()
cinfo = []
# ignore client connections without key
for conn in self._connections:
res = conn.summary()
if res.get("key", "").startswith("server"):
cinfo.append(res)
return {"queue_info": qinfo, "server_info": cinfo}
def run(self):
"""Run the tracker server"""
self._ioloop.start()
def _tracker_server(listen_sock, stop_key):
asyncio.set_event_loop(asyncio.new_event_loop())
handler = TrackerServerHandler(listen_sock, stop_key)
handler.run()
class PopenTrackerServerState(object):
"""Internal PopenTrackerServer State"""
current = None
def __init__(self, host, port=9190, port_end=9199, silent=False):
if silent:
logger.setLevel(logging.WARN)
sock = socket.socket(base.get_addr_family((host, port)), socket.SOCK_STREAM)
self.port = None
self.stop_key = base.random_key("tracker")
for my_port in range(port, port_end):
try:
sock.bind((host, my_port))
self.port = my_port
break
except socket.error as sock_err:
if sock_err.errno in [errno.EADDRINUSE]:
continue
raise sock_err
if not self.port:
raise ValueError("cannot bind to any port in [%d, %d)" % (port, port_end))
logger.info("bind to %s:%d", host, self.port)
sock.listen(1)
self.thread = threading.Thread(target=_tracker_server, args=(sock, self.stop_key))
self.thread.start()
self.host = host
def _popen_start_tracker_server(host, port=9190, port_end=9199, silent=False):
# This is a function that will be sent to the
# Popen worker to run on a separate process.
# Create and start the server in a different thread
state = PopenTrackerServerState(host, port, port_end, silent)
PopenTrackerServerState.current = state
# returns the port so that the main can get the port number.
return (state.port, state.stop_key)
class Tracker(object):
"""Start RPC tracker on a separate process.
Python implementation based on PopenWorker.
Parameters
----------
host : str
The host url of the server.
port : int
The TCP port to be bind to
port_end : int, optional
The end TCP port to search
silent: bool, optional
Whether run in silent mode
"""
def __init__(self, host="0.0.0.0", port=9190, port_end=9199, silent=False):
if silent:
logger.setLevel(logging.WARN)
self.proc = PopenWorker()
# send the function
self.proc.send(
_popen_start_tracker_server,
[
host,
port,
port_end,
silent,
],
)
# receive the port
self.port, self.stop_key = self.proc.recv()
self.host = host
def _stop_tracker(self):
sock = socket.socket(base.get_addr_family((self.host, self.port)), socket.SOCK_STREAM)
sock.connect(("127.0.0.1", self.port))
sock.sendall(struct.pack("<i", base.RPC_TRACKER_MAGIC))
magic = struct.unpack("<i", base.recvall(sock, 4))[0]
assert magic == base.RPC_TRACKER_MAGIC
base.sendjson(sock, [TrackerCode.STOP, self.stop_key])
assert base.recvjson(sock) == TrackerCode.SUCCESS
sock.close()
def terminate(self):
"""Terminate the server process"""
if self.proc:
if self.proc.is_alive():
self._stop_tracker()
self.proc.join(0.1)
if self.proc.is_alive():
logger.info("Terminating Tracker Server...")
self.proc.kill()
self.proc = None
def __del__(self):
try:
self.terminate()
except TypeError:
pass
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM runtime namespace."""
# class exposures
from .packed_func import PackedFunc
from .object import Object
from .object_path import ObjectPath, ObjectPathPair
from .object_generic import ObjectGeneric, ObjectTypes
from .ndarray import NDArray, DataType, DataTypeCode, Device
from .module import Module, num_threads
from .profiling import Report
# function exposures
from .object_generic import convert_to_object, convert, const
from .ndarray import device, cpu, cuda, gpu, opencl, cl, vulkan, metal, mtl
from .ndarray import vpi, rocm, ext_dev
from .module import load_module, enabled, system_lib, load_static_library
from .container import String, ShapeTuple
from .params import save_param_dict, load_param_dict
from . import executor
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/_ffi_api.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""FFI APIs for tvm.runtime"""
import tvm._ffi
# Exports functions registered via TVM_REGISTER_GLOBAL with the "runtime" prefix.
# e.g. TVM_REGISTER_GLOBAL("runtime.ModuleLoadFromFile")
tvm._ffi._init_api("runtime", __name__)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/_ffi_node_api.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, unused-argument
"""FFI for tvm.node"""
import tvm._ffi
# The implementations below are default ones when the corresponding
# functions are not available in the runtime only mode.
# They will be overriden via _init_api to the ones registered
# via TVM_REGISTER_GLOBAL in the compiler mode.
def AsRepr(obj):
return obj.type_key() + "(" + obj.handle.value + ")"
def NodeListAttrNames(obj):
return lambda x: 0
def NodeGetAttr(obj, name):
raise AttributeError()
def SaveJSON(obj):
raise RuntimeError("Do not support object serialization in runtime only mode")
def LoadJSON(json_str):
raise RuntimeError("Do not support object serialization in runtime only mode")
# Exports functions registered via TVM_REGISTER_GLOBAL with the "node" prefix.
# e.g. TVM_REGISTER_GLOBAL("node.AsRepr")
tvm._ffi._init_api("node", __name__)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/container.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Runtime container structures."""
import tvm._ffi
from .object import Object, PyNativeObject
from .object_generic import ObjectTypes
from . import _ffi_api
def getitem_helper(obj, elem_getter, length, idx):
"""Helper function to implement a pythonic getitem function.
Parameters
----------
obj: object
The original object
elem_getter : function
A simple function that takes index and return a single element.
length : int
The size of the array
idx : int or slice
The argument passed to getitem
Returns
-------
result : object
The result of getitem
"""
if isinstance(idx, slice):
start = idx.start if idx.start is not None else 0
stop = idx.stop if idx.stop is not None else length
step = idx.step if idx.step is not None else 1
if start < 0:
start += length
if stop < 0:
stop += length
return [elem_getter(obj, i) for i in range(start, stop, step)]
if idx < -length or idx >= length:
raise IndexError("Index out of range. size: {}, got index {}".format(length, idx))
if idx < 0:
idx += length
return elem_getter(obj, idx)
@tvm._ffi.register_object("runtime.ADT")
class ADT(Object):
"""Algebatic data type(ADT) object.
Parameters
----------
tag : int
The tag of ADT.
fields : list[Object] or tuple[Object]
The source tuple.
"""
def __init__(self, tag, fields):
for f in fields:
assert isinstance(
f, ObjectTypes
), "Expect object or " "tvm NDArray type, but received : {0}".format(type(f))
self.__init_handle_by_constructor__(_ffi_api.ADT, tag, *fields)
@property
def tag(self):
return _ffi_api.GetADTTag(self)
def __getitem__(self, idx):
return getitem_helper(self, _ffi_api.GetADTFields, len(self), idx)
def __len__(self):
return _ffi_api.GetADTSize(self)
def tuple_object(fields=None):
"""Create a ADT object from source tuple.
Parameters
----------
fields : list[Object] or tuple[Object]
The source tuple.
Returns
-------
ret : ADT
The created object.
"""
fields = fields if fields else []
for f in fields:
assert isinstance(
f, ObjectTypes
), "Expect object or tvm " "NDArray type, but received : {0}".format(type(f))
return _ffi_api.Tuple(*fields)
@tvm._ffi.register_object("runtime.String")
class String(str, PyNativeObject):
"""TVM runtime.String object, represented as a python str.
Parameters
----------
content : str
The content string used to construct the object.
"""
__slots__ = ["__tvm_object__"]
def __new__(cls, content):
"""Construct from string content."""
val = str.__new__(cls, content)
val.__init_tvm_object_by_constructor__(_ffi_api.String, content)
return val
# pylint: disable=no-self-argument
def __from_tvm_object__(cls, obj):
"""Construct from a given tvm object."""
content = _ffi_api.GetFFIString(obj)
val = str.__new__(cls, content)
val.__tvm_object__ = obj
return val
@tvm._ffi.register_object("runtime.ShapeTuple")
class ShapeTuple(Object):
"""TVM runtime ShapeTuple object.
Parameters
----------
shape : list[int]
The shape list used to construct the object.
"""
def __init__(self, shape):
assert isinstance(shape, (list, tuple)), "Expect list of tuple, but received : {0}".format(
type(shape)
)
for x in shape:
assert isinstance(x, int), "Expect int type, but received : {0}".format(type(x))
self.__init_handle_by_constructor__(_ffi_api.ShapeTuple, *shape)
def __len__(self):
return _ffi_api.GetShapeTupleSize(self)
def __getitem__(self, idx):
return getitem_helper(self, _ffi_api.GetShapeTupleElem, len(self), idx)
def __eq__(self, other):
if self.same_as(other):
return True
if len(self) != len(other):
return False
for a, b in zip(self, other):
if a != b:
return False
return True
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/executor/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""This module contains Python wrappers for the TVM C++ Executor implementations.
NOTE: at present, only AOT Executor is contained here. The others are:
- GraphExecutor, in python/tvm/contrib/graph_executor.py
- VM Executor, in python/tvm/runtime/vm.py
TODO(areusch): Consolidate these into this module.
"""
from .aot_executor import AotModule
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/executor/aot_executor.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""A Python wrapper for the Module-based Model Runtime Interface for Ahead-of-Time compilation."""
import numpy as np
class AotModule(object):
"""Wraps the AOT executor runtime.Module.
This is a thin wrapper of the underlying TVM module.
you can also directly call set_input, run, and get_output
of underlying module functions
Parameters
----------
module : tvm.runtime.Module
The internal tvm module that holds the implemented model functions.
Attributes
----------
module : tvm.runtime.Module
The internal tvm module that holds the implemented model functions.
Examples
--------
.. code-block:: python
import tvm
from tvm import relay
from tvm.contrib import graph_executor
# build the library using graph executor
lib = relay.build(...)
lib.export_library("compiled_lib.so")
# load it back as a runtime
lib: tvm.runtime.Module = tvm.runtime.load_module("compiled_lib.so")
# Call the library factory function for default and create
# a new runtime.Module, wrap with aot module.
gmod = tvm.runtime.executor.AotModule(lib["default"](dev))
# use the aot module.
gmod.set_input("x", data)
gmod.run()
"""
def __init__(self, module):
self.module = module
self._set_input = module["set_input"]
self._run = module["run"]
self._get_output = module["get_output"]
self._get_input = module["get_input"]
self._get_num_outputs = module["get_num_outputs"]
self._get_input_index = module["get_input_index"]
self._get_num_inputs = module["get_num_inputs"]
def set_input(self, key=None, value=None, **params):
"""Set inputs to the module via kwargs
Parameters
----------
key : int or str
The input key
value : the input value.
The input key
params : dict of str to NDArray
Additional arguments
"""
if key is not None:
v = self._get_input(key)
if v is None:
raise RuntimeError("Could not find '%s' in model's inputs" % key)
v.copyfrom(value)
if params:
# upload big arrays first to avoid memory issue in rpc mode
keys = list(params.keys())
keys.sort(key=lambda x: -np.prod(params[x].shape))
for k in keys:
# TODO(zhiics) Skip the weights for submodule in a better way.
# We should use MetadataModule for initialization and remove
# params from set_input
val = self._get_input(k)
if val:
self._get_input(k).copyfrom(params[k])
def run(self, **input_dict):
"""Run forward execution of the model
Parameters
----------
input_dict: dict of str to NDArray
List of input values to be feed to
"""
if input_dict:
self.set_input(**input_dict)
self._run()
def get_num_outputs(self):
"""Get the number of outputs from the model
Returns
-------
count : int
The number of outputs.
"""
return self._get_num_outputs()
def get_num_inputs(self):
"""Get the number of inputs to the model
Returns
-------
count : int
The number of inputs.
"""
return self._get_num_inputs()
def get_input(self, index, out=None):
"""Get index-th input to out
Parameters
----------
index : int
The input index
out : NDArray
The output array container
"""
if out:
self._get_input(index).copyto(out)
return out
return self._get_input(index)
def get_input_index(self, name):
"""Get inputs index via input name.
Parameters
----------
name : str
The input key name
Returns
-------
index: int
The input index. -1 will be returned if the given input name is not found.
"""
return self._get_input_index(name)
def get_output(self, index, out=None):
"""Get index-th output to out
Parameters
----------
index : int
The output index
out : NDArray
The output array container
"""
if out:
self._get_output(index, out)
return out
return self._get_output(index)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/module.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, unused-import, import-outside-toplevel, inconsistent-return-statements
"""Runtime Module namespace."""
import os
import ctypes
import struct
from typing import Sequence
import numpy as np
import tvm._ffi
from tvm._ffi.base import _LIB, check_call, c_str, string_types, _RUNTIME_ONLY
from tvm._ffi.libinfo import find_include_path
from .packed_func import PackedFunc, PackedFuncHandle, _set_class_module
from . import _ffi_api
class BenchmarkResult:
"""Runtimes from benchmarking"""
def __init__(self, results: Sequence[float]):
"""Construct a new BenchmarkResult from a sequence of runtimes.
Parameters
----------
results : Sequence[float]
Raw times from benchmarking
Attributes
----------
min : float
Minimum runtime in seconds of all results.
mean : float
Mean runtime in seconds of all results. If py:meth:`Module.time_evaluator` or
`benchmark` is called with `number` > 0, then each result is already the mean of a
`number` of runtimes, so this becomes the mean of means.
median : float
Median runtime in seconds of all results. If py:meth:`Module.time_evaluator` is called
with `number` > 0, then each result is already the mean of a `number` of runtimes, so
this becomes the median of means.
max : float
Maximum runtime in seconds of all results. If py:meth:`Module.time_evaluator` is called
with `number` > 0, then each result is already the mean of a `number` of runtimes, so
this becomes the maximum of those means.
std : float
Standard deviation in seconds of runtimes. If py:meth:`Module.time_evaluator` is called
with `number` > 0, then each result is already the mean of a `number` of runtimes, so
this becomes the standard deviation of means.
results : Sequence[float]
The collected runtimes (in seconds). This may be a series of mean runtimes if
py:meth:`Module.time_evaluator` or `benchmark` was run with `number` > 1.
"""
self.results = results
self.mean = np.mean(self.results)
self.std = np.std(self.results)
self.median = np.median(self.results)
self.min = np.min(self.results)
self.max = np.max(self.results)
def __repr__(self):
return "BenchmarkResult(min={}, mean={}, median={}, max={}, std={}, results={})".format(
self.min, self.mean, self.median, self.max, self.std, self.results
)
def __str__(self):
return """Execution time summary:
{:^12} {:^12} {:^12} {:^12} {:^12}
{:^12.4f} {:^12.4f} {:^12.4f} {:^12.4f} {:^12.4f}
""".format(
"mean (ms)",
"median (ms)",
"max (ms)",
"min (ms)",
"std (ms)",
self.mean * 1000,
self.median * 1000,
self.max * 1000,
self.min * 1000,
self.std * 1000,
)
class Module(object):
"""Runtime Module."""
__slots__ = ["handle", "_entry", "entry_name"]
def __init__(self, handle):
self.handle = handle
self._entry = None
self.entry_name = "__tvm_main__"
def __del__(self):
if _LIB:
check_call(_LIB.TVMModFree(self.handle))
def __hash__(self):
return ctypes.cast(self.handle, ctypes.c_void_p).value
@property
def entry_func(self):
"""Get the entry function
Returns
-------
f : tvm.runtime.PackedFunc
The entry function if exist
"""
if self._entry:
return self._entry
self._entry = self.get_function(self.entry_name)
return self._entry
def implements_function(self, name, query_imports=False):
"""Returns True if the module has a definition for the global function with name. Note
that has_function(name) does not imply get_function(name) is non-null since the module
may be, eg, a CSourceModule which cannot supply a packed-func implementation of the function
without further compilation. However, get_function(name) non null should always imply
has_function(name).
Parameters
----------
name : str
The name of the function
query_imports : bool
Whether to also query modules imported by this module.
Returns
-------
b : Bool
True if module (or one of its imports) has a definition for name.
"""
return _ffi_api.ModuleImplementsFunction(self, name, query_imports)
def get_function(self, name, query_imports=False):
"""Get function from the module.
Parameters
----------
name : str
The name of the function
query_imports : bool
Whether also query modules imported by this module.
Returns
-------
f : tvm.runtime.PackedFunc
The result function.
"""
ret_handle = PackedFuncHandle()
check_call(
_LIB.TVMModGetFunction(
self.handle, c_str(name), ctypes.c_int(query_imports), ctypes.byref(ret_handle)
)
)
if not ret_handle.value:
raise AttributeError("Module has no function '%s'" % name)
return PackedFunc(ret_handle, False)
def import_module(self, module):
"""Add module to the import list of current one.
Parameters
----------
module : tvm.runtime.Module
The other module.
"""
check_call(_LIB.TVMModImport(self.handle, module.handle))
def __getitem__(self, name):
if not isinstance(name, string_types):
raise ValueError("Can only take string as function name")
return self.get_function(name)
def __eq__(self, other):
return self.handle.value == other.handle.value
def __call__(self, *args):
if self._entry:
return self._entry(*args)
# pylint: disable=not-callable
return self.entry_func(*args)
def __repr__(self):
return "Module(%s, %x)" % (self.type_key, self.handle.value)
@property
def type_key(self):
"""Get type key of the module."""
return _ffi_api.ModuleGetTypeKey(self)
@property
def format(self):
"""Get the format of the module."""
return _ffi_api.ModuleGetFormat(self)
def get_source(self, fmt=""):
"""Get source code from module, if available.
Parameters
----------
fmt : str, optional
The specified format.
Returns
-------
source : str
The result source code.
"""
return _ffi_api.ModuleGetSource(self, fmt)
@property
def imported_modules(self):
"""Get imported modules
Returns
----------
modules : list of Module
The module
"""
nmod = _ffi_api.ModuleImportsSize(self)
return [_ffi_api.ModuleGetImport(self, i) for i in range(nmod)]
@property
def is_dso_exportable(self):
"""Returns true if module is 'DSO exportable', ie can be included in result of
export_library by the external compiler directly.
Returns
-------
b : Bool
True if the module is DSO exportable.
"""
return _ffi_api.ModuleIsDSOExportable(self)
def save(self, file_name, fmt=""):
"""Save the module to file.
This do not save the dependent device modules.
See also export_shared
Parameters
----------
file_name : str
The name of the file.
fmt : str
The format of the file.
See Also
--------
runtime.Module.export_library : export the module to shared library.
"""
_ffi_api.ModuleSaveToFile(self, file_name, fmt)
def time_evaluator(
self,
func_name,
dev,
number=10,
repeat=1,
min_repeat_ms=0,
limit_zero_time_iterations=100,
cooldown_interval_ms=0,
repeats_to_cooldown=1,
f_preproc="",
):
"""Get an evaluator that measures time cost of running function.
Parameters
----------
func_name: str
The name of the function in the module.
dev: Device
The device we should run this function on.
number: int
The number of times to run this function for taking average.
We call these runs as one `repeat` of measurement.
repeat: int, optional
The number of times to repeat the measurement.
In total, the function will be invoked (1 + number x repeat) times,
where the first one is warm up and will be discarded.
The returned result contains `repeat` costs,
each of which is an average of `number` costs.
min_repeat_ms: int, optional
The minimum duration of one `repeat` in milliseconds.
By default, one `repeat` contains `number` runs. If this parameter is set,
the parameters `number` will be dynamically adjusted to meet the
minimum duration requirement of one `repeat`.
i.e., When the run time of one `repeat` falls below this time, the `number` parameter
will be automatically increased.
limit_zero_time_iterations: int, optional
The maximum number of repeats when measured time is equal to 0.
It helps to avoid hanging during measurements.
cooldown_interval_ms: int, optional
The cooldown interval in milliseconds between the number of repeats defined by
`repeats_to_cooldown`.
repeats_to_cooldown: int, optional
The number of repeats before the cooldown is activated.
f_preproc: str, optional
The preprocess function name we want to execute before executing the time evaluator.
Note
----
The function will be invoked (1 + number x repeat) times,
with the first call discarded in case there is lazy initialization.
Returns
-------
ftimer : function
The function that takes same argument as func and returns a BenchmarkResult.
The ProfileResult reports `repeat` time costs in seconds.
"""
try:
feval = _ffi_api.RPCTimeEvaluator(
self,
func_name,
dev.device_type,
dev.device_id,
number,
repeat,
min_repeat_ms,
limit_zero_time_iterations,
cooldown_interval_ms,
repeats_to_cooldown,
f_preproc,
)
def evaluator(*args):
"""Internal wrapped evaluator."""
# Wrap feval so we can add more stats in future.
blob = feval(*args)
fmt = "@" + ("d" * repeat)
results = struct.unpack(fmt, blob)
return BenchmarkResult(results)
return evaluator
except NameError:
raise NameError("time_evaluator is only supported when RPC is enabled")
def _collect_from_import_tree(self, filter_func):
"""Helper function to collect modules from the tree matching a filter_func, then return it.
Parameters
----------
filter_func : Callable[[Module], bool]
A function which is invoked for each Module discovered in the import tree (including
self).
Returns
-------
list[Module] :
A list of matching Module.
"""
visited, stack, dso_modules = set(), [], []
# append root module
visited.add(self)
stack.append(self)
while stack:
module = stack.pop()
if filter_func(module):
dso_modules.append(module)
for m in module.imported_modules:
if m not in visited:
visited.add(m)
stack.append(m)
return dso_modules
def _collect_dso_modules(self):
return self._collect_from_import_tree(lambda m: m.is_dso_exportable)
def export_library(self, file_name, fcompile=None, addons=None, workspace_dir=None, **kwargs):
"""
Export the module and all imported modules into a single device library.
This function only works on host LLVM modules, other runtime::Module
subclasses will work with this API but they must support implement
the save and load mechanisms of modules completely including saving
from streams and files. This will pack your non-shared library module
into a single shared library which can later be loaded by TVM.
Parameters
----------
file_name : str
The name of the shared library.
fcompile : function(target, file_list, kwargs), optional
The compilation function to use create the final library object during
export.
For example, when fcompile=_cc.create_shared, or when it is not supplied but
module is "llvm," this is used to link all produced artifacts
into a final dynamic library.
This behavior is controlled by the type of object exported.
If fcompile has attribute object_format, will compile host library
to that format. Otherwise, will use default format "o".
workspace_dir : str, optional
The path of the directory used to create the intermediate
artifacts when exporting the module.
If this is not provided a temporary dir will be created.
kwargs : dict, optional
Additional arguments passed to fcompile
Returns
-------
result of fcompile() : unknown, optional
If the compilation function returns an artifact it would be returned via
export_library, if any.
"""
# NOTE: this function depends on contrib library features
# which are only available in when TVM function is available.
if _RUNTIME_ONLY:
raise RuntimeError("Cannot call export_library in runtime only mode")
# Extra dependencies during runtime.
from pathlib import Path
from tvm.contrib import cc as _cc, tar as _tar, utils as _utils
if isinstance(file_name, Path):
file_name = str(file_name)
if self.type_key == "stackvm":
if not file_name.endswith(".stackvm"):
raise ValueError(
"Module[%s]: can only be saved as stackvm format."
"did you build with LLVM enabled?" % self.type_key
)
self.save(file_name)
return
modules = self._collect_dso_modules()
if workspace_dir is None:
temp = _utils.tempdir()
workspace_dir = temp.temp_dir
files = addons if addons else []
is_system_lib = False
has_c_module = False
llvm_target_string = None
for index, module in enumerate(modules):
if fcompile is not None and hasattr(fcompile, "object_format"):
if module.type_key == "c":
assert module.format in [
"c",
"cc",
"cpp",
"cu",
], "The module.format needs to be either c, cc, cpp or cu."
object_format = module.format
has_c_module = True
else:
object_format = fcompile.object_format
else:
if module.type_key == "c":
if len(module.format) > 0:
assert module.format in [
"c",
"cc",
"cpp",
"cu",
], "The module.format needs to be either c, cc, cpp, or cu."
object_format = module.format
else:
object_format = "c"
if "cc" in kwargs:
if kwargs["cc"] == "nvcc":
object_format = "cu"
has_c_module = True
else:
assert module.type_key == "llvm" or module.type_key == "static_library"
object_format = "o"
path_obj = os.path.join(workspace_dir, f"lib{index}.{object_format}")
module.save(path_obj)
files.append(path_obj)
is_system_lib = (
module.type_key == "llvm" and module.get_function("__tvm_is_system_module")()
)
llvm_target_string = (
module.type_key == "llvm" and module.get_function("_get_target_string")()
)
if not fcompile:
if file_name.endswith(".tar"):
fcompile = _tar.tar
else:
fcompile = _cc.create_shared
if llvm_target_string is None and hasattr(fcompile, "get_target_triple"):
triple = fcompile.get_target_triple()
assert triple, "Target triple should not be empty"
llvm_target_string = "llvm -mtriple " + triple
if getattr(fcompile, "need_system_lib", False) and not is_system_lib:
raise ValueError("%s need --system-lib option" % str(fcompile))
if self.imported_modules:
if enabled("llvm") and llvm_target_string:
path_obj = os.path.join(workspace_dir, f"devc.{object_format}")
m = _ffi_api.ModulePackImportsToLLVM(self, is_system_lib, llvm_target_string)
m.save(path_obj)
files.append(path_obj)
else:
path_cc = os.path.join(workspace_dir, "devc.c")
with open(path_cc, "w") as f:
f.write(_ffi_api.ModulePackImportsToC(self, is_system_lib))
files.append(path_cc)
# The imports could contain a c module but the object format could be tar
# Thus, it would not recognize the following include paths as options
# which are there assuming a c compiler is the fcompile.
if has_c_module and not file_name.endswith(".tar"):
options = []
if "options" in kwargs:
opts = kwargs["options"]
options = opts if isinstance(opts, (list, tuple)) else [opts]
opts = options + ["-I" + path for path in find_include_path()]
kwargs.update({"options": opts})
return fcompile(file_name, files, **kwargs)
def system_lib():
"""Get system-wide library module singleton.
System lib is a global module that contains self register functions in startup.
Unlike normal dso modules which need to be loaded explicitly.
It is useful in environments where dynamic loading api like dlopen is banned.
To build system lib function, simply specify target option ```llvm --system-lib```
The system lib will be available as long as the result code is linked by the program.
The system lib is intended to be linked and loaded during the entire life-cyle of the program.
If you want dynamic loading features, use dso modules instead.
Returns
-------
module : runtime.Module
The system-wide library module.
"""
return _ffi_api.SystemLib()
def load_module(path, fmt=""):
"""Load module from file.
Parameters
----------
path : str
The path to the module file.
fmt : str, optional
The format of the file, if not specified
it will be inferred from suffix of the file.
Returns
-------
module : runtime.Module
The loaded module
Note
----
This function will automatically call
cc.create_shared if the path is in format .o or .tar
"""
if os.path.isfile(path):
path = os.path.realpath(path)
else:
raise ValueError("cannot find file %s" % path)
# High level handling for .o and .tar file.
# We support this to be consistent with RPC module load.
if path.endswith(".o"):
# Extra dependencies during runtime.
from tvm.contrib import cc as _cc
_cc.create_shared(path + ".so", path)
path += ".so"
elif path.endswith(".tar"):
# Extra dependencies during runtime.
from tvm.contrib import cc as _cc, utils as _utils, tar as _tar
tar_temp = _utils.tempdir(custom_path=path.replace(".tar", ""))
_tar.untar(path, tar_temp.temp_dir)
files = [tar_temp.relpath(x) for x in tar_temp.listdir()]
_cc.create_shared(path + ".so", files)
path += ".so"
# Redirect to the load API
return _ffi_api.ModuleLoadFromFile(path, fmt)
def load_static_library(path, func_names):
"""Load the .o library at path which implements functions with func_names.
Unlike the generic load_module the result will remain as a static_library
and will not be relinked on-the-fly into a .so library."""
return _ffi_api.ModuleLoadStaticLibrary(path, func_names)
def enabled(target):
"""Whether module runtime is enabled for target
Parameters
----------
target : str
The target device type.
Returns
-------
enabled : bool
Whether runtime is enabled.
Examples
--------
The following code checks if gpu is enabled.
>>> tvm.runtime.enabled("gpu")
"""
return _ffi_api.RuntimeEnabled(target)
def num_threads() -> int:
"""Get the number of threads in use by the TVM runtime.
Returns
-------
int
Number of threads in use.
"""
return _ffi_api.NumThreads()
_set_class_module(Module)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/name_transforms.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Name transformation functions shared in Backend and Runtime
"""
from . import _ffi_api
def sanitize_name(original_name: str):
"""Sanitize name for output into compiler artifacts
Parameters
----------
original_name : str
Original name to sanitize
"""
return _ffi_api.SanitizeName(original_name)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/ndarray.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, unused-import, redefined-outer-name
"""Runtime NDArray API"""
import ctypes
import warnings
import numpy as np
import tvm._ffi
from tvm._ffi.base import _LIB, check_call, c_array, string_types, _FFI_MODE
from tvm._ffi.runtime_ctypes import DataType, Device, TVMArray, TVMArrayHandle
from tvm._ffi.runtime_ctypes import DataTypeCode, tvm_shape_index_t
from . import _ffi_api
try:
# pylint: disable=wrong-import-position
if _FFI_MODE == "ctypes":
raise ImportError()
from tvm._ffi._cy3.core import _set_class_ndarray, _make_array, _from_dlpack
from tvm._ffi._cy3.core import NDArrayBase
except (RuntimeError, ImportError) as error:
# pylint: disable=wrong-import-position
if _FFI_MODE == "cython":
raise error
from tvm._ffi._ctypes.ndarray import _set_class_ndarray, _make_array, _from_dlpack
from tvm._ffi._ctypes.ndarray import NDArrayBase
@tvm._ffi.register_object("runtime.NDArray")
class NDArray(NDArrayBase):
"""Lightweight NDArray class of TVM runtime.
Strictly this is only an Array Container (a buffer object)
No arthimetic operations are defined.
All operations are performed by TVM functions.
The goal is not to re-build yet another array library.
Instead, this is a minimal data structure to demonstrate
how can we use TVM in existing project which might have their own array containers.
"""
@property
def dtype(self):
"""Type of this array"""
return str(self.handle.contents.dtype)
@property
def device(self):
"""Device of this array"""
return self.handle.contents.device
def __dlpack__(self, stream=None): # pylint: disable=unused-argument
"""Export the array for consumption by from_dlpack() as a DLPack capsule.
Parameters
----------
stream : int, optional
A Python integer representing a pointer to a stream.
Stream is provided by the consumer to the producer to instruct the producer
to ensure that operations can safely be performed on the array.
Returns
-------
capsule : PyCapsule
A DLPack capsule for the array, containing a DLPackManagedTensor.
"""
return self.to_dlpack()
def __dlpack_device__(self):
"""Return a tuple of device_type, device_id in DLPack convention"""
return (self.handle.contents.device.device_type, self.handle.contents.device.device_id)
def __hash__(self):
return ctypes.cast(self.handle, ctypes.c_void_p).value
def __eq__(self, other):
return self.same_as(other)
def __ne__(self, other):
return not self.__eq__(other)
def same_as(self, other):
"""Check object identity equality
Parameters
----------
other : object
The other object to compare to
Returns
-------
same : bool
Whether other is same as self.
"""
if not isinstance(other, NDArrayBase):
return False
return self.__hash__() == other.__hash__()
def __setitem__(self, in_slice, value):
"""Set ndarray value"""
if (
not isinstance(in_slice, slice)
or in_slice.start is not None
or in_slice.stop is not None
):
raise ValueError("Array only support set from numpy array")
if isinstance(value, NDArrayBase):
if value.handle is not self.handle:
value.copyto(self)
elif isinstance(value, (np.ndarray, np.generic)):
self.copyfrom(value)
else:
raise TypeError("type %s not supported" % str(type(value)))
def copyfrom(self, source_array):
"""Perform a synchronous copy from the array.
Parameters
----------
source_array : array_like
The data source we should like to copy from.
Returns
-------
arr : NDArray
Reference to self.
"""
if isinstance(source_array, NDArrayBase):
source_array.copyto(self)
return self
if not isinstance(source_array, np.ndarray):
try:
source_array = np.array(source_array, dtype=self.dtype)
except:
raise TypeError(
"array must be an array_like data,"
+ "type %s is not supported" % str(type(source_array))
)
t = DataType(self.dtype)
shape, dtype = self.shape, self.dtype
if t.lanes > 1:
shape = shape + (t.lanes,)
t.lanes = 1
dtype = str(t)
if source_array.shape != shape:
raise ValueError(
"array shape do not match the shape of NDArray {0} vs {1}".format(
source_array.shape, shape
)
)
numpy_str_map = DataType.NUMPY2STR
np_dtype_str = (
numpy_str_map[source_array.dtype]
if source_array.dtype in numpy_str_map
else str(source_array.dtype)
)
if (not source_array.flags["C_CONTIGUOUS"]) or (
dtype == "bfloat16" or dtype != np_dtype_str
):
source_array = np.ascontiguousarray(
source_array, dtype="uint16" if dtype == "bfloat16" else dtype
)
assert source_array.flags["C_CONTIGUOUS"]
data = source_array.ctypes.data_as(ctypes.c_void_p)
nbytes = ctypes.c_size_t(source_array.size * source_array.dtype.itemsize)
check_call(_LIB.TVMArrayCopyFromBytes(self.handle, data, nbytes))
return self
def __repr__(self):
res = "<tvm.nd.NDArray shape={0}, {1}>\n".format(self.shape, self.device)
res += self.numpy().__repr__()
return res
def __str__(self):
return str(self.numpy())
def asnumpy(self):
"""Convert this array to numpy array. This API will be deprecated in TVM v0.8 release.
Please use `numpy` instead."""
warnings.warn(
"NDArray.asnumpy() will be deprecated in TVM v0.8 release. "
"Please use NDArray.numpy() instead.",
DeprecationWarning,
)
return self.numpy()
def numpy(self):
"""Convert this array to numpy array
Returns
-------
np_arr : numpy.ndarray
The corresponding numpy array.
"""
t = DataType(self.dtype)
shape, dtype = self.shape, self.dtype
old_dtype = dtype
if t.lanes > 1:
shape = shape + (t.lanes,)
t.lanes = 1
dtype = str(t)
if dtype == "int4":
dtype = "int8"
if dtype == "bfloat16":
dtype = "uint16"
np_arr = np.empty(shape, dtype=dtype)
assert np_arr.flags["C_CONTIGUOUS"]
data = np_arr.ctypes.data_as(ctypes.c_void_p)
nbytes = ctypes.c_size_t(np_arr.size * np_arr.dtype.itemsize)
check_call(_LIB.TVMArrayCopyToBytes(self.handle, data, nbytes))
if old_dtype == "int4":
length = np_arr.size
np_arr_ret = np.empty((length,), dtype="int8")
np_arr = np_arr.reshape((length,))
old_index = np.bitwise_and(np_arr, 0x0F)
even_index = np.bitwise_and(np_arr >> 4, 0x0F)
np_arr_ret[1::2] = old_index[0 : length // 2]
np_arr_ret[0::2] = even_index[0 : length // 2]
return np_arr_ret.reshape(shape)
return np_arr
def copyto(self, target, mem_scope=None):
"""Copy array to target
Parameters
----------
target : NDArray
The target array to be copied, must have same shape as this array.
mem_scope : Optional[str]
The memory scope of the array.
"""
if isinstance(target, NDArrayBase):
return self._copyto(target)
if isinstance(target, Device):
res = empty(self.shape, self.dtype, target, mem_scope)
return self._copyto(res)
raise ValueError("Unsupported target type %s" % str(type(target)))
def _create_view(self, shape):
"""Create a view into an existing array.
The view shares the same allocation and datatype as the
existing array, but can have a different array shape. This is
useful for runtimes that support non-flat memory, where both
the physical shape of an allocation and the logical shape of
the tensor it represents may need to be independently
specified.
Warning: This function should not be used outside of low-level
manipulations, as it breaks non-aliasing assumptions made by
TVM. This function may also be removed/replaced in the
future.
Parameters
----------
shape: Union[tvm.runtime.ShapeTuple, Sequence[typing.SupportsInt]]
The shape of the view.
"""
if not isinstance(shape, tvm.runtime.ShapeTuple):
shape = tvm.runtime.ShapeTuple([int(dim) for dim in shape])
return _ffi_api.TVMArrayCreateView(self, shape)
def device(dev_type, dev_id=0):
"""Construct a TVM device with given device type and id.
Parameters
----------
dev_type: int or str
The device type mask or name of the device.
dev_id : int, optional
The integer device id
Returns
-------
dev: tvm.runtime.Device
The corresponding device.
Examples
--------
Device can be used to create reflection of device by
string representation of the device type.
.. code-block:: python
assert tvm.device("cpu", 1) == tvm.cpu(1)
assert tvm.device("cuda", 0) == tvm.cuda(0)
"""
if isinstance(dev_type, string_types):
dev_type = dev_type.split()[0]
if dev_type not in Device.STR2MASK:
raise ValueError("Unknown device type %s" % dev_type)
dev_type = Device.STR2MASK[dev_type]
return Device(dev_type, dev_id)
def numpyasarray(np_data):
"""Return a TVMArray representation of a numpy array."""
data = np_data
assert data.flags["C_CONTIGUOUS"]
arr = TVMArray()
shape = c_array(tvm_shape_index_t, data.shape)
arr.data = data.ctypes.data_as(ctypes.c_void_p)
arr.shape = shape
arr.strides = None
arr.dtype = DataType(np.dtype(data.dtype).name)
arr.ndim = data.ndim
# CPU device
arr.device = device(Device.kDLCPU, 0)
return arr, shape
def empty(shape, dtype="float32", device=device(Device.kDLCPU, 0), mem_scope=None):
"""Create an empty array given shape and device
Parameters
----------
shape : Union[tvm.runtime.ShapeTuple, Sequence[typing.SupportsInt]]
The shape of the array.
dtype : type or str
The data type of the array.
device : Device
The device of the array.
mem_scope : Optional[str]
The memory scope of the array.
Returns
-------
arr : tvm.nd.NDArray
The array tvm supported.
"""
if not isinstance(shape, tvm.runtime.ShapeTuple):
shape = tvm.runtime.ShapeTuple([int(dim) for dim in shape])
dtype = DataType(dtype)
arr = _ffi_api.TVMArrayAllocWithScope(shape, dtype, device, mem_scope)
return arr
def from_dlpack(dltensor):
"""Produces an array from an object with __dlpack__ method or a DLPack tensor w/o memory copy.
Retreives the underlying DLPack tensor's pointer to create an array from the
data. Removes the original DLPack tensor's destructor as now the array is
responsible for destruction.
Parameters
----------
dltensor : object with __dlpack__ attribute or a DLPack capsule
Returns
-------
arr: tvm.nd.NDArray
The array view of the tensor data.
"""
t = type(dltensor)
if t.__module__ == "builtins" and t.__name__ == "PyCapsule":
return _from_dlpack(dltensor)
if hasattr(dltensor, "__dlpack__"):
dlpack_caps = dltensor.__dlpack__()
return _from_dlpack(dlpack_caps)
raise AttributeError("Required attribute __dlpack__ not found")
def cpu(dev_id=0):
"""Construct a CPU device
Parameters
----------
dev_id : int, optional
The integer device id
Returns
-------
dev : Device
The created device
"""
return Device(Device.kDLCPU, dev_id)
def cuda(dev_id=0):
"""Construct a CUDA GPU device
Parameters
----------
dev_id : int, optional
The integer device id
Returns
-------
dev : Device
The created device
"""
return Device(Device.kDLCUDA, dev_id)
def gpu(dev_id=0):
"""Construct a CUDA GPU device
deprecated:: 0.9.0
Use :py:func:`tvm.cuda` instead.
Parameters
----------
dev_id : int, optional
The integer device id
Returns
-------
dev : Device
The created device
"""
warnings.warn(
"Please use tvm.cuda() instead of tvm.gpu(). tvm.gpu() is going to be deprecated in 0.9.0",
)
return Device(Device.kDLCUDA, dev_id)
def rocm(dev_id=0):
"""Construct a ROCM device
Parameters
----------
dev_id : int, optional
The integer device id
Returns
-------
dev : Device
The created device
"""
return Device(Device.kDLROCM, dev_id)
def opencl(dev_id=0):
"""Construct a OpenCL device
Parameters
----------
dev_id : int, optional
The integer device id
Returns
-------
dev : Device
The created device
"""
return Device(Device.kDLOpenCL, dev_id)
def metal(dev_id=0):
"""Construct a metal device
Parameters
----------
dev_id : int, optional
The integer device id
Returns
-------
dev : Device
The created device
"""
return Device(Device.kDLMetal, dev_id)
def vpi(dev_id=0):
"""Construct a VPI simulated device
Parameters
----------
dev_id : int, optional
The integer device id
Returns
-------
dev : Device
The created device
"""
return Device(Device.kDLVPI, dev_id)
def vulkan(dev_id=0):
"""Construct a Vulkan device
Parameters
----------
dev_id : int, optional
The integer device id
Returns
-------
dev : Device
The created device
"""
return Device(Device.kDLVulkan, dev_id)
def ext_dev(dev_id=0):
"""Construct a extension device
Parameters
----------
dev_id : int, optional
The integer device id
Returns
-------
dev : Device
The created device
Note
----
This API is reserved for quick testing of new
device by plugin device API as ext_dev.
"""
return Device(Device.kDLExtDev, dev_id)
def hexagon(dev_id=0):
"""Construct a Hexagon device
Parameters
----------
dev_id : int, optional
The integer device id
Returns
-------
dev : Device
The created device
"""
return Device(Device.kDLHexagon, dev_id)
def webgpu(dev_id=0):
"""Construct a webgpu device.
Parameters
----------
dev_id : int, optional
The integer device id
Returns
-------
dev : Device
The created device
"""
return Device(Device.kDLWebGPU, dev_id)
cl = opencl
mtl = metal
def array(arr, device=cpu(0), mem_scope=None):
"""Create an array from source arr.
Parameters
----------
arr : numpy.ndarray
The array to be copied from
device : Device, optional
The device device to create the array
mem_scope : Optional[str]
The memory scope of the array
Returns
-------
ret : NDArray
The created array
"""
if isinstance(arr, tvm.ir.container.Array):
raise AttributeError("arr is an instance of", type(arr))
if not isinstance(arr, (np.ndarray, NDArray)):
arr = np.array(arr)
return empty(arr.shape, arr.dtype, device, mem_scope).copyfrom(arr)
# Register back to FFI
_set_class_ndarray(NDArray)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/object.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, unused-import
"""Runtime Object API"""
import ctypes
from tvm._ffi.base import _FFI_MODE, _RUNTIME_ONLY, check_call, _LIB, c_str
from tvm._ffi.runtime_ctypes import ObjectRValueRef
from . import _ffi_api, _ffi_node_api
try:
# pylint: disable=wrong-import-position,unused-import
if _FFI_MODE == "ctypes":
raise ImportError()
from tvm._ffi._cy3.core import _set_class_object, _set_class_object_generic
from tvm._ffi._cy3.core import ObjectBase, PyNativeObject
except (RuntimeError, ImportError) as error:
# pylint: disable=wrong-import-position,unused-import
if _FFI_MODE == "cython":
raise error
from tvm._ffi._ctypes.packed_func import _set_class_object, _set_class_object_generic
from tvm._ffi._ctypes.object import ObjectBase, PyNativeObject
def _new_object(cls):
"""Helper function for pickle"""
return cls.__new__(cls)
class Object(ObjectBase):
"""Base class for all tvm's runtime objects."""
__slots__ = []
def __repr__(self):
return _ffi_node_api.AsRepr(self)
def __dir__(self):
class_names = dir(self.__class__)
fnames = _ffi_node_api.NodeListAttrNames(self)
size = fnames(-1)
return sorted([fnames(i) for i in range(size)] + class_names)
def __getattr__(self, name):
# specially check handle since
# this is required for PackedFunc calls
if name == "handle":
raise AttributeError("handle is not set")
try:
return _ffi_node_api.NodeGetAttr(self, name)
except AttributeError:
raise AttributeError("%s has no attribute %s" % (str(type(self)), name)) from None
def __hash__(self):
return _ffi_api.ObjectPtrHash(self)
def __eq__(self, other):
return self.same_as(other)
def __ne__(self, other):
return not self.__eq__(other)
def __reduce__(self):
cls = type(self)
return (_new_object, (cls,), self.__getstate__())
def __getstate__(self):
handle = self.handle
if handle is not None:
return {"handle": _ffi_node_api.SaveJSON(self)}
return {"handle": None}
def __setstate__(self, state):
# pylint: disable=assigning-non-slot, assignment-from-no-return
handle = state["handle"]
self.handle = None
if handle is not None:
self.__init_handle_by_constructor__(_ffi_node_api.LoadJSON, handle)
def _move(self):
"""Create an RValue reference to the object and mark the object as moved.
This is a advanced developer API that can be useful when passing an
unique reference to an Object that you no longer needed to a function.
A unique reference can trigger copy on write optimization that avoids
copy when we transform an object.
Note
----
All the reference of the object becomes invalid after it is moved.
Be very careful when using this feature.
Examples
--------
.. code-block:: python
x = tvm.tir.Var("x", "int32")
x0 = x
some_packed_func(x._move())
# both x0 and x will points to None after the function call.
Returns
-------
rvalue : The rvalue reference.
"""
return ObjectRValueRef(self)
_set_class_object(Object)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/object_generic.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Common implementation of object generic related logic"""
# pylint: disable=unused-import, invalid-name
from numbers import Number, Integral
from tvm._ffi.base import string_types
from tvm._ffi.runtime_ctypes import ObjectRValueRef
from . import _ffi_node_api, _ffi_api
from .object import ObjectBase, PyNativeObject, _set_class_object_generic
from .ndarray import NDArrayBase
from .packed_func import PackedFuncBase, convert_to_tvm_func
from .module import Module
class ObjectGeneric(object):
"""Base class for all classes that can be converted to object."""
def asobject(self):
"""Convert value to object"""
raise NotImplementedError()
ObjectTypes = (ObjectBase, NDArrayBase, Module, ObjectRValueRef, PyNativeObject)
def convert_to_object(value, span=None):
"""Convert a Python value to corresponding object type.
Parameters
----------
value : str
The value to be inspected.
span : Optional[Span]
The location of this itervar in the source code.
Returns
-------
obj : Object
The corresponding object value.
"""
if isinstance(value, ObjectTypes):
return value
if isinstance(value, bool):
return const(value, "uint1x1", span=span)
if isinstance(value, Number):
return const(value, span=span)
if isinstance(value, string_types):
return _ffi_api.String(value)
if isinstance(value, (list, tuple)):
value = [convert_to_object(x) for x in value]
return _ffi_api.Array(*value)
if isinstance(value, dict):
vlist = []
for item in value.items():
if (
not isinstance(item[0], ObjectTypes)
and not isinstance(item[0], string_types)
and not isinstance(item[0], Number)
):
raise ValueError("key of map must already been a container type")
vlist.append(convert_to_object(item[0]))
vlist.append(convert_to_object(item[1]))
return _ffi_api.Map(*vlist)
if isinstance(value, ObjectGeneric):
return value.asobject()
if value is None:
return None
raise ValueError("don't know how to convert type %s to object" % type(value))
def convert(value, span=None):
"""Convert value to TVM object or function.
Parameters
----------
value : python value
span : Optional[Span]
The location of this statement in the source code.
Returns
-------
tvm_val : Object or Function
Converted value in TVM
"""
if isinstance(value, (PackedFuncBase, ObjectBase)):
return value
if callable(value):
return convert_to_tvm_func(value)
return convert_to_object(value, span=span)
def _scalar_type_inference(value):
if hasattr(value, "dtype"):
dtype = str(value.dtype)
elif isinstance(value, bool):
dtype = "bool"
elif isinstance(value, float):
# We intentionally prefer convert the float to float32 since it's more common in DL.
if -3.40282347e38 <= value <= 3.40282347e38:
dtype = "float32"
else:
dtype = "float64"
elif isinstance(value, int):
# We intentionally prefer convert the python int to int32 since it's more common in DL.
if -2147483648 <= value <= 2147483647:
dtype = "int32"
else:
dtype = "int64"
else:
raise NotImplementedError(
"Cannot automatically inference the type." " value={}".format(value)
)
return dtype
def const(value, dtype=None, span=None):
"""construct a constant
Parameters
----------
value : number
The content of the constant number.
dtype : str or None, optional
The data type.
span : Optional[Span]
The location of the constant value in the source.
Returns
-------
const_val: tvm.Expr
The result expression.
"""
if dtype is None:
dtype = _scalar_type_inference(value)
if dtype == "uint64" and value >= (1 << 63):
return _ffi_node_api.LargeUIntImm(dtype, value & ((1 << 32) - 1), value >> 32, span)
return _ffi_node_api._const(value, dtype, span)
_set_class_object_generic(ObjectGeneric, convert_to_object)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/object_path.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
ObjectPath class that represents a path from a root object to one of its descendants
via attribute access, array indexing etc.
"""
import tvm._ffi
from tvm.runtime import Object
from . import _ffi_node_api
__all__ = (
"ObjectPath",
"RootPath",
"AttributeAccessPath",
"UnknownAttributeAccessPath",
"ArrayIndexPath",
"MissingArrayElementPath",
"MapValuePath",
"MissingMapEntryPath",
"ObjectPathPair",
)
@tvm._ffi.register_object("ObjectPath")
class ObjectPath(Object):
"""
Path to an object from some root object.
"""
def __init__(self) -> None:
super().__init__()
raise ValueError(
"ObjectPath can't be initialized directly. "
"Use ObjectPath.root() to create a path to the root object"
)
@staticmethod
def root() -> "ObjectPath":
return _ffi_node_api.ObjectPathRoot()
def __eq__(self, other):
return _ffi_node_api.ObjectPathEqual(self, other)
def __ne__(self, other):
return not _ffi_node_api.ObjectPathEqual(self, other)
@property
def parent(self) -> "ObjectPath":
return _ffi_node_api.ObjectPathGetParent(self)
def __len__(self) -> int:
return _ffi_node_api.ObjectPathLength(self)
def get_prefix(self, length) -> "ObjectPath":
return _ffi_node_api.ObjectPathGetPrefix(self, length)
def is_prefix_of(self, other) -> "ObjectPath":
return _ffi_node_api.ObjectPathIsPrefixOf(self, other)
def attr(self, attr_key) -> "ObjectPath":
return _ffi_node_api.ObjectPathAttr(self, attr_key)
def array_index(self, index) -> "ObjectPath":
return _ffi_node_api.ObjectPathArrayIndex(self, index)
def missing_array_element(self, index) -> "ObjectPath":
return _ffi_node_api.ObjectPathMissingArrayElement(self, index)
def map_value(self, key) -> "ObjectPath":
return _ffi_node_api.ObjectPathMapValue(self, tvm.runtime.convert(key))
def missing_map_entry(self) -> "ObjectPath":
return _ffi_node_api.ObjectPathMissingMapEntry(self)
@tvm._ffi.register_object("RootPath")
class RootPath(ObjectPath):
pass
@tvm._ffi.register_object("AttributeAccessPath")
class AttributeAccessPath(ObjectPath):
pass
@tvm._ffi.register_object("UnknownAttributeAccessPath")
class UnknownAttributeAccessPath(ObjectPath):
pass
@tvm._ffi.register_object("ArrayIndexPath")
class ArrayIndexPath(ObjectPath):
pass
@tvm._ffi.register_object("MissingArrayElementPath")
class MissingArrayElementPath(ObjectPath):
pass
@tvm._ffi.register_object("MapValuePath")
class MapValuePath(ObjectPath):
pass
@tvm._ffi.register_object("MissingMapEntryPath")
class MissingMapEntryPath(ObjectPath):
pass
@tvm._ffi.register_object("ObjectPathPair")
class ObjectPathPair(Object):
"""
Pair of ObjectPaths, one for each object being tested for structural equality.
"""
@property
def lhs_path(self) -> ObjectPath:
return _ffi_node_api.ObjectPathPairLhsPath(self)
@property
def rhs_path(self) -> ObjectPath:
return _ffi_node_api.ObjectPathPairRhsPath(self)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/packed_func.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, unused-import
"""Packed Function namespace."""
import ctypes
from tvm._ffi.base import _LIB, check_call, c_str, string_types, _FFI_MODE
try:
# pylint: disable=wrong-import-position
if _FFI_MODE == "ctypes":
raise ImportError()
from tvm._ffi._cy3.core import _set_class_packed_func, _set_class_module
from tvm._ffi._cy3.core import PackedFuncBase
from tvm._ffi._cy3.core import convert_to_tvm_func
except (RuntimeError, ImportError) as error:
# pylint: disable=wrong-import-position
if _FFI_MODE == "cython":
raise error
from tvm._ffi._ctypes.packed_func import _set_class_packed_func, _set_class_module
from tvm._ffi._ctypes.packed_func import PackedFuncBase
from tvm._ffi._ctypes.packed_func import convert_to_tvm_func
PackedFuncHandle = ctypes.c_void_p
class PackedFunc(PackedFuncBase):
"""The PackedFunc object used in TVM.
Function plays an key role to bridge front and backend in TVM.
Function provide a type-erased interface, you can call function with positional arguments.
The compiled module returns Function.
TVM backend also registers and exposes its API as Functions.
The following are list of common usage scenario of tvm.runtime.PackedFunc.
- Automatic exposure of C++ API into python
- To call PackedFunc from python side
- To call python callbacks to inspect results in generated code
- Bring python hook into C++ backend
See Also
--------
tvm.register_func: How to register global function.
tvm.get_global_func: How to get global function.
"""
_set_class_packed_func(PackedFunc)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/params.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name
"""Helper utility to save and load parameter dicts."""
from . import _ffi_api, ndarray
def save_param_dict(params):
"""Save parameter dictionary to binary bytes.
The result binary bytes can be loaded by the
GraphModule with API "load_params".
Parameters
----------
params : dict of str to NDArray
The parameter dictionary.
Returns
-------
param_bytes: bytearray
Serialized parameters.
Examples
--------
.. code-block:: python
# set up the parameter dict
params = {"param0": arr0, "param1": arr1}
# save the parameters as byte array
param_bytes = tvm.runtime.save_param_dict(params)
# We can serialize the param_bytes and load it back later.
# Pass in byte array to module to directly set parameters
tvm.runtime.load_param_dict(param_bytes)
"""
transformed = {k: ndarray.array(v) for (k, v) in params.items()}
return _ffi_api.SaveParams(transformed)
def load_param_dict(param_bytes):
"""Load parameter dictionary to binary bytes.
Parameters
----------
param_bytes: bytearray
Serialized parameters.
Returns
-------
params : dict of str to NDArray
The parameter dictionary.
"""
if isinstance(param_bytes, (bytes, str)):
param_bytes = bytearray(param_bytes)
return _ffi_api.LoadParams(param_bytes)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/profiler_vm.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=no-else-return, unidiomatic-typecheck, undefined-variable, invalid-name, redefined-builtin
"""
The Relay Virtual Machine profiler.
Provides extra APIs for profiling vm execution.
"""
import warnings
from tvm.runtime import _ffi_api
from tvm.rpc import base as rpc_base
from . import vm
from .profiling import Report
def enabled():
"""Whether vm profiler is enabled."""
return hasattr(_ffi_api, "_VirtualMachineDebug")
class VirtualMachineProfiler(vm.VirtualMachine):
"""Relay profile VM runtime."""
def __init__(self, exe, device, memory_cfg=None):
super(VirtualMachineProfiler, self).__init__(exe, device, memory_cfg)
# Make sure the constructor of the VM module is on the proper device
# Remote devices have device_type of their actual device_type + RPC_SESS_MASK
if device.device_type >= rpc_base.RPC_SESS_MASK:
self.module = device._rpc_sess.get_function("runtime._VirtualMachineDebug")(exe)
else:
self.module = _ffi_api._VirtualMachineDebug(exe.module)
self._init = self.module["init"]
self._invoke = self.module["invoke"]
self._profile = self.module["profile"]
self._profile_rpc = self.module["profile_rpc"]
self._set_input = self.module["set_input"]
self._setup_device(device, memory_cfg)
def get_stat(self, sort_by_time=True): # pylint: disable=unused-argument
"""Get the statistics of executed ops.
REMOVED, use profile method instead.
"""
warnings.warn("get_stat has been removed, use profile instead")
return ""
def profile(self, *args, func_name="main", collectors=None, **kwargs):
"""Profile a function call.
Parameters
----------
func_name : str
The name of the function.
collectors : Optional[Sequence[MetricCollector]]
Extra metrics to collect. If profiling over RPC, collectors must be `None`.
args : list[tvm.runtime.NDArray] or list[np.ndarray]
The arguments to the function.
kwargs: dict of str to tvm.runtime.NDArray or np.ndarray
Named arguments to the function.
Returns
-------
timing_results : str
Overall and per-op timing results formatted in a table.
"""
if args or kwargs:
self.set_input(func_name, *args, **kwargs)
if self.module.type_key == "rpc":
# We cannot serialize MetricCollectors over RPC
assert collectors is None, "Profiling with collectors is not supported over RPC"
return Report.from_json(self._profile_rpc(func_name))
return self._profile(func_name, collectors)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/profiling/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Registration of profiling objects in python."""
from typing import Dict, Sequence, Optional
from ... import _ffi
from . import _ffi_api
from .. import Object, Device
@_ffi.register_object("runtime.profiling.Report")
class Report(Object):
"""A container for information gathered during a profiling run.
Attributes
----------
calls : Array[Dict[str, Object]]
Per-call profiling metrics (function name, runtime, device, ...).
device_metrics : Dict[Device, Dict[str, Object]]
Per-device metrics collected over the entire run.
"""
def __init__(
self,
calls: Sequence[Dict[str, Object]],
device_metrics: Dict[str, Dict[str, Object]],
configuration: Dict[str, Object],
):
"""Construct a profiling report from a list of metrics and per-device metrics.
Parameters
----------
calls : Sequence[Dict[str, Object]]
Per function call metrics.
device_metrics : Dict[str, Dict[str, Object]]
Per device metrics.
configuration : Dict[str, Object]
Configuration of TVM for this profiling run. Includes number of
threads, executor.
"""
self.__init_handle_by_constructor__(_ffi_api.Report, calls, device_metrics, configuration)
def csv(self):
"""Convert this profiling report into CSV format.
This only includes calls and not overall metrics.
Returns
-------
csv : str
`calls` in CSV format.
"""
return _ffi_api.AsCSV(self)
def table(self, sort=True, aggregate=True, col_sums=True):
"""Generate a human-readable table
Parameters
----------
sort : bool
If aggregate is true, whether to sort call frames by
descending duration. If aggregate is False, whether to
sort frames by order of appearancei n the program.
aggregate : bool
Whether to join multiple calls to the same op into a
single line.
col_sums : bool
Whether to include the sum of each column.
Returns
-------
table : str
A human-readable table
"""
return _ffi_api.AsTable(self, sort, aggregate, col_sums)
def json(self):
"""Convert this profiling report into JSON format.
Example output:
.. code-block:
{
"calls": [
{
"Duration (us)": {
"microseconds": 12.3
},
"Name": "fused_dense",
"Count": {
"count": 1
},
"Percent": {
"percent": 10.3
}
}
],
"device_metrics": {
"cpu": {
"Duration (us)": {
"microseconds": 334.2
},
"Percent": {
"percent": 100
}
}
}
}
{"calls":
[
{"Duration (us)": {"microseconds": 12.3}
,"Name": "fused_dense"
,"Count": {"count":1}
,"Percent": {"percent": 10.3}
}
],
"device_metrics":
{"cpu":
{"Duration (us)": {"microseconds": 334.2}
,"Percent": {"percent": 100.0}
}
}
}
Returns
-------
json : str
Formatted JSON
"""
return _ffi_api.AsJSON(self)
@classmethod
def from_json(cls, s):
"""Deserialize a report from JSON.
Parameters
----------
s : str
Report serialize via :py:meth:`json`.
Returns
-------
report : Report
The deserialized report.
"""
return _ffi_api.FromJSON(s)
@_ffi.register_object("runtime.profiling.Count")
class Count(Object):
"""A integer count of something"""
def __init__(self, count: int):
self.__init_handle_by_constructor__(_ffi_api.Count, count)
@_ffi.register_object("runtime.profiling.Duration")
class Duration(Object):
"""A duration of something"""
def __init__(self, duration: float):
self.__init_handle_by_constructor__(_ffi_api.Duration, duration)
@_ffi.register_object("runtime.profiling.Percent")
class Percent(Object):
"""A Percent of something"""
def __init__(self, percent: float):
self.__init_handle_by_constructor__(_ffi_api.Percent, percent)
@_ffi.register_object("runtime.profiling.Ratio")
class Ratio(Object):
"""A Ratio of two things"""
def __init__(self, ratio: float):
self.__init_handle_by_constructor__(_ffi_api.Ratio, ratio)
@_ffi.register_object("runtime.profiling.MetricCollector")
class MetricCollector(Object):
"""Interface for user defined profiling metric collection."""
@_ffi.register_object("runtime.profiling.DeviceWrapper")
class DeviceWrapper(Object):
"""Wraps a tvm.runtime.Device"""
def __init__(self, dev: Device):
self.__init_handle_by_constructor__(_ffi_api.DeviceWrapper, dev)
def profile_function(mod, dev, collectors, func_name=None, warmup_iters=10):
"""Collect performance information of a function execution. Usually used with
a compiled PrimFunc.
This information can include performance counters like cache hits and FLOPs
that are useful in debugging performance issues of individual PrimFuncs.
Different metrics can be collected depending on which MetricCollector is
used.
Example
-------
.. code-block: python
f = tvm.build(my_func, target="llvm", name="my_func")
prof = tvm.runtime.profiling.profile_function(
f,
tvm.cpu(),
[tvm.runtime.profiling.PAPIMetricCollector({tvm.cpu(): ["PAPI_FP_OPS"]}),
)
counters = prof(*args)
print(counters)
Parameters
----------
mod: Module
Module containing the function to profile.
dev: Device
Device to run the function on.
collectors: List[MetricCollector]
:py:class:`MetricCollector`s which will collect performance information.
func_name: Optional[str]
Name of the function in `mod` to profile. Defaults to the `entry_name` of `mod`.
warmup_iters: int
Number of iterations to run the function before collecting performance
information. Recommended to set this larger than 0 for consistent cache
effects. Defaults to 10.
Returns
-------
prof: PackedFunc[args, Dict[str, ObjectRef]]
PackedFunc which takes the same arguments as the `mod[func_name]` and
returns performance metrics as a `Dict[str, ObjectRef]` where values
can be `CountNode`, `DurationNode`, `PercentNode`.
"""
if func_name is None:
func_name = mod.entry_name
return _ffi_api.ProfileFunction(
mod, func_name, dev.device_type, dev.device_id, warmup_iters, collectors
)
# We only enable this class when TVM is build with PAPI support
if _ffi.get_global_func("runtime.profiling.PAPIMetricCollector", allow_missing=True) is not None:
@_ffi.register_object("runtime.profiling.PAPIMetricCollector")
class PAPIMetricCollector(MetricCollector):
"""Collects performance counter information using the Performance
Application Programming Interface (PAPI).
"""
def __init__(self, metric_names: Optional[Dict[Device, Sequence[str]]] = None):
"""
Parameters
----------
metric_names : Optional[Dict[Device, Sequence[str]]]
List of per-device metrics to collect. You can find a list of valid
metrics by runing `papi_native_avail` from the command line.
"""
metric_names = {} if metric_names is None else metric_names
wrapped = dict()
for dev, names in metric_names.items():
wrapped[DeviceWrapper(dev)] = names
self.__init_handle_by_constructor__(_ffi_api.PAPIMetricCollector, wrapped)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/profiling/_ffi_api.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""FFI for profiling"""
from ... import _ffi
_ffi._init_api("runtime.profiling", __name__)
| https://github.com/zk-ml/tachikoma |
python/tvm/runtime/vm.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=no-else-return, unidiomatic-typecheck, undefined-variable, invalid-name, redefined-builtin
"""
The Relay Virtual Machine runtime.
Implements a Python interface to executing the compiled VM object.
"""
import numpy as np
import tvm
from tvm.runtime import Module
from tvm._ffi.runtime_ctypes import TVMByteArray
from tvm._ffi import base as _base
from .object import Object
from . import _ffi_api, container
from ..rpc.base import RPC_SESS_MASK
def _convert(arg, cargs):
def _gettype(arg):
if isinstance(arg, np.float16):
return "float16"
elif isinstance(arg, (_base.integer_types, bool)):
return "int32"
else:
return "float32"
if isinstance(arg, Object):
cargs.append(arg)
elif arg is None:
cargs.append(tvm.nd.array([], device=tvm.cpu(0)))
elif isinstance(arg, np.ndarray):
nd_arr = tvm.nd.array(arg, device=tvm.cpu(0))
cargs.append(nd_arr)
elif isinstance(arg, tvm.runtime.NDArray):
cargs.append(arg)
elif isinstance(arg, (tuple, list)):
field_args = []
for field in arg:
_convert(field, field_args)
cargs.append(container.tuple_object(field_args))
elif isinstance(arg, (_base.numeric_types, bool)):
dtype = _gettype(arg)
value = tvm.nd.array(np.array(arg, dtype=dtype), device=tvm.cpu(0))
cargs.append(value)
elif isinstance(arg, str):
cargs.append(arg)
else:
raise TypeError("Unsupported type: %s" % (type(arg)))
def convert(args):
cargs = []
for arg in args:
_convert(arg, cargs)
return cargs
class Executable(object):
"""Relay VM executable"""
def __init__(self, mod):
self.mod = mod
self._function_params = {}
self._save = self.mod["save"]
self._get_lib = self.mod["get_lib"]
self._get_bytecode = self.mod["get_bytecode"]
self._get_constants = self.mod["get_constants"]
self._get_virtual_devices = self.mod["get_virtual_devices"]
self._get_primitives = self.mod["get_primitives"]
self._get_stats = self.mod["get_stats"]
self._get_function_arity = self.mod["get_function_arity"]
self._get_function_param_name = self.mod["get_function_param_name"]
self._move_late_bound_consts = self.mod["move_late_bound_consts"]
self._get_late_bound_consts = self.mod["get_late_bound_consts"]
self._load_late_bound_consts = self.mod["load_late_bound_consts"]
self._load_late_bound_consts_from_map = self.mod["load_late_bound_consts_from_map"]
def save(self):
"""Save the Relay VM Executable.
Returns
-------
code : bytearray
The binary blob representing a serialized Relay VM executable. It
can then be saved to disk and later deserialized into a new
Executable.
lib : :py:class:`~tvm.runtime.Module`
The runtime module that contains the generated code. It is
basically a library that is composed of hardware dependent code.
Notes
-----
The returned code is organized with the following sections in order.
- Global section. This section contains the globals used by the
virtual machine.
- Constant section. This section is used to store the constant pool of
a virtual machine.
- Primitive name section. This section is introduced to accommodate
the list of primitive operator names that will be invoked by the
virtual machine.
- Code section. The VM functions, including bytecode, are sitting in
this section.
Examples
--------
.. code-block:: python
import numpy as np
import tvm
from tvm import te
from tvm import relay
# define a simple network.
x = relay.var('x', shape=(10, 10))
f = relay.Function([x], x + x)
mod = tvm.IRModule({"main": f})
# create a Relay VM.
dev = tvm.cpu()
target = "llvm"
executable = relay.vm.compile(mod, target)
code, lib = executable.save()
# save and load the code and lib file.
tmp = tvm.contrib.utils.tempdir()
path_lib = tmp.relpath("lib.so")
lib.export_library(path_lib)
with open(tmp.relpath("code.ro"), "wb") as fo:
fo.write(code)
loaded_lib = tvm.runtime.load_module(path_lib)
loaded_code = bytearray(open(tmp.relpath("code.ro"), "rb").read())
# deserialize.
des_exec = tvm.runtime.vm.Executable.load_exec(loaded_code, loaded_lib)
# execute the deserialized executable.
x_data = np.random.rand(10, 10).astype('float32')
des_vm = tvm.runtime.vm.VirtualMachine(des_exec, dev)
res = des_vm.run(x_data)
print(res.numpy())
"""
return self._save(), self._get_lib()
@staticmethod
def load_exec(bytecode, lib):
"""Construct an executable from saved artifacts.
Parameters
----------
bytecode : bytearray
The binary blob representing a the Relay VM bytecode.
lib : :py:class:`~tvm.runtime.Module`
The runtime module that contains the generated code.
Returns
-------
exec: Executable
An executable constructed using the provided artifacts.
"""
if isinstance(bytecode, (bytes, str)):
bytecode = bytearray(bytecode)
elif not isinstance(bytecode, (bytearray, TVMByteArray)):
raise TypeError(
"bytecode is expected to be the type of bytearray "
+ "or TVMByteArray, but received {}".format(type(bytecode))
)
if lib is not None and not isinstance(lib, tvm.runtime.Module):
raise TypeError(
"lib is expected to be the type of tvm.runtime.Module"
+ ", but received {}".format(type(lib))
)
return Executable(_ffi_api.Load_Executable(bytecode, lib))
@property
def lib(self):
"""Get the library that contains hardware dependent code.
Returns
-------
ret : :py:class:`~tvm.runtime.Module`
The runtime module that contains hardware dependent code.
"""
return self._get_lib()
@property
def stats(self):
"""Get the statistics of the Relay VM executable.
Returns
-------
ret : String
The statistic information of the VM executable.
"""
return self._get_stats()
@property
def primitive_ops(self):
"""Get the name of the primitive ops contained in the executable.
Returns
-------
ret : List[String]
The list of primitive ops.
"""
ret = []
num_primitives = _ffi_api.GetNumOfPrimitives(self.module)
for i in range(num_primitives):
ret.append(_ffi_api.GetPrimitiveFields(self.module, i))
return ret
@property
def bytecode(self):
"""Get the bytecode of the Relay VM executable.
Returns
-------
ret : String
The bytecode of the executable.
Notes
-----
The bytecode is in the following format:
func_name reg_file_size num_instructions
param1 param2 ... paramM
instruction1
instruction2
...
instructionN
Each instruction is printed in the following format:
hash opcode field1 ... fieldX # The text format.
The part starting from # is only used for visualization and debugging.
The real serialized code doesn't contain it, therefore the deserializer
doesn't need to deal with it as well.
"""
return self._get_bytecode()
@property
def constants(self):
"""Returns a human-readable description of all the constants in the executable.
Useful for debugging and diffing generated executables in unit tests."""
return self._get_constants()
@property
def virtual_devices(self):
"""Returns a human-readable description of all the (virtual) devices in the executable."""
return self._get_virtual_devices()
@property
def primitives(self):
"""Returns a human-readable description of all the primitives (ie PackedFuncs) in the
executable"""
return self._get_primitives()
@property
def globals(self):
"""Get the globals used by the Relay VM executable.
Returns
-------
ret : List[String]
The globals contained in the executable.
"""
ret = []
num_globals = _ffi_api.GetNumOfGlobals(self.module)
for i in range(num_globals):
ret.append(_ffi_api.GetGlobalFields(self.module, i))
return ret
@property
def module(self):
"""Return the runtime module contained in a virtual machine executable."""
return self.mod
def get_function_params(self, func_name):
"""Get VM Function parameters"""
if func_name in self._function_params:
return self._function_params[func_name]
arity = self._get_function_arity(func_name)
assert arity >= 0
params = []
for i in range(arity):
p = self._get_function_param_name(func_name, i)
assert p
params.append(p)
self._function_params[func_name] = params
return params
def move_late_bound_consts(self, path, byte_limit):
"""Move all constants of byte size greater or equal to byte_limit to file at path"""
return self._move_late_bound_consts(path, byte_limit)
def get_late_bound_consts(self, byte_limit):
"""Return all constants of byte size greater or equal to byte_limit"""
return self._get_late_bound_consts(byte_limit)
def load_late_bound_consts(self, path):
"""Re-load constants previously saved to file at path"""
return self._load_late_bound_consts(path)
def load_late_bound_consts_from_map(self, map):
"""Re-load constants supplied in map"""
return self._load_late_bound_consts_from_map(map)
class VirtualMachine(object):
"""Relay VM runtime.
Parameters
----------
exe : Executable
The VM executable.
device : tvm.runtime.Device or List[tvm.runtime.Device]
The device(s) on which the model will run.
Currently at most one device per device type is supported.
memory_cfg : str or Dict[tvm.runtime.Device, str], optional
Config the type of memory allocator. The allocator type can be ["naive",
"pooled"]. If memory_cfg is None, all devices will use pooled allocator
by default. If memory_cfg is string, all devices will use the specified
allocator type. If memory_cfg is a dict, each device uses the allocator
type specified in the dict, or pooled allocator if not specified in the
dict.
"""
NAIVE_ALLOCATOR = 1
POOLED_ALLOCATOR = 2
def __init__(self, exe, device, memory_cfg=None):
"""
Construct a VirtualMachine wrapper class which provides a simple
interface over the raw C++ Module based API.
Parameters
----------
exe: Union[Executable, Module]
The executable either with the wrapper Python type or the raw runtime.Module.
In most cases this will be the Python wrapper class tvm.runtime.vm.Executable but
if you instead get the underlying runtime.Module subclass (i.e `exe.mod`) you
can directly pass it to this method.
This case can occur when doing things such as RPC where TVM's module APIs
return the raw modules, not the wrapped modules. This constructor will
handle this internally.
device: Union[Device, List[Device]]
The device, or devices on which to execute the VM code.
memory_cfg: Optional[str]
The allocator behavior to use for the VM.
Returns
-------
vm: VirtualMachine
A VM wrapper object.
"""
if not isinstance(exe, Executable) and not isinstance(exe, Module):
raise TypeError(
"exe is expected to be the type of Executable, "
+ "but received {}".format(type(exe))
)
if not isinstance(exe, Executable):
exe = Executable(exe)
self.module = exe.mod["vm_load_executable"]()
self._exec = exe
self._init = self.module["init"]
self._invoke = self.module["invoke"]
self._invoke_stateful = self.module["invoke_stateful"]
self._get_output = self.module["get_output"]
self._get_num_outputs = self.module["get_num_outputs"]
self._get_input_index = self.module["get_input_index"]
self._set_input = self.module["set_input"]
self._set_one_input = self.module["set_one_input"]
self._set_outputs = self.module["set_outputs"]
self._setup_device(device, memory_cfg)
def _setup_device(self, dev, memory_cfg):
"""Init devices and allocators."""
devs = dev
if not isinstance(dev, (list, tuple)):
if not isinstance(dev, tvm.runtime.Device):
raise TypeError("dev is expected to be Device or List[Device]")
devs = [dev]
# CPU is required for executing shape functions
if not any(c.device_type % RPC_SESS_MASK == tvm.cpu().device_type for c in devs):
devs.append(tvm.cpu())
default_alloc_type = VirtualMachine.POOLED_ALLOCATOR
if memory_cfg is None:
memory_cfg = {}
elif isinstance(memory_cfg, str):
assert memory_cfg in ["naive", "pooled"]
if memory_cfg == "naive":
default_alloc_type = VirtualMachine.NAIVE_ALLOCATOR
memory_cfg = {}
elif not isinstance(memory_cfg, dict):
raise TypeError(
"memory_cfg is expected be string or dictionary, "
+ "but received {}".format(type(memory_cfg))
)
init_args = []
for device in devs:
init_args.append(device.device_type % RPC_SESS_MASK)
init_args.append(device.device_id)
alloc_type = memory_cfg[device] if device in memory_cfg else default_alloc_type
init_args.append(alloc_type)
self._init(*init_args)
def set_input(self, func_name, *args, **kwargs):
"""Set the input to a function.
If device type and device id for input tensor are the same as
for target one the zero copy is used. It means that internal
tensor is reference to memory allocated by input one.
Otherwise new internal NDarray is created and data is copied
Parameters
----------
func_name : str
The name of the function.
args : list[tvm.runtime.NDArray] or list[np.ndarray]
The arguments to the function.
kwargs: dict of str to tvm.runtime.NDArray or np.ndarray
Named arguments to the function.
"""
if kwargs:
# kwargs is a super set of the required function parameters. We
# only find the ones that are needed.
func_params = self._exec.get_function_params(func_name)
new_args = [None] * len(func_params)
cnt = 0
for k in kwargs:
if k in func_params:
idx = func_params.index(k)
new_args[idx] = kwargs[k]
cnt += 1
assert len(args) + cnt == len(func_params)
idx = 0
for i, arg in enumerate(new_args):
if arg is None:
new_args[i] = args[idx]
idx += 1
args = new_args
cargs = convert(args)
self._set_input(func_name, *cargs)
def set_one_input(self, func_name, *args, **kwargs):
"""Set the one input tensor with tag to a function.
Parameters
----------
func_name : str
The name of the function.
args : [str or int, tvm.runtime.NDArray]
name or index of tensor and input tensor, optional
kwargs: dict of str or int to tvm.runtime.NDArray, optional
taged arguments to the function.
Only args or kwargs should exist
"""
if kwargs:
assert len(kwargs) == 1
tag = next(iter(kwargs))
if isinstance(tag, str):
func_params = self._exec.get_function_params(func_name)
assert tag in func_params
self._set_one_input(func_name, tag, kwargs[tag])
else:
assert len(args) == 2
self._set_one_input(func_name, args[0], args[1])
def invoke(self, func_name, *args, **kwargs):
"""Invoke a function.
Parameters
----------
func_name : str
The name of the function.
args : list[tvm.runtime.NDArray] or list[np.ndarray]
The arguments to the function.
kwargs: dict of str to tvm.runtime.NDArray or np.ndarray
Named arguments to the function.
Returns
-------
result : Object
The output.
"""
if args or kwargs:
self.set_input(func_name, *args, **kwargs)
return self._invoke(func_name)
def run(self, *args, **kwargs):
"""Run the main function.
Parameters
----------
args : list[tvm.runtime.NDArray] or list[np.ndarray]
The arguments to the function.
kwargs: dict of str to tvm.runtime.NDArray or np.ndarray
Named arguments to the function.
Returns
-------
result : Object
The output.
"""
return self.invoke("main", *args, **kwargs)
def invoke_stateful(self, func_name, *args, **kwargs):
"""Invoke a function and ignore the returned result.
Use this function when running over rpc because it is currently
impossible to return a ADT object over rpc. To get the outputs, use
:py:func`get_outputs`.
Parameters
----------
func_name : str
The name of the function.
args : list[tvm.runtime.NDArray] or list[np.ndarray]
The arguments to the function.
kwargs: dict of str to tvm.runtime.NDArray or np.ndarray
Named arguments to the function.
"""
if args or kwargs:
self.set_input(func_name, *args, **kwargs)
self._invoke_stateful(func_name)
def invoke_with_outputs(self, func_name, input_args, output_args):
# TODO(vvchernov): consider scenario then output tensors set once
"""Invoke a function with pre-allocated output tensors.
The output tensors should be set every invocation.
input_args can be None if set_input method was used before.
This invoke method allows to avoid excess copying if memory for output tensors
was allocated before inference.
Parameters
----------
func_name : str
The name of the function.
input_args: dict of str to tvm.runtime.NDArray or np.ndarray
Named arguments to the function.
output_args : list[tvm.runtime.NDArray] or list[DLTensor]
The output tensors of the function.
"""
if input_args:
func_params = self._exec.get_function_params(func_name)
new_args = [None] * len(func_params)
cnt = 0
for k in input_args:
if k in func_params:
idx = func_params.index(k)
new_args[idx] = input_args[k]
cnt += 1
assert cnt == len(func_params)
cargs = convert(new_args)
self._set_input(func_name, *cargs)
self._set_outputs(func_name, *output_args)
self._invoke(func_name)
def get_outputs(self):
"""Get the outputs from a call to :py:func`invoke_stateful`.
Returns
-------
outputs : List[NDArray]
"""
return [self._get_output(i) for i in range(self._get_num_outputs())]
def get_input_index(self, input_name, func_name="main"):
"""Get inputs index via input name.
Parameters
----------
name : str
The input key name
func_name : str
The function name
Returns
-------
index: int
The input index. -1 will be returned if the given input name is not found.
"""
return self._get_input_index(input_name, func_name)
def benchmark(
self,
device,
*args,
func_name="main",
repeat=5,
number=5,
min_repeat_ms=None,
limit_zero_time_iterations=100,
end_to_end=False,
cooldown_interval_ms=0,
repeats_to_cooldown=1,
**kwargs,
):
"""Calculate runtime of a function by repeatedly calling it.
Use this function to get an accurate measurement of the runtime of a function. The function
is run multiple times in order to account for variability in measurements, processor speed
or other external factors. Mean, median, standard deviation, min and max runtime are all
reported. On GPUs, CUDA and ROCm specifically, special on-device timers are used so that
synchonization and data transfer operations are not counted towards the runtime. This allows
for fair comparison of runtimes across different functions and models. The `end_to_end` flag
switches this behavior to include data transfer operations in the runtime.
The benchmarking loop looks approximately like so:
.. code-block:: python
for r in range(repeat):
time_start = now()
for n in range(number):
func_name()
time_end = now()
total_times.append((time_end - time_start)/number)
Parameters
----------
func_name : str
The function to benchmark
repeat : int
Number of times to run the outer loop of the timing code (see above). The output will
contain `repeat` number of datapoints.
number : int
Number of times to run the inner loop of the timing code. This inner loop is run in
between the timer starting and stopping. In order to amortize any timing overhead,
`number` should be increased when the runtime of the function is small (less than a 1/10
of a millisecond).
min_repeat_ms : Optional[int]
If set, the inner loop will be run until it takes longer than `min_repeat_ms`
milliseconds. This can be used to ensure that the function is run enough to get an
accurate measurement.
limit_zero_time_iterations : Optional[int]
The maximum number of repeats when measured time is equal to 0.
It helps to avoid hanging during measurements.
end_to_end : bool
If set, include time to transfer input tensors to the device and time to transfer
returned tensors in the total runtime. This will give accurate timings for end to end
workloads.
cooldown_interval_ms: Optional[int]
The cooldown interval in milliseconds between the number of repeats defined by
`repeats_to_cooldown`.
repeats_to_cooldown: Optional[int]
The number of repeats before the cooldown is activated.
args : Sequence[Object]
Arguments to the function. These are cached before running timing code, so that data
transfer costs are not counted in the runtime.
kwargs : Dict[str, Object]
Named arguments to the function. These are cached like `args`.
Returns
-------
timing_results : BenchmarkResult
Runtimes of the function. Use `.mean` to access the mean runtime, use `.results` to
access the individual runtimes (in seconds).
"""
min_repeat_ms = 0 if min_repeat_ms is None else min_repeat_ms
if end_to_end:
# We need to unpack keyword arguments into positional arguments
packed_args = list(args)
for k, v in kwargs.items():
i = self.get_input_index(k, func_name)
if i < 0:
raise TypeError(f"{func_name}() got an unexpected keyword argument '{k}'")
while i >= len(packed_args):
packed_args.append(None)
packed_args[i] = v
return self.module.time_evaluator(
"invoke_return_to_device",
device,
repeat=repeat,
number=number,
min_repeat_ms=min_repeat_ms,
limit_zero_time_iterations=limit_zero_time_iterations,
)(func_name, device.device_type % RPC_SESS_MASK, device.device_id, *packed_args)
if args or kwargs:
self.set_input(func_name, *args, **kwargs)
return self.module.time_evaluator(
"invoke",
device,
repeat=repeat,
number=number,
min_repeat_ms=min_repeat_ms,
limit_zero_time_iterations=limit_zero_time_iterations,
cooldown_interval_ms=cooldown_interval_ms,
repeats_to_cooldown=repeats_to_cooldown,
)(func_name)
| https://github.com/zk-ml/tachikoma |
python/tvm/script/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM Script APIs of TVM Python Package"""
from .parser import ir, ir_module, parse as from_source, tir
| https://github.com/zk-ml/tachikoma |
python/tvm/script/highlight.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Highlight printed TVM script.
"""
import sys
import warnings
from typing import Optional, Union
from tvm.ir import IRModule
from tvm.tir import PrimFunc
def cprint(printable: Union[IRModule, PrimFunc, str], style: Optional[str] = None) -> None:
"""
Print highlighted TVM script string with Pygments
Parameters
----------
printable : Union[IRModule, PrimFunc, str]
The TVM script to be printed
style : str, optional
Printing style, auto-detected if None.
Notes
-----
The style parameter follows the Pygments style names or Style objects. Three
built-in styles are extended: "light", "dark" and "ansi". By default, "light"
will be used for notebook environment and terminal style will be "ansi" for
better style consistency. As an fallback when the optional Pygment library is
not installed, plain text will be printed with a one-time warning to suggest
installing the Pygment library. Other Pygment styles can be found in
https://pygments.org/styles/
"""
if isinstance(printable, (IRModule, PrimFunc)):
printable = printable.script()
try:
# pylint: disable=import-outside-toplevel
import pygments
from packaging import version
from pygments import highlight
from pygments.formatters import HtmlFormatter, Terminal256Formatter
from pygments.lexers.python import Python3Lexer
from pygments.style import Style
from pygments.token import Comment, Keyword, Name, Number, Operator, String
if version.parse(pygments.__version__) < version.parse("2.4.0"):
raise ImportError("Required Pygments version >= 2.4.0 but got " + pygments.__version__)
except ImportError as err:
with warnings.catch_warnings():
warnings.simplefilter("once", UserWarning)
install_cmd = sys.executable + ' -m pip install "Pygments>=2.4.0" --upgrade --user'
warnings.warn(
str(err)
+ "\n"
+ "To print highlighted TVM script, please install Pygments:\n"
+ install_cmd,
category=UserWarning,
)
print(printable)
else:
class JupyterLight(Style):
"""A Jupyter-Notebook-like Pygments style configuration (aka. "light")"""
background_color = ""
styles = {
Keyword: "bold #008000",
Keyword.Type: "nobold #008000",
Name.Function: "#0000FF",
Name.Class: "bold #0000FF",
Name.Decorator: "#AA22FF",
String: "#BA2121",
Number: "#008000",
Operator: "bold #AA22FF",
Operator.Word: "bold #008000",
Comment: "italic #007979",
}
class VSCDark(Style):
"""A VSCode-Dark-like Pygments style configuration (aka. "dark")"""
background_color = ""
styles = {
Keyword: "bold #c586c0",
Keyword.Type: "#82aaff",
Keyword.Namespace: "#4ec9b0",
Name.Class: "bold #569cd6",
Name.Function: "bold #dcdcaa",
Name.Decorator: "italic #fe4ef3",
String: "#ce9178",
Number: "#b5cea8",
Operator: "#bbbbbb",
Operator.Word: "#569cd6",
Comment: "italic #6a9956",
}
class AnsiTerminalDefault(Style):
"""The default style for terminal display with ANSI colors (aka. "ansi")"""
background_color = ""
styles = {
Keyword: "bold ansigreen",
Keyword.Type: "nobold ansigreen",
Name.Class: "bold ansiblue",
Name.Function: "bold ansiblue",
Name.Decorator: "italic ansibrightmagenta",
String: "ansiyellow",
Number: "ansibrightgreen",
Operator: "bold ansimagenta",
Operator.Word: "bold ansigreen",
Comment: "italic ansibrightblack",
}
is_in_notebook = "ipykernel" in sys.modules # in notebook env (support html display).
if style is None:
# choose style automatically according to the environment:
style = JupyterLight if is_in_notebook else AnsiTerminalDefault
elif style == "light":
style = JupyterLight
elif style == "dark":
style = VSCDark
elif style == "ansi":
style = AnsiTerminalDefault
if is_in_notebook: # print with HTML display
from IPython.display import ( # pylint: disable=import-outside-toplevel
HTML,
display,
)
formatter = HtmlFormatter(style=JupyterLight)
formatter.noclasses = True # inline styles
html = highlight(printable, Python3Lexer(), formatter)
display(HTML(html))
else:
print(highlight(printable, Python3Lexer(), Terminal256Formatter(style=style)))
| https://github.com/zk-ml/tachikoma |
python/tvm/script/ir_builder/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""tvm.script.ir_builder is a generic IR builder for TVM."""
from .base import IRBuilder
| https://github.com/zk-ml/tachikoma |
python/tvm/script/ir_builder/_ffi_api.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""FFI APIs for tvm.script.ir_builder"""
import tvm._ffi
tvm._ffi._init_api("script.ir_builder", __name__) # pylint: disable=protected-access
| https://github.com/zk-ml/tachikoma |
python/tvm/script/ir_builder/base.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""A generic IRBuilder across the TVM stack"""
from typing import Any, Callable, List
from tvm._ffi import register_object as _register_object
from tvm.runtime import Object as _Object
from . import _ffi_api
@_register_object("script.ir_builder.IRBuilderFrame")
class IRBuilderFrame(_Object):
"""A stack frame of the IRBuilder used to keep track of the current scope.
Furthermore, the information stored in each stack frame can be useful for context-dependent
IR construction.
Examples
--------
The `T.match_buffer` below instead an element in the buffer map of `PrimFuncFrame`:
.. code-block:: python
from tvm.script.ir_builder import tir as T
from tvm.script.ir_builder import IRBuilder
with IRBuilder() as builder:
with T.prim_func(...): # pushes a PrimFuncFrame (subclass of IRBuilderFrame)
# to `builder`'s stack of frames
buffer = T.match_buffer(...)
The `T.match_buffer` below instead generates `MatchBufferRegion` in a TIR block:
.. code-block:: python
from tvm.script.ir_builder import tir as T
from tvm.script.ir_builder import IRBuilder
with IRBuilder() as builder:
with T.prim_func(...): # pushes a PrimFuncFrame (subclass of IRBuilderFrame)
# to `builder`'s stack of frames
with T.block(...): # pushes a BlockFrame (subclass of IRBuilderFrame)
# to `builder`'s stack of frames
buffer = T.match_buffer(...)
"""
def __enter__(self) -> "IRBuilderFrame":
_ffi_api.IRBuilderFrameEnter(self) # type: ignore[attr-defined] # pylint: disable=no-member
return self
def __exit__(self, ptype, value, trace) -> None: # pylint: disable=unused-argument
_ffi_api.IRBuilderFrameExit(self) # type: ignore[attr-defined] # pylint: disable=no-member
def add_callback(self, callback: Callable[[], None]) -> None:
"""Add a callback method invoked when exiting the with-scope.
Parameters
----------
callback : Callable[[], None]
The callback method to be invoked.
"""
_ffi_api.IRBuilderFrameAddCallback( # type: ignore[attr-defined] # pylint: disable=no-member
self, callback
)
@_register_object("script.ir_builder.IRBuilder")
class IRBuilder(_Object):
"""A dialect-agnostic IRBuilder that constructs any IR of TVM.
Examples
--------
An idiomatic use of this class is to put this inside the with-scope,
call dialect-specific methods accordingly. Upon exiting the scope.
.. code-block:: python
from tvm.script.ir_builder import tir as T
from tvm.script.ir_builder import IRBuilder
with IRBuilder() as builder:
with T.prim_func(...): # pushes a PrimFuncFrame (subclass of IRBuilderFrame)
# to `builder`'s stack of frames
buffer = T.match_buffer(...)
return builder.get() # returns the constructed IR, i.e. tir.PrimFunc
"""
def __init__(self) -> None:
"""Construct an IRBuilder."""
self.__init_handle_by_constructor__(
_ffi_api.IRBuilder # type: ignore[attr-defined] # pylint: disable=no-member
)
def __enter__(self) -> "IRBuilder":
"""Enter the with-scope for IRBuilder, which allows the IRBuilder to be discoverable
using `IRBuilder.current()`.
Examples
--------
.. code-block:: python
from tvm.script.ir_builder import IRBuilder
with IRBuilder() as builder:
assert IRBuilder.current() == builder
"""
_ffi_api.IRBuilderEnter(self) # type: ignore[attr-defined] # pylint: disable=no-member
return self
def __exit__(self, ptype, value, trace) -> None: # pylint: disable=unused-argument
_ffi_api.IRBuilderExit(self) # type: ignore[attr-defined] # pylint: disable=no-member
@staticmethod
def current() -> "IRBuilder":
"""Get the current IRBuilder put in the with-scope.
Returns
-------
builder : IRBuilder
The current IRBuilder.
"""
return _ffi_api.IRBuilderCurrent() # type: ignore[attr-defined] # pylint: disable=no-member
def get(self) -> _Object:
"""Get the constructed IR."""
return _ffi_api.IRBuilderGet(self) # type: ignore[attr-defined] # pylint: disable=no-member
@staticmethod
def name(s: str, v: Any) -> Any:
"""Set the name of an object.
Parameters
----------
s : str
The name of the object.
v : Any
The object to name.
Returns
-------
v : Any
The same object with the name set.
"""
return _ffi_api.IRBuilderName(s, v) # type: ignore[attr-defined] # pylint: disable=no-member
@staticmethod
def name_many( # pylint: disable=invalid-name
s: List[str],
vs: List[Any],
) -> List[Any]:
"""Set the name of a list of objects.
Parameters
----------
s : List[str]
The names of the objects.
vs : List[Any]
The objects to name.
Returns
-------
vs : List[Any]
The same objects with the names set.
"""
assert len(s) == len(vs)
return [IRBuilder.name(i, v) for i, v in zip(s, vs)]
| https://github.com/zk-ml/tachikoma |
python/tvm/script/ir_builder/ir/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Package tvm.script.ir_builder.ir"""
from .frame import IRModuleFrame
from .ir import ir_module
| https://github.com/zk-ml/tachikoma |
python/tvm/script/ir_builder/ir/_ffi_api.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""FFI APIs"""
import tvm._ffi
tvm._ffi._init_api("script.ir_builder.ir", __name__) # pylint: disable=protected-access
| https://github.com/zk-ml/tachikoma |
python/tvm/script/ir_builder/ir/frame.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Package tvm.script.ir_builder.ir.frame"""
from tvm._ffi import register_object as _register_object
from ..base import IRBuilderFrame
@_register_object("script.ir_builder.IRModuleFrame")
class IRModuleFrame(IRBuilderFrame):
...
| https://github.com/zk-ml/tachikoma |
python/tvm/script/ir_builder/ir/ir.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Package tvm.script.ir_builder.ir.ir"""
from . import _ffi_api
from .frame import IRModuleFrame
def ir_module() -> IRModuleFrame:
return _ffi_api.IRModule() # type: ignore[attr-defined] # pylint: disable=no-member
| https://github.com/zk-ml/tachikoma |
python/tvm/script/ir_builder/tir/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Package tvm.script.ir_builder.tir"""
from .ir import * # pylint: disable=wildcard-import,redefined-builtin
from .ir import boolean as bool # pylint: disable=redefined-builtin
| https://github.com/zk-ml/tachikoma |
python/tvm/script/ir_builder/tir/_ffi_api.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""FFI APIs"""
import tvm._ffi
tvm._ffi._init_api("script.ir_builder.tir", __name__) # pylint: disable=protected-access
| https://github.com/zk-ml/tachikoma |
python/tvm/script/ir_builder/tir/frame.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""IRBuilder for TIR"""
from typing import List, Union
from tvm._ffi import register_object as _register_object
from tvm.tir import Buffer, Var
from ..base import IRBuilderFrame
@_register_object("script.ir_builder.tir.TIRFrame")
class TIRFrame(IRBuilderFrame):
...
@_register_object("script.ir_builder.tir.PrimFuncFrame")
class PrimFuncFrame(TIRFrame):
...
@_register_object("script.ir_builder.tir.BlockFrame")
class BlockFrame(TIRFrame):
...
@_register_object("script.ir_builder.tir.BlockInitFrame")
class BlockInitFrame(TIRFrame):
...
@_register_object("script.ir_builder.tir.ForFrame")
class ForFrame(TIRFrame):
def __enter__(self) -> Union[Var, List[Var]]: # type: ignore[override]
super().__enter__()
return self.vars if len(self.vars) > 1 else self.vars[0]
@_register_object("script.ir_builder.tir.AssertFrame")
class AssertFrame(TIRFrame):
...
@_register_object("script.ir_builder.tir.LetFrame")
class LetFrame(TIRFrame):
...
@_register_object("script.ir_builder.tir.RealizeFrame")
class RealizeFrame(TIRFrame):
...
@_register_object("script.ir_builder.tir.AllocateFrame")
class AllocateFrame(TIRFrame):
def __enter__(self) -> Buffer:
super().__enter__()
return self.buffer_var
@_register_object("script.ir_builder.tir.AllocateConstFrame")
class AllocateConstFrame(TIRFrame):
def __enter__(self) -> Buffer:
super().__enter__()
return self.buffer_var
@_register_object("script.ir_builder.tir.AttrFrame")
class AttrFrame(TIRFrame):
...
@_register_object("script.ir_builder.tir.WhileFrame")
class WhileFrame(TIRFrame):
...
@_register_object("script.ir_builder.tir.IfFrame")
class IfFrame(TIRFrame):
...
@_register_object("script.ir_builder.tir.ThenFrame")
class ThenFrame(TIRFrame):
...
@_register_object("script.ir_builder.tir.ElseFrame")
class ElseFrame(TIRFrame):
...
@_register_object("script.ir_builder.tir.DeclBufferFrame")
class DeclBufferFrame(TIRFrame):
def __enter__(self) -> Buffer:
super().__enter__()
return self.buffer
@_register_object("script.ir_builder.tir.LaunchThreadFrame")
class LaunchThreadFrame(TIRFrame):
...
| https://github.com/zk-ml/tachikoma |
python/tvm/script/ir_builder/tir/ir.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""IRBuilder for TIR"""
import functools
import inspect
from numbers import Integral
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
# isort: off
from typing_extensions import Literal
# isort: on
import numpy as np # type: ignore
from tvm.ir import Range, Type
from tvm.runtime import convert, ndarray
from tvm.target import Target
# pylint: disable=unused-import
from tvm.target.codegen import llvm_lookup_intrinsic_id
from tvm.tir import Buffer, BufferRegion, PrimExpr
from tvm.tir import op as _tir_op
from tvm.tir import type_annotation
# import tir.expr for direct ir construction to pass structural_equal comparison
from tvm.tir.expr import (
EQ,
GE,
GT,
LE,
LT,
NE,
Add,
And,
Broadcast,
BufferLoad,
Call,
CallEffectKind,
Cast,
CommReducer,
Div,
FloatImm,
FloorDiv,
FloorMod,
IntImm,
IterVar,
Let,
Load,
Max,
Min,
Mod,
Mul,
Not,
Or,
ProducerLoad,
Ramp,
Reduce,
Select,
Shuffle,
SizeVar,
StringImm,
Sub,
Var,
)
from tvm.tir.generic import cast
from . import _ffi_api, frame
# pylint: enable=unused-import
def buffer_decl(
shape: Union[List[PrimExpr], Tuple[PrimExpr], PrimExpr, Integral],
dtype: str = "float32",
data: Var = None,
strides: List[PrimExpr] = None,
elem_offset: PrimExpr = None,
scope: str = "global",
align: int = 0,
offset_factor: int = 0,
buffer_type: str = "",
axis_separators: List[int] = None,
) -> Buffer:
"""The buffer declaration function.
Parameters
----------
shape : Union[List[PrimExpr], Tuple[PrimExpr], PrimExpr, Integral]
The type of the buffer prior to flattening.
dtype : str
The data type in the content of the buffer.
data : Var
The pointer to the head of the data.
strides : List[PrimExpr]
The strides of each dimension.
elem_offset : PrimExpr
The offset in terms of number of dtype elements (including lanes).
scope : str
The optional storage scope of buffer data pointer.
align : int
The alignment requirement of data pointer in bytes.
offset_factor : int
The factor of elem_offset field.
buffer_type : str
The buffer type.
axis_separators : List[int]
The separators between input axes when generating flattened output axes.
Returns
-------
res : Buffer
The declared buffer.
"""
shape = (shape,) if isinstance(shape, (PrimExpr, Integral)) else shape
return _ffi_api.BufferDecl( # type: ignore[attr-defined] # pylint: disable=no-member
shape,
dtype,
"",
data,
strides,
elem_offset,
scope,
align,
offset_factor,
buffer_type,
axis_separators,
)
def prim_func() -> frame.PrimFuncFrame:
"""The primitive function statement.
Returns
-------
res : frame.PrimFuncFrame
The PrimFuncFrame.
"""
return _ffi_api.PrimFunc() # type: ignore[attr-defined] # pylint: disable=no-member
def arg(name: str, obj: Union[Var, Buffer]) -> Union[Var, Buffer]:
"""The PrimFunc arguments adding function.
Parameters
----------
name : str
The name of the argument.
var : Union[Var, Buffer]
The argument of Var or Buffer.
Returns
-------
res : Union[Var, Buffer]
The argument.
"""
return _ffi_api.Arg(name, obj) # type: ignore[attr-defined] # pylint: disable=no-member
def func_name(name: str) -> None:
"""The PrimFunc naming statement.
Parameters
----------
name : str
The name of the PrimFunc.
"""
_ffi_api.FuncName(name) # type: ignore[attr-defined] # pylint: disable=no-member
def func_attr(attrs: Dict[str, Any]) -> None:
"""The PrimFunc annotation statement.
Parameters
----------
attrs : Dict[str, Any]
The annotations of the PrimFunc.
"""
_ffi_api.FuncAttrs(attrs) # type: ignore[attr-defined] # pylint: disable=no-member
def func_ret(ret_type: Type) -> Type:
"""The PrimFunc return type statement.
Parameters
----------
ret_type : Type
The return type of the PrimFunc.
Returns
-------
res : Type
The return type.
"""
return _ffi_api.FuncRet(ret_type) # type: ignore[attr-defined] # pylint: disable=no-member
def match_buffer(
param: Union[Var, BufferLoad, BufferRegion],
shape: Union[List[PrimExpr], Tuple[PrimExpr], PrimExpr, Integral] = None,
dtype: str = "float32",
data: Var = None,
strides: List[PrimExpr] = None,
elem_offset: PrimExpr = None,
scope: str = "global",
align: int = -1,
offset_factor: int = 0,
buffer_type: str = "default",
axis_separators: List[int] = None,
) -> Buffer:
"""The buffer match function.
Note
----
This function will perform different behavior, depending on the type of param.
If the param is a var in function parameter, it will create a buffer from DLTensor.
Else if the param is a subregion of other buffers, then create a subregion match inside a block.
Example
-------
Match buffer from function parameter
.. code-block:: python
A = T.match_buffer(a, (128, 128), dtype="float32")
Match buffer from Buffer subregion
.. code-block:: python
A = T.match_buffer(B[0:128, i * 128 : i * 128 + 128], (128, 128), dtype="float32")
Parameters
----------
param : Union[Var, BufferLoad, BufferRegion]
The parameter of the PrimFunc to match.
shape : Union[List[PrimExpr], Tuple[PrimExpr], PrimExpr, Integral]
The type of the buffer prior to flattening.
dtype : str
The data type in the content of the buffer.
data : Var
The pointer to the head of the data.
strides : List[PrimExpr]
The strides of each dimension.
elem_offset : PrimExpr
The offset in terms of number of dtype elements (including lanes).
scope : str
The optional storage scope of buffer data pointer.
align : int
The alignment requirement of data pointer in bytes.
offset_factor : int
The factor of elem_offset field.
buffer_type : str
The buffer type.
axis_separators : List[int]
The separators between input axes when generating flattened output axes.
Returns
-------
res : Buffer
The matched buffer.
"""
if shape is None:
if isinstance(param, BufferRegion):
dtype = param.buffer.dtype
shape = [region.extent for region in param.region]
else:
raise ValueError("Shape must be specified when binding input param")
shape = (shape,) if isinstance(shape, (PrimExpr, Integral)) else shape
if strides is None:
strides = []
return _ffi_api.MatchBuffer( # type: ignore[attr-defined] # pylint: disable=no-member
param,
shape,
dtype,
data,
strides,
elem_offset,
scope,
align,
offset_factor,
buffer_type,
axis_separators,
)
def preflattened_buffer(
postflattened: Buffer,
shape: Union[List[PrimExpr], Tuple[PrimExpr], PrimExpr, Integral],
dtype: str = "float32",
data: Var = None,
strides: List[PrimExpr] = None,
elem_offset: PrimExpr = None,
scope: str = "global",
align: int = -1,
offset_factor: int = 0,
buffer_type: str = "default",
axis_separators: List[int] = None,
) -> None:
"""The pre-flattened buffer statement.
Parameters
----------
postflattened : Buffer
The original buffer to be flattened.
shape : Union[List[PrimExpr], Tuple[PrimExpr], PrimExpr, Integral]
The type of the buffer prior to flattening.
dtype : str
The data type in the content of the buffer.
data : Var
The pointer to the head of the data.
strides : List[PrimExpr]
The strides of each dimension.
elem_offset : PrimExpr
The offset in terms of number of dtype elements (including lanes).
scope : str
The optional storage scope of buffer data pointer.
align : int
The alignment requirement of data pointer in bytes.
offset_factor : int
The factor of elem_offset field.
buffer_type : str
The buffer type.
axis_separators : List[int]
The separators between input axes when generating flattened output axes.
"""
shape = (shape,) if isinstance(shape, (PrimExpr, Integral)) else shape
if strides is None:
strides = []
_ffi_api.PreflattenedBuffer( # type: ignore[attr-defined] # pylint: disable=no-member
postflattened,
shape,
dtype,
data,
strides,
elem_offset,
scope,
align,
offset_factor,
buffer_type,
axis_separators,
)
def block(name: str = "", no_realize: bool = False) -> frame.BlockFrame:
"""The block declaration statement.
Parameters
----------
name : str
The name of the block.
no_realize : bool
The flag whether to construct BlockRealize or Block.
Returns
-------
res : frame.BlockFrame
The BlockFrame.
"""
return _ffi_api.Block(name, no_realize) # type: ignore[attr-defined] # pylint: disable=no-member
def init() -> frame.BlockInitFrame:
"""The block initialization statement.
Returns
-------
res : frame.BlockInitFrame
The BlockInitFrame.
"""
return _ffi_api.Init() # type: ignore[attr-defined] # pylint: disable=no-member
def where(predicate: Union[PrimExpr, int]) -> None:
"""The block predicate statement.
Parameters
----------
predicate : Union[PrimExpr, Literal[0, 1]]
The predicate condition.
"""
if isinstance(predicate, bool):
predicate = IntImm("bool", predicate)
if isinstance(predicate, int):
if predicate in [0, 1]:
predicate = IntImm("bool", predicate)
else:
raise ValueError(f"Invalid value for predicate: {predicate}")
_ffi_api.Where(predicate) # type: ignore[attr-defined] # pylint: disable=no-member
def reads(*buffer_slices: List[Union[BufferRegion, BufferLoad]]) -> None:
"""The block buffer region reading statement.
Parameters
----------
buffer_slices : List[Union[BufferRegion, BufferLoad]]
The array of buffer regions to read.
"""
if len(buffer_slices) == 1:
if isinstance(buffer_slices[0], tuple):
buffer_slices = list(buffer_slices[0])
elif isinstance(buffer_slices[0], list):
buffer_slices = buffer_slices[0] # type: ignore[assignment]
else:
buffer_slices = [buffer_slices[0]]
else:
buffer_slices = list(buffer_slices) # type: ignore[assignment]
_ffi_api.Reads(buffer_slices) # type: ignore[attr-defined] # pylint: disable=no-member
def writes(*buffer_slices: List[Union[BufferRegion, BufferLoad]]) -> None:
"""The block buffer region writing statement.
Parameters
----------
buffer_slices : List[Union[BufferRegion, BufferLoad]]
The array of buffer regions to write.
"""
if len(buffer_slices) == 1:
if isinstance(buffer_slices[0], tuple):
buffer_slices = list(buffer_slices[0])
elif isinstance(buffer_slices[0], list):
buffer_slices = buffer_slices[0] # type: ignore[assignment]
else:
buffer_slices = [buffer_slices[0]]
else:
buffer_slices = list(buffer_slices) # type: ignore[assignment]
_ffi_api.Writes(buffer_slices) # type: ignore[attr-defined] # pylint: disable=no-member
def block_attr(attrs: Dict[str, Any]) -> None:
"""The block annotation statement.
Parameters
----------
attrs : Dict[str, Any]
The annotation of the block.
"""
return _ffi_api.BlockAttrs(attrs) # type: ignore[attr-defined] # pylint: disable=no-member
def alloc_buffer(
shape: Union[List[PrimExpr], Tuple[PrimExpr], PrimExpr, Integral],
dtype: str = "float32",
data: Var = None,
strides: List[PrimExpr] = None,
elem_offset: PrimExpr = None,
scope: str = "global",
align: int = -1,
offset_factor: int = 0,
buffer_type: str = "default",
axis_separators: List[int] = None,
) -> Buffer:
"""The buffer alllocation function.
Parameters
----------
shape : Union[List[PrimExpr], Tuple[PrimExpr], PrimExpr, Integral]
The type of the buffer prior to flattening.
dtype : str
The data type in the content of the buffer.
data : Var
The pointer to the head of the data.
strides : List[PrimExpr]
The strides of each dimension.
elem_offset : PrimExpr
The offset in terms of number of dtype elements (including lanes).
scope : str
The optional storage scope of buffer data pointer.
align : int
The alignment requirement of data pointer in bytes.
offset_factor : int
The factor of elem_offset field.
buffer_type : str
The buffer type.
axis_separators : List[int]
The separators between input axes when generating flattened output axes.
Returns
-------
res : Buffer
The allocated buffer.
"""
shape = (shape,) if isinstance(shape, (PrimExpr, Integral)) else shape
if strides is None:
strides = []
return _ffi_api.AllocBuffer( # type: ignore[attr-defined] # pylint: disable=no-member
shape,
dtype,
data,
strides,
elem_offset,
scope,
align,
offset_factor,
buffer_type,
axis_separators,
)
def _as_range(dom: Union[Range, List[PrimExpr]]) -> Range:
"""The range constructor.
Parameters
----------
dom : Union[Range, List[PrimExpr]]
The domain.
Returns
-------
res : Range
The Range.
"""
if isinstance(dom, Range):
return dom
if isinstance(dom, (list, tuple)):
return Range(dom[0], dom[1])
if hasattr(dom, "dtype"):
return Range(IntImm(dom.dtype, 0), dom)
return Range(0, dom)
class axis: # pylint: disable=invalid-name
"""The axis class"""
@staticmethod
def spatial(
dom: Union[Range, List[PrimExpr], Tuple[PrimExpr]], binding: PrimExpr, dtype: str = "int32"
) -> Var:
"""The spatial block axis defining function.
Parameters
----------
dom : Union[Range, List[PrimExpr], Tuple[PrimExpr]]
The domain of the iteration variable.
binding : PrimExpr
The binding value of the iteration variable.
dtype : str
The data type of the iteration variable.
Returns
-------
res : Var
The iteration variable.
"""
return _ffi_api.AxisSpatial( # type: ignore[attr-defined] # pylint: disable=no-member
_as_range(dom), binding, dtype
)
@staticmethod
def reduce(
dom: Union[Range, List[PrimExpr], Tuple[PrimExpr]], binding: PrimExpr, dtype: str = "int32"
) -> Var:
"""The reduced block axis defining function.
Parameters
----------
dom : Union[Range, List[PrimExpr], Tuple[PrimExpr]]
The domain of the iteration variable.
binding : PrimExpr
The binding value of the iteration variable.
dtype : str
The data type of the iteration variable.
Returns
-------
res : Var
The iteration variable.
"""
return _ffi_api.AxisReduce( # type: ignore[attr-defined] # pylint: disable=no-member
_as_range(dom), binding, dtype
)
@staticmethod
def scan(
dom: Union[Range, List[PrimExpr], Tuple[PrimExpr]], binding: PrimExpr, dtype: str = "int32"
) -> Var:
"""The scanning block axis defining function.
Parameters
----------
dom : Union[Range, List[PrimExpr], Tuple[PrimExpr]]
The domain of the iteration variable.
binding : PrimExpr
The binding value of the iteration variable.
dtype : str
The data type of the iteration variable.
Returns
-------
res : Var
The iteration variable.
"""
return _ffi_api.AxisScan( # type: ignore[attr-defined] # pylint: disable=no-member
_as_range(dom), binding, dtype
)
@staticmethod
def opaque(
dom: Union[Range, List[PrimExpr], Tuple[PrimExpr]], binding: PrimExpr, dtype: str = "int32"
) -> Var:
"""The opaque block axis defining function.
Parameters
----------
dom : Union[Range, List[PrimExpr], Tuple[PrimExpr]]
The domain of the iteration variable.
binding : PrimExpr
The binding value of the iteration variable.
dtype : str
The data type of the iteration variable.
Returns
-------
res : Var
The iteration variable.
"""
return _ffi_api.AxisOpaque( # type: ignore[attr-defined] # pylint: disable=no-member
_as_range(dom), binding, dtype
)
@staticmethod
def remap(kinds: str, bindings: List[PrimExpr], dtype: str = "int32") -> Union[List[Var], Var]:
"""The block axis remapping function.
Parameters
----------
kinds : str
The types of the iteration variables.
bindings : List[PrimExpr]
The binding values of the iteration variables.
dtype : str
The data types of the iteration variables.
Returns
-------
res : Var
The iteration variables.
"""
iter_vars = _ffi_api.AxisRemap( # type: ignore[attr-defined] # pylint: disable=no-member
kinds, bindings, dtype
)
return iter_vars[0] if len(iter_vars) == 1 else iter_vars
S = spatial # pylint: disable=invalid-name
R = reduce # pylint: disable=invalid-name
def serial(
start: PrimExpr, stop: PrimExpr = None, *, annotations: Dict[str, Any] = None
) -> frame.ForFrame:
"""The serial For statement.
Parameters
----------
start : PrimExpr
The minimum value of iteration.
stop : PrimExpr
The maximum value of iteration.
annotations : Dict[str, Any]
The optional annotations of the For statement.
Returns
-------
res : frame.ForFrame
The ForFrame.
"""
if stop is None:
stop = start
if hasattr(start, "dtype"):
start = IntImm(start.dtype, 0)
else:
start = 0
return _ffi_api.Serial(start, stop, annotations) # type: ignore[attr-defined] # pylint: disable=no-member
def parallel(
start: PrimExpr, stop: PrimExpr = None, *, annotations: Dict[str, Any] = None
) -> frame.ForFrame:
"""The parallel For statement.
Parameters
----------
start : PrimExpr
The minimum value of iteration.
stop : PrimExpr
The maximum value of iteration.
annotations : Dict[str, Any]
The optional annotations of the For statement.
Returns
-------
res : frame.ForFrame
The ForFrame.
"""
if stop is None:
stop = start
if hasattr(start, "dtype"):
start = IntImm(start.dtype, 0)
else:
start = 0
return _ffi_api.Parallel(start, stop, annotations) # type: ignore[attr-defined] # pylint: disable=no-member
def vectorized(
start: PrimExpr, stop: PrimExpr = None, *, annotations: Dict[str, Any] = None
) -> frame.ForFrame:
"""The vectorized For statement.
Parameters
----------
start : PrimExpr
The minimum value of iteration.
stop : PrimExpr
The maximum value of iteration.
annotations : Dict[str, Any]
The optional annotations of the For statement.
Returns
-------
res : frame.ForFrame
The ForFrame.
"""
if stop is None:
stop = start
if hasattr(start, "dtype"):
start = IntImm(start.dtype, 0)
else:
start = 0
return _ffi_api.Vectorized(start, stop, annotations) # type: ignore[attr-defined] # pylint: disable=no-member
def unroll(
start: PrimExpr, stop: PrimExpr = None, *, annotations: Dict[str, Any] = None
) -> frame.ForFrame:
"""The unrolled For statement.
Parameters
----------
start : PrimExpr
The minimum value of iteration.
stop : PrimExpr
The maximum value of iteration.
annotations : Dict[str, Any]
The optional annotations of the For statement.
Returns
-------
res : frame.ForFrame
The ForFrame.
"""
if stop is None:
stop = start
if hasattr(start, "dtype"):
start = IntImm(start.dtype, 0)
else:
start = 0
return _ffi_api.Unroll(start, stop, annotations) # type: ignore[attr-defined] # pylint: disable=no-member
def thread_binding(
start: PrimExpr,
stop: PrimExpr = None,
thread: str = None,
*,
annotations: Dict[str, Any] = None,
) -> frame.ForFrame:
"""The thread-binding For statement.
Parameters
----------
start : PrimExpr
The minimum value of iteration.
stop : PrimExpr
The maximum value of iteration.
thread : str
The thread for loop variable to bind.
annotations : Dict[str, Any]
The optional annotations of the For statement.
Returns
-------
res : frame.ForFrame
The ForFrame.
"""
if thread is None:
if not isinstance(stop, str):
raise ValueError("Thread cannot be None for thread_binding")
thread = stop
stop = start
if hasattr(start, "dtype"):
start = IntImm(start.dtype, 0)
else:
start = 0
elif stop is None:
stop = start
if hasattr(start, "dtype"):
start = IntImm(start.dtype, 0)
else:
start = 0
return _ffi_api.ThreadBinding( # type: ignore[attr-defined] # pylint: disable=no-member
start, stop, thread, annotations
)
def grid(*extents: PrimExpr) -> frame.ForFrame:
"""The grid For statement.
Parameters
----------
extents : PrimExpr
The extents of the iteration.
Returns
-------
res : frame.ForFrame
The ForFrame.
"""
return _ffi_api.Grid(extents) # type: ignore[attr-defined] # pylint: disable=no-member
def Assert(condition: PrimExpr, message: str) -> frame.AssertFrame: # pylint: disable=invalid-name
"""Create an assertion statement.
Parameters
----------
condition : PrimExpr
The PrimExpr to test.
message : str
The output error message when the assertion fails.
Returns
-------
res : frame.AssertFrame
The result AssertFrame.
"""
return _ffi_api.Assert(condition, message) # type: ignore[attr-defined] # pylint: disable=no-member
def let(
v: Var,
value: PrimExpr,
body: PrimExpr = None,
) -> frame.LetFrame:
"""Create a new let binding.
Parameters
----------
v : Var
The variable to bind.
value : PrimExpr
The value to be bound.
body : PrimExpr
The body expression, None will be used if it was not specified.
Returns
-------
res : frame.LetFrame
The result LetFrame.
"""
if body is None:
return _ffi_api.Let(v, value) # type: ignore[attr-defined] # pylint: disable=no-member
return Let(v, value, body)
def realize(
buffer_slice: BufferRegion,
storage_scope: str,
condition: PrimExpr = True,
) -> frame.RealizeFrame:
"""Create a realization.
Parameters
----------
buffer_slice : BufferRegion
The region of buffer access.
storage_scope : str
The storage scope associated with this realization.
condition: PrimExpr
The condition expression, the default is True.
Returns
-------
res : frame.RealizeFrame
The result RealizeFrame.
"""
return _ffi_api.Realize( # type: ignore[attr-defined] # pylint: disable=no-member
buffer_slice, storage_scope, condition
)
def allocate(
extents: List[PrimExpr],
dtype: str,
scope: str = "global",
condition: PrimExpr = None,
annotations=None,
) -> frame.AllocateFrame:
"""Allocate node.
Parameters
----------
extents : List[PrimExpr]
The extents of the allocate.
dtype : str
The data type of the buffer.
scope : str
The storage scope.
condition : PrimExpr
The condition.
annotations: Optional[Mapping[str, Object]]
Additional annotation hints.
"""
if isinstance(condition, bool):
condition = IntImm("bool", condition)
return _ffi_api.Allocate( # type: ignore[attr-defined] # pylint: disable=no-member
extents, dtype, scope, condition, annotations
)
def allocate_const(
data: List[PrimExpr],
dtype: str,
extents: List[PrimExpr],
annotations=None,
) -> frame.AllocateConstFrame:
"""Allocate constant node.
Parameters
----------
data : List[PrimExpr]
The data associated with the constant.
dtype : str
The data type of the buffer.
extents : List[PrimExpr]
The extents of the allocate.
annotations : Optional[Map]
Additional annotations about the allocation.
"""
np_data = np.asarray(data, dtype=dtype)
prod_extent = 1
for extent in extents:
prod_extent *= extent
prod_shape = 1
for shape in np_data.shape:
prod_shape *= shape
if prod_extent == prod_shape:
np_data = np_data.reshape(extents)
return _ffi_api.AllocateConst( # type: ignore[attr-defined] # pylint: disable=no-member
ndarray.array(np_data), dtype, extents, annotations
)
def attr(node: Any, attr_key: str, value: Union[PrimExpr, str]) -> frame.AttrFrame:
"""Create an attribute node.
Parameters
----------
node : Any
The node to annotate the attribute.
attr_key : str
Attribute type key.
value : Union[PrimExpr, str]
The value of the attribute.
Returns
-------
res : frame.AttrFrame
The result AttrFrame.
"""
node = convert(node)
value = convert(value)
return _ffi_api.Attr(node, attr_key, value) # type: ignore[attr-defined] # pylint: disable=no-member
def While(condition: PrimExpr) -> frame.WhileFrame: # pylint: disable=invalid-name
"""Create a while node.
Parameters
----------
condition : PrimExpr
The termination condition of the loop.
Returns
-------
res : frame.WhileFrame
The result WhileFrame.
"""
if isinstance(condition, bool):
condition = IntImm("bool", condition)
return _ffi_api.While(condition) # type: ignore[attr-defined] # pylint: disable=no-member
def If(condition: PrimExpr) -> frame.IfFrame: # pylint: disable=invalid-name
"""Create an if node.
Parameters
----------
condition : PrimExpr
The condition of if statement, executes the true branch if the condition is true,
otherwise jump into the false branch.
Returns
-------
res : frame.IfFrame
The result IfFrame.
"""
if isinstance(condition, bool):
condition = IntImm("bool", condition)
return _ffi_api.If(condition) # type: ignore[attr-defined] # pylint: disable=no-member
def Then() -> frame.ThenFrame: # pylint: disable=invalid-name
"""Create a then.
Returns
-------
res : frame.ThenFrame
The result ThenFrame.
"""
return _ffi_api.Then() # type: ignore[attr-defined] # pylint: disable=no-member
def Else() -> frame.ElseFrame: # pylint: disable=invalid-name
"""Create an else.
Returns
-------
res : frame.ElseFrame
The result ElseFrame.
"""
return _ffi_api.Else() # type: ignore[attr-defined] # pylint: disable=no-member
def decl_buffer(
shape,
dtype="float32",
data=None,
strides=None,
elem_offset=None,
scope="global",
align=0,
offset_factor=0,
buffer_type="",
axis_separators=None,
) -> frame.DeclBufferFrame:
"""Create a buffer declaration node.
Parameters
----------
shape : Union[List[PrimExpr], Tuple[PrimExpr], PrimExpr, Integral]
The type of the buffer prior to flattening.
dtype : str
The data type in the content of the buffer.
data : Var
The pointer to the head of the data.
strides : List[PrimExpr]
The strides of each dimension.
elem_offset : PrimExpr
The offset in terms of number of dtype elements (including lanes).
scope : str
The optional storage scope of buffer data pointer.
align : int
The alignment requirement of data pointer in bytes.
offset_factor : int
The factor of elem_offset field.
buffer_type : str
The buffer type.
axis_separators : List[int]
The separators between input axes when generating flattened output axes.
Returns
-------
res : frame.DeclBufferFrame
The result DeclBufferFrame.
"""
shape = (shape,) if isinstance(shape, (PrimExpr, Integral)) else shape
return _ffi_api.DeclBuffer( # type: ignore[attr-defined] # pylint: disable=no-member
shape,
dtype,
"",
data,
strides,
elem_offset,
scope,
align,
offset_factor,
buffer_type,
axis_separators,
)
def launch_thread(
iter_var: IterVar, # pylint: disable=redefined-outer-name
extent: PrimExpr,
) -> frame.LaunchThreadFrame:
"""Launch a thread.
Parameters
----------
iter_var : IterVar
The iteration variable.
extent : PrimExpr
The extent of environment thread.
Returns
-------
res : frame.LaunchThreadFrame
The result LaunchThreadFrame.
Examples
--------
.. code-block:: python
from tvm.script.ir_builder import tir as T
brow = T.env_thread("blockIdx.y")
T.launch_thread(brow, 1)
"""
return _ffi_api.LaunchThread(iter_var, extent) # type: ignore[attr-defined] # pylint: disable=no-member
def env_thread(thread_tag: str) -> IterVar:
"""Bind a var to thread env"
Parameters
----------
thread_tag : str
The thread type tag.
Returns
-------
res : IterVar
The result iteration variable gets bound to the thread env.
"""
return _ffi_api.EnvThread(thread_tag) # type: ignore[attr-defined] # pylint: disable=no-member
def buffer_store(buffer: Buffer, value: PrimExpr, indices: List[Union[PrimExpr, slice]]) -> None:
"""Buffer store node.
Parameters
----------
buffer : Buffer
The buffer.
value : PrimExpr
The value to be stored.
indices : List[Union[PrimExpr, slice]]
The indices location to be stored.
"""
from tvm.arith import Analyzer # pylint: disable=import-outside-toplevel
expr_indices = []
for index in indices:
if isinstance(index, slice):
step = 1 if index.step is None else index.step
lanes = Analyzer().simplify((index.stop - index.start + step - 1) // step)
if lanes == 1:
expr_indices.append(index.start)
else:
expr_indices.append(ramp(index.start, step, int(lanes)))
else:
expr_indices.append(index)
if isinstance(value, bool) and buffer.dtype == "bool":
value = IntImm("bool", value)
return _ffi_api.BufferStore( # type: ignore[attr-defined] # pylint: disable=no-member
buffer, value, expr_indices
)
def prefetch(buffer: Buffer, indices: List[PrimExpr]) -> None:
"""The prefetch hint for a buffer.
Parameters
----------
buffer : Buffer
The buffer to be prefetched.
indices : List[PrimExpr]
The indices of the buffer to extract.
"""
return _ffi_api.Prefetch(buffer, indices) # type: ignore[attr-defined] # pylint: disable=no-member
def evaluate(value: PrimExpr) -> None:
"""Evaluate the input expression.
Parameters
----------
value: PrimExpr
The input expression to evaluate.
"""
if isinstance(value, str):
value = StringImm(value)
if isinstance(value, bool):
value = cast(value, "bool")
return _ffi_api.Evaluate(value) # type: ignore[attr-defined] # pylint: disable=no-member
__all__ = []
for _dtype in ["Float", "UInt", "Int"]:
for _size in ["8", "16", "32", "64"]:
for _lanes in ["", "x4", "x8", "x16", "x32", "x64"]:
_name = _dtype + _size + _lanes # pylint: disable=invalid-name
def func_gen(name: str):
"""Generate a function for each PrimExpr dtype.
Parameters
----------
name: str
The ffi function name to call.
"""
def func(
expr: Union[
None,
PrimExpr,
Literal["inf", "-inf", "nan"],
] = None
) -> PrimExpr:
if isinstance(expr, str):
expr = float(expr)
return getattr(_ffi_api, name)(expr)
return func
globals()[_name.lower()] = func_gen(_name)
__all__.append(_name.lower())
def boolean(expr: Optional[PrimExpr] = None) -> PrimExpr:
"""Construct a new tir.Var with type boolean or cast expression to type boolean.
Parameters
----------
expr: PrimExpr
The expression to be cast.
Returns
-------
res : PrimExpr
The new tir.Var with type boolean or casted expression with type boolean.
"""
return _ffi_api.Boolean(expr) # type: ignore[attr-defined] # pylint: disable=no-member
def handle(expr: Optional[PrimExpr] = None) -> PrimExpr:
"""Construct a new tir.Var with type handle or cast expression to type handle.
Parameters
----------
expr: PrimExpr
The expression to be cast.
Returns
-------
res : PrimExpr
The new tir.Var with type handle or casted expression with type handle.
"""
return _ffi_api.Handle(expr) # type: ignore[attr-defined] # pylint: disable=no-member
def void(expr: Optional[PrimExpr] = None) -> PrimExpr:
"""Construct a new tir.Var with type void or cast expression to type void.
Parameters
----------
expr: PrimExpr
The expression to be cast.
Returns
-------
res : PrimExpr
The new tir.Var with type void or casted expression with type void.
"""
return _ffi_api.Void(expr) # type: ignore[attr-defined] # pylint: disable=no-member
def var(dtype: str, name: str = "") -> Var:
"""Construct a new tir.Var.
Parameters
----------
dtype: str
The dtype of the Var.
name: str
The name of the Var.
Returns
-------
res : Var
The result tir.Var.
"""
return Var(name, dtype) # pylint: disable=no-member
def ptr(dtype: str, storage_scope: str = "global") -> Var:
"""The pointer declaration function.
Parameters
----------
dtype : str
The data type of the pointer.
storage_scope : str
The storage scope of the pointer.
Returns
-------
res : Var
The pointer.
"""
return _ffi_api.Ptr(dtype, storage_scope) # type: ignore[attr-defined] # pylint: disable=no-member
def min(a: PrimExpr, b: PrimExpr) -> PrimExpr: # pylint: disable=redefined-builtin
"""Compute the minimum value of two expressions.
Parameters
----------
a : PrimExpr
The left hand operand
b : PrimExpr
The right hand operand
Returns
-------
res : PrimExpr
The result expression.
"""
return _ffi_api.min(a, b) # type: ignore[attr-defined] # pylint: disable=no-member
def max(a: PrimExpr, b: PrimExpr) -> PrimExpr: # pylint: disable=redefined-builtin
"""Compute the maximum value of two expressions.
Parameters
----------
a : PrimExpr
The left hand operand
b : PrimExpr
The right hand operand
Returns
-------
res : PrimExpr
The result expression.
"""
return _ffi_api.max(a, b) # type: ignore[attr-defined] # pylint: disable=no-member
def iter_var(v: Union[Var, str], dom: Range, iter_type: str, thread_tag: str) -> IterVar:
"""The iteration variable.
Parameters
----------
var : Union[Var, str]
The internal variable that is used for iteration.
dom : Range
The domain of the iteration.
iter_type : str
The iteration type.
thread_tag : str
The thread type tag.
Returns
-------
res : IterVar
The iteration variable.
"""
iter_type = getattr(IterVar, iter_type)
return IterVar(dom, v, iter_type, thread_tag)
def comm_reducer(combiner: Callable, identity: List[PrimExpr]) -> CommReducer:
"""
Create a CommReducer from lambda inputs/outputs and the identities
Parameters
----------
combiner : Callable
A binary function which takes two PrimExpr as input to return a PrimExpr.
identity : List[PrimExpr]
A list of types of output PrimExpr.
Returns
-------
res : CommReducer
The CommReducer.
"""
params = inspect.signature(combiner).parameters
num_args = len(params)
args = []
for name, i in zip(params.keys(), identity + identity):
if isinstance(i, int):
args.append(Var(name, "int32"))
else:
args.append(Var(name, i.dtype))
res = combiner(*args)
if not isinstance(res, tuple):
res = (res,)
return CommReducer(args[: num_args // 2], args[num_args // 2 :], res, identity)
def target(target_config: Union[Dict, str]) -> Target:
"""
Create a target
Parameters
----------
target_config : Union[Dict, str]
The target configuration.
Returns
-------
res : Target
The target.
"""
if not isinstance(target_config, (str, dict)):
raise ValueError(
f"T.target expected a config dict or string, but got {type(target_config)}"
)
return Target(target_config)
def _op_wrapper(func):
@functools.wraps(func)
def wrapped(*args, **kwargs):
if "dtype" in kwargs:
kwargs.pop("dtype")
return func(*args, **kwargs)
return wrapped
def _dtype_forward(func):
@functools.wraps(func)
def wrapped(*args, **kwargs):
if "dtype" in kwargs:
args = (kwargs.pop("dtype"),) + args
return func(*args, **kwargs)
return wrapped
# pylint: disable=invalid-name
broadcast = Broadcast
ramp = Ramp
buffer_var = ptr
abs = _op_wrapper(_tir_op.abs) # pylint: disable=redefined-builtin
fabs = abs
acos = _op_wrapper(_tir_op.acos)
acosh = _op_wrapper(_tir_op.acosh)
address_of = _op_wrapper(_tir_op.address_of)
asin = _op_wrapper(_tir_op.asin)
asinh = _op_wrapper(_tir_op.asinh)
atan = _op_wrapper(_tir_op.atan)
atan2 = _op_wrapper(_tir_op.atan2)
atanh = _op_wrapper(_tir_op.atanh)
ceil = _op_wrapper(_tir_op.ceil)
clz = _op_wrapper(_tir_op.clz)
copysign = _op_wrapper(_tir_op.copysign)
cos = _op_wrapper(_tir_op.cos)
cosh = _op_wrapper(_tir_op.cosh)
erf = _op_wrapper(_tir_op.erf)
exp = _op_wrapper(_tir_op.exp)
exp2 = _op_wrapper(_tir_op.exp2)
exp10 = _op_wrapper(_tir_op.exp10)
floor = _op_wrapper(_tir_op.floor)
ceildiv = _op_wrapper(_tir_op.ceildiv)
floordiv = _op_wrapper(_tir_op.floordiv)
floormod = _op_wrapper(_tir_op.floormod)
fmod = _op_wrapper(_tir_op.fmod)
hypot = _op_wrapper(_tir_op.hypot)
if_then_else = _op_wrapper(_tir_op.if_then_else)
infinity = _op_wrapper(_tir_op.infinity)
isfinite = _op_wrapper(_tir_op.isfinite)
isinf = _op_wrapper(_tir_op.isinf)
isnan = _op_wrapper(_tir_op.isnan)
isnullptr = _op_wrapper(_tir_op.isnullptr)
ldexp = _op_wrapper(_tir_op.ldexp)
likely = _op_wrapper(_tir_op.likely)
log = _op_wrapper(_tir_op.log)
log1p = _op_wrapper(_tir_op.log1p)
log2 = _op_wrapper(_tir_op.log2)
log10 = _op_wrapper(_tir_op.log10)
lookup_param = _op_wrapper(_tir_op.lookup_param)
max_value = _op_wrapper(_tir_op.max_value)
min_value = _op_wrapper(_tir_op.min_value)
nearbyint = _op_wrapper(_tir_op.nearbyint)
nextafter = _op_wrapper(_tir_op.nextafter)
popcount = _op_wrapper(_tir_op.popcount)
power = _op_wrapper(_tir_op.power)
q_multiply_shift = _op_wrapper(_tir_op.q_multiply_shift)
q_multiply_shift_per_axis = _op_wrapper(_tir_op.q_multiply_shift_per_axis)
ret = _op_wrapper(_tir_op.ret)
reinterpret = _dtype_forward(_tir_op.reinterpret)
round = _op_wrapper(_tir_op.round) # pylint: disable=redefined-builtin
rsqrt = _op_wrapper(_tir_op.rsqrt)
shift_left = _op_wrapper(_tir_op.shift_left)
shift_right = _op_wrapper(_tir_op.shift_right)
sigmoid = _op_wrapper(_tir_op.sigmoid)
sin = _op_wrapper(_tir_op.sin)
sinh = _op_wrapper(_tir_op.sinh)
sqrt = _op_wrapper(_tir_op.sqrt)
tan = _op_wrapper(_tir_op.tan)
tanh = _op_wrapper(_tir_op.tanh)
trunc = _op_wrapper(_tir_op.trunc)
truncdiv = _op_wrapper(_tir_op.truncdiv)
truncmod = _op_wrapper(_tir_op.truncmod)
tvm_access_ptr = _op_wrapper(_tir_op.tvm_access_ptr)
tvm_throw_last_error = _op_wrapper(_tir_op.tvm_throw_last_error)
tvm_stack_alloca = _op_wrapper(_tir_op.tvm_stack_alloca)
tvm_stack_make_shape = _op_wrapper(_tir_op.tvm_stack_make_shape)
tvm_stack_make_array = _op_wrapper(_tir_op.tvm_stack_make_array)
tvm_check_return = _op_wrapper(_tir_op.tvm_check_return)
call_packed = _op_wrapper(_tir_op.call_packed)
call_cpacked = _op_wrapper(_tir_op.call_cpacked)
call_packed_lowered = _op_wrapper(_tir_op.call_packed_lowered)
call_cpacked_lowered = _op_wrapper(_tir_op.call_cpacked_lowered)
call_extern = _dtype_forward(_tir_op.call_extern)
call_intrin = _dtype_forward(_tir_op.call_intrin)
call_llvm_intrin = _dtype_forward(_tir_op.call_llvm_intrin)
call_llvm_pure_intrin = _dtype_forward(_tir_op.call_llvm_pure_intrin)
call_pure_extern = _dtype_forward(_tir_op.call_pure_extern)
tvm_tuple = _op_wrapper(_tir_op.tvm_tuple)
tvm_struct_set = _op_wrapper(_tir_op.tvm_struct_set)
tvm_struct_get = _tir_op.tvm_struct_get
tvm_thread_allreduce = _op_wrapper(_tir_op.tvm_thread_allreduce)
tvm_load_matrix_sync = _op_wrapper(_tir_op.tvm_load_matrix_sync)
tvm_mma_sync = _op_wrapper(_tir_op.tvm_mma_sync)
tvm_bmma_sync = _op_wrapper(_tir_op.tvm_bmma_sync)
tvm_fill_fragment = _op_wrapper(_tir_op.tvm_fill_fragment)
tvm_store_matrix_sync = _op_wrapper(_tir_op.tvm_store_matrix_sync)
ptx_mma = _dtype_forward(_tir_op.ptx_mma)
ptx_mma_sp = _dtype_forward(_tir_op.ptx_mma_sp)
ptx_ldmatrix = _dtype_forward(_tir_op.ptx_ldmatrix)
ptx_cp_async = _dtype_forward(_tir_op.ptx_cp_async)
ptx_wait_group = _op_wrapper(_tir_op.ptx_wait_group)
ptx_commit_group = _op_wrapper(_tir_op.ptx_commit_group)
mma_store = _dtype_forward(_tir_op.mma_store)
mma_fill = _dtype_forward(_tir_op.mma_fill)
vectorlow = _dtype_forward(_tir_op.vectorlow)
vectorhigh = _dtype_forward(_tir_op.vectorhigh)
vectorcombine = _dtype_forward(_tir_op.vectorcombine)
assume = _op_wrapper(_tir_op.assume)
undef = _op_wrapper(_tir_op.undef)
tvm_call_packed = call_packed
tvm_call_cpacked = call_cpacked
tvm_call_packed_lowered = call_packed_lowered
tvm_call_cpacked_lowered = call_cpacked_lowered
TVMBackendAllocWorkspace = _op_wrapper(_tir_op.TVMBackendAllocWorkspace)
TVMBackendFreeWorkspace = _op_wrapper(_tir_op.TVMBackendFreeWorkspace)
start_profile_intrinsic = _op_wrapper(_tir_op.start_profile_intrinsic)
end_profile_intrinsic = _op_wrapper(_tir_op.end_profile_intrinsic)
class meta_var:
"""A meta variable used in TVMScript metaprogramming. It means that the value of the variable
does not appear in the final TIR, but only stays in the parser.
Parameters
----------
value: Any
The meta variable.
"""
def __init__(self, value: Any) -> None:
self.value = value
def __iter__(self):
def f():
for i in self.value:
yield meta_var(i)
return f()
# pylint: enable=invalid-name
__all__ += [
"buffer_decl",
"prim_func",
"arg",
"func_name",
"func_attr",
"func_ret",
"match_buffer",
"preflattened_buffer",
"block",
"init",
"where",
"reads",
"writes",
"block_attr",
"alloc_buffer",
"axis",
"serial",
"parallel",
"vectorized",
"unroll",
"thread_binding",
"grid",
"Assert",
"let",
"realize",
"allocate",
"allocate_const",
"attr",
"While",
"If",
"Then",
"Else",
"decl_buffer",
"launch_thread",
"env_thread",
"buffer_store",
"prefetch",
"evaluate",
"boolean",
"handle",
"void",
"var",
"ptr",
"min",
"max",
"iter_var",
"comm_reducer",
"target",
"buffer_var",
"abs",
"fabs",
"acos",
"acosh",
"address_of",
"asin",
"asinh",
"atan",
"atan2",
"atanh",
"ceil",
"clz",
"copysign",
"cos",
"cosh",
"erf",
"exp",
"exp2",
"exp10",
"floor",
"ceildiv",
"floordiv",
"floormod",
"fmod",
"hypot",
"if_then_else",
"infinity",
"isfinite",
"isinf",
"isnan",
"isnullptr",
"ldexp",
"likely",
"log",
"log1p",
"log2",
"log10",
"lookup_param",
"max_value",
"min_value",
"nearbyint",
"nextafter",
"popcount",
"power",
"q_multiply_shift",
"q_multiply_shift_per_axis",
"ret",
"reinterpret",
"round",
"rsqrt",
"shift_left",
"shift_right",
"sigmoid",
"sin",
"sinh",
"sqrt",
"tan",
"tanh",
"trunc",
"truncdiv",
"truncmod",
"tvm_access_ptr",
"tvm_throw_last_error",
"tvm_stack_alloca",
"tvm_stack_make_shape",
"tvm_stack_make_array",
"tvm_check_return",
"call_packed",
"call_cpacked",
"call_packed_lowered",
"call_cpacked_lowered",
"call_extern",
"call_intrin",
"call_llvm_intrin",
"call_llvm_pure_intrin",
"call_pure_extern",
"tvm_tuple",
"tvm_struct_set",
"tvm_struct_get",
"tvm_thread_allreduce",
"tvm_load_matrix_sync",
"tvm_mma_sync",
"tvm_bmma_sync",
"tvm_fill_fragment",
"tvm_store_matrix_sync",
"ptx_mma",
"ptx_mma_sp",
"ptx_ldmatrix",
"ptx_cp_async",
"ptx_wait_group",
"ptx_commit_group",
"mma_store",
"mma_fill",
"vectorlow",
"vectorhigh",
"vectorcombine",
"assume",
"undef",
"tvm_call_packed",
"tvm_call_cpacked",
"tvm_call_packed_lowered",
"tvm_call_cpacked_lowered",
"TVMBackendAllocWorkspace",
"TVMBackendFreeWorkspace",
"start_profile_intrinsic",
"end_profile_intrinsic",
"meta_var",
"llvm_lookup_intrinsic_id",
"type_annotation",
"broadcast",
"ramp",
"cast",
# tvm.tir.expr
"Var",
"SizeVar",
"Reduce",
"FloatImm",
"IntImm",
"StringImm",
"Cast",
"Add",
"Sub",
"Mul",
"Div",
"Mod",
"FloorDiv",
"FloorMod",
"Min",
"Max",
"EQ",
"NE",
"LT",
"LE",
"GT",
"GE",
"And",
"Or",
"Not",
"Select",
"BufferLoad",
"ProducerLoad",
"Load",
"Ramp",
"Broadcast",
"Shuffle",
"Call",
"CallEffectKind",
"Let",
"IterVar",
"CommReducer",
]
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the Licens.
"""The parser"""
from . import _core, ir, tir
from ._core import parse
from .ir import ir_module
from .tir import prim_func
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/_core.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the Licens.
"""The core parser infra"""
# pylint: disable=unused-import
from .core import dispatch, doc, utils
from .core.dispatch import OpMethod, register_op
from .core.entry import parse
from .core.parser import Parser
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/core/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""The core parser infra"""
from . import diagnostics, dispatch, doc, doc_core, entry, evaluator, parser, utils
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/core/diagnostics.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM Script Parser Source and diagnostics"""
import inspect
import sys
from typing import Union
from tvm.ir import IRModule, SourceName, Span, diagnostics
from . import doc
class Source:
"""Source code class for TVMScript.
It is constructed by source code str or doc AST tree.
Parameters
----------
source_name : str
The filename of the file where the source code locates.
start_line : int
The first line number of the source code.
start_column : int
The first column number of the first line of the source code.
source : str
The source code str of source code.
full_source : str
The complete source code of the file where the source code locates.
"""
source_name: str
start_line: int
start_column: int
source: str
full_source: str
def __init__(self, program: Union[str, doc.AST]):
if isinstance(program, str):
self.source_name = "<str>"
self.start_line = 1
self.start_column = 0
self.source = program
self.full_source = program
return
self.source_name = inspect.getsourcefile(program) # type: ignore
lines, self.start_line = getsourcelines(program) # type: ignore
if lines:
self.start_column = len(lines[0]) - len(lines[0].lstrip())
else:
self.start_column = 0
if self.start_column and lines:
self.source = "\n".join([l[self.start_column :].rstrip() for l in lines])
else:
self.source = "".join(lines)
try:
# It will cause a problem when running in Jupyter Notebook.
# `mod` will be <module '__main__'>, which is a built-in module
# and `getsource` will throw a TypeError
mod = inspect.getmodule(program)
if mod:
self.full_source = inspect.getsource(mod)
else:
self.full_source = self.source
except TypeError:
# It's a work around for Jupyter problem.
# Since `findsource` is an internal API of inspect, we just use it
# as a fallback method.
src, _ = inspect.findsource(program) # type: ignore
self.full_source = "".join(src)
def as_ast(self) -> doc.AST:
"""Parse the source code into AST.
Returns
-------
res : doc.AST
The AST of source code.
"""
return doc.parse(self.source)
_getfile = inspect.getfile # pylint: disable=invalid-name
_findsource = inspect.findsource # pylint: disable=invalid-name
def _patched_inspect_getfile(obj):
"""Work out which source or compiled file an object was defined in."""
if not inspect.isclass(obj):
return _getfile(obj)
mod = getattr(obj, "__module__", None)
if mod is not None:
file = getattr(sys.modules[mod], "__file__", None)
if file is not None:
return file
for _, member in inspect.getmembers(obj):
if inspect.isfunction(member):
if obj.__qualname__ + "." + member.__name__ == member.__qualname__:
return inspect.getfile(member)
raise TypeError(f"Source for {obj:!r} not found")
def findsource(obj):
"""Return the entire source file and starting line number for an object."""
import linecache # pylint: disable=import-outside-toplevel
if not inspect.isclass(obj):
return _findsource(obj)
file = inspect.getsourcefile(obj)
if file:
linecache.checkcache(file)
else:
file = inspect.getfile(obj)
if not (file.startswith("<") and file.endswith(">")):
raise OSError("source code not available")
module = inspect.getmodule(obj, file)
if module:
lines = linecache.getlines(file, module.__dict__)
else:
lines = linecache.getlines(file)
if not lines:
raise OSError("could not get source code")
qual_names = obj.__qualname__.replace(".<locals>", "<locals>").split(".")
in_comment = 0
scope_stack = []
indent_info = {}
for i, line in enumerate(lines):
n_comment = line.count('"""')
if n_comment:
# update multi-line comments status
in_comment = in_comment ^ (n_comment & 1)
continue
if in_comment:
# skip lines within multi-line comments
continue
indent = len(line) - len(line.lstrip())
tokens = line.split()
if len(tokens) > 1:
name = None
if tokens[0] == "def":
name = tokens[1].split(":")[0].split("(")[0] + "<locals>"
elif tokens[0] == "class":
name = tokens[1].split(":")[0].split("(")[0]
if name:
while scope_stack and indent_info[scope_stack[-1]] >= indent:
scope_stack.pop()
scope_stack.append(name)
indent_info[name] = indent
if scope_stack == qual_names:
return lines, i
raise OSError("could not find class definition")
def getsourcelines(obj):
"""Extract the block of code at the top of the given list of lines."""
obj = inspect.unwrap(obj)
lines, l_num = findsource(obj)
return inspect.getblock(lines[l_num:]), l_num + 1
inspect.getfile = _patched_inspect_getfile
class Diagnostics:
"""Diagnostics class for error reporting in parser.
Parameters
----------
source : Source
The source code.
ctx : diagnostics.DiagnosticContext
The diagnostic context for diagnostics.
"""
source: Source
ctx: diagnostics.DiagnosticContext
def __init__(self, source: Source):
mod = IRModule()
mod.source_map.add(source.source_name, source.full_source)
self.source = source
self.ctx = diagnostics.DiagnosticContext(mod, diagnostics.get_renderer())
def _emit(self, node: doc.AST, message: str, level: diagnostics.DiagnosticLevel) -> None:
"""Emit a diagnostic.
Parameters
----------
node : doc.AST
The node with diagnostic information.
message : str
The diagnostic message.
level : diagnostics.DiagnosticLevel
The diagnostic level.
"""
lineno = node.lineno or self.source.start_line
col_offset = node.col_offset or self.source.start_column
end_lineno = node.end_lineno or lineno
end_col_offset = node.end_col_offset or col_offset
lineno += self.source.start_line - 1
end_lineno += self.source.start_line - 1
col_offset += self.source.start_column + 1
end_col_offset += self.source.start_column + 1
self.ctx.emit(
diagnostics.Diagnostic(
level=level,
span=Span(
source_name=SourceName(self.source.source_name),
line=lineno,
end_line=end_lineno,
column=col_offset,
end_column=end_col_offset,
),
message=message,
)
)
def error(self, node: doc.AST, message: str) -> None:
"""Emit a diagnostic error.
Parameters
----------
node : doc.AST
The node with diagnostic error.
message : str
The diagnostic message.
"""
self._emit(node, message, diagnostics.DiagnosticLevel.ERROR)
self.ctx.render()
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/core/dispatch.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Parser dispatching infrastructure"""
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Type
from .doc import AST
if TYPE_CHECKING:
from .parser import Parser
ParseMethod = Callable[["Parser", AST], None]
ParseVTable: Dict[Tuple[str, str], ParseMethod] = {}
OpMethod = Callable[..., Any]
OpVTable: Dict[Tuple[Type, AST, int], OpMethod] = {}
def register(token: str, type_name: str):
"""Register a method for a dispatch token and type name.
Parameters
----------
token : str
The token for IR, e.g., T for TIR and R for Relax.
type_name : str
The type name of AST node, e.g., FunctionDef, With, For.
Returns
-------
func : callable
The function to register dispatched method of parsing
corresponding token and AST node type.
"""
def func(method: ParseMethod):
"""Register a method in parser virtual table.
Parameters
----------
method : ParseMethod
The dispatched method to be registered in parser virtual table.
"""
ParseVTable[(token, type_name)] = method
return func
def get(
token: str,
type_name: str,
default: Optional[ParseMethod] = None,
) -> Optional[ParseMethod]:
"""Get a registered method for a dispatch token and type name,
or return a default method if no registered methods with this dispatch token and type name.
Parameters
----------
token : str
The token for IR, e.g., T for TIR and R for Relax.
type_name : str
The type name of AST node, e.g., FunctionDef, With, For.
default : Optional[ParseMethod]
The default method when no registered methods with this dispatch token and type name.
Returns
-------
func : Optional[ParseMethod]
The dispatched method of parsing corresponding token and AST node type.
"""
return ParseVTable.get((token, type_name), default)
def register_op(operand_type: Type, op_node_type: AST, operand_index: int):
"""Register a method for a operand type, AST operator node and operand index.
Parameters
----------
operand_type : Type
The type of operands, e.g., tir.PrimExpr, tir.IterVar.
op_node_type : AST
The doc AST operator node type, e.g., doc.Add, doc.Eq.
operand_index : int
The operand index, i.e., 0 for left operand and 1 for right operand.
Returns
-------
func : callable
The function to register dispatched method of parsing
corresponding a operand type, AST operator node and operand index.
"""
def func(method: OpMethod):
"""Register a method in parser operator virtual table.
Parameters
----------
method : ParseMethod
The dispatched method to be registered in parser operator virtual table.
"""
OpVTable[(operand_type, op_node_type, operand_index)] = method
return func
def get_op(
operand_type: Type,
op_node_type: Type,
operand_index: int,
default: Optional[OpMethod] = None,
) -> Optional[OpMethod]:
"""Register a method for a operand type, AST operator node and operand index.
Parameters
----------
operand_type : Type
The type of operands, e.g., tir.PrimExpr, tir.IterVar.
op_node_type : AST
The doc AST operator node type, e.g., doc.Add, doc.Eq.
operand_index : int
The operand index, i.e., 0 for left operand and 1 for right operand.
default : Optional[OpMethod]
The default method when no registered methods with this operand type,
AST operator node and operand index.
Returns
-------
func : Optional[OpMethod]
The function to register dispatched method of parsing
corresponding a operand type, AST operator node and operand index.
"""
return OpVTable.get((operand_type, op_node_type, operand_index), default)
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/core/doc.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM Script Parser doc AST"""
import ast
import inspect
import sys
import typing
from collections import defaultdict
from . import doc_core as doc
from .doc_core import * # pylint: disable=unused-import,wildcard-import,redefined-builtin,W0614
FnToDoc = typing.Callable[[ast.AST], doc.AST]
FnFromDoc = typing.Callable[[doc.AST], ast.AST]
class Entry:
"""Mapping entry between python AST node type str and doc AST.
Parameters
----------
to_doc : typing.Optional[FnToDoc]
The callable methods for converting python AST node to doc AST.
from_doc : typing.Optional[FnFromDoc]
The callable methods for converting doc AST to python AST node.
"""
to_doc: typing.Optional[FnToDoc]
from_doc: typing.Optional[FnFromDoc]
def __init__(self):
self.to_doc = None
self.from_doc = None
class Registry:
"""Registration map from python AST node type str to methods of conversion
between python AST node and doc AST node.
Parameters
----------
_inst : typing.Optional["Registry"]
The instance of Registry.
table : typing.Dict[str, Entry]
The registration map from python AST node type str to methods of conversion
between python AST node and doc AST node.
"""
_inst: typing.Optional["Registry"] = None
table: typing.Dict[str, Entry]
def __init__(self):
self.table = defaultdict(Entry)
def register_to_doc(name: str):
"""Register the to_doc method for python AST node type.
Parameters
----------
name : str
The type of python AST node.
Returns
-------
f : Callable[[FnToDoc], None]
The function of registering the to_doc method for python AST node type.
"""
def f(to_doc: FnToDoc): # pylint: disable=redefined-outer-name
reg = Registry._inst # pylint: disable=protected-access
reg.table[name].to_doc = to_doc
return f
def register_from_doc(name: str):
"""Register the from_doc method for python AST node type.
Parameters
----------
name : str
The type of python AST node.
Returns
-------
f : Callable[[FnFromDoc], None]
The function of registering the from_doc method for python AST node type.
"""
def f(to_doc: FnFromDoc): # pylint: disable=redefined-outer-name
reg = Registry._inst # pylint: disable=protected-access
reg.table[name].from_doc = to_doc
return f
def _is_atomic_type(node):
return (
node is None
or node in [..., True, False]
or isinstance(
node,
(
int,
float,
str,
bool,
bytes,
complex,
),
)
)
def _get_registry_entry(cls_name, attr):
cls_name = cls_name.split(".")[-1]
reg = Registry._inst # pylint: disable=protected-access
if cls_name in reg.table:
entry = reg.table[cls_name]
return getattr(entry, attr, None)
return None
def from_doc(node):
"""Get original python AST node from doc AST node.
Parameters
----------
node : doc.AST
The doc AST node.
Returns
-------
res : ast.AST
The corresponding AST node.
"""
if _is_atomic_type(node):
return node
if isinstance(node, tuple):
return tuple(from_doc(n) for n in node)
if isinstance(node, list):
return [from_doc(n) for n in node]
func = _get_registry_entry(node.__class__.__name__, "from_doc")
if not func:
raise NotImplementedError(f"from_doc is not implemented for: {node.__class__.__name__}")
return func(node)
def to_doc(node):
"""Get doc AST node from python AST node.
Parameters
----------
node : ast.AST
The AST node.
Returns
-------
res : doc.AST
The corresponding doc AST node.
"""
if _is_atomic_type(node):
return node
if isinstance(node, tuple):
return tuple(to_doc(n) for n in node)
if isinstance(node, list):
return [to_doc(n) for n in node]
func = _get_registry_entry(node.__class__.__name__, "to_doc")
if not func:
raise NotImplementedError(f"to_doc is not implemented for: {node.__class__.__name__}")
return func(node)
def parse(
source: str,
filename: str = "<unknown>",
mode: str = "exec",
) -> doc.AST:
"""Parse TVMScript source code str to doc AST.
Its interface is consistent with python built-in ast.parse.
And it will parse by python 3.8 first if possible,
or it will parse with python version in current environment.
Parameters
----------
source : str
The TVMScript source code.
filename : str
The optional filename of the file where source code locates.
mode : str
The parsing mode for ast.parse.
Returns
-------
res : doc.AST
The parsed doc AST.
"""
try:
program = ast.parse( # pylint: disable=unexpected-keyword-arg
source=source,
filename=filename,
mode=mode,
feature_version=(3, 8),
)
except: # pylint: disable=bare-except
program = ast.parse(
source=source,
filename=filename,
mode=mode,
)
return to_doc(program)
class NodeVisitor:
"""Node visitor for doc AST"""
def visit(self, node: doc.AST) -> None:
if isinstance(node, (list, tuple)):
for item in node:
self.visit(item)
return
if not isinstance(node, doc.AST):
return
getattr(
self,
"visit_" + node.__class__.__name__.split(".")[-1],
self.generic_visit,
)(node)
def generic_visit(self, node: doc.AST) -> None:
for field in node.__class__._FIELDS: # pylint: disable=protected-access
value = getattr(node, field, None)
if value is None:
pass
elif isinstance(value, (doc.AST, list, tuple)):
self.visit(value)
class NodeTransformer:
"""Node transformer for doc AST"""
def visit(self, node: doc.AST) -> doc.AST:
if isinstance(node, list):
return [self.visit(item) for item in node]
if isinstance(node, tuple):
return tuple(self.visit(item) for item in node)
if not isinstance(node, doc.AST):
return node
return getattr(
self,
"visit_" + node.__class__.__name__.split(".")[-1],
self.generic_visit,
)(node)
def generic_visit(self, node: doc.AST) -> doc.AST:
kv: typing.Dict[str, typing.Any] = {}
for field in node.__class__._FIELDS: # pylint: disable=protected-access
value = getattr(node, field, None)
if value is None:
pass
elif isinstance(value, (doc.AST, list, tuple)):
value = self.visit(value)
kv[field] = value
return node.__class__(**kv)
def _register_default():
class DefaultTranslator:
def __init__(self, doc_cls, func, fields):
self.doc_cls = doc_cls # getattr(doc, name)
self.func = func
self.fields = fields
def __call__(self, node):
kv = {attr: self.func(getattr(node, attr, None)) for attr in self.fields}
return self.doc_cls(**kv)
Registry._inst = Registry() # pylint: disable=protected-access
for cls_name in dir(doc):
doc_cls = getattr(doc, cls_name)
if not hasattr(ast, cls_name):
continue
if inspect.isclass(doc_cls) and issubclass(doc_cls, doc.AST):
assert "." not in cls_name
register_to_doc(cls_name)(
DefaultTranslator(
getattr(doc, cls_name),
to_doc,
doc_cls._FIELDS, # pylint: disable=protected-access
)
)
register_from_doc(cls_name)(
DefaultTranslator(
getattr(ast, cls_name),
from_doc,
doc_cls._FIELDS, # pylint: disable=protected-access
)
)
def _py_version() -> typing.Tuple[int, int]:
return (sys.version_info.major, sys.version_info.minor)
def _register_constant_handling():
if _py_version() not in [(3, 6), (3, 7)]:
return
def as_constant(f) -> doc.Constant:
def to_doc_func(x: ast.AST) -> doc.Constant:
return doc.Constant(
value=getattr(x, f) if isinstance(f, str) else f(x),
kind=None,
s=None,
n=None,
lineno=x.lineno,
col_offset=x.col_offset,
end_lineno=x.lineno,
end_col_offset=x.col_offset,
)
return to_doc_func
register_to_doc("Str")(as_constant("s"))
register_to_doc("NameConstant")(as_constant("value"))
register_to_doc("Num")(as_constant("n"))
register_to_doc("Bytes")(as_constant("s"))
register_to_doc("Ellipsis")(as_constant(lambda _: ...))
def _register_subscription_handling():
if _py_version() >= (3, 9):
return
def subscript_to_doc(x: ast.Subscript) -> doc.Subscript:
if isinstance(x.slice, ast.Slice):
return doc.Subscript(
value=to_doc(x.value),
slice=doc.Slice(
lower=to_doc(x.slice.lower),
upper=to_doc(x.slice.upper),
step=to_doc(x.slice.step),
lineno=getattr(x.slice, "lineno", None),
col_offset=getattr(x.slice, "col_offset", None),
end_lineno=getattr(x.slice, "end_lineno", None),
end_col_offset=getattr(x.slice, "end_col_offset", None),
),
ctx=to_doc(x.ctx),
lineno=getattr(x, "lineno", None),
col_offset=getattr(x, "col_offset", None),
end_lineno=getattr(x, "end_lineno", None),
end_col_offset=getattr(x, "end_col_offset", None),
)
if isinstance(x.slice, ast.ExtSlice):
return doc.Subscript(
value=to_doc(x.value),
slice=doc.Tuple(
elts=[to_doc(i) for i in x.slice.dims],
ctx=doc.Load(
lineno=None,
col_offset=None,
end_lineno=None,
end_col_offset=None,
),
lineno=getattr(x, "lineno", None),
col_offset=getattr(x, "col_offset", None),
end_lineno=getattr(x, "end_lineno", None),
end_col_offset=getattr(x, "end_col_offset", None),
),
ctx=to_doc(x.ctx),
lineno=getattr(x, "lineno", None),
col_offset=getattr(x, "col_offset", None),
end_lineno=getattr(x, "end_lineno", None),
end_col_offset=getattr(x, "end_col_offset", None),
)
if isinstance(x.slice, ast.Index):
return doc.Subscript(
value=to_doc(x.value),
slice=to_doc(x.slice.value),
ctx=to_doc(x.ctx),
lineno=getattr(x, "lineno", None),
col_offset=getattr(x, "col_offset", None),
end_lineno=getattr(x, "end_lineno", None),
end_col_offset=getattr(x, "end_col_offset", None),
)
raise TypeError(f"Unknown subscript type: {type(x.slice)}")
def subscript_from_doc(x: doc.Subscript) -> ast.Subscript:
if isinstance(x.slice, doc.Slice):
result = ast.Subscript(
value=from_doc(x.value),
slice=from_doc(x.slice),
ctx=from_doc(x.ctx),
)
elif isinstance(x.slice, doc.Tuple):
result = ast.Subscript(
value=from_doc(x.value),
slice=ast.ExtSlice(
dims=[from_doc(i) for i in x.slice.elts],
),
ctx=from_doc(x.ctx),
)
else:
result = ast.Subscript(
value=from_doc(x.value),
slice=ast.Index(value=from_doc(x.slice)),
ctx=from_doc(x.ctx),
)
result.lineno = x.lineno
result.col_offset = x.col_offset
result.end_lineno = x.end_lineno
result.end_col_offset = x.end_col_offset
return result
register_to_doc("Subscript")(subscript_to_doc)
register_from_doc("Subscript")(subscript_from_doc)
def _register_index_handling():
if _py_version() >= (3, 9):
return
def index_to_doc(x: ast.Index) -> doc.Expr:
return to_doc(x.value)
def index_from_doc(x: doc.Expr) -> ast.Index:
result = ast.Index(value=from_doc(x), ctx=from_doc(x.ctx))
result.lineno = x.lineno
result.col_offset = x.col_offset
result.end_lineno = x.end_lineno
result.end_col_offset = x.end_col_offset
return result
register_to_doc("Index")(index_to_doc)
register_from_doc("Index")(index_from_doc)
_register_default()
_register_constant_handling()
_register_subscription_handling()
_register_index_handling()
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/core/doc_core.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=redefined-outer-name,missing-docstring,invalid-name
# pylint: disable=useless-super-delegation,redefined-builtin
# pylint: disable=too-few-public-methods,too-many-arguments
class AST:
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__()
self.lineno = lineno
self.col_offset = col_offset
self.end_lineno = end_lineno
self.end_col_offset = end_col_offset
class mod(AST):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Module(mod):
_FIELDS = ["body", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, body, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.body = body
class Interactive(mod):
_FIELDS = ["body", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, body, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.body = body
class Expression(mod):
_FIELDS = ["body", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, body, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.body = body
class stmt(AST):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class FunctionDef(stmt):
_FIELDS = [
"name",
"args",
"body",
"decorator_list",
"returns",
"lineno",
"col_offset",
"end_lineno",
"end_col_offset",
]
def __init__(
self,
name,
args,
body,
decorator_list,
returns,
lineno,
col_offset,
end_lineno,
end_col_offset,
):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.name = name
self.args = args
self.body = body
self.decorator_list = decorator_list
self.returns = returns
class ClassDef(stmt):
_FIELDS = [
"name",
"bases",
"keywords",
"body",
"decorator_list",
"lineno",
"col_offset",
"end_lineno",
"end_col_offset",
]
def __init__(
self,
name,
bases,
keywords,
body,
decorator_list,
lineno,
col_offset,
end_lineno,
end_col_offset,
):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.name = name
self.bases = bases
self.keywords = keywords
self.body = body
self.decorator_list = decorator_list
class Return(stmt):
_FIELDS = ["value", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, value, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.value = value
class Delete(stmt):
_FIELDS = ["targets", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, targets, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.targets = targets
class Assign(stmt):
_FIELDS = ["targets", "value", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, targets, value, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.targets = targets
self.value = value
class AugAssign(stmt):
_FIELDS = ["target", "op", "value", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, target, op, value, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.target = target
self.op = op
self.value = value
class AnnAssign(stmt):
_FIELDS = [
"target",
"annotation",
"value",
"simple",
"lineno",
"col_offset",
"end_lineno",
"end_col_offset",
]
def __init__(
self, target, annotation, value, simple, lineno, col_offset, end_lineno, end_col_offset
):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.target = target
self.annotation = annotation
self.value = value
self.simple = simple
class For(stmt):
_FIELDS = [
"target",
"iter",
"body",
"orelse",
"lineno",
"col_offset",
"end_lineno",
"end_col_offset",
]
def __init__(self, target, iter, body, orelse, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.target = target
self.iter = iter
self.body = body
self.orelse = orelse
class While(stmt):
_FIELDS = ["test", "body", "orelse", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, test, body, orelse, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.test = test
self.body = body
self.orelse = orelse
class If(stmt):
_FIELDS = ["test", "body", "orelse", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, test, body, orelse, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.test = test
self.body = body
self.orelse = orelse
class With(stmt):
_FIELDS = ["items", "body", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, items, body, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.items = items
self.body = body
class Raise(stmt):
_FIELDS = ["exc", "cause", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, exc, cause, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.exc = exc
self.cause = cause
class Try(stmt):
_FIELDS = [
"body",
"handlers",
"orelse",
"finalbody",
"lineno",
"col_offset",
"end_lineno",
"end_col_offset",
]
def __init__(
self, body, handlers, orelse, finalbody, lineno, col_offset, end_lineno, end_col_offset
):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.body = body
self.handlers = handlers
self.orelse = orelse
self.finalbody = finalbody
class Assert(stmt):
_FIELDS = ["test", "msg", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, test, msg, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.test = test
self.msg = msg
class Import(stmt):
_FIELDS = ["names", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, names, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.names = names
class ImportFrom(stmt):
_FIELDS = ["module", "names", "level", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, module, names, level, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.module = module
self.names = names
self.level = level
class Global(stmt):
_FIELDS = ["names", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, names, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.names = names
class Nonlocal(stmt):
_FIELDS = ["names", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, names, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.names = names
class Expr(stmt):
_FIELDS = ["value", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, value, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.value = value
class Pass(stmt):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Break(stmt):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Continue(stmt):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class expr(AST):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class BoolOp(expr):
_FIELDS = ["op", "values", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, op, values, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.op = op
self.values = values
class BinOp(expr):
_FIELDS = ["left", "op", "right", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, left, op, right, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.left = left
self.op = op
self.right = right
class UnaryOp(expr):
_FIELDS = ["op", "operand", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, op, operand, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.op = op
self.operand = operand
class Lambda(expr):
_FIELDS = ["args", "body", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, args, body, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.args = args
self.body = body
class IfExp(expr):
_FIELDS = ["test", "body", "orelse", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, test, body, orelse, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.test = test
self.body = body
self.orelse = orelse
class Dict(expr):
_FIELDS = ["keys", "values", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, keys, values, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.keys = keys
self.values = values
class Set(expr):
_FIELDS = ["elts", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, elts, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.elts = elts
class ListComp(expr):
_FIELDS = ["elt", "generators", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, elt, generators, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.elt = elt
self.generators = generators
class SetComp(expr):
_FIELDS = ["elt", "generators", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, elt, generators, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.elt = elt
self.generators = generators
class DictComp(expr):
_FIELDS = ["key", "value", "generators", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, key, value, generators, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.key = key
self.value = value
self.generators = generators
class GeneratorExp(expr):
_FIELDS = ["elt", "generators", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, elt, generators, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.elt = elt
self.generators = generators
class Yield(expr):
_FIELDS = ["value", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, value, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.value = value
class YieldFrom(expr):
_FIELDS = ["value", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, value, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.value = value
class Compare(expr):
_FIELDS = ["left", "ops", "comparators", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, left, ops, comparators, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.left = left
self.ops = ops
self.comparators = comparators
class Call(expr):
_FIELDS = ["func", "args", "keywords", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, func, args, keywords, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.func = func
self.args = args
self.keywords = keywords
class FormattedValue(expr):
_FIELDS = [
"value",
"conversion",
"format_spec",
"lineno",
"col_offset",
"end_lineno",
"end_col_offset",
]
def __init__(
self, value, conversion, format_spec, lineno, col_offset, end_lineno, end_col_offset
):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.value = value
self.conversion = conversion
self.format_spec = format_spec
class JoinedStr(expr):
_FIELDS = ["values", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, values, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.values = values
class Constant(expr):
_FIELDS = ["value", "kind", "s", "n", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, value, kind, s, n, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.value = value
self.kind = kind
self.s = s
self.n = n
class NamedExpr(expr):
_FIELDS = ["target", "value", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, target, value, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.target = target
self.value = value
class Attribute(expr):
_FIELDS = ["value", "attr", "ctx", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, value, attr, ctx, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.value = value
self.attr = attr
self.ctx = ctx
class slice(AST):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Slice(slice):
_FIELDS = ["lower", "upper", "step", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lower, upper, step, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.lower = lower
self.upper = upper
self.step = step
class ExtSlice(slice):
_FIELDS = ["dims", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, dims, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.dims = dims
class Index(slice):
_FIELDS = ["value", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, value, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.value = value
class Subscript(expr):
_FIELDS = ["value", "slice", "ctx", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, value, slice, ctx, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.value = value
self.slice = slice
self.ctx = ctx
class Starred(expr):
_FIELDS = ["value", "ctx", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, value, ctx, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.value = value
self.ctx = ctx
class Name(expr):
_FIELDS = ["id", "ctx", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, id, ctx, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.id = id
self.ctx = ctx
class List(expr):
_FIELDS = ["elts", "ctx", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, elts, ctx, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.elts = elts
self.ctx = ctx
class Tuple(expr):
_FIELDS = ["elts", "ctx", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, elts, ctx, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.elts = elts
self.ctx = ctx
class expr_context(AST):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class AugLoad(expr_context):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class AugStore(expr_context):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Param(expr_context):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Suite(mod):
_FIELDS = ["body", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, body, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.body = body
class Del(expr_context):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Load(expr_context):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Store(expr_context):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class boolop(AST):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class And(boolop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Or(boolop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class operator(AST):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Add(operator):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class BitAnd(operator):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class BitOr(operator):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class BitXor(operator):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Div(operator):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class FloorDiv(operator):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class LShift(operator):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Mod(operator):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Mult(operator):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class MatMult(operator):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Pow(operator):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class RShift(operator):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Sub(operator):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class unaryop(AST):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Invert(unaryop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Not(unaryop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class UAdd(unaryop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class USub(unaryop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class cmpop(AST):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Eq(cmpop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Gt(cmpop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class GtE(cmpop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class In(cmpop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Is(cmpop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class IsNot(cmpop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class Lt(cmpop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class LtE(cmpop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class NotEq(cmpop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class NotIn(cmpop):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class comprehension(AST):
_FIELDS = [
"target",
"iter",
"ifs",
"is_async",
"lineno",
"col_offset",
"end_lineno",
"end_col_offset",
]
def __init__(self, target, iter, ifs, is_async, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.target = target
self.iter = iter
self.ifs = ifs
self.is_async = is_async
class excepthandler(AST):
_FIELDS = ["lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
class ExceptHandler(excepthandler):
_FIELDS = ["type", "name", "body", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, type, name, body, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.type = type
self.name = name
self.body = body
class arguments(AST):
_FIELDS = [
"args",
"vararg",
"kwonlyargs",
"kw_defaults",
"kwarg",
"defaults",
"posonlyargs",
"lineno",
"col_offset",
"end_lineno",
"end_col_offset",
]
def __init__(
self,
args,
vararg,
kwonlyargs,
kw_defaults,
kwarg,
defaults,
posonlyargs,
lineno,
col_offset,
end_lineno,
end_col_offset,
):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.args = args
self.vararg = vararg
self.kwonlyargs = kwonlyargs
self.kw_defaults = kw_defaults
self.kwarg = kwarg
self.defaults = defaults
self.posonlyargs = posonlyargs
class arg(AST):
_FIELDS = ["arg", "annotation", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, arg, annotation, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.arg = arg
self.annotation = annotation
class keyword(AST):
_FIELDS = ["arg", "value", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, arg, value, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.arg = arg
self.value = value
class alias(AST):
_FIELDS = ["name", "asname", "lineno", "col_offset", "end_lineno", "end_col_offset"]
def __init__(self, name, asname, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.name = name
self.asname = asname
class withitem(AST):
_FIELDS = [
"context_expr",
"optional_vars",
"lineno",
"col_offset",
"end_lineno",
"end_col_offset",
]
def __init__(self, context_expr, optional_vars, lineno, col_offset, end_lineno, end_col_offset):
super().__init__(lineno, col_offset, end_lineno, end_col_offset)
self.context_expr = context_expr
self.optional_vars = optional_vars
__all__ = [
"AST",
"mod",
"Module",
"Interactive",
"Expression",
"stmt",
"FunctionDef",
"ClassDef",
"Return",
"Delete",
"Assign",
"AugAssign",
"AnnAssign",
"For",
"While",
"If",
"With",
"Raise",
"Try",
"Assert",
"Import",
"ImportFrom",
"Global",
"Nonlocal",
"Expr",
"Pass",
"Break",
"Continue",
"expr",
"BoolOp",
"BinOp",
"UnaryOp",
"Lambda",
"IfExp",
"Dict",
"Set",
"ListComp",
"SetComp",
"DictComp",
"GeneratorExp",
"Yield",
"YieldFrom",
"Compare",
"Call",
"FormattedValue",
"JoinedStr",
"Constant",
"NamedExpr",
"Attribute",
"slice",
"Slice",
"ExtSlice",
"Index",
"Subscript",
"Starred",
"Name",
"List",
"Tuple",
"expr_context",
"AugLoad",
"AugStore",
"Param",
"Suite",
"Del",
"Load",
"Store",
"boolop",
"And",
"Or",
"operator",
"Add",
"BitAnd",
"BitOr",
"BitXor",
"Div",
"FloorDiv",
"LShift",
"Mod",
"Mult",
"MatMult",
"Pow",
"RShift",
"Sub",
"unaryop",
"Invert",
"Not",
"UAdd",
"USub",
"cmpop",
"Eq",
"Gt",
"GtE",
"In",
"Is",
"IsNot",
"Lt",
"LtE",
"NotEq",
"NotIn",
"comprehension",
"excepthandler",
"ExceptHandler",
"arguments",
"arg",
"keyword",
"alias",
"withitem",
]
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/core/entry.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""The entry point of TVM parser."""
from typing import Any, Dict, Union
from ...ir_builder import IRBuilder
from . import doc
from .diagnostics import Source
from .parser import Parser
def parse(program: Union[doc.AST, Any, str], extra_vars: Dict[str, Any] = None) -> Any:
"""Register a method for a operand type, AST operator node and operand index.
Parameters
----------
program : Union[doc.AST, Any, str]
The TVMScript code to parse.
extra_vars : Dict[str, Any]
The extra variable table for parsing.
Returns
-------
func : Any
The parsed TVMScript program.
"""
if extra_vars is None:
from tvm.script.parser import ir # pylint: disable=import-outside-toplevel
from tvm.script.parser import tir # pylint: disable=import-outside-toplevel
extra_vars = {
"I": ir,
"ir": ir,
"T": tir,
"tir": tir,
}
source = Source(program)
parser = Parser(source)
with IRBuilder() as builder:
parser.parse(extra_vars=extra_vars)
return builder.get()
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/core/evaluator.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""AST Evaluation"""
import ast
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Type, Union
from . import dispatch, doc
if TYPE_CHECKING:
from .parser import Parser
DEFAULT_OP: Dict[Type, Callable[..., Any]] = {
doc.Add: lambda a, b: a + b,
doc.Sub: lambda a, b: a - b,
doc.Mult: lambda a, b: a * b,
doc.Div: lambda a, b: a / b,
doc.FloorDiv: lambda a, b: a // b,
doc.Mod: lambda a, b: a % b,
doc.LShift: lambda a, b: a << b,
doc.RShift: lambda a, b: a >> b,
doc.BitOr: lambda a, b: a | b,
doc.BitXor: lambda a, b: a ^ b,
doc.BitAnd: lambda a, b: a & b,
doc.MatMult: lambda a, b: a @ b,
doc.Pow: lambda a, b: a**b,
doc.Eq: lambda a, b: a == b,
doc.NotEq: lambda a, b: a != b,
doc.Lt: lambda a, b: a < b,
doc.LtE: lambda a, b: a <= b,
doc.Gt: lambda a, b: a > b,
doc.GtE: lambda a, b: a >= b,
doc.Is: lambda a, b: a is b,
doc.IsNot: lambda a, b: a is not b,
doc.In: lambda a, b: a in b,
doc.NotIn: lambda a, b: a not in b,
doc.And: lambda a, b: a and b,
doc.Or: lambda a, b: a or b,
doc.Invert: lambda a: ~a,
doc.Not: lambda a: not a,
doc.UAdd: lambda a: +a,
doc.USub: lambda a: -a,
}
class ExprEvaluator:
"""Expression evaluator for TVMScript parser.
Parameters
----------
parser : Parser
The parser bound with the evaluator.
value_table : Dict[str, Any]
The value table for expression evaluation.
new_value_count : int
The count for ntermediate result added during evaluation.
"""
parser: "Parser"
value_table: Dict[str, Any]
new_value_count: int
def __init__(self, parser: "Parser", value_table: Dict[str, Any]) -> None:
super().__init__()
self.parser = parser
self.value_table = value_table
self.new_value_count = 0
@staticmethod
def eval(parser: "Parser", value_table: Dict[str, Any], node: doc.AST) -> Any:
"""Expression evaluation for TVMScript parser.
Parameters
----------
parser : Parser
The parser bound with the evaluator.
value_table : Dict[str, Any]
The value table for expression evaluation.
node : doc.AST
The root node of AST tree node of expression to evaluate.
Returns
-------
res : Any
The evaluation result.
"""
self = ExprEvaluator(parser, value_table)
result = self._visit(node) # pylint: disable=protected-access
if isinstance(result, doc.Name):
if result.id not in self.value_table:
self.parser.report_error(result, f"Undefined variable: {result.id}")
return self.value_table[result.id]
if isinstance(result, doc.Constant):
return result.value
raise TypeError(f"Unexpected result type: {type(result)}")
def _add_intermediate_result(self, value: Any) -> doc.Name:
"""Add intermediate result during evaluation into value table.
Parameters
----------
value : Any
The intermediate result.
Returns
-------
name : doc.Name
The doc AST name node with intermediate name for intermediate result.
"""
name = f"__tvm_tmp_value_{self.new_value_count}"
self.new_value_count += 1
self.value_table[name] = value
lineno = 0
col_offset = 0
return doc.Name(
id=name,
ctx=doc.Load(
lineno=lineno,
col_offset=col_offset,
end_lineno=None,
end_col_offset=None,
),
lineno=lineno,
col_offset=col_offset,
end_lineno=None,
end_col_offset=None,
)
def _visit(self, node: doc.AST) -> Any:
"""General doc AST node visiting method for expression evaluation.
Parameters
----------
node : doc.AST
The root node of AST tree node of expression to evaluate.
Returns
-------
res : Any
The evaluation result.
"""
if isinstance(node, list):
return [self._visit(n) for n in node]
if isinstance(node, tuple):
return tuple(self._visit(n) for n in node)
assert isinstance(node, doc.AST)
if isinstance(node, doc.Name):
if node.id not in self.value_table:
self.parser.report_error(node, f"Undefined variable: {node.id}")
return node
if isinstance(
node,
(
doc.Constant,
doc.expr_context,
doc.operator,
doc.boolop,
doc.unaryop,
doc.cmpop,
),
):
return node
if not isinstance(node, (doc.expr, doc.slice)):
return node
if isinstance(node, doc.Lambda):
return self._eval_lambda(node)
fields = {}
for field in node.__class__._FIELDS: # pylint: disable=protected-access
attr = getattr(node, field)
if isinstance(attr, (doc.AST, tuple, list)):
fields[field] = self._visit(attr)
else:
fields[field] = attr
try:
if isinstance(node, doc.BoolOp):
value = self._eval_bool_op(fields)
elif isinstance(node, doc.Compare):
value = self._eval_compare(fields)
elif isinstance(node, doc.UnaryOp):
value = self._eval_unary_op(fields)
elif isinstance(node, doc.BinOp):
value = self._eval_bin_op(fields)
elif isinstance(node, doc.Slice):
value = self._eval_slice(fields)
else:
value = self._eval_expr(node.__class__(**fields))
except Exception as e: # pylint: disable=broad-except,invalid-name
self.parser.report_error(node, str(e))
return self._add_intermediate_result(value)
def _eval_lambda(self, node: doc.Lambda) -> Any:
"""The doc AST lambda node evaluating method.
Parameters
----------
node : doc.Lambda
The root node of AST tree node of expression to evaluate.
Returns
-------
res : Any
The evaluation result.
"""
try:
value = self._eval_expr(node)
except Exception as e: # pylint: disable=broad-except,invalid-name
self.parser.report_error(node, str(e))
return self._add_intermediate_result(value)
def _eval_bool_op(self, fields: Dict[str, Any]) -> Any:
"""The doc AST boolean operator node evaluating method.
Parameters
----------
fields : Dict[str, Any]
The dictionary of boolean operation information,
e.g., operator types, operand values.
Returns
-------
res : Any
The evaluation result.
"""
op = fields["op"]
if not isinstance(op, (doc.And, doc.Or)):
raise TypeError(f"Unexpected operator: {op}")
value = self._eval_expr(fields["values"][0])
for rhs in fields["values"][1:]:
value = _eval_op(op, values=[value, self._eval_expr(rhs)])
return value
def _eval_compare(self, fields: Dict[str, Any]) -> Any:
"""The doc AST comparison operation node evaluating method.
Parameters
----------
fields : Dict[str, Any]
The dictionary of comparison operation information,
e.g., operator types, operand values.
Returns
-------
res : Any
The evaluation result.
"""
value = self._eval_expr(fields["left"])
for op, rhs in zip(fields["ops"], fields["comparators"]):
value = _eval_op(op, values=[value, self._eval_expr(rhs)])
return value
def _eval_unary_op(self, fields: Dict[str, Any]) -> Any:
"""The doc AST unary operation node evaluating method.
Parameters
----------
fields : Dict[str, Any]
The dictionary of unary operation information,
e.g., operator types, operand values.
Returns
-------
res : Any
The evaluation result.
"""
value = self._eval_expr(fields["operand"])
value = _eval_op(fields["op"], values=[value])
return value
def _eval_bin_op(self, fields: Dict[str, Any]) -> Any:
"""The doc AST binary operation node evaluating method.
Parameters
----------
fields : Dict[str, Any]
The dictionary of binary operation information,
e.g., operator types, operand values.
Returns
-------
res : Any
The evaluation result.
"""
return _eval_op(
fields["op"],
values=[
self._eval_expr(fields["left"]),
self._eval_expr(fields["right"]),
],
)
def _eval_slice(self, fields: Dict[str, Any]) -> slice:
"""The doc AST slice node evaluating method.
Parameters
----------
fields : Dict[str, Any]
The dictionary of slice information,
e.g., lower bound, upper bound, step.
Returns
-------
res : slice
The evaluation result.
"""
lower, upper, step = fields["lower"], fields["upper"], fields["step"]
lower = self._eval_expr(lower) if lower is not None else None
upper = self._eval_expr(upper) if upper is not None else None
step = self._eval_expr(step) if step is not None else None
return slice(lower, upper, step)
def _eval_expr(self, v: Any) -> Any:
"""The doc AST expression node evaluating method.
Parameters
----------
v : Any
The root node of AST tree node of expression to evaluate.
Returns
-------
res : Any
The evaluation result.
"""
return _eval_expr(v, self.value_table)
def eval_expr(
parser: "Parser",
node: Union[doc.expr, doc.Expression],
dict_globals: Optional[Dict[str, Any]],
) -> Any:
"""Expression evaluation for TVMScript parser.
Parameters
----------
parser : Parser
The parser bound with the evaluator.
node : Union[doc.expr, doc.Expression]
The root node of AST tree node of expression to evaluate.
dict_globals : Optional[Dict[str, Any]]
The optional global value table for expression evaluation.
Returns
-------
res : Any
The evaluation result.
"""
value_table = {}
if dict_globals is not None:
value_table.update(dict_globals)
return ExprEvaluator.eval(parser, value_table, node)
def eval_assign(
parser: "Parser",
target: doc.expr,
source: Any,
) -> Dict[str, Any]:
"""Expression assignment evaluation for TVMScript parser.
Parameters
----------
parser : Parser
The parser bound with the evaluator.
target : doc.expr
The root node of AST tree node of assigned expression to evaluate.
source : Any
The source to be assigned with evaluated expression.
Returns
-------
res : Any
The evaluation result.
"""
try:
return _eval_assign(target, source)
except Exception as e: # pylint: disable=broad-except,invalid-name
parser.report_error(target, f"Failed to evaluate assignment: {str(e)}")
raise
def _eval_expr(
node: Union[doc.expr, doc.Expression],
dict_globals: Optional[Dict[str, Any]],
) -> Any:
"""Expression evaluation implementation for TVMScript parser.
Parameters
----------
node : Union[doc.expr, doc.Expression]
The root node of AST tree node of expression to evaluate.
dict_globals : Optional[Dict[str, Any]]
The optional global value table for expression evaluation.
Returns
-------
res : Any
The evaluation result.
"""
node = doc.from_doc(node)
if isinstance(node, ast.expr):
node = ast.Expression(body=node)
assert isinstance(node, ast.Expression), "Expects an ast.Expression, but gets: " + str(node)
if dict_globals is None:
dict_globals = {}
node = ast.fix_missing_locations(node)
exe = compile(node, filename="<ast>", mode="eval")
return eval(exe, dict_globals) # pylint: disable=eval-used
def _eval_op(
op: doc.AST,
values: List[Any],
):
"""Operation expression evaluation implementation for TVMScript parser.
Parameters
----------
op : doc.AST
The root node of AST tree node of operation expression to evaluate.
values : List[Any]
The list of values of operands.
Returns
-------
res : Any
The evaluation result.
"""
op_type = type(op) # pylint: disable=protected-access
for i, v in enumerate(values):
v_type = getattr(type(v), "_dispatch_type", None)
if v_type is None:
continue
f = dispatch.get_op(
operand_type=v_type, op_node_type=op_type, operand_index=i, default=None
)
if f is not None:
return f(*values)
return DEFAULT_OP[op_type](*values)
def _eval_assign(
target: doc.expr,
source: Any,
) -> Dict[str, Any]:
"""Expression assignment evaluation implementation for TVMScript parser.
Parameters
----------
target : doc.expr
The root node of AST tree node of assigned expression to evaluate.
source : Any
The source to be assigned with evaluated expression.
Returns
-------
res : Any
The evaluation result.
"""
target = doc.from_doc(target)
assert isinstance(target, ast.expr)
RHS_VAR_NAME = "__tvm_rhs_var__" # pylint: disable=invalid-name
rhs_var_name = RHS_VAR_NAME
dict_locals = {rhs_var_name: source}
mod = ast.fix_missing_locations(
ast.Module(
body=[
ast.Assign(
targets=[target],
value=ast.Name(
id=rhs_var_name,
ctx=ast.Load(),
),
)
],
type_ignores=[],
)
)
exe = compile(mod, filename="<ast>", mode="exec")
exec(exe, {}, dict_locals) # pylint: disable=exec-used
del dict_locals[rhs_var_name]
return dict_locals
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/core/parser.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""The core parser"""
from collections import defaultdict
from contextlib import contextmanager
from typing import Any, Callable, Dict, List, Optional, Set, Union
from tvm._ffi.base import TVMError
from tvm.error import DiagnosticError
from . import dispatch, doc
from .diagnostics import Diagnostics, Source
from .evaluator import eval_assign, eval_expr
DEFAULT_VISIT = {
"Interactive",
"Module",
"Expression",
"Pass",
}
def _deferred(exit_f: Callable[[], None]):
"""Created context with certain exit function.
Parameters
----------
exit_f : Callable[[], None]
The function to call when exiting the context.
Returns
-------
res : Any
The created context.
"""
@contextmanager
def context():
try:
yield
finally:
exit_f()
return context()
class VarTableFrame:
"""The variable table frame.
A frame of variable table stores the variables created in one block or scope.
Parameters
----------
vars : Set[str]
The set of variable names in the variable table frame.
"""
vars: Set[str]
def __init__(self):
self.vars = set()
def add(self, var: str):
"""Add a new variable into variable table frame.
Parameters
----------
var : str
The name of new variable.
"""
if var in self.vars:
raise ValueError(f"Variable {var} already defined in current scope")
self.vars.add(var)
def pop_all(self, fn_pop: Callable[[str], None]):
"""Pop out all variable in variable table frame.
Parameters
----------
fn_pop : Callable[[str], None]
The methods to call when popping each variable.
"""
for var in self.vars:
fn_pop(var)
self.vars.clear()
class VarTable:
"""The variable table.
A variable table stores the all variables when parsing TVMScript.
Parameters
----------
frames : List[VarTableFrame]
The list or stack of variable table frame.
name2value : Dict[str, List[Any]]
The dictionary for variable table name-based query.
"""
frames: List[VarTableFrame]
name2value: Dict[str, List[Any]]
def __init__(self):
self.frames = []
self.name2value = defaultdict(list)
def with_frame(self):
"""Create a new variable table frame as with statement.
Returns
-------
res : Any
The context with new variable table frame.
"""
def pop_frame():
frame = self.frames.pop()
frame.pop_all(lambda name: self.name2value[name].pop())
self.frames.append(VarTableFrame())
return _deferred(pop_frame)
def add(self, var: str, value: Any, allow_shadowing: bool = False):
"""Add a new variable to variable table.
Parameters
----------
var : str
The name of variable.
value : Any
The value of variable.
allow_shadowing : bool
The options of whether variable shadowing allwed for this variable.
"""
# Skip if the key and value are equal to those in the var_table
if self.name2value[var] and self.name2value[var][-1] == value:
return
if allow_shadowing and var in self.frames[-1].vars:
# Shadowing
self.name2value[var][-1] = value
else:
self.frames[-1].add(var)
self.name2value[var].append(value)
def get(self) -> Dict[str, Any]:
"""Get a variable dictionary of latest variables.
Returns
-------
res : Any
The variable dictionary copy of latest variables.
"""
return {key: values[-1] for key, values in self.name2value.items() if values}
def exist(self, value: Any) -> bool:
"""Check if any value exists in variable table.
Parameters
----------
value : Any
The value of variable.
Returns
-------
res : bool
The existence of the value.
"""
for v in self.name2value.values():
if v is value:
return True
return False
def _dispatch_wrapper(func: dispatch.ParseMethod) -> dispatch.ParseMethod:
def _wrapper(self: "Parser", node: doc.AST) -> None:
try:
return func(self, node)
except DiagnosticError:
raise
except Exception as e: # pylint: disable=broad-except,invalid-name
self.report_error(node, e)
raise
return _wrapper
def _dispatch(self: "Parser", type_name: str) -> dispatch.ParseMethod:
for token in [self.dispatch_tokens[-1], "default"]:
func = dispatch.get(token=token, type_name=type_name, default=None)
if func is not None:
return _dispatch_wrapper(func)
return _dispatch_wrapper(lambda self, node: self.generic_visit(node))
class Parser(doc.NodeVisitor):
"""The TVMScript parser
Parameters
----------
diag : Diagnostics
The diagnostics for error reporting.
dispatch_tokens : List[str]
The list of dispatching tokens to dispatching parsing method
of different IRs and different doc AST structure.
var_table : VarTable
The variable table for parsing.
"""
diag: Diagnostics
dispatch_tokens: List[str]
var_table: VarTable
def __init__(self, source: Source) -> None:
self.diag = Diagnostics(source)
self.dispatch_tokens = ["default"]
self.var_table = VarTable()
def parse(self, extra_vars: Optional[Dict[str, Any]] = None) -> Any:
"""The main parse method for parser.
Parameters
----------
extra_vars : Optional[Dict[str, Any]]
The optional global value table for parsing.
Returns
-------
res : Any
The doc AST node visiting result.
"""
if extra_vars is None:
extra_vars = {}
with self.var_table.with_frame():
for k, v in extra_vars.items():
self.var_table.add(k, v)
node = self.diag.source.as_ast()
self.visit(node)
def with_dispatch_token(self, token: str):
"""Add a new dispatching token as with statement.
Parameters
----------
token : str
The dispathing token.
Returns
-------
res : Any
The context with new dispatching token.
"""
def pop_token():
self.dispatch_tokens.pop()
self.dispatch_tokens.append(token)
return _deferred(pop_token)
def eval_expr(
self,
node: Union[doc.Expression, doc.expr],
extra_vars: Optional[Dict[str, Any]] = None,
) -> Any:
"""Expression evaluation when parsing.
Parameters
----------
node : Union[doc.expr, doc.Expression]
The root node of AST tree node of expression to evaluate.
extra_vars : Optional[Dict[str, Any]]
The optional global value table for expression evaluation.
Returns
-------
res : Any
The evaluation result.
"""
var_values = self.var_table.get()
if extra_vars is not None:
for k, v in extra_vars.items():
var_values[k] = v
return eval_expr(self, node, var_values)
def _duplicate_lhs_check(self, target: doc.expr) -> Union[bool, Set[str]]:
"""Check whether duplicate lhs exists in assignment.
Parameters
----------
target : doc.expr
The doc AST expr node for lhs.
Returns
-------
res : Union[bool, Set[str]]
The result of true if duplicate lhs exists,
or the set of lhs names if no duplicate lhs exists.
"""
if isinstance(target, (doc.Tuple, doc.List)):
vars: Set[str] = set() # pylint: disable=redefined-builtin
for i in target.elts:
res = self._duplicate_lhs_check(i)
if isinstance(res, bool) and res:
return True
assert isinstance(res, set)
if vars & res:
return True
vars = vars.union(res)
return vars
elif isinstance(target, doc.Name):
return {target.id}
else:
self.report_error(target, "Invalid type in assign statement")
raise NotImplementedError
def eval_assign(
self,
target: doc.expr,
source: Any,
bind_value: Callable[["Parser", doc.expr, str, Any], Any],
allow_shadowing: bool = False,
) -> Dict[str, Any]:
"""Expression assignment evaluation when parsing.
Parameters
----------
target : doc.expr
The root node of AST tree node of assigned expression to evaluate.
source : Any
The source to be assigned with evaluated expression.
bind_value : Callable[["Parser", doc.expr, str, Any], Any]
The value binding method when assigning the values to variables.
allow_shadowing : bool
The options of whether variable shadowing allwed for assignment.
Returns
-------
res : Dict[str, Any]
The dirctionary of assignment result.
"""
if self._duplicate_lhs_check(target) is True:
self.report_error(target, "Duplicate vars assigned.")
var_values = eval_assign(self, target, source)
for k, v in var_values.items():
var = bind_value(self, target, k, v)
self.var_table.add(k, var, allow_shadowing)
return var_values
def report_error(
self, node: doc.AST, err: Union[Exception, str]
) -> None: # pylint: disable=no-self-use
"""The error reporting when parsing.
Parameters
----------
node : doc.AST
The doc AST node with errors.
err: Union[Exception, str]
The error to report.
"""
# Only take the last line of the error message
if isinstance(err, TVMError):
msg = list(filter(None, str(err).split("\n")))[-1]
else:
msg = str(err)
self.diag.error(node, msg)
def visit(self, node: doc.AST) -> None:
"""The general visiting method.
Parameters
----------
node : doc.AST
The doc AST node.
Returns
-------
res : Any
The visiting result.
"""
if isinstance(node, (list, tuple)):
for item in node:
self.visit(item)
return
if not isinstance(node, doc.AST):
return
name = node.__class__.__name__.split(".")[-1]
if name in DEFAULT_VISIT:
func = self.generic_visit
else:
func = getattr(self, "visit_" + name, None)
if func is None:
raise NotImplementedError(f"Visitor of AST node is not implemented: {name}")
try:
func(node)
except DiagnosticError:
raise
except Exception as e: # pylint: disable=broad-except,invalid-name
self.report_error(node, str(e))
raise
def visit_body(self, node: List[doc.stmt]) -> Any:
"""The general body visiting method.
Parameters
----------
node : List[doc.stmt]
The list of statements in body.
Returns
-------
res : Any
The visiting result.
"""
for stmt in node:
self.visit(stmt)
def visit_tvm_annotation(self, node: doc.expr) -> Any:
"""The general TVM annotation visiting method.
Parameters
----------
node : doc.expr
The doc AST expr node.
Returns
-------
res : Any
The visiting result.
"""
return _dispatch(self, "tvm_annotation")(self, node)
def visit_FunctionDef(self, node: doc.FunctionDef) -> Any: # pylint: disable=invalid-name
"""The general function definition visiting method.
Parameters
----------
node : doc.FunctionDef
The doc AST function definition node.
Returns
-------
res : Any
The visiting result.
"""
if not node.decorator_list:
self.report_error(node, "Function must be decorated")
# TODO: only the last decorator is parsed
decorator = self.eval_expr(node.decorator_list[-1])
if not hasattr(decorator, "dispatch_token"):
self.report_error(node, "The parser does not understand the decorator")
token = decorator.dispatch_token
func = dispatch.get(token=token, type_name="FunctionDef", default=None)
if func is None:
self.report_error(node, "The parser does not understand the decorator")
_dispatch_wrapper(func)(self, node)
def visit_ClassDef(self, node: doc.ClassDef) -> Any: # pylint: disable=invalid-name
"""The general class definition visiting method.
Parameters
----------
node : doc.ClassDef
The doc AST class definition node.
Returns
-------
res : Any
The visiting result.
"""
func = dispatch.get(token="ir", type_name="ClassDef", default=None)
if func is None:
self.report_error(node, "The parser does not understand the decorator")
_dispatch_wrapper(func)(self, node)
def visit_arguments(self, node: doc.arguments) -> Any:
"""The general arguments visiting method.
Parameters
----------
node : doc.arguments
The doc AST arguments node.
Returns
-------
res : Any
The visiting result.
"""
return _dispatch(self, "arguments")(self, node)
def visit_For(self, node: doc.For) -> Any: # pylint: disable=invalid-name
"""The general for visiting method.
Parameters
----------
node : doc.For
The doc AST for node.
Returns
-------
res : Any
The visiting result.
"""
return _dispatch(self, "For")(self, node)
def visit_While(self, node: doc.While) -> Any: # pylint: disable=invalid-name
"""The general while visiting method.
Parameters
----------
node : doc.While
The doc AST while node.
Returns
-------
res : Any
The visiting result.
"""
return _dispatch(self, "While")(self, node)
def visit_With(self, node: doc.With) -> Any: # pylint: disable=invalid-name
"""The general with visiting method.
Parameters
----------
node : doc.With
The doc AST with node.
Returns
-------
res : Any
The visiting result.
"""
return _dispatch(self, "With")(self, node)
def visit_Assign(self, node: doc.Assign) -> Any: # pylint: disable=invalid-name
"""The general assign visiting method.
Parameters
----------
node : doc.Assign
The doc AST assign node.
Returns
-------
res : Any
The visiting result.
"""
return _dispatch(self, "Assign")(self, node)
def visit_AnnAssign(self, node: doc.AnnAssign) -> Any: # pylint: disable=invalid-name
"""The general annotated assign visiting method.
Parameters
----------
node : doc.Assign
The doc AST annotated assign node.
Returns
-------
res : Any
The visiting result.
"""
return _dispatch(self, "AnnAssign")(self, node)
def visit_Expr(self, node: doc.Expr) -> Any: # pylint: disable=invalid-name
"""The general expression visiting method.
Parameters
----------
node : doc.Expr
The doc AST exprssion node.
Returns
-------
res : Any
The visiting result.
"""
return _dispatch(self, "Expr")(self, node)
def visit_If(self, node: doc.If) -> Any: # pylint: disable=invalid-name
"""The general if visiting method.
Parameters
----------
node : doc.If
The doc AST if node.
Returns
-------
res : Any
The visiting result.
"""
return _dispatch(self, "If")(self, node)
def visit_AugAssign(self, node: doc.AugAssign) -> Any: # pylint: disable=invalid-name
"""The general augmented assignment visiting method.
Parameters
----------
node : doc.AugAssign
The doc AST augmented assignment node.
Returns
-------
res : Any
The visiting result.
"""
return _dispatch(self, "AugAssign")(self, node)
def visit_Assert(self, node: doc.Assert) -> Any: # pylint: disable=invalid-name
"""The general assert visiting method.
Parameters
----------
node : doc.Assert
The doc AST assert node.
Returns
-------
res : Any
The visiting result.
"""
return _dispatch(self, "Assert")(self, node)
def visit_Return(self, node: doc.Return) -> Any: # pylint: disable=invalid-name
"""The general return visiting method.
Parameters
----------
node : doc.Return
The doc AST return node.
Returns
-------
res : Any
The visiting result.
"""
return _dispatch(self, "Return")(self, node)
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/core/utils.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM Script Parser utils"""
import inspect
from types import FrameType
from typing import Any, Callable, Dict, List
from .diagnostics import findsource
def inspect_function_capture(func: Callable) -> Dict[str, Any]:
"""Capture function non-locals and global variables.
Parameters
----------
func : Callable
The function to inspect.
Returns
-------
res : Dict[str, Any]
The function variables map with non-local or global variables.
"""
captured = {
**inspect.getclosurevars(func).nonlocals,
**func.__globals__, # type: ignore
}
return captured
def inspect_class_capture(cls: type) -> Dict[str, Any]:
"""Capture class non-locals and global variables.
Parameters
----------
cls : type
The class to inspect.
Returns
-------
res : Dict[str, Any]
The class variables map with non-local or global variables.
"""
result: Dict[str, Any] = {}
for _, v in cls.__dict__.items():
if inspect.isfunction(v):
func_vars = inspect_function_capture(v)
result.update(**func_vars)
return result
def is_defined_in_class(frames: List[FrameType], obj: Any) -> bool:
"""Check whether a object is defined in a class scope.
Parameters
----------
frames : List[FrameType]
The frame stack of the object, obtained by `inspect.stack()`.
Returns
-------
res : bool
The result if the object is defined in a class scope.
"""
if len(frames) > 2:
frame_info = frames[2]
code_context = frame_info.code_context
if code_context is None:
return False
line = code_context[0].strip()
if line.startswith("@") and "ir_module" in line:
return True
if line.startswith("class"):
lineno = frame_info.lineno
if lineno >= 2:
source, _ = findsource(obj)
line = source[lineno - 2].strip()
if line.startswith("@") and "ir_module" in line:
return True
return False
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/ir/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""The ir module parser"""
from . import parser as _parser
from .entry import ir_module
__all__ = ["ir_module"]
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/ir/entry.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""The entry point of TVM parser for ir module."""
import inspect
from typing import Type
from tvm.ir import IRModule
from .._core import parse, utils
def ir_module(mod: Type) -> IRModule:
"""The parsing method for ir module, by using `@ir_module` as decorator.
Parameters
----------
mod : Type
The class to be parsed as ir module.
Returns
-------
ir_module : IRModule
The parsed ir module.
"""
if not inspect.isclass(mod):
raise TypeError(f"Expect a class, but got: {mod}")
return parse(mod, utils.inspect_class_capture(mod))
setattr(ir_module, "dispatch_token", "ir")
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/ir/parser.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""The base parser for ir module"""
from ...ir_builder import ir as I
from .._core import Parser, dispatch, doc
@dispatch.register(token="ir", type_name="ClassDef")
def _visit_class_def(self: Parser, node: doc.ClassDef) -> None:
"""The class definition visiting method for ir module.
Parameters
----------
self : Parser
The visiting parser.
node : doc.ClassDef
The doc AST class definition node.
"""
with self.var_table.with_frame():
with I.ir_module():
with self.with_dispatch_token("ir"):
self.visit_body(node.body)
@dispatch.register(token="ir", type_name="Assign")
def _visit_assign(_self: Parser, _node: doc.Assign) -> None:
"""The assign visiting method for ir module.
Parameters
----------
self : Parser
The visiting parser.
node : doc.ClassDef
The doc AST assign node.
"""
@dispatch.register(token="ir", type_name="Expr")
def _visit_expr(_self: Parser, _node: doc.Expr) -> None:
"""The expression visiting method for ir module.
Parameters
----------
self : Parser
The visiting parser.
node : doc.ClassDef
The doc AST expression node.
"""
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/tir/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""The tir parser"""
from ...ir_builder.tir import * # pylint: disable=redefined-builtin
from ...ir_builder.tir import ir as _tir
from . import operation as _operation
from . import parser as _parser
from .entry import Buffer, Ptr, prim_func
__all__ = _tir.__all__ + ["Buffer", "Ptr", "prim_func"]
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/tir/entry.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""The entry point of TVM parser for tir."""
import inspect
from typing import Callable, Union
from tvm.tir import Buffer, PrimFunc
from ...ir_builder.tir import buffer_decl, ptr
from .._core import parse, utils
def prim_func(func: Callable) -> Union[PrimFunc, Callable]:
"""The parsing method for tir prim func, by using `@prim_func` as decorator.
Parameters
----------
func : Callable
The function to be parsed as prim func.
Returns
-------
res : Union[PrimFunc, Callable]
The parsed tir prim func.
"""
if not inspect.isfunction(func):
raise TypeError(f"Expect a function, but got: {func}")
if utils.is_defined_in_class(inspect.stack(), func):
return func
return parse(func, utils.inspect_function_capture(func))
setattr(prim_func, "dispatch_token", "tir")
class BufferProxy:
"""Buffer proxy class for constructing tir buffer.
Overload __call__ and __getitem__ to support syntax as T.Buffer() and T.Buffer[].
"""
def __call__(
self,
shape,
dtype=None,
data=None,
strides=None,
elem_offset=None,
scope="global",
align=0,
offset_factor=0,
buffer_type="",
axis_separators=None,
) -> Buffer:
if dtype is None:
raise ValueError("Data type must be specified when constructing buffer")
return buffer_decl(
shape,
dtype=dtype,
data=data,
strides=strides,
elem_offset=elem_offset,
scope=scope,
align=align,
offset_factor=offset_factor,
buffer_type=buffer_type,
axis_separators=axis_separators,
)
def __getitem__(self, keys) -> Buffer:
if not isinstance(keys, tuple):
return self(keys)
if len(keys) >= 2 and not isinstance(keys[1], str):
return self(keys)
return self(*keys) # pylint: disable=no-member # type: ignore
class PtrProxy:
"""Ptr proxy class for constructing tir pointer.
Overload __call__ and __getitem__ to support syntax as T.Ptr() and T.Ptr[].
"""
def __call__(self, dtype, storage_scope="global"):
if callable(dtype):
dtype = dtype().dtype
return ptr(dtype, storage_scope) # pylint: disable=no-member # type: ignore
def __getitem__(self, keys):
if not isinstance(keys, tuple):
return self(keys)
return self(*keys)
Buffer = BufferProxy() # pylint: disable=invalid-name
Ptr = PtrProxy() # pylint: disable=invalid-name
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/tir/operation.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""The tir expression operation registration"""
from typing import Type
from tvm import tir
from tvm.tir import IntImm
from .._core import OpMethod, doc, register_op
def _register_expr_op(ty: Type): # pylint: disable=invalid-name
ty._dispatch_type = ty # pylint: disable=protected-access
def _and(a, b):
if isinstance(a, bool):
a = IntImm("bool", a)
if isinstance(b, bool):
b = IntImm("bool", b)
return tir.And(a, b)
def _or(a, b):
if isinstance(a, bool):
a = IntImm("bool", a)
if isinstance(b, bool):
b = IntImm("bool", b)
return tir.Or(a, b)
def r(op: Type, i: int, m: OpMethod): # pylint: disable=invalid-name
register_op(ty, op, i)(m)
for i in [0, 1]:
# Case 1. binop
r(doc.Add, i, tir.Add)
r(doc.Sub, i, tir.Sub)
r(doc.Mult, i, tir.Mul)
r(doc.Div, i, tir.Div)
r(doc.FloorDiv, i, tir.FloorDiv)
r(doc.Mod, i, tir.FloorMod)
r(doc.LShift, i, lambda a, b: a << b)
r(doc.RShift, i, lambda a, b: a >> b)
r(doc.BitOr, i, lambda a, b: a | b)
r(doc.BitXor, i, lambda a, b: a ^ b)
r(doc.BitAnd, i, lambda a, b: a & b)
# doc.MatMult <-- not implemented
# doc.Pow <-- not implemented
# Case 2. cmpop
r(doc.Eq, i, tir.EQ)
r(doc.NotEq, i, tir.NE)
r(doc.Lt, i, tir.LT)
r(doc.LtE, i, tir.LE)
r(doc.Gt, i, tir.GT)
r(doc.GtE, i, tir.GE)
# doc.Is <-- not implemented
# doc.IsNot <-- not implemented
# doc.In <-- not implemented
# doc.NotIn <-- not implemented
# Case 3. boolop
r(doc.And, i, _and)
r(doc.Or, i, _or)
for i in [0]:
# Case 4. unaryop
r(doc.Invert, i, lambda a: ~a)
r(doc.Not, i, tir.Not)
r(doc.UAdd, i, lambda a: +a)
r(doc.USub, i, lambda a: -a)
_register_expr_op(tir.PrimExpr)
_register_expr_op(tir.IterVar)
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser/tir/parser.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""The base parser for tir"""
import contextlib
from functools import partial
from typing import Any
from tvm.ir import PrimType
from tvm.tir import Buffer, IterVar, PrimExpr, Var
from ...ir_builder import tir as T
from ...ir_builder.base import IRBuilder
from ...ir_builder.base import IRBuilderFrame as Frame
from .._core import Parser, dispatch, doc
def bind_with_value(self: Parser, node: doc.expr, var_name: str, value: Any) -> Any:
"""Value binding methods when parsing with statement.
e.g. binding i, j, k with T.grid(128, 128, 128), when parsing
with T.grid(128, 128, 18) as i, j, k.
Parameters
----------
self : Parser
The current parser.
node : doc.expr
The doc AST expression node for error reporting.
var_name : str
The variable name.
value : Any
The value to be bound with.
Returns
-------
res : Any
The bound value.
"""
if isinstance(value, (list, tuple)):
for i, v in enumerate(value):
bind_with_value(self, node, f"{var_name}_{i}", v)
return value
elif isinstance(value, (Buffer, Var)):
IRBuilder.name(var_name, value)
return value
else:
self.report_error(node, f"Do not know how to bind type: {type(value)} in with statement")
raise NotImplementedError
def bind_for_value(self: Parser, node: doc.expr, var_name: str, value: Any) -> Any:
"""Value binding methods when parsing for statement.
e.g. binding i, j, k with T.grid(128, 128, 128), when parsing
for i, j, k in T.grid(128, 128, 128).
Parameters
----------
self : Parser
The current parser.
node : doc.expr
The doc AST expression node for error reporting.
var_name : str
The variable name.
value : Any
The value to be bound with.
Returns
-------
res : Any
The bound value.
"""
if isinstance(value, (list, tuple)):
for i, v in enumerate(value):
bind_for_value(self, node, f"{var_name}_{i}", v)
return value
elif isinstance(value, Var):
IRBuilder.name(var_name, value)
return value
else:
self.report_error(node, f"Do not know how to bind type: {type(value)} in for statement")
raise NotImplementedError
def bind_assign_value(self: Parser, node: doc.expr, var_name: str, value: Any) -> Any:
"""Value binding methods when parsing assign statement.
e.g. binding vi, vj, vk with T.axis.remap("SSR", [i, j, k]), when parsing
vi, vj, vk = T.axis.remap("SSR", [i, j, k]).
Parameters
----------
self : Parser
The current parser.
node : doc.expr
The doc AST expression node for error reporting.
var_name : str
The variable name.
value : Any
The value to be bound with.
Returns
-------
res : Any
The bound value.
"""
if isinstance(value, T.meta_var):
return value.value
elif isinstance(value, (list, tuple)):
for i, v in enumerate(value):
bind_assign_value(self, node, f"{var_name}_{i}", v)
return value
elif isinstance(value, Frame):
value.add_callback(partial(value.__exit__, None, None, None))
res = value.__enter__()
IRBuilder.name(var_name, res)
return res
elif isinstance(value, (Buffer, IterVar)) or (
isinstance(value, Var) and not self.var_table.exist(value)
):
IRBuilder.name(var_name, value)
return value
elif isinstance(value, PrimExpr):
var = T.var(value.dtype)
IRBuilder.name(var_name, var)
frame = T.let(var, value)
frame.add_callback(partial(frame.__exit__, None, None, None))
frame.__enter__()
return var
return value
@dispatch.register(token="tir", type_name="For")
def visit_for(self: Parser, node: doc.For) -> None:
"""The for visiting method for tir.
Parameters
----------
self : Parser
The visiting parser.
node : doc.For
The doc AST for node.
"""
for_frame = self.eval_expr(node.iter)
if not isinstance(for_frame, T.frame.ForFrame):
self.report_error(
node.iter,
"Expect the for loop to be one of the following: "
"range, T.serial, T.grid, T.parallel, T.vectorized, T.unroll, T.thread_binding",
)
with self.var_table.with_frame():
with for_frame as iters:
self.eval_assign(target=node.target, source=iters, bind_value=bind_for_value)
self.visit_body(node.body)
@dispatch.register(token="tir", type_name="While")
def visit_while(self: Parser, node: doc.While) -> None:
"""The while visiting method for tir.
Parameters
----------
self : Parser
The visiting parser.
node : doc.While
The doc AST while node.
"""
with self.var_table.with_frame():
cond = self.eval_expr(node.test)
with T.While(cond):
self.visit_body(node.body)
@dispatch.register(token="tir", type_name="Assign")
def visit_assign(self: Parser, node: doc.Assign) -> None:
"""The assign visiting method for tir.
Parameters
----------
self : Parser
The visiting parser.
node : doc.Assign
The doc AST assign node.
"""
if len(node.targets) != 1:
self.report_error(node, "Consequential assignments like 'a = b = c' are not supported.")
lhs = node.targets[0]
rhs = self.eval_expr(node.value)
if isinstance(lhs, doc.Subscript):
if isinstance(lhs.slice, doc.Tuple):
indices = []
for index in lhs.slice.elts:
indices.append(self.eval_expr(index))
else:
indices = [self.eval_expr(lhs.slice)]
T.buffer_store(self.eval_expr(lhs.value), rhs, indices)
else:
self.eval_assign(target=lhs, source=rhs, bind_value=bind_assign_value)
@dispatch.register(token="tir", type_name="AugAssign")
def visit_aug_assign(self: Parser, node: doc.AugAssign) -> None:
"""The augmented assign visiting method for tir.
Parameters
----------
self : Parser
The visiting parser.
node : doc.AugAssign
The doc AST augmented assign node.
"""
lhs_pos = (
node.target.lineno,
node.target.col_offset,
node.target.end_lineno,
node.target.end_col_offset,
)
rhs_pos = (
node.value.lineno,
node.value.col_offset,
node.value.end_lineno,
node.value.end_col_offset,
)
node.target.ctx = doc.Load(*lhs_pos)
with self.var_table.with_frame():
lhs_name = "__tvm_tmp_value_aug_assign_lhs"
rhs_name = "__tvm_tmp_value_aug_assign_rhs"
lhs_expr = self.eval_expr(node.target)
rhs_expr = self.eval_expr(node.value)
self.var_table.add(lhs_name, lhs_expr)
self.var_table.add(rhs_name, rhs_expr)
op = doc.BinOp(
doc.Name(lhs_name, doc.Load(*lhs_pos), *lhs_pos),
node.op,
doc.Name(rhs_name, doc.Load(*rhs_pos), *rhs_pos),
*lhs_pos,
)
rhs = self.eval_expr(op)
lhs = node.target
lhs.ctx = doc.Store(*lhs_pos)
if isinstance(lhs, doc.Subscript):
if isinstance(lhs.slice, doc.Tuple):
indices = []
for index in lhs.slice.elts:
indices.append(self.eval_expr(index))
else:
indices = [self.eval_expr(lhs.slice)]
T.buffer_store(self.eval_expr(lhs.value), rhs, indices)
else:
self.eval_assign(target=lhs, source=rhs, bind_value=bind_assign_value)
@dispatch.register(token="tir", type_name="AnnAssign")
def visit_ann_assign(self: Parser, node: doc.AnnAssign) -> None:
"""The annotated assign visiting method for tir.
Parameters
----------
self : Parser
The visiting parser.
node : doc.AnnAssign
The doc AST annotated assign node.
"""
lhs = node.target
rhs = self.eval_expr(node.value)
ann_var = self.visit_tvm_annotation(node.annotation)
if not isinstance(ann_var, Var):
self.report_error(node.annotation, "Annotation should be Var")
self.eval_assign(target=lhs, source=ann_var, bind_value=bind_assign_value)
frame = T.let(ann_var, rhs)
frame.add_callback(partial(frame.__exit__, None, None, None))
frame.__enter__()
@dispatch.register(token="tir", type_name="With")
def visit_with(self: Parser, node: doc.With) -> None:
"""The with visiting method for tir.
Parameters
----------
self : Parser
The visiting parser.
node : doc.With
The doc AST with node.
"""
with contextlib.ExitStack() as stack:
stack.enter_context(self.var_table.with_frame())
for item in node.items:
frame = self.eval_expr(item.context_expr)
if not isinstance(frame, Frame):
self.report_error(
item.context_expr, "Invalid context expression in the with-statement."
)
rhs = stack.enter_context(frame)
if item.optional_vars is not None:
self.eval_assign(target=item.optional_vars, source=rhs, bind_value=bind_with_value)
self.visit_body(node.body)
@dispatch.register(token="tir", type_name="FunctionDef")
def visit_function_def(self: Parser, node: doc.FunctionDef) -> None:
"""The function definition visiting method for tir.
Parameters
----------
self : Parser
The visiting parser.
node : doc.FunctionDef
The doc AST function definition node.
"""
with self.var_table.with_frame():
self.var_table.add("range", T.serial)
with T.prim_func():
T.func_name(node.name)
if node.returns is not None:
ret_type = self.eval_expr(node.returns)
if callable(ret_type):
ret_type = PrimType(ret_type().dtype)
T.func_ret(ret_type)
with self.with_dispatch_token("tir"):
self.visit(node.args)
self.visit_body(node.body)
@dispatch.register(token="tir", type_name="arguments")
def visit_arguments(self: Parser, node: doc.arguments) -> None:
"""The arguments visiting method for tir.
Parameters
----------
self : Parser
The visiting parser.
node : doc.arguments
The doc AST arguments node.
"""
# TODO: handle different types of arguments:
# - vararg: arg | None
# - kwonlyargs: list[arg]
# - kw_defaults: list[expr | None]
# - kwarg: arg | None
# - defaults: list[expr]
# - posonlyargs: list[arg]
arg: doc.arg
for arg in node.args:
if arg.annotation is None:
self.report_error(arg, "Type annotation is required for function parameters.")
param = T.arg(arg.arg, self.visit_tvm_annotation(arg.annotation))
self.var_table.add(arg.arg, param)
@dispatch.register(token="tir", type_name="tvm_annotation")
def visit_tvm_annotation(self: Parser, node: doc.expr):
"""The TVM annotation visiting method for tir.
Parameters
----------
self : Parser
The visiting parser.
node : doc.expr
The doc AST expr node.
"""
annotation = self.eval_expr(node)
if callable(annotation):
annotation = annotation()
return annotation
@dispatch.register(token="tir", type_name="Expr")
def visit_expr_stmt(self: Parser, node: doc.Expr) -> None:
"""The expr statement visiting method for tir.
Parameters
----------
self : Parser
The visiting parser.
node : doc.Expr
The doc AST Expr node.
"""
res = self.eval_expr(node.value)
if isinstance(res, Frame):
res.add_callback(partial(res.__exit__, None, None, None))
res.__enter__()
@dispatch.register(token="tir", type_name="If")
def visit_if(self: Parser, node: doc.If) -> None:
"""The if visiting method for tir.
Parameters
----------
self : Parser
The visiting parser.
node : doc.If
The doc AST if node.
"""
with self.var_table.with_frame():
with T.If(self.eval_expr(node.test)):
with T.Then():
self.visit_body(node.body)
if node.orelse:
with T.Else():
self.visit_body(node.orelse)
@dispatch.register(token="tir", type_name="Assert")
def visit_assert(self: Parser, node: doc.Assert) -> None:
"""The assert visiting method for tir.
Parameters
----------
self : Parser
The visiting parser.
node : doc.Assert
The doc AST assert node.
"""
cond = self.eval_expr(node.test)
msg = self.eval_expr(node.msg)
frame = T.Assert(cond, msg)
frame.add_callback(partial(frame.__exit__, None, None, None))
frame.__enter__()
@dispatch.register(token="tir", type_name="Return")
def visit_return(self: Parser, node: doc.Return) -> None:
"""The return visiting method for tir.
Parameters
----------
self : Parser
The visiting parser.
node : doc.Return
The doc AST return node.
"""
self.report_error(node, "Return is not allowed.")
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM Script APIs of TVM Python Package, aimed to support TIR"""
from . import tir
from .parser import ir_module, from_source
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/_ffi_api.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""FFI APIs for tvm.script"""
import tvm._ffi
tvm._ffi._init_api("script", __name__)
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/context_maintainer.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM Script Context Maintainer for TIR"""
from typing import List, Mapping, Union, Optional, Dict, Callable
import synr
import tvm
from tvm.ir import Span
from tvm.ir.expr import Range
from tvm.tir import Var, Buffer, PrimExpr, Stmt, MatchBufferRegion
from tvm.runtime import Object
from tvm.tir.expr import IterVar
from .tir.node import BufferSlice
class BlockInfo:
"""Information for block and block_realize signature
Examples
----------
.. code-block:: python
@T.prim_func
def example_func(a: T.handle, b: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (16, 16), "float32")
B = T.match_buffer(b, (16, 16), "float32")
C = T.match_buffer(a, (16, 16), "float32")
for i, j, k in T.grid(16, 16, 16):
with T.block("matmul"):
vi = T.axis.S(16, i)
vj = T.axis.S(16, j)
vk = T.axis.R(16, k) # iter_bindings = {vj: i, vj: j, vk: k}
T.where(True) # predicate of the block_realize
T.reads(A[0:16, 0:16], B[0: 16, 0: 16]) # reads region of the block
T.writes(C[0: 16, 0: 16]) # writes region of the block
T.block_attr({"attr_key": "attr_value"}) # block annotations
# alloc_buffers inside the block
CC = T.alloc_buffer((1, 1), dtype="float32")
# match_buffers of the block,
# which bind a sub-region of source buffer into a new buffer
D = T.match_buffer(C[vi, vj], ())
# init part of the block, executed when all reduce axes are the beginning value
with T.init():
C[vi, vj] = T.float32(0)
# block body
CC[0, 0] = A[vi, vk] * B[vj, vk]
D[()] += CC[0, 0] # The same as C[vi, vj] += CC[0, 0]
"""
alloc_buffers: List[Buffer] = []
"""List[Buffer]: list of T.alloc_buffer statements in the block signature"""
match_buffers: List[MatchBufferRegion] = []
"""List[MatchBufferRegion]: list of T.match_buffer statements in the block signature"""
iter_values: List[PrimExpr] = []
"""List[PrimExpr]: list of binding values for iter vars"""
iter_vars: List[IterVar] = []
"""List[PrimExpr]: list of iter vars in the block"""
reads: Optional[List[BufferSlice]] = None
"""Optional[List[BufferSlice]]:
list of T.reads statements in the block signature, None for not-visited"""
writes: Optional[List[BufferSlice]] = None
"""Optional[List[BufferSlice]]:
list of T.writes statements in the block signature, None for not-visited"""
annotations: Optional[Mapping[str, Object]] = None
"""Optional[Mapping[str, Object]]:
list of T.block_attr statements in the block signature, None for not-visited"""
predicate: Optional[PrimExpr] = None
"""Optional[PrimExpr]: block realize predicate, None for not-visited"""
init: Optional[Stmt] = None
"""Optional[Stmt]: init part of the block, None for not-visited"""
def __init__(self):
self.alloc_buffers = []
self.match_buffers = []
self.iter_values = []
self.iter_vars = []
self.reads = None
self.writes = None
self.annotations = None
self.predicate = None
self.init = None
class ContextMaintainer:
"""Maintain all the necessary context info
Parameters
----------
_report_error : Callable[[str, Union[Span, synr.ast.Span]], None]
The report error function handle
"""
# scope context
node_stack: List[List[synr.ast.Node]] = []
"""List[List[synr.ast.Node]]: The ast nodes insides the current scope"""
block_info_stack: List[BlockInfo] = []
"""List[BlockInfo]: The block info for the current block scope"""
loop_stack: Dict[Var, Range] = {}
"""Dict[Var, Range]: The dict from loop var to its domain outside the block"""
symbols: List[Dict[str, Union[Var, Buffer]]] = []
"""List[Dict[str, Union[Var, Buffer]]]: Symbol map from name to object for the current scope"""
closure_vars: Dict[str, Object] = {}
"""ClosureVars: The closure vars defined in Python interpreter"""
# function context
func_params: List[Var] = []
"""List[Var]: The function parameters"""
func_buffer_map: Mapping[Var, Buffer] = {}
"""Mapping[Var, Buffer]: The function buffer map"""
func_preflattened_buffer_map: Mapping[Var, Buffer] = {}
"""Mapping[Var, Buffer]: The function buffer map, prior to any flattening."""
func_dict_attr: Mapping[str, Object] = {}
"""Mapping[str, Object]: The function attrs"""
func_var_env_dict: Mapping[Var, str] = {}
"""Mapping[Var, str]: The map from var to env thread"""
# parser and analyzer
analyzer: tvm.arith.Analyzer = tvm.arith.Analyzer()
"""tvm.arith.Analyzer: The analyzer for simplifying"""
_report_error: Callable[[str, Union[Span, synr.ast.Span]], None]
"""Callable[[str, Union[Span, synr.ast.Span]], None]: The report error function handle"""
# root alloc_buffer
root_alloc_buffers: List[Buffer] = []
"""List[Buffer]: The buffers allocated under root block"""
def __init__(
self,
_report_error: Callable[[str, Union[Span, synr.ast.Span]], None],
closure_vars: Dict[str, Object],
):
# scope context
self.node_stack = []
self.block_info_stack = []
self.loop_stack = {}
self.symbols = []
self.closure_vars = closure_vars
# function context
self.func_params = []
self.func_buffer_map = {}
self.func_preflattened_buffer_map = {}
self.func_dict_attr = {}
self.func_var_env_dict = {}
# parser and analyzer
self._report_error = _report_error
self.analyzer = tvm.arith.Analyzer()
# root alloc_buffer
self.root_alloc_buffers = []
def enter_scope(self, nodes: Optional[List[synr.ast.Node]] = None):
"""Creates a new scope
Note
----
This function is used for normal scopes that do not involve
a `with block` scope. Use `enter_block_scope`
for block scope cases.
Parameters
----------
nodes : Optional[List[synr.ast.Node]]
The synr AST nodes in new scope
"""
if nodes is None:
nodes = []
self.node_stack.append(list(reversed(nodes)))
self.symbols.append(dict())
def enter_block_scope(self, nodes: Optional[List[synr.ast.Node]] = None):
"""Creates a new block scope, the function will call `enter_scope` implicitly
Besides the behaviors of `enter_scope`, it will update loop_stack and block_info_stack
to maintain block info.
Note
----
This function should be used to handle a block scope,
aka the blocks that involve a `with block` scope.
Parameters
----------
nodes : Optional[List[synr.ast.Node]]
The synr AST nodes in new scope
"""
self.enter_scope(nodes)
# Create a new BlockInfo for the new block
self.block_info_stack.append(BlockInfo())
def exit_scope(self):
"""Pop the inner most scope"""
self.symbols.pop()
self.node_stack.pop()
def exit_block_scope(self):
"""Pop the inner most block scope, the function will call `exit_scope` implicitly"""
self.exit_scope()
# Pop block_info
self.block_info_stack.pop()
def update_symbol(self, name: str, symbol: Union[Buffer, Var], node: synr.ast.Node):
"""Append a symbol into current scope"""
if isinstance(symbol, Buffer):
if name in self.symbols[0]:
self.report_error("Duplicate Buffer name: " + symbol.name, node.span)
self.symbols[0][name] = symbol
else:
self.symbols[-1][name] = symbol
def remove_symbol(self, name: str):
"""Remove a symbol"""
for symbols in reversed(self.symbols):
if name in symbols:
symbols.pop(name)
return
raise RuntimeError("Internal error of tvm script parser: no symbol named " + name)
def lookup_symbol(self, name: str) -> Optional[Union[Buffer, Var]]:
"""Look up symbol by name"""
for symbols in reversed(self.symbols):
if name in symbols:
return symbols[name]
return self.closure_vars.get(name)
def report_error(self, message: str, span: Union[Span, synr.ast.Span]):
self._report_error(message, span)
def current_block_scope(self) -> BlockInfo:
if self.block_info_stack:
return self.block_info_stack[-1]
return None
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/diagnostics.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Bridge from synr's (the library used for parsing the python AST)
DiagnosticContext to TVM's diagnostics
"""
from synr import DiagnosticContext, ast
import tvm
from tvm.ir.diagnostics import DiagnosticContext as TVMCtx
from tvm.ir.diagnostics import get_renderer, DiagnosticLevel, Diagnostic
class TVMDiagnosticCtx(DiagnosticContext):
"""TVM diagnostics for synr"""
diag_ctx: TVMCtx
def __init__(self) -> None:
self.diag_ctx = TVMCtx(tvm.IRModule(), get_renderer())
self.source_name = None
def to_tvm_span(self, src_name, ast_span: ast.Span) -> tvm.ir.Span:
return tvm.ir.Span(
src_name,
ast_span.start_line,
ast_span.end_line,
ast_span.start_column,
ast_span.end_column,
)
def add_source(self, name: str, source: str) -> None:
src_name = self.diag_ctx.module.source_map.add(name, source)
self.source_name = src_name
def emit(self, _level, message, span):
span = self.to_tvm_span(self.source_name, span)
self.diag_ctx.emit(Diagnostic(DiagnosticLevel.ERROR, span, message))
self.diag_ctx.render() # Raise exception on the first error we hit. TODO remove
def render(self):
self.diag_ctx.render()
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/meta_unparser.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Unparse meta AST node into a dict"""
# pylint: disable=invalid-name
from synr import Transformer
class MetaUnparser(Transformer):
"""Python AST Visitor to unparse meta AST node into a dict"""
def transform(self, node):
method = "transform_" + node.__class__.__name__
visitor = getattr(self, method, None)
if visitor is None:
self.error(f"Unexpected node type {type(node)} when parsing __tvm_meta__", node.span)
return visitor(node)
def transform_DictLiteral(self, node):
keys = [self.visit(key) for key in node.keys]
values = [self.visit(value) for value in node.values]
return dict(zip(keys, values))
def transform_Tuple(self, node):
return tuple(self.visit(element) for element in node.elts)
def transform_ArrayLiteral(self, node):
return [self.visit(element) for element in node.elts]
def transform_Constant(self, node):
return node.value
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/parser.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM Script Parser For TIR
We use [synr](https://synr.readthedocs.io) to get an AST that is stable over
different python versions. Synr also provides an error handling context that we
use for error reporting.
"""
# pylint: disable=invalid-name, inconsistent-return-statements, no-else-return, broad-except
import types
import json
import operator
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
from synr import ast, Transformer, to_ast
import tvm
from tvm import IRModule
from tvm._ffi.base import TVMError
from tvm.ir import GlobalVar
from tvm.ir.function import BaseFunc
from tvm.tir import buffer
from tvm.tir.function import PrimFunc
from . import _ffi_api
from . import tir
from .context_maintainer import ContextMaintainer
from .meta_unparser import MetaUnparser
from .registry import Registry
from .diagnostics import TVMDiagnosticCtx
from .utils import tvm_span_from_synr, synr_span_from_tvm, call_with_error_reporting
from .tir.intrin import Intrin
from .tir.node import Slice, BufferSlice
from .tir.scope_handler import ScopeHandler, WithScopeHandler, ForScopeHandler
from .tir.special_stmt import SpecialStmt
from .tir import ty
class CallArgumentReader(object):
"""Helper class to read required arguments from passed arguments.
When parsing a function call, we need to match the arguments provided in
the AST to the required arguments of the function. This class makes sure
all the positional arguments are filled and also fill keyword arguments
with thier default value if a different value was not provided.
"""
def __init__(self, func_name, args, kwargs, parser, node):
self.func_name = func_name
self.args = args
self.kwargs = kwargs
self.parser = parser
self.node = node
def get_pos_only_arg(self, pos, name):
"""Get corresponding position only function argument from argument list"""
if len(self.args) >= pos:
arg = self.args[pos - 1]
elif name not in self.kwargs:
# If no positional argument was found in the AST, we see if it was
# defined by name instead.
# TODO(tkonolige): this error message is not quite correct. The
# number of required arguments is >= pos
self.parser.report_error(
f"{self.func_name} requires {pos} arguments, but only {len(self.args)} were given.",
self.node.span,
)
else:
arg = self.kwargs[name]
return arg
def get_kwarg(self, pos, name, default):
"""Get corresponding keyword function argument from argument list.
If the user hasn't provided the argument, set it to the default value.
"""
if len(self.args) >= pos:
arg = self.args[pos - 1]
elif name in self.kwargs:
arg = self.kwargs[name]
else:
return default
return arg
def get_varargs(self, pos):
"""Get corresponding variable argument from argument list"""
if len(self.args) >= pos and len(self.kwargs) == 0:
return self.args[pos - 1 :]
return []
class TVMScriptParser(Transformer):
"""Synr AST visitor pass which finally lowers to TIR.
Notes for Extension
-------------------
1. To support a new type of AST node, add a function transform_xxx().
2. To support new functions, add the function to the appropriate registry:
We divide allowed function calls in TVM script into 3 categories,
intrin, scope_handler and special_stmt.
1. intrin functions are low level functions like mod, load, and
constants. They correspond to a tir `IRNode`. They must have a
return value. The user can register intrin functions for the parser to
use.
2. scope_handler functions have no return value. They take two
arguments: the parser and the AST node. scope_handler functions are
used in with and for statements.
3. special_stmt functions handle cases that do not have a corresponding
tir `IRNode`. These functions take the parser and the AST node as
arguments and may return a value.
When visiting a Call node, we check the special_stmt registry first. If
no registered function is found, we then check the intrin registry.
When visiting With node, we check the with_scope registry.
When visiting For node, we check the for_scope registry.
"""
_binop_maker = {
ast.BuiltinOp.Add: tvm.tir.Add,
ast.BuiltinOp.Sub: tvm.tir.Sub,
ast.BuiltinOp.Mul: tvm.tir.Mul,
ast.BuiltinOp.Div: tvm.tir.Div,
ast.BuiltinOp.FloorDiv: tvm.tir.FloorDiv,
ast.BuiltinOp.Mod: tvm.tir.FloorMod,
ast.BuiltinOp.BitOr: lambda lhs, rhs, span: operator.or_(lhs, rhs),
ast.BuiltinOp.BitAnd: lambda lhs, rhs, span: operator.and_(lhs, rhs),
ast.BuiltinOp.BitXor: lambda lhs, rhs, span: operator.xor(lhs, rhs),
ast.BuiltinOp.GT: tvm.tir.GT,
ast.BuiltinOp.GE: tvm.tir.GE,
ast.BuiltinOp.LT: tvm.tir.LT,
ast.BuiltinOp.LE: tvm.tir.LE,
ast.BuiltinOp.Eq: tvm.tir.EQ,
ast.BuiltinOp.NotEq: tvm.tir.NE,
ast.BuiltinOp.And: tvm.tir.And,
ast.BuiltinOp.Or: tvm.tir.Or,
}
_unaryop_maker = {
ast.BuiltinOp.USub: lambda rhs, span: operator.neg(rhs),
ast.BuiltinOp.Invert: lambda rhs, span: operator.invert(rhs),
ast.BuiltinOp.Not: tvm.tir.Not,
}
# pylint gets confused here with synr.Transformer which doesn't have a
# custom init, so just disable it
def __init__(
self, base_lineno, tir_namespace, closure_vars
): # pylint: disable=super-init-not-called
self.context = None
self.base_lineno = base_lineno
self.current_lineno = 0
self.current_col_offset = 0
self.tir_namespace = tir_namespace
self.closure_vars = closure_vars
self.meta = None
self._inside_buffer_sugar = False
def init_function_parsing_env(self):
"""Initialize function parsing environment"""
self.context = ContextMaintainer(self.report_error, self.closure_vars) # scope emitter
def init_meta(self, meta_dict):
if meta_dict is not None:
self.meta = tvm.ir.load_json(json.dumps(meta_dict))
def transform(self, node):
"""Generic transformation for visiting the AST. Dispatches to
`transform_ClassName` for the appropriate ClassName."""
old_lineno, old_col_offset = self.current_lineno, self.current_col_offset
if hasattr(node, "lineno"):
self.current_lineno = self.base_lineno + node.lineno - 1
if hasattr(node, "col_offset"):
self.current_col_offset = node.col_offset
method = "transform_" + node.__class__.__name__
visitor = getattr(self, method, self.generic_visit)
transform_res = visitor(node)
self.current_lineno, self.current_col_offset = old_lineno, old_col_offset
return transform_res
def match_tir_namespace(self, identifier: str) -> bool:
"""Check if the namespace is equal to tvm.script.tir"""
return identifier in self.tir_namespace
def report_error(self, message: str, span: Union[ast.Span, tvm.ir.Span]):
"""Report an error occuring at a location.
This just dispatches to synr's DiagnosticContext.
Parameters
----------
message : str
Error message
span : Union[synr.ast.Span, tvm.ir.Span]
Location of the error
"""
if isinstance(span, tvm.ir.Span):
span = synr_span_from_tvm(span)
self.error(message, span)
def parse_body(self, parent):
"""Parse remaining statements in this scope.
Parameters
----------
parent : synr.ast.Node
Parent node of this scope. Errors will be reported here.
"""
body = []
spans = []
stmt = parent
while len(self.context.node_stack[-1]) > 0:
stmt = self.context.node_stack[-1].pop()
spans.append(stmt.span)
res = self.transform(stmt)
if res is not None:
body.append(res)
if len(body) == 0:
self.report_error(
"Expected another statement at the end of this block. Perhaps you "
"used a concise statement and forgot to include a body afterwards.",
stmt.span,
)
else:
return (
tvm.tir.SeqStmt(body, tvm_span_from_synr(ast.Span.union(spans)))
if len(body) > 1
else body[0]
)
def parse_arg_list(self, func, node_call):
"""Match the arguments of a function call in the AST to the required
arguments of the function. This handles positional arguments,
positional arguments specified by name, keyword arguments, and varargs.
Parameters
----------
func : Function
The function that provides the signature
node_call: Union[ast.Call, ast.TypeApply, ast.TypeCall]
The AST call node that calls into the function.
Returns
-------
arg_list : list
The parsed positional argument.
"""
assert isinstance(node_call, (ast.Call, ast.TypeApply, ast.TypeCall))
# collect arguments
args = [self.transform(arg) for arg in node_call.params]
if isinstance(node_call, ast.TypeApply):
kw_args = {} # TypeApply (e.g. foo[bar]) doesn't have kwargs defined in synr
else:
kw_args = {
self.transform(k): self.transform(v) for k, v in node_call.keyword_params.items()
}
# get the name and parameter list of func
if isinstance(func, (Intrin, ScopeHandler, SpecialStmt)):
func_name, param_list = func.signature()
else:
self.report_error(
"Internal Error: function must be of type Intrin, ScopeHandler or SpecialStmt, "
f"but it is {type(func).__name__}",
node_call.span,
)
# check arguments and parameter list and get a list of arguments
reader = CallArgumentReader(func_name, args, kw_args, self, node_call)
pos_only, kwargs, varargs = param_list
internal_args = list()
for i, arg_name in enumerate(pos_only):
internal_args.append(reader.get_pos_only_arg(i + 1, arg_name))
for i, arg_info in enumerate(kwargs):
arg_name, default = arg_info
internal_args.append(reader.get_kwarg(i + 1 + len(pos_only), arg_name, default=default))
if varargs is not None:
internal_args.extend(reader.get_varargs(len(pos_only) + len(kwargs) + 1))
elif len(args) + len(kw_args) > len(pos_only) + len(kwargs):
self.report_error(
"Arguments mismatched. "
+ f"Expected {len(pos_only) + len(kwargs)} args but got "
+ f"{len(args) + len(kw_args)}",
node_call.span,
)
return internal_args
def parse_type(self, type_node, parent):
"""Parse a type annotation.
We require the parent object to the type so that we have a place to
report the error message if the type does not exist.
"""
if type_node is None:
self.report_error("A type annotation is required", parent.span)
res_type = self.transform(type_node)
return tvm.ir.TupleType([]) if res_type is None else res_type.evaluate()
def generic_visit(self, node):
"""Fallback visitor if node type is not handled. Reports an error."""
self.report_error(type(node).__name__ + " AST node is not supported", node.span)
def transform_Module(self, node):
"""Module visitor
Right now, we only support two formats for TVM Script.
Example
-------
1. Generate a PrimFunc (If the code is printed, then it may also contain metadata)
.. code-block:: python
import tvm
@tvm.script
def A(...):
...
# returns a PrimFunc
func = A
2. Generate an IRModule
.. code-block:: python
import tvm
@tvm.script.ir_module
class MyMod():
@T.prim_func
def A(...):
...
@T.prim_func
def B(...):
...
__tvm_meta__ = ...
# returns an IRModule
mod = MyMod
"""
if len(node.funcs) == 1:
return self.transform(next(iter(node.funcs.values())))
elif len(node.funcs) == 0:
self.report_error(
"You must supply at least one class or function definition", node.span
)
else:
self.report_error(
"Only one-function, one-class or function-with-meta source code is allowed",
ast.Span.union([x.span for x in list(node.funcs.values())[1:]]),
)
def transform_Class(self, node):
"""Class definition visitor.
A class can have multiple function definitions and a single
:code:`__tvm_meta__` statement. Each class corresponds to a single
:code:`IRModule`.
Example
-------
.. code-block:: python
@tvm.script.ir_module
class MyClass:
__tvm_meta__ = {}
def A():
T.evaluate(0)
"""
if len(node.assignments) == 1:
if not (
len(node.assignments[0].lhs) == 1
and isinstance(node.assignments[0].lhs[0], ast.Var)
and node.assignments[0].lhs[0].id.name == "__tvm_meta__"
):
self.report_error(
"The only top level assignments allowed are `__tvm_meta__ = ...`",
node.assignments[0].span,
)
self.init_meta(
MetaUnparser().do_transform(node.assignments[0].rhs, self._diagnostic_context)
)
elif len(node.assignments) > 1:
self.report_error(
"Only a single top level `__tvm_meta__` is allowed",
ast.Span.union([x.span for x in node.assignments[1:]]),
)
return IRModule(
{GlobalVar(name): self.transform(func) for name, func in node.funcs.items()}
)
def transform_Function(self, node):
"""Function definition visitor.
Each function definition is translated to a single :code:`PrimFunc`.
There are a couple restrictions on TVM Script functions:
1. Function arguments must have their types specified.
2. The body of the function can contain :code:`func_attr` to specify
attributes of the function (like it's name).
3. The body of the function can also contain multiple :code:`buffer_bind`s,
which give shape and dtype information to arguments.
4. Return statements are implicit.
Example
-------
.. code-block:: python
@T.prim_func
def my_function(x: T.handle): # 1. Argument types
T.func_attr({"global_symbol": "mmult"}) # 2. Function attributes
X_1 = tir.buffer_bind(x, [1024, 1024]) # 3. Buffer binding
T.evaluate(0) # 4. This function returns 0
"""
def check_as_torch_decorator(decorator: Union[ast.Call, ast.Var]):
if isinstance(decorator, ast.Call):
if len(decorator.params) != 1:
return False
func_name = decorator.func_name
else:
func_name = decorator
if isinstance(func_name, ast.Var):
return func_name.id.name == "as_torch"
def check_decorator(decorators: List[ast.Expr]) -> bool:
"""Check the decorator is `T.prim_func"""
if len(decorators) > 2 or len(decorators) == 0:
return False
if len(decorators) == 2 and not check_as_torch_decorator(decorators[0]):
return False
d: ast.Expr = decorators[-1]
return (
isinstance(d, ast.Attr)
and isinstance(d.object, ast.Var)
and self.match_tir_namespace(d.object.id.name)
and d.field.name == "prim_func"
)
self.init_function_parsing_env()
self.context.enter_scope(nodes=node.body.stmts)
# add parameters of function
for arg in node.params:
# Note that this case is for T.match_buffer syntax sugar
if isinstance(arg.ty, (ast.TypeCall, ast.TypeApply)) and isinstance(
self.transform(arg.ty.func_name), ty.GenericBufferType
):
result = self.handle_match_buffer_type(arg.ty, arg.name)
if not isinstance(result, buffer.Buffer):
self.report_error(
"The result type of evaluating TypeCall and TypeApply stmt"
f" is wrong: {type(result)}. It should be a Buffer",
node.span,
)
arg_name_with_handle = arg.name + "_handle"
arg_var = tvm.te.var(arg_name_with_handle, tvm.ir.PrimType("handle"))
self.context.func_buffer_map[arg_var] = result
self.context.update_symbol(arg.name, result, node)
else:
arg_var = tvm.te.var(arg.name, self.parse_type(arg.ty, arg))
self.context.update_symbol(arg.name, arg_var, node)
self.context.func_params.append(arg_var)
if not check_decorator(node.decorators):
self.report_error(
"All functions should be decorated by `T.prim_func`",
node.span,
)
# fetch the body of root block
body = self.parse_body(node.body)
# return a tir.PrimFunc
dict_attr = self.context.func_dict_attr
ret_type = self.parse_type(node.ret_type, node) if node.ret_type is not None else None
func = tvm.tir.PrimFunc(
self.context.func_params,
body,
ret_type,
buffer_map=self.context.func_buffer_map,
preflattened_buffer_map=self.context.func_preflattened_buffer_map,
attrs=tvm.ir.make_node("DictAttrs", **dict_attr) if dict_attr else None,
span=tvm_span_from_synr(node.span),
)
# New Scope : Implicit root block
# Each function contains an implicit root block in TensorIR,
# so here we need a block scope for it.
# If the PrimFunc is not a TensorIR func (e.g. TE scheduled func or low-level func),
# the root block will not be added. The logic to add root block is in `_ffi_api.Complete`
# Fix the PrimFunc
# 1. generate root block if necessary
# 2. generate surrounding loops for blocks if necessary
func = call_with_error_reporting(
self.report_error,
node.span,
_ffi_api.Complete,
func,
self.context.root_alloc_buffers,
)
self.context.exit_scope()
return func
def transform_Lambda(self, node):
"""Lambda visitor
Return an array of input parameters and the transformed lambda body.
"""
self.context.enter_scope(nodes=[node.body])
# add parameters of the lambda
arg_vars = []
for arg in node.params:
# Use "void" for dtype here. The actual type is not yet known and will be
# determined later. Using void type will allow IRSubstitute to do the
# replacement without flagging a type-mismatch error.
arg_var = tvm.te.var(arg.name, dtype="")
arg_vars.append(arg_var)
self.context.update_symbol(arg.name, arg_var, node)
# the body of a lambda must be an expr
if not isinstance(node.body, ast.Expr):
self.report_error("The body of a lambda must be an expression", node.span)
# transform the body of the lambda
body = self.transform(node.body)
self.context.exit_scope()
return arg_vars, body
def transform_Assign(self, node):
"""Assign visitor
AST abstract grammar:
Assign(expr* targets, expr value, string? type_comment)
By now 5 patterns of Assign is supported:
1. special stmts with return value
1.1 Buffer = T.match_buffer()/T.buffer_decl()
1.2 Var = T.var()
1.3 Var = T.env_thread()
2. (BufferStore) Buffer[PrimExpr, PrimExpr, ..., PrimExpr] = PrimExpr
3. (Store) Var[PrimExpr] = PrimExpr
4. with scope handlers with concise scoping and var def
4.1 var = T.allocate()
5. A call to a pure python function, consuming and producing TVMScript values.
The outputs are inlined into the following body (no variable is created).
x, y = f(...)
"""
if isinstance(node.rhs, ast.Call):
# Pattern 1 & Pattern 4
if isinstance(node.rhs.func_name, ast.Op):
func = None
else:
func = self.transform(node.rhs.func_name)
if isinstance(func, WithScopeHandler):
if not func.concise_scope or not func.def_symbol:
self.report_error(
"with scope handler " + func.signature()[0] + " is not suitable here",
node.rhs.span,
)
# Pattern 4
arg_list = self.parse_arg_list(func, node.rhs)
func.enter_scope(node, self.context, arg_list, node.rhs.func_name.span)
func.body = self.parse_body(node)
return func.exit_scope(node, self.context, arg_list, node.rhs.func_name.span)
elif isinstance(func, SpecialStmt):
# Pattern 1
arg_list = self.parse_arg_list(func, node.rhs)
func.handle(node, self.context, arg_list, node.rhs.func_name.span)
return self.parse_body(node)
elif isinstance(func, types.FunctionType):
# Pattern 5
args = [self.transform(arg) for arg in node.rhs.params]
try:
out = func(*args)
except Exception as e:
self.report_error(
"Error occurred when invoking the function "
+ func.__name__
+ ": \n"
+ str(e),
node.rhs.span,
)
if len(node.lhs) == 1 and not isinstance(out, list):
out = [out]
assert len(out) == len(node.lhs)
for var, value in zip(node.lhs, out):
self.context.update_symbol(var.id.name, value, node)
body = self.parse_body(node)
for var, value in zip(node.lhs, out):
self.context.remove_symbol(var.id.name)
return body
if isinstance(node.rhs, (ast.Call, ast.Constant)):
# Pattern 4 of let binding
value = self.transform(node.rhs)
if len(node.lhs) == 1 and not isinstance(node.lhs[0], ast.Var):
# This is a little confusing because it only is true when
# we have taken this branch. We might need to clarify what
# exectly is allowed in Assignments in tvmscript.
self.report_error(
"Left hand side of assignment must be an unqualified variable",
node.span,
)
ast_var = node.lhs[0]
if node.ty is None and hasattr(value, "dtype"):
var_ty = value.dtype
else:
var_ty = self.parse_type(node.ty, ast_var)
var = tvm.te.var(
ast_var.id.name,
var_ty,
span=tvm_span_from_synr(ast_var.span),
)
self.context.update_symbol(var.name, var, node)
body = self.parse_body(node)
self.context.remove_symbol(var.name)
return tvm.tir.LetStmt(var, value, body, span=tvm_span_from_synr(node.span))
self.report_error(
"""Assignments should be one of:
1. A "special statement" with return value
1.1 Buffer = T.match_buffer()/T.buffer_decl()
1.2 Var = T.var()
1.3 Var = T.env_thread()
2. A store into a buffer: Buffer[PrimExpr, PrimExpr, ..., PrimExpr] = PrimExpr
3. A store into a variable: Var[PrimExpr] = PrimExpr
4. A with scope handler with concise scoping and var def
4.1 var = T.allocate()
5. The right-hand side being a call to a pure python function, consuming and
producing TVMScript values.
x, y = f(...)""",
node.span,
)
def transform_SubscriptAssign(self, node):
"""Visitor for statements of the form :code:`x[1] = 2`."""
symbol = self.transform(node.params[0])
indexes = self.transform(node.params[1])
rhs = self.transform(node.params[2])
rhs_span = tvm_span_from_synr(node.params[2].span)
if isinstance(symbol, tvm.tir.Buffer):
if len(indexes) != len(symbol.shape):
self.report_error(
f"Buffer {symbol.name} is {len(symbol.shape)}-dimensional, "
f"cannot be indexed by {len(indexes)}-dimensional indices.",
node.params[1].span,
)
def __convert_index(x):
if isinstance(x, Slice):
return x.as_index_expr(self.report_error)
return x
# BufferStore
indexes = [__convert_index(x) for x in indexes]
return tvm.tir.BufferStore(
symbol,
tvm.runtime.convert(rhs, span=rhs_span),
indexes,
span=tvm_span_from_synr(node.span),
)
else:
if symbol.dtype == "handle" and len(indexes) != 1:
self.report_error(
"Handles only support one-dimensional indexing. Use `T.match_buffer` to "
"construct a multidimensional buffer from a handle.",
node.params[0].span,
)
if len(indexes) != 1:
self.report_error(
f"Store is only allowed with one index, but {len(indexes)} were provided.",
node.params[1].span,
)
self.report_error(
"Use of tir.Store has been deprecated in favor of tir.BufferStore.", node.span
)
def transform_AttrAssign(self, node):
"""Visitor for statements of the form :code:`x.y = 2`."""
obj = self.transform(node.params[0])
field = node.params[1]
value = self.transform(node.params[2])
if not hasattr(obj, field.name):
self.error(f"Field {field.name} does not exist", field.span)
var = getattr(obj, field.name)
if not isinstance(var, tvm.tir.Var):
self.error(
f"Can only assign to tir.Var attributes, not {type(var).__name__}", node.span
)
body = self.parse_body(node)
return tvm.tir.LetStmt(var, value, body, span=tvm_span_from_synr(node.span))
def transform_Assert(self, node):
"""Assert visitor
Pattern corresponds to concise mode of :code:`with T.Assert()`.
"""
condition = self.transform(node.condition)
if node.msg is None:
self.report_error("Assert statements must have an error message.", node.span)
message = self.transform(node.msg)
body = self.parse_body(node)
return tvm.tir.AssertStmt(
condition, tvm.runtime.convert(message), body, span=tvm_span_from_synr(node.span)
)
def transform_For(self, node):
"""For visitor
AST abstract grammar:
For(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment)
By now 1 pattern of For is supported:
1. for scope handler
for name in T.serial()/T.parallel()/T.vectorized()/T.unroll()/range()/
T.grid()/T.thread_binding()
"""
if not isinstance(node.rhs, ast.Call):
self.report_error("The loop iterator should be a function call.", node.rhs.span)
func = self.transform(node.rhs.func_name)
if not isinstance(func, ForScopeHandler):
self.report_error(
"Only For scope handlers can be used in a for statement.", node.rhs.func_name.span
)
# prepare for new for scope
old_lineno, old_col_offset = self.current_lineno, self.current_col_offset
self.current_lineno = node.span.start_line
self.current_col_offset = node.span.start_column
self.context.enter_scope(nodes=node.body.stmts)
# for scope handler process the scope
arg_list = [
tvm.runtime.convert(arg, span=tvm_span_from_synr(node.rhs.span))
for arg in self.parse_arg_list(func, node.rhs)
]
func.enter_scope(node, self.context, arg_list, node.rhs.func_name.span)
func.body = self.parse_body(node)
res = func.exit_scope(node, self.context, arg_list, node.rhs.func_name.span)
# exit the scope
self.context.exit_scope()
self.current_lineno, self.current_col_offset = old_lineno, old_col_offset
return res
def transform_While(self, node):
"""While visitor
AST abstract grammar:
While(expr condition, stmt* body)
"""
condition = self.transform(node.condition)
# body
self.context.enter_scope(nodes=node.body.stmts)
body = self.parse_body(node)
self.context.exit_scope()
return tvm.tir.While(condition, body, span=tvm_span_from_synr(node.span))
def transform_With(self, node):
"""With visitor
AST abstract grammar:
With(withitem* items, stmt* body, string? type_comment)
withitem = (expr context_expr, expr? optional_vars)
By now 2 patterns of With is supported:
1. with scope handler with symbol def
with T.allocate() as targets:
2. with scope handler without symbol def
with T.block(*axes)/T.let()/T.Assert()/T.attr()/T.realize()
"""
if not isinstance(node.rhs, ast.Call):
self.report_error(
"The context expression of a `with` statement should be a function call.",
node.rhs.span,
)
func = self.transform(node.rhs.func_name)
if not isinstance(func, WithScopeHandler):
self.report_error(
f"Function {func} cannot be used in a `with` statement.", node.rhs.func_name.span
)
# prepare for new block scope
old_lineno, old_col_offset = self.current_lineno, self.current_col_offset
self.current_lineno = node.body.span.start_line
self.current_col_offset = node.body.span.start_column
self.context.enter_block_scope(nodes=node.body.stmts)
# with scope handler process the scope
arg_list = self.parse_arg_list(func, node.rhs)
func.enter_scope(node, self.context, arg_list, node.rhs.func_name.span)
func.body = self.parse_body(node)
res = func.exit_scope(node, self.context, arg_list, node.rhs.func_name.span)
# exit the scope
self.context.exit_block_scope()
self.current_lineno, self.current_col_offset = old_lineno, old_col_offset
return res
def transform_If(self, node):
"""If visitor
AST abstract grammar:
If(expr test, stmt* body, stmt* orelse)
"""
condition = self.transform(node.condition)
# then body
self.context.enter_scope(nodes=node.true.stmts)
then_body = self.parse_body(node)
self.context.exit_scope()
# else body
if len(node.false.stmts) > 0:
self.context.enter_scope(nodes=node.false.stmts)
else_body = self.parse_body(node)
self.context.exit_scope()
else:
else_body = None
return tvm.tir.IfThenElse(
condition, then_body, else_body, span=tvm_span_from_synr(node.span)
)
def transform_Call(self, node):
"""Call visitor
3 different Call patterns are allowed:
1. Intrin representing a PrimExpr/IterVar
1.1 tir.int/uint/float8/16/32/64/floormod/floordiv/load/cast/ramp/broadcast/max
1.2 tir.range/reduce_axis/scan_axis/opaque_axis
2. tir.Op(dtype, ...)
3. other callable functions
"""
if isinstance(node.func_name, ast.Op):
if node.func_name.name == ast.BuiltinOp.Subscript:
return self.transform_Subscript(node)
if node.func_name.name in self._binop_maker:
lhs = self.transform(node.params[0])
# There is no supertype for everything that can appear in
# an expression, so we manually add what we might get here.
if not isinstance(lhs, (tvm.tir.PrimExpr, BufferSlice)):
# We would really like to report a more specific
# error here, but this parser contains no distinction
# between parsing statements and parsing expressions. All
# rules just call `transform`.
self.report_error(
f"Left hand side of binary op must be a PrimExpr, "
"but it is a {type(lhs).__name__}",
node.params[0].span,
)
rhs = self.transform(node.params[1])
if not isinstance(rhs, (tvm.tir.PrimExpr, BufferSlice)):
self.report_error(
f"Right hand side of binary op must be a PrimExpr, "
"but it is a {type(rhs).__name__}",
node.params[1].span,
)
return call_with_error_reporting(
self.report_error,
node.span,
lambda node, lhs, rhs, span: self._binop_maker[node.func_name.name](
lhs, rhs, span=span
),
node,
lhs,
rhs,
tvm_span_from_synr(node.span),
)
if node.func_name.name in self._unaryop_maker:
rhs = self.transform(node.params[0])
if node.func_name.name == ast.BuiltinOp.USub and isinstance(
node.params[0], ast.Constant
):
# '-literal' should be parsed together for proper literal type inference
if not isinstance(rhs, (tvm.tir.IntImm, tvm.tir.FloatImm)):
self.report_error("The literal is illegal after -", node.params[0].span)
return tvm.tir.const(-rhs.value)
return self._unaryop_maker[node.func_name.name](
rhs, span=tvm_span_from_synr(node.span)
)
self.report_error(f"Unsupported operator {node.func_name.name}.", node.func_name.span)
else:
func = self.transform(node.func_name)
if isinstance(func, Intrin) and not func.stmt:
# pattern 1
arg_list = self.parse_arg_list(func, node)
return call_with_error_reporting(
self.report_error,
node.func_name.span,
func.handle,
arg_list,
node.func_name.span,
)
else:
args = [self.transform(arg) for arg in node.params]
kw_args = {
self.transform(k): self.transform(v) for k, v in node.keyword_params.items()
}
if isinstance(func, tvm.tir.op.Op):
if not "dtype" in kw_args.keys():
self.report_error(f"{func} requires a dtype keyword argument.", node.span)
# pattern 2
return tvm.tir.Call(
kw_args["dtype"], func, args, span=tvm_span_from_synr(node.span)
)
elif callable(func):
# pattern 3
return func(*args, **kw_args)
else:
self.report_error(
f"Function is neither callable nor a tvm.tir.op.Op (it is a {type(func)}).",
node.func_name.span,
)
def transform_UnassignedCall(self, node):
"""Visitor for statements that are function calls.
This handles function calls that appear on thier own line like `tir.realize`.
Examples
--------
.. code-block:: python
@T.prim_func
def f():
A = T.buffer_decl([10, 10])
T.realize(A[1:2, 1:2], "") # This is an UnassignedCall
A[1, 1] = 2 # This is also an UnassignedCall
"""
# Only allowed builtin operator that can be a statement is x[1] = 3 i.e. subscript assign.
if isinstance(node.call.func_name, ast.Op):
if node.call.func_name.name == ast.BuiltinOp.SubscriptAssign:
return self.transform_SubscriptAssign(node.call)
if node.call.func_name.name == ast.BuiltinOp.AttrAssign:
return self.transform_AttrAssign(node.call)
self.report_error(
"Binary and unary operators are not allowed as a statement", node.span
)
# handle a regular function call
func = self.transform(node.call.func_name)
arg_list = self.parse_arg_list(func, node.call)
if isinstance(func, tir.scope_handler.AssertHandler):
self.report_error(
"A standalone `T.Assert` is not allowed. Use `assert condition, message` "
"instead.",
node.call.func_name.span,
)
if isinstance(func, Intrin):
if func.stmt:
return call_with_error_reporting(
self.report_error,
node.call.func_name.span,
func.handle,
arg_list,
node.call.func_name.span,
)
else:
self.report_error(f"This intrinsic cannot be used as a statement.", node.call.span)
elif isinstance(func, WithScopeHandler) and func.concise_scope and not func.def_symbol:
func.enter_scope(node, self.context, arg_list, node.call.func_name.span)
func.body = self.parse_body(node)
return func.exit_scope(node, self.context, arg_list, node.call.func_name.span)
elif isinstance(func, SpecialStmt) and not func.def_symbol:
func.handle(node, self.context, arg_list, node.call.func_name.span)
return
self.report_error(
"Unexpected statement. Expected an assert, an intrinsic, a with statement, or a "
f"special statement, but got {type(func).__name__}.",
node.call.func_name.span,
)
def transform_Slice(self, node):
"""Index slice visitor."""
start = self.transform(node.start)
end = self.transform(node.end)
if not (
isinstance(node.step, ast.Constant)
and isinstance(node.step.value, int)
and node.step.value > 0
):
self.report_error(
"Only positive integer step size is supported for slices.", node.step.span
)
return Slice(start, end, node.step.value, tvm_span_from_synr(node.span))
def transform_Subscript(self, node):
"""Array access visitor.
By now only 3 types of Subscript are supported:
1. Buffer[index, index, ...], Buffer element access(BufferLoad & BufferStore)
Var[index] Buffer element access()
2. Buffer[start: stop, start: stop, ...], BufferRealize(realize(buffer[...]))
3. Array[index], Buffer element access
"""
symbol = self.transform(node.params[0])
if symbol is None:
self.report_error(
f"Variable {node.params[0].id.name} is not defined.", node.params[0].span
)
indexes = [self.transform(x) for x in node.params[1].values]
if isinstance(symbol, tvm.tir.expr.Var):
if symbol.dtype == "handle":
self.report_error(
"Cannot read directly from a handle, use `T.match_buffer` "
"to create a buffer to read from.",
node.params[0].span,
)
if len(indexes) > 1:
self.report_error(
"Only a single index can be provided when indexing into a `var`.",
node.params[1].span,
)
index = indexes[0]
if not isinstance(index, (tvm.tir.PrimExpr, int)):
self.report_error(
"Var load index should be an int or PrimExpr, but it is a" + type(index),
node.span,
)
self.report_error(
"Use of tir.Load has been deprecated in favor of tir.BufferLoad", node.span
)
elif isinstance(symbol, tvm.tir.Buffer):
return BufferSlice(
symbol, indexes, self.report_error, span=tvm_span_from_synr(node.span)
)
elif isinstance(symbol, tvm.container.Array):
if len(indexes) > 1:
self.report_error(
"Array access should be one-dimension access, but the indices are "
+ str(indexes),
node.span,
)
index = indexes[0]
if not isinstance(index, (int, tvm.tir.expr.IntImm)):
self.report_error(
"Array access index expected int or IntImm, but got " + type(index),
node.span,
)
if int(index) >= len(symbol):
self.report_error(
f"Array access out of bound, size: {len(symbol)}, got index {index}.",
node.span,
)
return symbol[int(index)]
else:
self.report_error(
f"Cannot subscript from a {type(symbol).__name__}. Only variables and "
"buffers are supported.",
node.params[0].span,
)
def transform_Attr(self, node):
"""Visitor for field access of the form `x.y`.
This visitor is used to lookup function and symbol names. We have two
cases to handle here:
1. If we have a statement of the form `tir.something`, then we lookup
`tir.something` in the `Registry`. If the function is not in the
registry, then we try to find a `tvm.ir.op.Op` with the same name.
2. All other names `tvm.something` are lookup up in this current python
namespace.
"""
def get_full_attr_name(node: ast.Attr) -> str:
reverse_field_names = [node.field.name]
while isinstance(node.object, ast.Attr):
node = node.object
reverse_field_names.append(node.field.name)
if isinstance(node.object, ast.Var):
reverse_field_names.append(node.object.id.name)
return ".".join(reversed(reverse_field_names))
if isinstance(node.object, (ast.Var, ast.Attr)):
full_attr_name = get_full_attr_name(node)
attr_object, fields = full_attr_name.split(".", maxsplit=1)
if self.match_tir_namespace(attr_object):
func_name = "tir." + fields
res = Registry.lookup(func_name)
if res is not None:
return res
try:
return tvm.ir.op.Op.get(func_name)
except TVMError as e:
# Check if we got an attribute error
if e.args[0].find("AttributeError"):
self.report_error(f"Unregistered function `tir.{fields}`.", node.span)
else:
raise e
symbol = self.transform(node.object)
if symbol is None:
self.report_error("Unsupported Attribute expression.", node.object.span)
if not hasattr(symbol, node.field.name):
self.report_error(
f"Type {type(symbol)} does not have a field called `{node.field.name}`.", node.span
)
res = getattr(symbol, node.field.name)
return res
def transform_TypeAttr(self, node):
"""Visitor for field access of the form `x.y` for types.
We have two cases here:
1. If the type is of the form `T.something`, we look up the type in
the `tir` namespace in this module.
2. If the type is of the form `tvm.x.something` then we look up
`tvm.x.something` in this modules namespace.
"""
if isinstance(node.object, ast.TypeVar):
if self.match_tir_namespace(node.object.id.name):
if not hasattr(tir, node.field.name):
self.report_error(
f"Invalid type annotation `tir.{node.field.name}`.", node.span
)
return getattr(tir, node.field.name)
symbol = self.transform(node.object)
if symbol is None:
self.report_error("Unsupported Attribute expression", node.object.span)
if not hasattr(symbol, node.field):
self.report_error(
f"Type {type(symbol)} does not have a field called `{node.field}`.", node.span
)
res = getattr(symbol, node.field)
return res
def transform_DictLiteral(self, node):
"""Dictionary literal visitor.
Handles dictionary literals of the form `{x:y, z:2}`.
"""
keys = [self.transform(key) for key in node.keys]
values = [self.transform(value) for value in node.values]
return dict(zip(keys, values))
def transform_Tuple(self, node):
"""Tuple visitor.
Handles tuples of the form `(x, y, 2)`.
"""
return tuple(self.transform(element) for element in node.values)
def transform_ArrayLiteral(self, node):
"""List literal visitor.
Handles lists of the form `[x, 2, 3]`.
"""
return [self.transform(element) for element in node.values]
def transform_Var(self, node):
"""Variable visitor
Handles variables like `x` in `x = 2`.
"""
name = node.id.name
if name == "meta":
return self.meta
symbol = Registry.lookup(name)
if symbol is not None:
return symbol
symbol = self.context.lookup_symbol(name)
if symbol is not None:
return symbol
self.report_error(f"Unknown identifier {name}.", node.span)
def transform_TypeVar(self, node):
"""Type variable visitor.
Equivalent to `transform_Var` but for types.
"""
name = node.id.name
symbol = Registry.lookup(name) or self.context.lookup_symbol(name)
if symbol is not None:
return symbol
self.report_error(f"Unknown identifier {name}.", node.span)
def transform_Constant(self, node):
"""Constant value visitor.
Constant values include `None`, `"strings"`, `2` (integers), `4.2`
(floats), and `true` (booleans).
"""
return tvm.runtime.convert(node.value, span=tvm_span_from_synr(node.span))
def transform_TypeConstant(self, node):
"""Constant value visitor for types.
See `transform_Constant`.
"""
if self._inside_buffer_sugar:
return self.transform_Constant(node)
return node.value
def transform_TypeTuple(self, node):
"""Tuple value visitor for types.
Mostly used in `transform_TypeCall` and `transform_TypeApply`.
"""
return [self.transform(value) for value in node.values]
def transform_TypeCall(self, node):
"""TypeCall visitor
This occurs when an expression is used inside a T.Buffer
parameter annotation.
"""
# ast.Call has the BuiltinOp as node.func_name.name, where
# ast.TypeCall has the BuiltinOp as node.func_name. So we can
# delegate to self.transform_Call, but the error messages for
# unsupported operations will highlight the entire expression
# and not just the function itself.
op = ast.Op(node.span, node.func_name)
call = ast.Call(node.span, op, node.params, node.keyword_params)
return self.transform_Call(call)
def transform_TypeApply(self, node):
"""Visitor for Type[Type] expressions.
Mostly used for ``T.Ptr`` expressions.
"""
func = self.transform(node.func_name)
if not isinstance(func, ty.TypeGeneric) or not hasattr(func, "__getitem__"):
self.report_error(
f"Use of type arguments requires a type that accepts type arguments (e.g. T.Ptr), "
f"but found {type(func).__name__} instead.",
node.span,
)
param_types = []
for idx, param in enumerate(node.params):
param_type = self.transform(param)
if not isinstance(param_type, ty.TypeGeneric) and func.require_type_generic_at(idx):
self.report_error(
f"Expected a type but found {type(param).__name__} "
f"at {idx}th type argument",
param.span,
)
param_types.append(param_type)
if len(param_types) == 1:
return func[param_types[0]]
else:
return func[param_types]
def handle_match_buffer_type(self, node, buffer_name):
"""special function to handle syntax sugar for match buffer.
This method is for buffer declarations in the function parameters.
"""
func = self.transform(node.func_name)
assert isinstance(func, SpecialStmt)
# parse args and kwargs for TypeCall and TypeApply
self._inside_buffer_sugar = True
try:
arg_list = self.parse_arg_list(func, node)
finally:
self._inside_buffer_sugar = False
# Note that the third element in arg_list would always be the 'name'
# TODO: This index is hardcoded as a workaround. Better to make it programmatic
if arg_list[2] is None:
arg_list[2] = buffer_name
buf = func.handle(node, self.context, arg_list, node.func_name.span)
return buf
def transform_Return(self, node):
self.report_error(
"TVM script does not support return statements. Instead the last statement in any "
"block is implicitly returned.",
node.span,
)
def get_tir_namespace(script: Union[Callable, type]) -> List[str]:
assert inspect.isfunction(script) or inspect.isclass(script)
env: Dict[str, Any] = script.__globals__
return [key for key in env.keys() if env[key] == tir]
def from_source(
input_func: Union[str, Callable], tir_prefix: Optional[List[str]] = None
) -> Union[PrimFunc, IRModule]:
"""Parse function or string into PrimFunc or IRModule.
If possible, pass the TVM script in as a function so that line numbers and
filename will be accurate.
Parameters
----------
input_module : Union[str, Callable]
The python function to be parsed.
tir_prefix : Optional[List[str]]
The tir prefix list. Only works for str input, default by "tir" and "T".
Returns
-------
output : Union[Function, Module]
The Function or Module in IR.
"""
if isinstance(input_func, str):
tir_prefix = ["T", "tir"] if tir_prefix is None else tir_prefix
return to_ast(input_func, TVMDiagnosticCtx(), TVMScriptParser(0, tir_prefix, {}))
elif inspect.isfunction(input_func):
_, start_line = inspect.getsourcelines(input_func)
env: Dict[str, Any] = input_func.__globals__
namespace = [key for key in env.keys() if env[key] is tir]
_closure_vars = inspect.getclosurevars(input_func)
closure_vars = {**_closure_vars.nonlocals, **_closure_vars.globals}
parser = TVMScriptParser(start_line, namespace, closure_vars)
result = to_ast(input_func, TVMDiagnosticCtx(), parser)
return result
else:
raise TypeError("Only function definitions are supported.")
def ir_module(input_module: type) -> IRModule:
"""Decorate a python class as tvm IRModule.
Parameters
----------
input_module : type
The python class to be parsed.
Returns
-------
output : IRModule
The result IRModule.
"""
if inspect.isclass(input_module):
func_dict = {
name: f for name, f in input_module.__dict__.items() if isinstance(f, BaseFunc)
}
return IRModule(func_dict)
raise TypeError("Only class definitions are supported.")
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/registry.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM Script Parser Function Registry """
# pylint: disable=inconsistent-return-statements, relative-beyond-top-level, import-outside-toplevel
import types
from typing import Union, Callable, Dict, Optional, Any
class Registry(object):
"""Registration map
All these maps are static
"""
registrations: Dict[str, type] = dict()
@staticmethod
def lookup(name: str) -> Optional[Any]:
if name in Registry.registrations:
# every time we create a new handler
# since we may want to keep some local info inside it
return Registry.registrations[name]()
return None
def register(inputs: Union[Callable, type]) -> type:
"""Register Intrin/ScopeHandler/SpecialStmt"""
registration: type
if isinstance(inputs, types.FunctionType):
# is function
from .tir.intrin import Intrin
def create_new_intrin(func) -> type:
class NewIntrin(Intrin):
def __init__(self):
super().__init__(func)
return NewIntrin
registration = create_new_intrin(inputs)
elif isinstance(inputs, type):
# is class
registration = inputs
else:
raise ValueError()
key: str = registration().signature()[0]
Registry.registrations[key] = registration
return registration
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/tir/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVMScript for TIR"""
# Type system
from .ty import void, boolean, handle, Ptr, Tuple, Buffer
from .ty import bool # pylint: disable=redefined-builtin
from .prim_func import prim_func
# add all floating point and integer datatypes to the module
for _dtype in ["float", "uint", "int"]:
for _size in ["8", "16", "32", "64"]:
for _lanes in ["", "x4", "x8", "x16", "x32", "x64"]:
from . import ty
_name = _dtype + _size + _lanes
if hasattr(ty, _name):
globals()[_name] = getattr(ty, _name)
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/tir/intrin.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM Script Parser Intrinsic Classes"""
# pylint: disable=redefined-builtin, relative-beyond-top-level
import builtins
from typing import Any, List
import tvm.tir
from tvm.tir import FloatImm
from ....target import codegen
from ..registry import register
from ..utils import get_param_list, tvm_span_from_synr
class Intrin:
def __init__(self, intrin, stmt=False):
self.intrin = intrin
self.stmt = stmt
def signature(self):
return "tir." + self.intrin.__name__, get_param_list(self.intrin)
def handle(self, arg_list: List[Any], span: tvm.ir.Span):
return self.intrin(*arg_list, span=tvm_span_from_synr(span))
@register
def bool(imm, span):
return imm.astype("bool", span)
# register all datatypes
for _dtype in ["float", "uint", "int"]:
for _size in ["8", "16", "32", "64"]:
for _lanes in ["", "x4", "x8", "x16", "x32"]:
_name = _dtype + _size + _lanes
# nest closures so we copy the name string
def wrap(name):
def f(imm, span):
if name.startswith("float"):
if imm in {"inf", "-inf", "nan"}:
return FloatImm(dtype=name, value=float(imm), span=span)
return imm.astype(name, span)
f.__name__ = name
return f
_intrin = wrap(_name)
register(_intrin)
@register
def min_value(dtype, span):
return tvm.tir.min_value(dtype, span)
@register
def max_value(dtype, span):
return tvm.tir.max_value(dtype, span)
@register
def floordiv(x, y, span):
return tvm.tir.floordiv(x, y, span)
@register
def floormod(x, y, span):
return tvm.tir.floormod(x, y, span)
@register
def truncmod(x, y, span):
return tvm.tir.truncmod(x, y, span)
@register
def truncdiv(x, y, span):
return tvm.tir.truncdiv(x, y, span)
@register
def ceildiv(x, y, span):
return tvm.tir.ceildiv(x, y, span)
@register
def abs(x, span):
return tvm.tir.abs(x, span)
@register
def load(dtype, var, index, predicate=None, span=None):
return tvm.tir.Load(dtype, var, index, predicate, span)
@register
def cast(value, dtype, span):
return tvm.tir.Cast(dtype, value, span)
@register
def ramp(base, stride, lanes, span):
return tvm.tir.Ramp(base, stride, lanes.value, span)
@register
def broadcast(value, lanes, span):
return tvm.tir.Broadcast(value, lanes.value, span)
@register
def iter_var(var, dom, iter_type, thread_tag, span):
iter_type = getattr(tvm.tir.IterVar, iter_type)
return tvm.tir.IterVar(dom, var, iter_type, thread_tag, span)
@register
def max(a, b, span): # pylint: disable=redefined-builtin
return tvm.tir.Max(a, b, span)
@register
def min(a, b, span): # pylint: disable=redefined-builtin
return tvm.tir.Min(a, b, span)
def get_axis(begin, end, iter_type, span):
ana = tvm.arith.Analyzer()
extent = ana.simplify(end - begin)
block_var_dom = tvm.ir.Range.from_min_extent(begin, extent)
iter_type_dict = {"data_par": 0, "reduce": 2, "scan": 3, "opaque": 4}
return tvm.tir.IterVar(block_var_dom, "bv", iter_type_dict[iter_type], span=span)
@register
def range(begin, end, span):
return get_axis(begin, end, "data_par", span)
@register
def reduce_axis(begin, end, span):
return get_axis(begin, end, "reduce", span)
@register
def scan_axis(begin, end, span):
return get_axis(begin, end, "scan", span)
@register
def opaque_axis(begin, end, span):
return get_axis(begin, end, "opaque", span)
@register
def Select(cond, if_body, else_body, span): # pylint: disable=invalid-name
return tvm.tir.Select(cond, if_body, else_body, span)
@register
def Let(var, value, body, span): # pylint: disable=invalid-name
return tvm.tir.Let(var, value, body, span)
@register
class EvaluateIntrin(Intrin):
def __init__(self):
def evaluate(value, span):
return tvm.tir.Evaluate(value, span)
super().__init__(evaluate, stmt=True)
@register
class StoreIntrin(Intrin):
def __init__(self):
def store(var, index, value, predicate=True, span=None):
return tvm.tir.Store(var, value, index, predicate, span)
super().__init__(store, stmt=True)
@register
class AssumeIntrin(Intrin):
def __init__(self):
def assume(constraint, span):
return tvm.tir.Evaluate(
tvm.tir.call_intrin("bool", "tir.assume", constraint, span=span)
)
super().__init__(assume, stmt=True)
@register
def comm_reducer(lambda_io, identities, span):
"""Create a CommReducer from lambda inputs/outputs and the identities"""
lambda_input = lambda_io[0]
lambda_output = lambda_io[1]
num_args = len(lambda_input)
num_arg_per_group = num_args // 2
x = [lambda_input[i] for i in builtins.range(0, num_arg_per_group)]
y = [lambda_input[i] for i in builtins.range(num_arg_per_group, num_args)]
if not isinstance(lambda_output, tuple):
lambda_output = (lambda_output,)
return tvm.tir.CommReducer(x, y, lambda_output, identities, span)
@register
def llvm_lookup_intrinsic_id(name, span):
# pylint: disable=unused-argument
return codegen.llvm_lookup_intrinsic_id(name)
@register
def FloorMod(x, y, span): # pylint: disable=invalid-name
return tvm.tir.FloorMod(x, y, span)
@register
def FloorDiv(x, y, span): # pylint: disable=invalid-name
return tvm.tir.FloorDiv(x, y, span)
@register
def Mul(x, y, span): # pylint: disable=invalid-name
return tvm.tir.Mul(x, y, span)
@register
def Div(x, y, span): # pylint: disable=invalid-name
return tvm.tir.Div(x, y, span)
@register
def Add(x, y, span): # pylint: disable=invalid-name
return tvm.tir.Add(x, y, span)
@register
def Sub(x, y, span): # pylint: disable=invalid-name
return tvm.tir.Sub(x, y, span)
@register
def LT(x, y, span): # pylint: disable=invalid-name
return tvm.tir.LT(x, y, span)
@register
def LE(x, y, span): # pylint: disable=invalid-name
return tvm.tir.LE(x, y, span)
@register
def GT(x, y, span): # pylint: disable=invalid-name
return tvm.tir.GT(x, y, span)
@register
def GE(x, y, span): # pylint: disable=invalid-name
return tvm.tir.GE(x, y, span)
@register
def EQ(x, y, span): # pylint: disable=invalid-name
return tvm.tir.EQ(x, y, span)
@register
def NE(x, y, span): # pylint: disable=invalid-name
return tvm.tir.NE(x, y, span)
@register
def And(x, y, span): # pylint: disable=invalid-name
return tvm.tir.And(x, y, span)
@register
def Or(x, y, span): # pylint: disable=invalid-name
return tvm.tir.Or(x, y, span)
@register
def Cast(dtype, value, span): # pylint: disable=invalid-name
return tvm.tir.Cast(dtype, value, span)
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/tir/node.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=redefined-builtin
"""TVM Script nodes."""
from typing import Optional, Union, List, Callable
import synr
from tvm.arith import Analyzer
from tvm.runtime import ObjectGeneric, convert
from tvm.tir import PrimExpr, Buffer, BufferLoad, IntImm, Ramp, BufferRegion
from tvm.ir import Span, Range
class Slice:
"""A helper class to present slice information for BufferSlice
Parameters
----------
start : Union[PrimExpr, int]
The start index.
stop : Optional[Union[PrimExpr, int]]
The stop index, None means the Slice is an element-wise index
step : int
The slice step
span : Optional[Span]
The location of the slice in the source.
"""
start: Union[PrimExpr, int]
stop: Optional[Union[PrimExpr, int]]
step: int
span: Optional[Span]
def __init__(
self,
start: Union[PrimExpr, int],
stop: Optional[Union[PrimExpr, int]] = None,
step: int = 1,
span: Optional[Span] = None,
):
self.start = start
self.stop = stop
self.step = step
self.span = span
def as_index_expr(self, report_error: Callable[[str, Union[Span, synr.ast.Span]], None]):
"""Helper to create index PrimExpr from slice object
Parameters
----------
report_error: Callable[[str, Union[Span, synr.ast.Span]], None]
The error report func
"""
if self.stop is None:
# scalar index
return self.start
if self.step < 1:
report_error("Slice's step should be positive integer", self.span)
lanes = Analyzer().simplify((self.stop - self.start + self.step - 1) // self.step)
if not isinstance(lanes, (int, IntImm)):
report_error("Slice's lanes should be constant for buffer indices", self.span)
if lanes == 1:
return self.start
return Ramp(self.start, self.step, int(lanes), self.span)
class BufferSlice(ObjectGeneric):
"""A generic object for representing general buffer access. Following cases are supported:
- element wise access buffer[i, j], which can be converted to BufferLoad if necessary
- slice access buffer[i: i + 1, j : j + 2]
- union of element and slice buffer[i, j: j + 2]
This node is used in TVMScript to parse BufferLoad, BufferRegion and Realize
Parameters
----------
buffer : Buffer
The buffer.
indices : List[Union[Slice, PrimExpr, int]]
The access indexes can be slice, PrimExpr or int.
report_error: Callable[[str, Union[Span, synr.ast.Span]], None]
The error report func
span : Optional[Span]
The location of the buffer access in the source.
"""
buffer: Buffer
slices: List[Slice]
report_error: Callable[[str, Union[Span, synr.ast.Span]], None]
span: Optional[Span]
def __init__(
self,
buffer: Buffer,
indices: List[Union[Slice, PrimExpr, int]],
report_error: Callable[[str, Union[Span, synr.ast.Span]], None],
span: Optional[Span] = None,
):
def check_index(index: Union[int, PrimExpr]):
"""Check input index is non-negative integer or PrimExpr"""
if isinstance(index, int):
if index < 0:
report_error("Negative index is not allowed during buffer access", span)
elif isinstance(index, PrimExpr):
element_dtype = index.dtype.split("x", maxsplit=1)[0]
if element_dtype[:3] != "int":
report_error(
"index expected an integer type PrimExpr but got " + str(index.dtype),
index.span,
)
else:
report_error(
"Unsupported index type, expected int or tvm.tir.PrimExpr, but got "
+ str(type(index)),
span,
)
slices: List[Union[Slice, BufferSlice]] = []
for index in indices:
if isinstance(index, Slice):
index.start, index.stop = [convert(_) for _ in [index.start, index.stop]]
check_index(index.start)
check_index(index.stop)
slices.append(index)
elif isinstance(index, (PrimExpr, int)):
check_index(index)
slices.append(Slice(index))
elif isinstance(index, BufferSlice):
buffer_load = index.asobject()
check_index(buffer_load)
slices.append(Slice(buffer_load))
else:
report_error(
"Unsupported index type for BufferSlice, "
+ "expected int, tvm.tir.PrimExpr, tvm.tir.Slice, but got "
+ str(type(index)),
span,
)
self.buffer = buffer
self.slices = slices
self.report_error = report_error
self.span = span
def __str__(self):
regions: List[str] = []
for s in self.slices:
if s.stop is None:
regions.append(str(s.start))
else:
regions.append(str(s.start) + ": " + str(s.stop))
return self.buffer.name + "[" + ", ".join(regions) + "]"
def asobject(self) -> BufferLoad:
"""Convert object."""
indices = [s.as_index_expr(self.report_error) for s in self.slices]
return BufferLoad(self.buffer, indices, span=self.span)
def as_buffer_region(self, analyzer: Optional[Analyzer] = None) -> BufferRegion:
"""Construct BufferRegion from BufferSlice
Parameters
----------
analyzer : Optional[tvm.arith.Analyzer]
The analyzer for simplifying. If not provided, the method will construct a new one
Returns
-------
buffer_region : BufferRegion
The constructed BufferRegion.
"""
region: List[Range] = []
for s in self.slices:
start = s.start if isinstance(s.start, PrimExpr) else IntImm("int32", s.start)
extent = IntImm(start.dtype, 1) if s.stop is None else s.stop - s.start
if not analyzer:
analyzer = Analyzer()
if isinstance(extent, PrimExpr):
extent = analyzer.simplify(extent)
if s.step != 1:
self.report_error("BufferRegion do not support non-trivial stride", s.span)
region.append(Range.from_min_extent(start, extent, span=s.span))
return BufferRegion(self.buffer, region)
def astype(self, dtype: str, span: Optional[Span] = None) -> PrimExpr:
return self.asobject().astype(dtype, span)
@property
def dtype(self) -> str:
"""Return the dtype referenced by the slice.
Implemented as a property so that ``slice.dtype`` has the same
calling convention as ``primexpr.dtype``. This allows a
BufferSlice object can be assigned to a variable without
requiring a type annotation on the variable, similar to other
expressions.
"""
return self.asobject().dtype
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/tir/prim_func.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM Script Interface for PrimFunc"""
import inspect
from typing import Callable
from tvm.tir.function import PrimFunc
from ..parser import from_source
def prim_func(input_func: Callable) -> PrimFunc:
"""Decorate a python function as tvm script.
Parameters
----------
func : input_func
The function to be parsed.
Returns
-------
output : PrimFunc
The result functions.
"""
if inspect.isfunction(input_func):
result = from_source(input_func)
result.__name__ = input_func.__name__
result.__qualname__ = input_func.__qualname__
return result
raise TypeError("Only function definitions are supported.")
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/tir/scope_handler.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM Script Parser Scope Handler Classes"""
# pylint: disable=redefined-builtin, unused-argument, invalid-name, relative-beyond-top-level
from typing import Tuple, Any, Callable, Optional, List, Union, Mapping
import synr
import numpy as np
import tvm.tir
from tvm.runtime import Object, String, convert
from tvm.ir import Span, Range
from tvm.tir import Stmt, PrimExpr, IterVar, Var, Buffer, BufferRegion, ForKind
from .node import BufferSlice
from ..context_maintainer import ContextMaintainer
from ..registry import register
from ..utils import (
get_param_list,
tvm_span_from_synr,
call_with_error_reporting,
)
class ScopeHandler:
"""Base class for all scope handlers"""
def __init__(self, func: Callable):
self.func: Callable = func
self.body: Optional[Stmt] = None
self.node: Optional[synr.ast.Node] = None
self.context: Optional[ContextMaintainer] = None
def signature(self) -> Tuple[str, Tuple[list, list, Any]]:
return "tir." + self.func.__name__, get_param_list(self.func)
def enter_scope(
self,
node: synr.ast.Node,
context: ContextMaintainer,
arg_list: List[Any],
span: synr.ast.Span,
):
pass
def exit_scope(
self,
node: synr.ast.Node,
context: ContextMaintainer,
arg_list: List[Any],
span: synr.ast.Span,
):
self.node = node
self.context = context
return call_with_error_reporting(
context.report_error, span, self.func, *arg_list, span=tvm_span_from_synr(span)
)
class WithScopeHandler(ScopeHandler):
"""Base class for all with scope handlers"""
def __init__(self, func, concise_scope, def_symbol):
super().__init__(func)
self.concise_scope = concise_scope
self.def_symbol = def_symbol
@staticmethod
def get_optional_vars(node, context):
"""Get a list synr.ast.With's optional_vars"""
assert isinstance(
node, synr.ast.With
), f"WithScopeHandler expected synr.ast.With but got {type(node)}"
if isinstance(node.lhs, list):
for var in node.lhs:
if not isinstance(var, synr.ast.Var):
context.report_error(
f"Invalid optional var definition, expected Var but got {type(var)}",
node.span,
)
vars = node.lhs
else:
context.report_error(
f"Invalid optional var definition, expected list of Var but got {type(node.lhs)}",
node.span,
)
return vars
@register
class Allocate(WithScopeHandler):
"""With scope handler T.allocate(extents, dtype, scope, condition, annotations)"""
def __init__(self):
def allocate(extents, dtype, scope, condition=True, annotations=None, span=None):
condition = tvm.runtime.convert(condition)
scope = tvm.runtime.convert(scope)
return tvm.tir.Allocate(
self.buffer_var,
dtype,
extents,
condition,
self.body,
annotations=annotations,
span=span,
)
super().__init__(allocate, concise_scope=True, def_symbol=True)
self.buffer_var = None
def enter_scope(
self,
node: synr.ast.Node,
context: ContextMaintainer,
arg_list: List[Any],
span: synr.ast.Span,
):
# define buffer vars in symbol table
if isinstance(node, synr.ast.With):
vars = WithScopeHandler.get_optional_vars(node, context)
if len(vars) != 1:
context.report_error(f"Unexpected number of vars: 1 vs. {len(vars)}", node.span)
name = vars[0].id.name
var_span = vars[0].id.span
elif isinstance(node, synr.ast.Assign):
if len(node.lhs) != 1:
context.report_error(f"Unexpected number of vars: 1 vs. {len(node.lhs)}", node.span)
name = node.lhs[0].id.name
var_span = node.lhs[0].id.span
else:
raise Exception("Internal Bug")
def setup_buffer_var(
extents, dtype, scope, condition=True, annotations=None, span: Span = None
):
"""Setup buffer var for a given type."""
buffer_ptr_type = tvm.ir.PointerType(tvm.ir.PrimType(dtype), scope)
self.buffer_var = tvm.tir.Var(name, buffer_ptr_type, span)
setup_buffer_var(*arg_list, span=tvm_span_from_synr(var_span))
context.update_symbol(name, self.buffer_var, node)
@register
class AllocateConst(WithScopeHandler):
"""With scope handler T.allocate_const(data, extents, dtype, condition)
TIR constant node to represent non-scalar constant
"""
def __init__(self):
def allocate_const(raw_data, dtype, shape, annotations=None, span=None):
list_data = []
for i in raw_data:
list_data.append(i.value)
nd_data = tvm.nd.array(np.asarray(list_data, dtype=dtype))
n = tvm.tir.AllocateConst(
self.buffer_var,
dtype,
shape,
nd_data,
self.body,
annotations=annotations,
span=span,
)
return n
super().__init__(allocate_const, concise_scope=True, def_symbol=True)
self.buffer_var = None
def enter_scope(
self,
node: synr.ast.Node,
context: ContextMaintainer,
arg_list: List[Any],
span: synr.ast.Span,
):
# define buffer vars in symbol table
if isinstance(node, synr.ast.With):
vars = WithScopeHandler.get_optional_vars(node, context)
if len(vars) != 1:
context.report_error(f"Unexpected number of vars: 1 vs. {len(vars)}", node.span)
name = vars[0].id.name
var_span = vars[0].id.span
elif isinstance(node, synr.ast.Assign):
if len(node.lhs) != 1:
context.report_error(f"Unexpected number of vars: 1 vs. {len(node.lhs)}", node.span)
name = node.lhs[0].id.name
var_span = node.lhs[0].id.span
else:
raise Exception("Internal Bug")
def setup_buffer_var(data, dtype, shape, annotations: dict = None, span: Span = None):
"""Setup buffer var for a given type."""
buffer_ptr_type = tvm.ir.PointerType(tvm.ir.PrimType(dtype))
self.buffer_var = tvm.tir.Var(name, buffer_ptr_type, span)
setup_buffer_var(*arg_list, span=tvm_span_from_synr(var_span))
context.update_symbol(name, self.buffer_var, node)
@register
class DeclBuffer(WithScopeHandler):
"""Special Stmt decl_buffer(shape, dtype, data, strides, elem_offset, scope, align,
offset_factor, buffer_type, axis_separators)
Example
-------
.. code-block:: python
A = T.decl_buffer((128, 128), dtype="float32")
"""
def __init__(self):
def decl_buffer(
shape,
dtype="float32",
data=None,
strides=None,
elem_offset=None,
scope="global",
align=-1,
offset_factor=0,
buffer_type="default",
axis_separators=None,
span=None,
):
decl_buffer = tvm.tir.DeclBuffer(self.buffer, self.body, span=span)
if data is None:
# when data is not specified, the buffer is implicitly allocated
return tvm.tir.Allocate(
self.buffer.data,
dtype,
shape,
tvm.runtime.convert(True),
decl_buffer,
span=span,
)
return decl_buffer
super().__init__(decl_buffer, concise_scope=True, def_symbol=True)
def enter_scope(
self,
node: synr.ast.Node,
context: ContextMaintainer,
arg_list: List[Any],
span: synr.ast.Span,
):
# define buffer vars in symbol table
if isinstance(node, synr.ast.With):
vars = WithScopeHandler.get_optional_vars(node, context)
if len(vars) != 1:
context.report_error(f"Unexpected number of vars: 1 vs. {len(vars)}", node.span)
name = vars[0].id.name
var_span = vars[0].id.span
elif isinstance(node, synr.ast.Assign):
if len(node.lhs) != 1:
context.report_error(f"Unexpected number of vars: 1 vs. {len(node.lhs)}", node.span)
name = node.lhs[0].id.name
var_span = node.lhs[0].id.span
else:
raise Exception("Internal Bug")
def setup_buffer(
shape,
dtype,
data,
strides,
elem_offset,
scope,
align,
offset_factor,
buffer_type,
axis_separators,
span: Span = None,
):
self.buffer = tvm.tir.decl_buffer(
shape=shape,
dtype=dtype,
data=data,
strides=strides,
elem_offset=elem_offset,
scope=scope,
data_alignment=align,
offset_factor=offset_factor,
buffer_type=buffer_type,
axis_separators=axis_separators,
name=name,
span=span,
)
setup_buffer(*arg_list, span=tvm_span_from_synr(var_span))
context.update_symbol(name, self.buffer, node)
@register
class LaunchThread(WithScopeHandler):
"""With scope handler T.launch_thread(env_var, extent)"""
def __init__(self):
def launch_thread(env_var, extent, span):
extent = tvm.runtime.convert(extent, span=span)
thread_id = self.context.func_var_env_dict[env_var]
attr_key = "virtual_thread" if thread_id == "vthread" else "thread_extent"
return tvm.tir.AttrStmt(
IterVar(
(0, extent),
env_var,
getattr(IterVar, "ThreadIndex"),
thread_id,
span=span,
),
attr_key,
extent,
self.body,
span=span,
)
super().__init__(launch_thread, concise_scope=True, def_symbol=False)
@register
class Realize(WithScopeHandler):
"""With scope handler T.realize(buffer_bounds, scope, condition)"""
def __init__(self):
def realize(
buffer_slice: BufferSlice, scope: str, condition: bool = True, span: bool = None
):
assert self.context, "call 'exit_scope' before 'enter_scope'"
buffer: Buffer = buffer_slice.buffer
bounds: List[Range] = []
for s in buffer_slice.slices:
min: Union[PrimExpr, int] = s.start
extent: Union[PrimExpr, int] = 1 if s.stop is None else s.stop - s.start
if isinstance(extent, PrimExpr):
extent = self.context.analyzer.simplify(extent)
bounds.append(Range.from_min_extent(min, extent, span=s.span))
scope = tvm.runtime.convert(scope, span=span)
return tvm.tir.AttrStmt(
buffer,
"realize_scope",
scope,
tvm.tir.BufferRealize(buffer, bounds, condition, self.body, span=span),
span=span,
)
super().__init__(realize, concise_scope=True, def_symbol=False)
@register
class Attr(WithScopeHandler):
"""With scope handler T.attr(attr_node, attr_key, value)"""
def __init__(self):
def attr(attr_node, attr_key, value, span):
attr_node = tvm.runtime.convert(attr_node, span=span)
value = tvm.runtime.convert(value, span=span)
return tvm.tir.AttrStmt(attr_node, attr_key, value, self.body, span=span)
super().__init__(attr, concise_scope=True, def_symbol=False)
@register
class AssertHandler(WithScopeHandler):
"""With scope handler T.Assert(condition, message)"""
def __init__(self):
def Assert(condition, message, span):
return tvm.tir.AssertStmt(condition, tvm.runtime.convert(message), self.body, span=span)
super().__init__(Assert, concise_scope=True, def_symbol=False)
@register
class Let(WithScopeHandler):
"""With scope handler T.let(var, value)"""
def __init__(self):
def let(var, value, span):
return tvm.tir.LetStmt(var, value, self.body, span=span)
super().__init__(let, concise_scope=False, def_symbol=False)
def __call__(self, var: tvm.tir.Var, value: tvm.tir.PrimExpr, body: tvm.tir.PrimExpr):
return tvm.tir.Let(var, value, body)
@register
class Block(WithScopeHandler):
"""With scope handler T.block(name)"""
def __init__(self):
def block(name_hint: str = "", span: Optional[Span] = None):
assert (
self.node and self.context and self.body
), "call 'exit_scope' before 'enter_scope'"
block_info = self.context.block_info_stack[-1]
# create block read/write regions
reads: List[BufferRegion] = (
[read.as_buffer_region() for read in block_info.reads] if block_info.reads else []
)
writes: List[BufferRegion] = (
[write.as_buffer_region() for write in block_info.writes]
if block_info.writes
else []
)
region_detect_mask: int = (block_info.reads is None) | (
(block_info.writes is None) << 1
)
annotations = {} if block_info.annotations is None else block_info.annotations
if region_detect_mask != 0:
annotations["tir.script_parsing_detect_access"] = region_detect_mask
inner = tvm.tir.Block(
block_info.iter_vars,
reads,
writes,
name_hint,
self.body,
block_info.init,
block_info.alloc_buffers,
block_info.match_buffers,
annotations,
span,
)
assert len(block_info.iter_vars) == len(block_info.iter_values)
predicate = (
tvm.tir.const(True, "bool")
if block_info.predicate is None
else block_info.predicate
)
body = tvm.tir.BlockRealize(block_info.iter_values, predicate, inner, span)
return body
super().__init__(func=block, concise_scope=False, def_symbol=True)
self.block_vars = None
def enter_scope(
self,
node: synr.ast.Node,
context: ContextMaintainer,
arg_list: List[Any],
span: synr.ast.Span,
):
# define block vars
assert isinstance(
node, synr.ast.With
), f"BlockScopeHandler expected to work on synr.ast.With but got {type(node)}"
optional_vars = [var.id.name for var in WithScopeHandler.get_optional_vars(node, context)]
if optional_vars:
context.report_error(
f"Block expected no optional_vars (e.g., `x` in `with block() as x`), "
f"but got {optional_vars}",
node.span,
)
@register
class InitBlock(WithScopeHandler):
"""With scope handler T.init()"""
def __init__(self):
def init(span: Span = None):
assert self.context, "call 'exit_scope' before 'enter_scope'"
if self.context.block_info_stack[-2].init is not None:
self.context.report_error("Duplicate init block declaration", span)
self.context.block_info_stack[-2].init = self.body
super().__init__(func=init, concise_scope=False, def_symbol=True)
class LoopInfo:
"""Helper class for loop information"""
loop_var: Var
begin: PrimExpr
extent: PrimExpr
kind: ForKind
thread_binding: Optional[str]
annotations: Optional[Mapping[str, Object]]
def __init__(
self,
begin: PrimExpr,
extent: PrimExpr,
kind: ForKind,
thread_binding: Optional[str] = None,
annotations: Optional[Mapping[str, Object]] = None,
) -> None:
self.begin = begin
self.extent = extent
self.kind = kind
self.thread_binding = thread_binding
self.annotations = annotations
class ForScopeHandler(ScopeHandler):
"""Base class for all for scope handlers"""
def __init__(self, func):
super().__init__(func)
self.loop_vars: List[Var] = []
self.loop_info: List[LoopInfo] = []
def enter_scope(
self,
node: synr.ast.Node,
context: ContextMaintainer,
arg_list: List[Any],
span: synr.ast.Span,
):
assert isinstance(
node, synr.ast.For
), f"ForScopeHandler expected synr.ast.For but got {type(node)}"
loop_var_names = list()
spans = list()
if isinstance(node.lhs, synr.ast.Var):
loop_var_names.append(node.lhs.id.name)
spans.append(tvm_span_from_synr(node.lhs.id.span))
elif isinstance(node.lhs, list):
for elt in node.lhs:
if not isinstance(elt, synr.ast.Var):
context.report_error(
f"Invalid loop var. Expected a var, but got {type(elt)}", elt.span
)
loop_var_names.append(elt.id.name)
spans.append(tvm_span_from_synr(elt.id.span))
else:
context.report_error(
f"Invalid loop var. Expected var or list of vars as lhs, but got {type(node.lhs)}",
span,
)
self.node = node
self.context = context
# collect loop infos by calling self.func
call_with_error_reporting(context.report_error, span, self.func, *arg_list)
if len(loop_var_names) != len(self.loop_info):
self.context.report_error(
f"Inconsistent number of vars and loops, got {len(loop_var_names)} "
+ f"vs {len(self.loop_info)}",
self.node.span,
)
# generate loop vars
self.loop_vars = []
for name, lv_span, li in zip(loop_var_names, spans, self.loop_info):
if not li.begin.dtype.startswith("int"):
raise NotImplementedError(f"Unsupported dtype in loop begin: {li.begin.dtype}")
if not li.extent.dtype.startswith("int"):
raise NotImplementedError(f"Unsupported dtype in loop extent: {li.extent.dtype}")
dtype = "int64" if "int64" in [li.begin.dtype, li.extent.dtype] else "int32"
self.loop_vars.append(tvm.te.var(name, dtype=dtype, span=lv_span))
for loop_var, loop_info in zip(self.loop_vars, self.loop_info):
context.update_symbol(loop_var.name, loop_var, node)
context.loop_stack[loop_var] = Range.from_min_extent(loop_info.begin, loop_info.extent)
def exit_scope(
self,
node: synr.ast.Node,
context: ContextMaintainer,
arg_list: List[Any],
span: synr.ast.Span,
):
assert self.loop_vars, "call 'exit_scope' before 'enter_scope'"
for loop_var in self.loop_vars:
context.loop_stack.pop(loop_var)
# Use assert here since we have check it in `enter_scope`
assert len(self.loop_vars) == len(self.loop_info)
body = self.body
for var, info in zip(reversed(self.loop_vars), reversed(self.loop_info)):
body = tvm.tir.For(
var,
info.begin,
info.extent,
info.kind,
body,
info.thread_binding,
info.annotations,
span=tvm_span_from_synr(span),
)
return body
def create_loop_info(
self,
begin: Optional[PrimExpr],
end: PrimExpr,
kind: ForKind,
thread_binding: Optional[str] = None,
annotations: Optional[Mapping[str, Object]] = None,
) -> None:
"""
Helper function for creating For in TVM Script parser.
Parameters
----------
begin : Optional[PrimExpr]
The beginning value. If None, it will be set to 0.
end : PrimExpr
The endding value.
kind : ForKind
The type of the for.
thread_binding: Optional[str]
The thread this loop binds to.
annotations : Optional[Mapping[str, Object]]
Additional annotation hints.
span : Optional[Span]
The location of this for in the source code.
Returns
-------
for : For
The constructed For.
"""
end = convert(end)
if begin is None:
begin = tvm.tir.const(0, end.dtype)
else:
begin = convert(begin)
assert self.context and self.node, "call 'exit_scope' before 'enter_scope'"
extent = (
end
if self.context.analyzer.can_prove_equal(begin, 0)
else self.context.analyzer.simplify(end - begin)
)
self.annotations: Mapping[str, Object] = {}
if annotations is not None:
self.annotations = {
key: String(val) if isinstance(val, str) else val
for key, val in annotations.items()
}
self.loop_info.append(LoopInfo(begin, extent, kind, thread_binding, annotations))
@register
class Serial(ForScopeHandler):
"""For scope handler T.serial(begin, end, annotations)"""
def __init__(self):
def serial(
begin: PrimExpr,
end: PrimExpr = None,
annotations: Optional[Mapping[str, Object]] = None,
):
if end is None:
end, begin = begin, end
self.create_loop_info(begin, end, ForKind.SERIAL, annotations=annotations)
super().__init__(serial)
@register
class Parallel(ForScopeHandler):
"""For scope handler T.parallel(begin, end, annotations)"""
def __init__(self):
def parallel(
begin: PrimExpr,
end: PrimExpr = None,
annotations: Optional[Mapping[str, Object]] = None,
):
if end is None:
end, begin = begin, end
self.create_loop_info(begin, end, ForKind.PARALLEL, annotations=annotations)
super().__init__(parallel)
@register
class Vectorized(ForScopeHandler):
"""For scope handler T.vectorized(begin, end, annotations)"""
def __init__(self):
def vectorized(
begin: PrimExpr,
end: PrimExpr = None,
annotations: Optional[Mapping[str, Object]] = None,
):
if end is None:
end, begin = begin, end
self.create_loop_info(begin, end, ForKind.VECTORIZED, annotations=annotations)
super().__init__(vectorized)
@register
class Unroll(ForScopeHandler):
"""For scope handler T.unroll(begin, end, annotations)"""
def __init__(self):
def unroll(
begin: PrimExpr,
end: PrimExpr = None,
annotations: Optional[Mapping[str, Object]] = None,
):
if end is None:
end, begin = begin, end
self.create_loop_info(begin, end, ForKind.UNROLLED, annotations=annotations)
super().__init__(unroll)
@register
class ThreadBinding(ForScopeHandler):
"""For scope handler T.thread_binding(begin, end, thread, annotations)"""
def __init__(self):
def thread_binding(
begin: PrimExpr,
end: PrimExpr = None,
thread: str = None,
annotations: Optional[Mapping[str, Object]] = None,
):
if thread is None:
if isinstance(end, str): # handle case like thread_binding(128, "threadIdx.x")
thread = end
end = None
else:
raise ValueError("Thread cannot be None for thread_binding")
if end is None:
end, begin = begin, end
thread_iter_var = IterVar(None, None, IterVar.ThreadIndex, thread)
self.create_loop_info(
begin,
end,
ForKind.THREAD_BINDING,
thread_binding=thread_iter_var,
annotations=annotations,
)
super().__init__(thread_binding)
@register
class RangeHandler(ForScopeHandler):
"""For scope handler range(begin, end, annotations)
Note that tir.range is totally the same as T.serial
"""
def __init__(self):
def for_range(
begin: PrimExpr,
end: PrimExpr = None,
annotations: Optional[Mapping[str, Object]] = None,
):
if end is None:
end, begin = begin, end
self.create_loop_info(begin, end, ForKind.SERIAL, annotations=annotations)
super().__init__(for_range)
def signature(self):
return "range", get_param_list(self.func)
@register
class Grid(ForScopeHandler):
"""For scope handler T.grid(extents)"""
def __init__(self):
def grid(*extents: List[PrimExpr]):
for extent in extents:
self.create_loop_info(None, extent, ForKind.SERIAL)
super().__init__(grid)
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/tir/special_stmt.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM Script Parser Special Stmt Classes"""
# pylint: disable=unused-argument, no-self-argument, inconsistent-return-statements
# pylint: disable=relative-beyond-top-level
from typing import Callable, List, Optional, Tuple, Any, Mapping, Union
import synr
from synr import ast
from tvm.ir.expr import PrimExpr, Range
import tvm.tir
from tvm.runtime import Object, String
from tvm.target import Target
from tvm.ir import Span
from tvm.tir import IntImm, IterVar, Var
from .node import BufferSlice
from ..context_maintainer import BlockInfo, ContextMaintainer
from ..registry import register
from ..utils import (
get_param_list,
tvm_span_from_synr,
call_with_error_reporting,
)
def convert_to_int(
value: Union[IntImm, int],
arg_name: str,
report_error: Callable,
span: Union[Span, synr.ast.Span],
) -> int:
"""convert a const int or TVM IntImm to Python int.
Reports an error when input cannot be converted to int.
Parameters
----------
value : Union[tvm.tir.IntImm, int]
The input value to be converted.
arg_name : str
Function argument name for error reporting.
report_error: Callable
The report error function handle
span : Union[synr.ast.Span, tvm.ir.Span]
Location of the error
"""
if isinstance(value, IntImm):
return value.value
if isinstance(value, int):
return value
report_error(
f"Expected int or IntImm for {arg_name}, but got {str(type(value))}",
span,
)
class SpecialStmt:
"""Base class for all Special Stmts"""
def __init__(self, func: Callable, def_symbol: bool):
self.func: Callable = func
self.def_symbol: bool = def_symbol
self.node: Optional[synr.ast.Node] = None
self.context: Optional[ContextMaintainer] = None
def signature(self) -> Tuple[str, Tuple[list, list, Any]]:
return "tir." + self.func.__name__, get_param_list(self.func)
def handle(
self,
node: ast.Node,
context: ContextMaintainer,
arg_list: List[Any],
span: synr.ast.Span,
):
self.node = node
self.context = context
return call_with_error_reporting(
context.report_error, span, self.func, *arg_list, span=tvm_span_from_synr(span)
)
@register
class MatchBuffer(SpecialStmt):
"""Special Stmt match_buffer(param, shape, dtype, data, strides, elem_offset, scope, align,
offset_factor, buffer_type, axis_separators)
Note
----
This Special Stmt will perform different behavior depends on the type of param.
If the param is a var in function parameter, it will create a buffer from DLTensor.
Else if the param is a subregion of other buffers, then create a subregion match inside a block.
Example
-------
Match buffer from function parameter
.. code-block:: python
A = T.match_buffer(a, (128, 128), dtype="float32")
Match buffer from Buffer subregion
.. code-block:: python
A = T.match_buffer(B[0:128, i * 128 : i * 128 + 128], (128, 128), dtype="float32")
"""
def __init__(self):
def match_buffer(
param,
shape=None,
dtype=None,
data=None,
strides=None,
elem_offset=None,
scope="global",
align=-1,
offset_factor=0,
buffer_type="default",
axis_separators=None,
span=None,
):
if not isinstance(self.node, ast.Assign) or not len(self.node.lhs) == 1:
self.context.report_error(
"`match_buffer` must be assigned to a single buffer, "
"e.g. A = match_buffer(...)",
self.node.span,
)
if strides is None:
strides = []
align = convert_to_int(align, "align", self.context.report_error, self.node.span)
offset_factor = convert_to_int(
offset_factor, "offset_factor", self.context.report_error, self.node.span
)
buffer_name: str = self.node.lhs[0].id.name
if isinstance(param, tvm.tir.Var):
if shape is None:
self.context.report_error(
"Shape must be specified when binding input param",
self.node.rhs.span,
)
if dtype is None:
dtype = "float32"
buffer = tvm.tir.decl_buffer(
shape,
dtype,
buffer_name,
data,
strides,
elem_offset,
scope,
align,
offset_factor,
buffer_type,
axis_separators,
span=span,
)
if param not in self.context.func_params:
self.context.report_error(
"Can not bind non-input param to buffer", self.node.rhs.params[0].span
)
self.context.func_buffer_map[param] = buffer
elif isinstance(param, BufferSlice):
buffer_region = param.as_buffer_region()
if shape is None:
shape = [dim.extent for dim in buffer_region.region]
if dtype is None:
dtype = buffer_region.buffer.dtype
if elem_offset is None and offset_factor == 0:
offset_factor = 1
buffer = tvm.tir.decl_buffer(
shape,
dtype,
buffer_name,
data,
strides,
elem_offset,
scope,
align,
offset_factor,
buffer_type,
axis_separators,
span=span,
)
self.context.current_block_scope().match_buffers.append(
tvm.tir.MatchBufferRegion(buffer, buffer_region)
)
else:
self.context.report_error(
"The source of match_buffer expected Var or BufferSlice, but got "
+ str(type(param)),
self.node.rhs.params[0].span,
)
self.context.update_symbol(buffer_name, buffer, self.node)
super().__init__(match_buffer, def_symbol=True)
@register
class BufferDeclare(SpecialStmt):
"""Special Stmt buffer_decl(shape, dtype, data, strides, elem_offset, scope, align,
offset_factor, buffer_type, axis_separators)
Example
-------
.. code-block:: python
A = T.buffer_decl((128, 128), dtype="float32")
"""
def __init__(self):
def buffer_decl(
shape,
dtype="float32",
data=None,
strides=None,
elem_offset=None,
scope="global",
align=-1,
offset_factor=0,
buffer_type="default",
axis_separators=None,
span=None,
):
if not isinstance(self.node, ast.Assign) or not len(self.node.lhs) == 1:
self.context.report_error(
"`buffer_decl` must be assigned to a single buffer, e.g. A = buffer_decl(...)",
self.node.span,
)
if strides is None:
strides = []
align = convert_to_int(align, "align", self.context.report_error, self.node.span)
offset_factor = convert_to_int(
offset_factor, "offset_factor", self.context.report_error, self.node.span
)
buffer_name: str = self.node.lhs[0].id.name
buffer = tvm.tir.decl_buffer(
shape,
dtype,
buffer_name,
data,
strides,
elem_offset,
scope,
align,
offset_factor,
buffer_type,
axis_separators,
span=span,
)
self.context.update_symbol(buffer_name, buffer, self.node)
return buffer
super().__init__(buffer_decl, def_symbol=True)
@register
class AllocBuffer(SpecialStmt):
"""Special function alloc_buffer(shape, dtype, data, strides, elem_offset, scope, align,
offset_factor, buffer_type, axis_separators)
Example
-------
.. code-block:: python
A = T.alloc_buffer((128, 128), dtype="float32")
"""
def __init__(self):
def alloc_buffer(
shape,
dtype="float32",
data=None,
strides=None,
elem_offset=None,
scope="global",
align=-1,
offset_factor=0,
buffer_type="default",
axis_separators=None,
span=None,
):
if not isinstance(self.node, ast.Assign) or not len(self.node.lhs) == 1:
self.context.report_error(
"`alloc_buffer` must be assigned to a single buffer, "
"e.g. A = alloc_buffer(...)",
self.node.span,
)
if strides is None:
strides = []
align = convert_to_int(align, "align", self.context.report_error, self.node.span)
offset_factor = convert_to_int(
offset_factor, "offset_factor", self.context.report_error, self.node.span
)
buffer_name: str = self.node.lhs[0].id.name
buffer = tvm.tir.decl_buffer(
shape,
dtype,
buffer_name,
data,
strides,
elem_offset,
scope,
align,
offset_factor,
buffer_type,
axis_separators,
span=span,
)
if self.context.current_block_scope():
self.context.current_block_scope().alloc_buffers.append(buffer)
else:
# If it is allocated outside all blocks, allocate it under root block.
self.context.root_alloc_buffers.append(buffer)
self.context.update_symbol(buffer_name, buffer, self.node)
super().__init__(alloc_buffer, def_symbol=True)
@register
class BlockReads(SpecialStmt):
"""Special function reads([read_regions], *other_regions)
Note
----
*other_region is an unpackable list of BufferSlice to support
reads syntax sugar like reads(BufferRegion1, BufferRegion2, ...)
Example
-------
.. code-block:: python
T.reads([A[vi: vi + 4, vk: vk + 4], B[vk: vk + 4, vj]])
"""
def __init__(self):
def reads(
*read_regions: Union[BufferSlice, List[BufferSlice]],
span: Span = None,
):
assert self.context, "call 'exit_scope' before 'enter_scope'"
block_scope = self.context.current_block_scope()
if block_scope is None:
self.context.report_error(
"Expected to declare read regions inside a block.",
span,
)
if block_scope.reads is not None:
self.context.report_error(
"Duplicate write region declaration, "
+ "previous one is "
+ str(", ".join(str(x) for x in block_scope.reads)),
span,
)
if len(read_regions) > 1:
for read_region in read_regions:
if not isinstance(read_region, BufferSlice):
self.context.report_error(
"Incorrect input type. Expected *BufferSlice or List[BufferSlice],"
+ f" but got {type(read_regions)}",
span,
)
elif len(read_regions) == 1:
if isinstance(read_regions[0], list):
read_regions = read_regions[0]
block_scope.reads = read_regions
super().__init__(reads, def_symbol=False)
@register
class BlockWrites(SpecialStmt):
"""Special function writes([write_regions], *other_regions)
Note
----
*other_region is an unpackable list of BufferSlice to support
writes syntax sugar like writes(BufferRegion1, BufferRegion2, ...)
Example
-------
.. code-block:: python
T.writes([C[vi: vi + 4, vj])
"""
def __init__(self):
def writes(
*write_regions: Union[BufferSlice, List[BufferSlice]],
span: Span = None,
):
assert self.context, "call 'exit_scope' before 'enter_scope'"
block_scope = self.context.current_block_scope()
if block_scope is None:
self.context.report_error(
"Expected to declare write regions inside a block.",
span,
)
if block_scope.writes is not None:
self.context.report_error(
"Duplicate write region declaration, "
+ "previous one is "
+ str(", ".join(str(x) for x in block_scope.writes)),
span,
)
if len(write_regions) > 1:
for write_region in write_regions:
if not isinstance(write_region, BufferSlice):
self.context.report_error(
"Incorrect input type. Expected *BufferSlice or List[BufferSlice],"
+ f" but got {type(write_regions)}",
span,
)
elif len(write_regions) == 1:
if isinstance(write_regions[0], list):
write_regions = write_regions[0]
block_scope.writes = write_regions
super().__init__(writes, def_symbol=False)
@register
class BlockAttr(SpecialStmt):
"""Special function block_attr({attr_key: attr_value})
Example
-------
.. code-block:: python
T.block_attr({"double_buffer_scope": 1})
"""
def __init__(self):
def block_attr(attrs: Mapping[str, Object], span: Span = None):
assert self.context, "call 'exit_scope' before 'enter_scope'"
block_scope = self.context.current_block_scope()
if block_scope is None:
self.context.report_error(
"Expected to declare block annotations inside a block.",
span,
)
if block_scope.annotations is not None:
self.context.report_error(
"Duplicate block annotations declaration, "
+ "previous one is "
+ str(block_scope.annotations),
span,
)
attrs = {
key: String(val) if isinstance(val, str) else val for key, val in attrs.items()
}
block_scope.annotations = attrs
super().__init__(block_attr, def_symbol=False)
class BlockAxis(SpecialStmt):
"""Special stmt for defining a spatial block axis
axis.S(dom, iter_value)
Example
-------
.. code-block:: python
vi = T.axis.S(128, i * 4 + j)
"""
def axis(
self,
var_name: str,
dom: Union[PrimExpr, Range],
value: PrimExpr,
iter_type: int,
span: Optional[Span] = None,
) -> None:
"""
Helper function for creating block axis
Parameters
----------
var_name : str
The name_hint of var
dom : Union[PrimExpr, Range]
The iter domain.
value : PrimExpr
The binding value
iter_type : int
The iteration type.
span : Optional[Span]
The location of this for in the source code.
"""
assert self.context, "call 'exit_scope' before 'enter_scope'"
block_scope: BlockInfo = self.context.current_block_scope()
if block_scope is None:
self.context.report_error(
"Expected to declare block axes inside a block.",
self.node.span,
)
if var_name in [iter_var.var.name for iter_var in block_scope.iter_vars]:
self.context.report_error("Duplicate block axis " + var_name, self.node.span)
dom = tvm.runtime.convert(dom)
if isinstance(dom, PrimExpr):
dom = tvm.ir.Range(dom)
elif isinstance(dom, tvm.ir.container.Array) and len(dom) == 2:
dom = tvm.ir.Range(dom[0], dom[1])
elif not isinstance(dom, tvm.ir.Range):
self.context.report_error(
f"Block axis domain expected PrimExpr or Range, but got {type(dom)}",
self.node.span,
)
block_var = tvm.tir.Var(var_name, dtype=dom.extent.dtype)
value = tvm.runtime.convert(value)
if not isinstance(value, PrimExpr):
self.context.report_error(
f"Block axis value expected PrimExpr, but got {type(value)}",
self.node.span,
)
iter_var = tvm.tir.IterVar(dom, block_var, iter_type)
block_scope.iter_vars.append(iter_var)
block_scope.iter_values.append(value)
self.context.update_symbol(var_name, block_var, self.node)
@register
class BlockAxisSpatial(BlockAxis):
"""Special stmt for defining a spatial block axis
axis.spatial(dom, iter_value)
Example
-------
.. code-block:: python
vi = T.axis.spatial(128, k)
"""
def __init__(self):
def axis_spatial(
dom: Union[PrimExpr, Tuple[PrimExpr, PrimExpr]], value: PrimExpr, span: Span = None
):
if not isinstance(self.node, ast.Assign) or not len(self.node.lhs) == 1:
self.context.report_error(
"`axis.spatial` must be assigned to a var, e.g. vi = axis.spatial(...)",
self.node.span,
)
self.axis(self.node.lhs[0].id.name, dom, value, IterVar.DataPar)
super().__init__(axis_spatial, def_symbol=True)
def signature(self) -> Tuple[str, Tuple[list, list, Any]]:
return "tir.axis.spatial", get_param_list(self.func)
@register
class BlockAxisS(BlockAxis):
"""The sugar special stmt for defining a spatial block axis
axis.S(dom, iter_value)
Example
-------
.. code-block:: python
vi = T.axis.S(128, k)
"""
def __init__(self):
def axis_spatial(
dom: Union[PrimExpr, Tuple[PrimExpr, PrimExpr]], value: PrimExpr, span: Span = None
):
if not isinstance(self.node, ast.Assign) or not len(self.node.lhs) == 1:
self.context.report_error(
"`axis.S` must be assigned to a var, e.g. vi = axis.S(...)",
self.node.span,
)
self.axis(self.node.lhs[0].id.name, dom, value, IterVar.DataPar)
super().__init__(axis_spatial, def_symbol=True)
def signature(self) -> Tuple[str, Tuple[list, list, Any]]:
return "tir.axis.S", get_param_list(self.func)
@register
class BlockAxisReduce(BlockAxis):
"""Special stmt for defining a reduce block axis
axis.reduce(dom, iter_value)
Example
-------
.. code-block:: python
vi = T.axis.reduce(128, k)
"""
def __init__(self):
def axis_reduce(
dom: Union[PrimExpr, Tuple[PrimExpr, PrimExpr]], value: PrimExpr, span: Span = None
):
if not isinstance(self.node, ast.Assign) or not len(self.node.lhs) == 1:
self.context.report_error(
"`axis.reduce` must be assigned` to a var, e.g. vi = axis.reduce(...)",
self.node.span,
)
self.axis(self.node.lhs[0].id.name, dom, value, IterVar.CommReduce)
super().__init__(axis_reduce, def_symbol=True)
def signature(self) -> Tuple[str, Tuple[list, list, Any]]:
return "tir.axis.reduce", get_param_list(self.func)
@register
class BlockAxisR(BlockAxis):
"""The sugar special stmt for defining a reduce block axis
axis.R(dom, iter_value)
Example
-------
.. code-block:: python
vi = T.axis.R(128, k)
"""
def __init__(self):
def axis_reduce(
dom: Union[PrimExpr, Tuple[PrimExpr, PrimExpr]], value: PrimExpr, span: Span = None
):
if not isinstance(self.node, ast.Assign) or not len(self.node.lhs) == 1:
self.context.report_error(
"`axis.R` must be assigned to a var, e.g. vi = axis.R(...)",
self.node.span,
)
self.axis(self.node.lhs[0].id.name, dom, value, IterVar.CommReduce)
super().__init__(axis_reduce, def_symbol=True)
def signature(self) -> Tuple[str, Tuple[list, list, Any]]:
return "tir.axis.R", get_param_list(self.func)
@register
class BlockAxisScan(BlockAxis):
"""Special stmt for defining a ordered block axis
axis.scan(dom, iter_value)
Example
-------
.. code-block:: python
vi = T.axis.scan(128, k)
"""
def __init__(self):
def axis_scan(
dom: Union[PrimExpr, Tuple[PrimExpr, PrimExpr]], value: PrimExpr, span: Span = None
):
if not isinstance(self.node, ast.Assign) or not len(self.node.lhs) == 1:
self.context.report_error(
"`axis.scan` must be assigned to a var, e.g. vi = axis.scan(...)",
self.node.span,
)
self.axis(self.node.lhs[0].id.name, dom, value, IterVar.Ordered)
super().__init__(axis_scan, def_symbol=True)
def signature(self) -> Tuple[str, Tuple[list, list, Any]]:
return "tir.axis.scan", get_param_list(self.func)
@register
class BlockAxisOpaque(BlockAxis):
"""Special stmt for defining a opaque block axis
axis.opaque(dom, iter_value)
Example
-------
.. code-block:: python
vi = T.axis.opaque(128, k)
"""
def __init__(self):
def axis_opaque(
dom: Union[PrimExpr, Tuple[PrimExpr, PrimExpr]], value: PrimExpr, span: Span = None
):
if not isinstance(self.node, ast.Assign) or not len(self.node.lhs) == 1:
self.context.report_error(
"`axis.opaque` must be assigned to a var, e.g. vi = axis.opaque(...)",
self.node.span,
)
self.axis(self.node.lhs[0].id.name, dom, value, IterVar.DimInfo)
super().__init__(axis_opaque, def_symbol=True)
def signature(self) -> Tuple[str, Tuple[list, list, Any]]:
return "tir.axis.opaque", get_param_list(self.func)
@register
class BlockAxisRemap(BlockAxis):
"""Special stmt for remapping loops vars to block axes.
axis.remap(iter_type, iter_value)
Note
----
Iter_type is a string consisting of 'S' and 'R', where 'S' means
for spatial and 'R' means for reduce.
Example
-------
.. code-block:: python
vi, vj = T.axis.remap("SS", [i, j])
"""
def __init__(self):
def axis_remap(iter_types: str, loop_vars: List[tvm.tir.expr.Var], span: Span = None):
if not isinstance(self.node, ast.Assign) or not len(self.node.lhs) >= 1:
self.context.report_error(
"`axis.remap` must be assigned to one or more vars, "
"e.g. vi, vj = axis.remap(...)",
self.node.span,
)
var_num: int = len(self.node.lhs)
if var_num != len(iter_types):
self.context.report_error(
f"`iter_type` expected {var_num} charactor(s), "
f"but got {len(iter_types)}: {iter_types}",
span,
)
if var_num != len(loop_vars):
self.context.report_error(
f"`iter_type` expected {var_num} loop var(s), "
f"but got {len(loop_vars)}: {loop_vars}",
span,
)
for var, iter_ty, loop_var in zip(self.node.lhs, iter_types, loop_vars):
iter_type: int
if iter_ty == "S":
iter_type = IterVar.DataPar
elif iter_ty == "R":
iter_type = IterVar.CommReduce
else:
self.context.report_error(
f'`iter_type` only expected "S" (for spatial) or "R" (for reduce), '
f'but got "{iter_ty}"',
span,
)
if not isinstance(loop_var, tvm.tir.expr.Var):
self.context.report_error(
f"Values of `axis.remap` expected single loop var, but got {loop_var}",
loop_var.span,
)
loops = self.context.loop_stack
if loop_var not in loops:
self.context.report_error(
f"Cannot find loop var {loop_var} in loop nesting.",
span,
)
self.axis(var.id.name, loops[loop_var], loop_var, iter_type)
super().__init__(axis_remap, def_symbol=True)
def signature(self) -> Tuple[str, Tuple[list, list, Any]]:
return "tir.axis.remap", get_param_list(self.func)
@register
class BlockPredicate(SpecialStmt):
"""Special function where(predicate)
Example
-------
.. code-block:: python
T.where(i < 4)
"""
def __init__(self):
def where(predicate, span=None):
assert self.context, "call 'exit_scope' before 'enter_scope'"
block_scope = self.context.current_block_scope()
if block_scope is None:
self.context.report_error(
"Expected to declare the predicate inside a block.",
span,
)
if block_scope.predicate is not None:
self.context.report_error(
"Duplicate block predicate declaration, "
+ "previous one is "
+ str(block_scope.predicate),
span,
)
block_scope.predicate = predicate
super().__init__(where, def_symbol=False)
@register
class VarDef(SpecialStmt):
"""Special function for defining a Var"""
def __init__(self):
def var(dtype, span):
assert isinstance(
self.node, ast.Assign
), f"VarDef expected ast.Assign but got {type(self.node)}"
names = [x.id.name for x in self.node.lhs]
if len(names) != 1:
self.context.report_error(
f"VarDef expected assign to only one var, but got {names}", span
)
v = Var(names[0], dtype, span=span)
self.context.update_symbol(v.name, v, self.node)
super().__init__(var, def_symbol=True)
@register
class BufferVarDef(SpecialStmt):
"""Special function for defining a variable of pointer type"""
def __init__(self):
def buffer_var(dtype, storage_scope, span):
assert isinstance(
self.node, ast.Assign
), f"BufferVarDef expected ast.Assign but got {type(self.node)}"
names = [x.id.name for x in self.node.lhs]
if len(names) != 1:
self.context.report_error(
f"VarDef expected assign to only one var, but got {names}", span
)
ptr_type = tvm.ir.PointerType(tvm.ir.PrimType(dtype), storage_scope)
v = Var(names[0], ptr_type, span=span)
self.context.update_symbol(v.name, v, self.node)
super().__init__(buffer_var, def_symbol=True)
@register
class EnvThread(SpecialStmt):
"""Bind a var to thread env"""
def __init__(self):
def env_thread(env_name, span):
assert isinstance(
self.node, ast.Assign
), f"EnvThread expected ast.Assign but got {type(self.node)}"
names = [x.id.name for x in self.node.lhs]
if len(names) != 1:
self.context.report_error(
f"VarDef expected assign to only one var, but got {names}", span
)
v = Var(names[0], dtype="int32", span=span)
self.context.func_var_env_dict[v] = env_name
self.context.update_symbol(v.name, v, self.node)
super().__init__(env_thread, def_symbol=True)
@register
class FuncAttr(SpecialStmt):
"""Special Stmt for declaring the DictAttr of PrimFunc
Example
-------
.. code-block:: python
T.func_attr({"tir.noalias": True, "global_symbol"})
"""
def __init__(self):
def func_attr(dict_attr, span):
self.context.func_dict_attr = dict_attr
super().__init__(func_attr, def_symbol=False)
@register
class PreflattenedBufferMap(SpecialStmt):
"""Special Stmt for declaring the PrimFunc::preflattened_buffer_map
Example
-------
.. code-block:: python
A0 = T.match_buffer(A, (48,), dtype="float32")
T.preflattened_buffer_map(A, (1, 4, 4, 3), elem_offset=1, align=4, dtype="float32")
"""
def __init__(self):
def preflattened_buffer(
postflattened,
shape,
dtype="float32",
data=None,
strides=None,
elem_offset=None,
scope="global",
align=-1,
offset_factor=0,
buffer_type="default",
span=None,
):
param = None
for key, value in self.context.func_buffer_map.items():
if value.same_as(postflattened):
param = key
break
assert (
param is not None
), f"Post-flatten buffer {postflattened.name} does not appear in the buffer map."
if data is None:
data = self.context.func_buffer_map[param].data
buffer_name: str = f"{postflattened.name}_preflatten"
if align != -1:
if isinstance(align, IntImm):
align = align.value
else:
assert isinstance(align, int), f"align: want int or IntImm, got {align!r}"
if offset_factor != 0:
if isinstance(offset_factor, IntImm):
offset_factor = offset_factor.value
else:
assert isinstance(
offset_factor, int
), f"offset_factor: want int or IntImm, got {offset_factor!r}"
preflattened = tvm.tir.decl_buffer(
shape,
dtype,
buffer_name,
data,
strides,
elem_offset,
scope,
align,
offset_factor,
buffer_type,
span=span,
)
self.context.func_preflattened_buffer_map[param] = preflattened
super().__init__(preflattened_buffer, def_symbol=False)
@register
class TargetAttrValue(SpecialStmt):
"""Special Stmt for target attr value.
Example
-------
.. code-block:: python
T.target("llvm")
"""
def __init__(self):
def target(*args, span):
self.context.report_error(f"T.target should not appear as a stmt", span)
super().__init__(target, def_symbol=False)
def __call__(self, target_config):
if not isinstance(target_config, (str, dict)):
raise ValueError(
f"T.target expected a config dict or string, but got {type(target_config)}"
)
return Target(target_config)
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/tir/ty.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""TVM Script Parser Typing Class for TIR
This module provides typing class for TVM script type annotation usage, it can be viewed as
a wrapper for uniform Type system in IR
"""
# pylint: disable=invalid-name
from numbers import Integral
import tvm
from .special_stmt import SpecialStmt, convert_to_int
class TypeGeneric: # pylint: disable=too-few-public-methods
"""Base class for all the TVM script typing class"""
def evaluate(self):
"""Return an actual ir.Type Object that this Generic class wraps"""
raise TypeError("Cannot get tvm.Type from a generic type")
def require_type_generic_at(self, idx): # pylint: disable=unused-argument
"""If True, the `idx`th type argument must be TypeGeneric"""
return True
# This function is added here to avoid a pylint error
# for T.int/float below not being callable
def __call__(self):
raise NotImplementedError()
class ConcreteType(TypeGeneric): # pylint: disable=too-few-public-methods, abstract-method
"""TVM script typing class for uniform Type objects
Params
------
vtype: Union[str, tvm.ir.Type]
The IR type represented by the type annotation. If a string
(e.g. "float32"), this represents a `ir.PrimType` generated
from that string. If a `ir.Type` is provided, this represents
the type provided.
"""
def __init__(self, vtype):
if isinstance(vtype, tvm.ir.Type):
self.type = vtype
else:
self.type = tvm.ir.PrimType(vtype)
def __call__(self, *args): # pylint: disable=arguments-differ
pass
def evaluate(self):
return self.type
class VoidType(ConcreteType): # pylint: disable=too-few-public-methods, abstract-method
"""TVM script typing class for void type"""
def __init__(self):
super().__init__("")
class GenericPtrType(TypeGeneric): # pylint: disable=abstract-method
"""TVM script typing class generator for PtrType
[] operator is overloaded, accepts a ConcreteType and an optional storage scope string,
returns a ConcreteType wrapping PtrType
"""
def __getitem__(self, args):
if isinstance(args, TypeGeneric):
args = [args]
if len(args) == 1:
vtype, scope = args[0], "global"
elif len(args) == 2:
vtype, scope = args[0], args[1]
else:
raise TypeError(f"Illegal type argument num for Ptr")
if not isinstance(vtype, TypeGeneric):
raise TypeError(f"Ptr expects a type argument, but received {type(vtype).__name__}")
if not isinstance(scope, str):
raise TypeError(f"Ptr expects storage scope argument be a string")
return ConcreteType(tvm.ir.PointerType(vtype.evaluate(), scope))
def require_type_generic_at(self, idx):
return idx != 1 # the second argument is storage scope for Ptr
class GenericTupleType(TypeGeneric): # pylint: disable=abstract-method
"""TVM script typing class generator for TupleType
[] operator is overloaded, accepts a list of ConcreteType and returns a ConcreteType
wrapping TupleType
"""
def __getitem__(self, vtypes):
if isinstance(vtypes, TypeGeneric):
vtypes = [vtypes]
return ConcreteType(tvm.ir.TupleType([vtype.evaluate() for vtype in vtypes]))
class GenericBufferType(SpecialStmt): # pylint: disable=too-few-public-methods, abstract-method
"""TVM script typing class for uniform Type objects"""
def __init__(self, vtype):
def match_buffer_syntax_sugar(
shape,
dtype: str = "float32",
name: str = None,
data=None,
strides=None,
elem_offset=None,
scope="global",
align=-1,
offset_factor=0,
buffer_type="default",
axis_separators=None,
span=None,
):
if strides is None:
strides = []
align = convert_to_int(align, "align", self.context.report_error, self.node.span)
offset_factor = convert_to_int(
offset_factor, "offset_factor", self.context.report_error, self.node.span
)
buffer = tvm.tir.decl_buffer(
shape,
dtype,
name,
data,
strides,
elem_offset,
scope,
align,
offset_factor,
buffer_type,
axis_separators,
span=span,
)
return buffer
self.type = vtype
super().__init__(match_buffer_syntax_sugar, def_symbol=True)
def __call__(
self,
shape,
dtype="float32",
*,
name: str = None,
data=None,
strides=None,
elem_offset=None,
scope="global",
align=-1,
offset_factor=0,
buffer_type="default",
axis_separators=None,
span=None,
):
"""
This function is for Buffer(...) syntax sugar.
"""
pass # pylint: disable=unnecessary-pass
def __getitem__(self, args):
"""
This function is for Buffer[...] syntax sugar
Note that args is the list of all arguments
"""
if len(args) < 2:
raise ValueError("T.Buffer[...] needs at least two arguments: shape and dtype.")
shape = args[0]
dtype = args[1]
valid_shape = isinstance(shape, (tvm.ir.PrimExpr, Integral, tuple, list))
valid_dtype = isinstance(dtype, str)
if not (valid_shape and valid_dtype):
raise ValueError(
"The first argument of T.Buffer[...] needs to be a tuple, "
"followed by the second argument dtype as a string"
)
# add all floating point and integer datatypes to the module
for _dtype in ["float", "uint", "int"]:
for _size in ["8", "16", "32", "64"]:
for _lanes in ["", "x4", "x8", "x16", "x32", "x64"]:
_name = _dtype + _size + _lanes
globals()[_name] = ConcreteType(_name)
# All other DataType annotations are represented with the same string
# as is used by `tvm.runtime.DataType`. This does redefine the Python
# built-in bool, but only within the context of `tvm.script.tir.ty`
# and `tvm.script.tir` modules. The `T.boolean` alias is maintained
# for backwards compatibility.
bool = ConcreteType("bool") # pylint: disable=redefined-builtin
boolean = bool
handle = ConcreteType("handle")
void = VoidType()
Ptr = GenericPtrType()
Tuple = GenericTupleType()
# we don't have 'buffer' type on the cpp side
# thus 'handle' is used here for convenience's sake
Buffer = GenericBufferType("handle")
| https://github.com/zk-ml/tachikoma |
python/tvm/script/parser_v1/utils.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Helper functions in TVM Script Parser"""
from typing import Callable, List, Any, Optional, Tuple
import inspect
import synr
from tvm.ir import Span, SourceName
from tvm.error import DiagnosticError
def get_param_list(
func: Callable,
) -> Tuple[List[str], List[Tuple[str, Tuple[Any, ...]]], Optional[str]]:
"""Get the parameter list from definition of function"""
full_arg_spec: inspect.FullArgSpec = inspect.getfullargspec(func)
args: List[str]
defaults: Optional[Tuple[Any, ...]]
kwonlyargs: List[str]
args, defaults, kwonlyargs = (
full_arg_spec.args,
full_arg_spec.defaults,
full_arg_spec.kwonlyargs,
)
if defaults is None:
defaults = tuple()
if full_arg_spec.varkw is not None:
raise RuntimeError(
"TVM Script register error : variable keyword argument is not supported now"
)
if len(kwonlyargs) == 1 and kwonlyargs[0] == "span":
pass
elif not len(kwonlyargs) == 0:
raise RuntimeError("TVM Script register error : keyword only argument is not supported now")
pos_only: List[str] = list()
for arg in args[: len(args) - len(defaults)]:
if arg != "span":
pos_only.append(arg)
kwargs: List[Tuple[str, Tuple[Any, ...]]] = list()
for default, arg in zip(defaults, args[len(args) - len(defaults) :]):
if arg != "span":
kwargs.append((arg, default))
return pos_only, kwargs, full_arg_spec.varargs
def tvm_span_from_synr(span: synr.ast.Span) -> Span:
"""Convert a synr span to a TVM span"""
return Span(
SourceName(span.filename),
span.start_line,
span.end_line,
span.start_column,
span.end_column,
)
def synr_span_from_tvm(span: Span) -> synr.ast.Span:
"""Convert a TVM span to a synr span"""
return synr.ast.Span(
span.source_name.name,
span.line,
span.column,
span.end_line,
span.end_column,
)
def call_with_error_reporting(
report_error,
node_span,
func,
*args,
**kwargs,
):
"""Call function with exception handling and report error using node_span"""
try:
return func(*args, **kwargs)
except DiagnosticError:
raise
except Exception as err: # pylint: disable=broad-except
# printing last non-empty row of error message.
error_msg = list(filter(None, str(err).split("\n")))[-1]
report_error(error_msg, node_span)
| https://github.com/zk-ml/tachikoma |
python/tvm/script/printer/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
TVMScript Unified Printer
This package provides a set of APIs to print supported TVM IR into TVMScript
in a roundtrippable way.
https://github.com/apache/tvm-rfcs/blob/main/rfcs/0074-tvmscript-unified-printer.md
"""
from . import _ffi_api
from .entry import script
| https://github.com/zk-ml/tachikoma |
python/tvm/script/printer/_ffi_api.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""FFI APIs for tvm.script.printer"""
import tvm._ffi
tvm._ffi._init_api("script.printer", __name__) # pylint: disable=protected-access
| https://github.com/zk-ml/tachikoma |
python/tvm/script/printer/doc.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Doc types for TVMScript Unified Printer"""
from enum import IntEnum, unique
from typing import Dict, List, Optional, Sequence, Tuple, Union
from tvm._ffi import register_object
from tvm.runtime import Object, ObjectPath
from tvm.tir import FloatImm, IntImm
from . import _ffi_api
class Doc(Object):
"""Base class of all Docs"""
@property
def source_paths(self) -> Sequence[ObjectPath]:
"""
The list of object paths of the source IR node.
This is used to trace back to the IR node position where
this Doc is generated, in order to position the diagnostic
message.
"""
return self.__getattr__("source_paths") # pylint: disable=unnecessary-dunder-call
@source_paths.setter
def source_paths(self, value):
return _ffi_api.DocSetSourcePaths(self, value) # type: ignore # pylint: disable=no-member
class ExprDoc(Doc):
"""Base class of all expression Docs"""
def attr(self, name: str) -> "AttrAccessDoc":
"""
Create a doc that represents attribute access on self.
Parameters
----------
name : str
The attribute name to access
Returns
-------
doc : AttrAccessDoc
"""
return _ffi_api.ExprDocAttr(self, name) # type: ignore # pylint: disable=no-member
def call(self, *args: Tuple["ExprDoc"], **kwargs: Dict[str, "ExprDoc"]) -> "CallDoc":
"""
Create a doc that represents function call, with self as callee.
Parameters
----------
*args : ExprDoc
The positional arguments of the function call.
**kwargs
The keyword arguments of the function call.
Returns
-------
doc : CallDoc
"""
kwargs_keys = list(kwargs.keys())
kwargs_values = list(kwargs.values())
return _ffi_api.ExprDocCall(self, args, kwargs_keys, kwargs_values) # type: ignore # pylint: disable=no-member
_IndexType = Union["ExprDoc", "SliceDoc"]
def __getitem__(self, indices: Union[Tuple[_IndexType], _IndexType]) -> "IndexDoc":
"""
Create a doc that represents index access on self.
Parameters
----------
indices : Union[Tuple[Union["ExprDoc", "SliceDoc"]], Union["ExprDoc", "SliceDoc"]]
The indices to access
Returns
-------
doc : IndexDoc
"""
if not isinstance(indices, tuple):
indices = (indices,)
return _ffi_api.ExprDocIndex(self, indices) # type: ignore # pylint: disable=no-member
def __iter__(self):
"""
This is implemented to prevent confusing error message when trying to use ExprDoc
as iterable. According to PEP-234, An object can be iterated over if it
implements __iter__() or __getitem__(). If an object has only __getitem__
but not __iter__, interpreter will iterate the object by calling
__getitem__ with 0, 1, 2, ..., until an IndexError is raised.
https://peps.python.org/pep-0234/#python-api-specification
"""
raise RuntimeError(f"{self.__class__} cannot be used as iterable.")
class StmtDoc(Doc):
"""Base class of statement doc"""
@property
def comment(self) -> Optional[str]:
"""
The comment of this doc.
The actual position of the comment depends on the type of Doc
and also the DocPrinter implementation. It could be on the same
line as the statement, or the line above, or inside the statement
if it spans over multiple lines.
"""
# It has to call the dunder method to avoid infinite recursion
return self.__getattr__("comment") # pylint: disable=unnecessary-dunder-call
@comment.setter
def comment(self, value):
return _ffi_api.StmtDocSetComment(self, value) # type: ignore # pylint: disable=no-member
@register_object("script.printer.StmtBlockDoc")
class StmtBlockDoc(Doc):
"""The container doc that holds a list of StmtDoc.
Note: `StmtBlockDoc` is never used in the IR, but a temporary container that allows holding a
list of StmtDoc.
"""
stmts: Sequence[StmtDoc]
def __init__(self, stmts: List[StmtDoc]):
self.__init_handle_by_constructor__(_ffi_api.StmtBlockDoc, stmts) # type: ignore # pylint: disable=no-member
@register_object("script.printer.LiteralDoc")
class LiteralDoc(ExprDoc):
"""Doc that represents literal value"""
value: Union[str, IntImm, FloatImm, None]
def __init__(self, value: Union[str, float, bool, int, None]):
if value is None:
self.__init_handle_by_constructor__(_ffi_api.LiteralDocNone) # type: ignore # pylint: disable=no-member
elif isinstance(value, str):
self.__init_handle_by_constructor__(_ffi_api.LiteralDocStr, value) # type: ignore # pylint: disable=no-member
elif isinstance(value, float):
self.__init_handle_by_constructor__(_ffi_api.LiteralDocFloat, value) # type: ignore # pylint: disable=no-member
elif isinstance(value, bool):
self.__init_handle_by_constructor__(_ffi_api.LiteralDocBoolean, value) # type: ignore # pylint: disable=no-member
elif isinstance(value, int):
self.__init_handle_by_constructor__(_ffi_api.LiteralDocInt, value) # type: ignore # pylint: disable=no-member
else:
raise TypeError(f"Unsupported type {type(value)} for LiteralDoc")
@register_object("script.printer.IdDoc")
class IdDoc(ExprDoc):
"""Doc that represents identifier"""
name: str
def __init__(self, name: str):
self.__init_handle_by_constructor__(_ffi_api.IdDoc, name) # type: ignore # pylint: disable=no-member
@register_object("script.printer.AttrAccessDoc")
class AttrAccessDoc(ExprDoc):
"""Doc that represents attribute access on an expression"""
value: ExprDoc
name: str
def __init__(self, value: ExprDoc, name: str):
self.__init_handle_by_constructor__(_ffi_api.AttrAccessDoc, value, name) # type: ignore # pylint: disable=no-member
@register_object("script.printer.IndexDoc")
class IndexDoc(ExprDoc):
"""Doc that represents index access on an expression"""
value: ExprDoc
indices: Sequence[Union[ExprDoc, "SliceDoc"]]
def __init__(self, value: ExprDoc, indices: List[Union[ExprDoc, "SliceDoc"]]):
self.__init_handle_by_constructor__(_ffi_api.IndexDoc, value, indices) # type: ignore # pylint: disable=no-member
@register_object("script.printer.CallDoc")
class CallDoc(ExprDoc):
"""Doc that represents function call"""
callee: ExprDoc
args: Sequence[ExprDoc]
kwargs_keys: Sequence[str]
kwargs_values: Sequence[ExprDoc]
def __init__(self, callee: ExprDoc, *args: Tuple[ExprDoc], **kwargs: Dict[str, ExprDoc]):
kwargs_keys = list(kwargs.keys())
kwargs_values = list(kwargs.values())
self.__init_handle_by_constructor__(
_ffi_api.CallDoc, # type: ignore # pylint: disable=no-member
callee,
args,
kwargs_keys,
kwargs_values,
)
@unique
class OperationKind(IntEnum):
"""
This enum represents the kind of operation (operator) in OperationDoc
It's mirrored from OperationDocNode::Kind at include/tvm/script/printer/doc.h
"""
# The name convention follows https://docs.python.org/3/library/ast.html
# pylint: disable=invalid-name
_UnaryStart = 0
USub = 1
Invert = 2
Not = 3
_UnaryEnd = 4
_BinaryStart = 5
Add = 6
Sub = 7
Mult = 8
Div = 9
FloorDiv = 10
Mod = 11
Pow = 12
LShift = 13
RShift = 14
BitAnd = 15
BitOr = 16
BitXor = 17
Lt = 18
LtE = 19
Eq = 20
NotEq = 21
Gt = 22
GtE = 23
And = 24
Or = 25
_BinaryEnd = 26
_SpecialStart = 27
IfThenElse = 28
_SpecialEnd = 29
# pylint: enable=invalid-name
@register_object("script.printer.OperationDoc")
class OperationDoc(ExprDoc):
"""
Doc that represents operation
It can be unary, binary and other special operators (for example, the
if-then-else expression).
"""
kind: OperationKind
operands: Sequence[ExprDoc]
def __init__(self, kind: OperationKind, operands: List[ExprDoc]):
self.__init_handle_by_constructor__(_ffi_api.OperationDoc, kind, operands) # type: ignore # pylint: disable=no-member
@register_object("script.printer.LambdaDoc")
class LambdaDoc(ExprDoc):
"""Doc that represents lambda function"""
args: Sequence[IdDoc]
body: ExprDoc
def __init__(self, args: List[IdDoc], body: ExprDoc):
self.__init_handle_by_constructor__(_ffi_api.LambdaDoc, args, body) # type: ignore # pylint: disable=no-member
@register_object("script.printer.TupleDoc")
class TupleDoc(ExprDoc):
"""Doc that represents tuple literal"""
elements: Sequence[ExprDoc]
def __init__(self, elements: List[ExprDoc]):
self.__init_handle_by_constructor__(_ffi_api.TupleDoc, elements) # type: ignore # pylint: disable=no-member
@register_object("script.printer.ListDoc")
class ListDoc(ExprDoc):
"""Doc that represents list literal"""
elements: Sequence[ExprDoc]
def __init__(self, elements: List[ExprDoc]):
self.__init_handle_by_constructor__(_ffi_api.ListDoc, elements) # type: ignore # pylint: disable=no-member
@register_object("script.printer.DictDoc")
class DictDoc(ExprDoc):
"""Doc that represents dict literal"""
keys: Sequence[ExprDoc]
values: Sequence[ExprDoc]
def __init__(self, content: Dict[ExprDoc, ExprDoc]):
keys = list(content.keys())
values = list(content.values())
self.__init_handle_by_constructor__(_ffi_api.DictDoc, keys, values) # type: ignore # pylint: disable=no-member
@register_object("script.printer.SliceDoc")
class SliceDoc(ExprDoc):
"""
Doc that represents slice in Index expression
This doc can only appear in `IndexDoc.indices`.
"""
start: Optional[ExprDoc]
stop: Optional[ExprDoc]
step: Optional[ExprDoc]
def __init__(
self,
start: Optional[ExprDoc] = None,
stop: Optional[ExprDoc] = None,
step: Optional[ExprDoc] = None,
):
self.__init_handle_by_constructor__(_ffi_api.SliceDoc, start, stop, step) # type: ignore # pylint: disable=no-member
@register_object("script.printer.AssignDoc")
class AssignDoc(StmtDoc):
"""Doc that represents assign statement."""
lhs: ExprDoc
rhs: Optional[ExprDoc]
annotation: Optional[ExprDoc]
def __init__(self, lhs: ExprDoc, rhs: Optional[ExprDoc], annotation: Optional[ExprDoc] = None):
self.__init_handle_by_constructor__(
_ffi_api.AssignDoc, # type: ignore # pylint: disable=no-member
lhs,
rhs,
annotation,
)
@register_object("script.printer.IfDoc")
class IfDoc(StmtDoc):
"""Doc that represent if-then-else statement."""
predicate: ExprDoc
then_branch: Sequence[StmtDoc]
else_branch: Sequence[StmtDoc]
def __init__(self, predicate: ExprDoc, then_branch: List[StmtDoc], else_branch: List[StmtDoc]):
self.__init_handle_by_constructor__(
_ffi_api.IfDoc, # type: ignore # pylint: disable=no-member
predicate,
then_branch,
else_branch,
)
@register_object("script.printer.WhileDoc")
class WhileDoc(StmtDoc):
"""Doc that represents while statement."""
predicate: ExprDoc
body: Sequence[StmtDoc]
def __init__(self, predicate: ExprDoc, body: List[StmtDoc]):
self.__init_handle_by_constructor__(_ffi_api.WhileDoc, predicate, body) # type: ignore # pylint: disable=no-member
@register_object("script.printer.ForDoc")
class ForDoc(StmtDoc):
"""Doc that represents for statement."""
lhs: ExprDoc
rhs: ExprDoc
body: Sequence[StmtDoc]
def __init__(self, lhs: ExprDoc, rhs: ExprDoc, body: List[StmtDoc]):
self.__init_handle_by_constructor__(_ffi_api.ForDoc, lhs, rhs, body) # type: ignore # pylint: disable=no-member
@register_object("script.printer.ScopeDoc")
class ScopeDoc(StmtDoc):
"""
Doc that represents special scopes.
Specifically, this means the with statement in Python:
with <rhs> as <lhs>:
<body...>
"""
lhs: Optional[ExprDoc]
rhs: ExprDoc
body: Sequence[StmtDoc]
def __init__(self, lhs: Optional[ExprDoc], rhs: ExprDoc, body: List[StmtDoc]):
self.__init_handle_by_constructor__(_ffi_api.ScopeDoc, lhs, rhs, body) # type: ignore # pylint: disable=no-member
@register_object("script.printer.ExprStmtDoc")
class ExprStmtDoc(StmtDoc):
"""Doc that represents an expression as statement."""
expr: ExprDoc
def __init__(self, expr: ExprDoc):
self.__init_handle_by_constructor__(_ffi_api.ExprStmtDoc, expr) # type: ignore # pylint: disable=no-member
@register_object("script.printer.AssertDoc")
class AssertDoc(StmtDoc):
"""Doc that represents assert statement."""
test: ExprDoc
msg: Optional[ExprDoc]
def __init__(self, test: ExprDoc, msg: Optional[ExprDoc] = None):
self.__init_handle_by_constructor__(_ffi_api.AssertDoc, test, msg) # type: ignore # pylint: disable=no-member
@register_object("script.printer.ReturnDoc")
class ReturnDoc(StmtDoc):
"""Doc that represents return statement."""
value: ExprDoc
def __init__(self, value: ExprDoc):
self.__init_handle_by_constructor__(_ffi_api.ReturnDoc, value) # type: ignore # pylint: disable=no-member
@register_object("script.printer.FunctionDoc")
class FunctionDoc(StmtDoc):
"""Doc that represents function definition."""
name: IdDoc
args: Sequence[AssignDoc]
decorators: Sequence[ExprDoc]
return_type: Optional[ExprDoc]
body: Sequence[StmtDoc]
def __init__(
self,
name: IdDoc,
args: List[AssignDoc],
decorators: List[ExprDoc],
return_type: Optional[ExprDoc],
body: List[StmtDoc],
):
self.__init_handle_by_constructor__(
_ffi_api.FunctionDoc, # type: ignore # pylint: disable=no-member
name,
args,
decorators,
return_type,
body,
)
@register_object("script.printer.ClassDoc")
class ClassDoc(StmtDoc):
"""Doc that represents class definition."""
name: IdDoc
decorators: Sequence[ExprDoc]
body: Sequence[StmtDoc]
def __init__(self, name: IdDoc, decorators: List[ExprDoc], body: List[StmtDoc]):
self.__init_handle_by_constructor__(
_ffi_api.ClassDoc, # type: ignore # pylint: disable=no-member
name,
decorators,
body,
)
| https://github.com/zk-ml/tachikoma |
python/tvm/script/printer/doc_printer.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Functions to print doc into text format"""
from typing import Optional
from tvm.runtime.object_path import ObjectPath
from . import _ffi_api
from .doc import Doc
def to_python_script(
doc: Doc,
indent_spaces: int = 4,
print_line_numbers: bool = False,
num_context_lines: Optional[int] = None,
path_to_underline: Optional[ObjectPath] = None,
) -> str:
"""Convert Doc into Python script.
Parameters
----------
doc : Doc
The doc to convert into Python script
indent_spaces : int
The number of indent spaces to use in the output
print_line_numbers: bool
Whether to print line numbers
num_context_lines : Optional[int]
Number of context lines to print around the underlined text
path_to_underline : Optional[ObjectPath]
Object path to be underlined
Returns
-------
script : str
The text representation of Doc in Python syntax
"""
if num_context_lines is None:
num_context_lines = -1
return _ffi_api.DocToPythonScript( # type: ignore
doc, indent_spaces, print_line_numbers, num_context_lines, path_to_underline
)
| https://github.com/zk-ml/tachikoma |
python/tvm/script/printer/entry.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
This file contains the entry point of TVMScript Unified Printer.
"""
from typing import Dict, Optional
from tvm.runtime import Object, ObjectPath
from . import _ffi_api
def script( # pylint: disable=too-many-arguments
root_node: Object,
ir_name: str,
ir_prefix: Dict[str, str],
indent_spaces: int = 4,
print_line_numbers: bool = False,
num_context_lines: int = -1,
path_to_underline: Optional[ObjectPath] = None,
) -> str:
"""
Print IR graph as TVMScript code
Parameters
----------
root_node : Object
The root node to print.
ir_name : str
The dispatch token of the target IR, e.g., "tir", "relax".
ir_prefix : Dict[str, str]
The symbol name for TVMScript IR namespaces. For example,
{"tir": "T"}.
indent_spaces : int
The number of indent spaces to use in the output
print_line_numbers: bool
Whether to print line numbers
num_context_lines : Optional[int]
Number of context lines to print around the underlined text
path_to_underline : Optional[ObjectPath]
Object path to be underlined
Returns
-------
script : str
The TVMScript code of the root_node
"""
return _ffi_api.Script( # type: ignore # pylint: disable=no-member
root_node,
ir_name,
ir_prefix,
indent_spaces,
print_line_numbers,
num_context_lines,
path_to_underline,
)
| https://github.com/zk-ml/tachikoma |
python/tvm/script/printer/frame.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Frame is the core data structure for semantic information when printing
IR graph into TVMScript code.
"""
from typing import Callable, Sequence
from tvm._ffi import register_object
from tvm.runtime import Object
from tvm.script.printer.doc import StmtDoc
from . import _ffi_api
class Frame(Object):
"""
Frame is the core data structure for semantic information
when printing IR graph into TVMScript code.
Frame base class manages a list of callbacks to be executed
when frame goes out of scope.
"""
def add_exit_callback(self, callback: Callable[[], None]) -> None:
"""
Adds a callback function to be executed when frame goes out of scope.
Parameters
----------
callback : Callable[[], None]
The callback function.
"""
_ffi_api.FrameAddExitCallback(self, callback) # type: ignore # pylint: disable=no-member
def __enter__(self):
_ffi_api.FrameEnterWithScope(self) # type: ignore # pylint: disable=no-member
return self
def __exit__(self, *exception_info):
_ffi_api.FrameExitWithScope(self) # type: ignore # pylint: disable=no-member
@register_object("script.printer.MetadataFrame")
class MetadataFrame(Frame):
"""
MetadataFrame contains information like contant parameter array.
"""
metadata: Sequence[Object]
def __init__(self):
self.__init_handle_by_constructor__(_ffi_api.MetadataFrame) # type: ignore # pylint: disable=no-member
@register_object("script.printer.VarDefFrame")
class VarDefFrame(Frame):
"""
VarDefFrame contains information about the free variables that needs to
be defined at the beginning of the printed snippet.
"""
stmts: Sequence[StmtDoc]
def __init__(self):
self.__init_handle_by_constructor__(_ffi_api.VarDefFrame) # type: ignore # pylint: disable=no-member
| https://github.com/zk-ml/tachikoma |
python/tvm/script/printer/ir_docsifier.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
IRDocsifier is the top-level interface in the process of transforming
IR graph into Doc tree, during printing IR graph as TVMScript code.
"""
import atexit
from contextlib import ExitStack, contextmanager
from typing import Callable, Dict, Generator, Mapping, Optional, Sequence, Set, Tuple, Type, TypeVar
from tvm._ffi import get_object_type_index, register_object
from tvm.runtime import Object, ObjectPath
from . import _ffi_api
from .doc import Doc
from .frame import Frame
from .var_table import VarTable
_REGISTERED_TYPES: Set[Tuple[str, int]] = set() # {(dispatch_token, type_index)}
def _cleanup_dispatch_function():
for dispatch_token, type_index in _REGISTERED_TYPES:
_ffi_api.IRDocsifierRemoveDispatch(dispatch_token, type_index) # type: ignore # pylint: disable=no-member
_CLEANUP_REGISTERED = False
def _ensure_cleanup_function_registered():
"""
Add a cleanup function to be called on interpreter termination,
to remove all dispatch functions registered on the Python side.
Without cleaning up those dispatch functions, program will segfault
on termination. It's because dispatch functions are referenced from the
static memory of libtvm, thus they will be cleaned up at the very end,
making calls to Py_DecRef after Python interpreter terminates.
"""
global _CLEANUP_REGISTERED # pylint: disable=global-statement
if not _CLEANUP_REGISTERED:
atexit.register(_cleanup_dispatch_function)
_CLEANUP_REGISTERED = True
@register_object("script.printer.RootNodeContainer")
class RootNodeContainer(Object):
"""
A wrapper object to provide injection point for printer of each IR.
This class shouldn't be used directly. `IRDocsifier.set_root_dispatch`
should be used instead.
"""
root_node: Object
def __init__(self, root_node: Object):
self.__init_handle_by_constructor__(_ffi_api.RootNodeContainer, root_node) # type: ignore # pylint: disable=no-member
@register_object("script.printer.IRDocsifier")
class IRDocsifier(Object):
"""
IRDocsifier is the top-level interface in the IR->Doc process.
It provides methods to convert IR node object to Doc, operate on Frame
objects and change dispatch tokens.
"""
ir_prefix: Mapping[str, str]
vars: VarTable
frames: Sequence[Frame]
dispatch_tokens: Sequence[str]
def __init__(self, ir_prefix: Dict[str, str]):
"""
Create a new IRDocsifier.
Parameters
----------
ir_prefix : Dict[str, str]
The ir prefix to use. Key is the IR dispatch token and
value is the name of identifier for this IR's namespace in TVMScript.
"""
self.__init_handle_by_constructor__(_ffi_api.IRDocsifier, ir_prefix) # type: ignore # pylint: disable=no-member
_TObject = TypeVar("_TObject", bound=Object)
@classmethod
def set_dispatch(
cls,
node_type: Type[_TObject],
dispatch_function: Callable[[_TObject, ObjectPath, "IRDocsifier"], Doc],
dispatch_token: str = "",
) -> None:
"""
Set the dispatch function to transform a particular IR node type to Doc
Parameters
----------
node_type : Type[_TObject]
The type of object to dispatch on.
dispatch_function : Callable[[_TObject, ObjectPath, "IRDocsifier"], Doc]
The dispatch function. It's called to transform IR node object to Doc.
dispatch_token : str
Function will only be called when this dispatch_token is the same as the one
on the top of IRDocsifier's dispatch_tokens stack. An empty dispatch token
means registering as default dispatch function, which will be called when
there is no dispatch function registered with the current dispatch token.
"""
type_index = get_object_type_index(node_type)
if type_index is None:
raise TypeError(f"{type(node_type)} is not a registered TVM object type.")
_ensure_cleanup_function_registered()
_ffi_api.IRDocsifierSetDispatch( # type: ignore # pylint: disable=no-member
dispatch_token, type_index, dispatch_function
)
_REGISTERED_TYPES.add((dispatch_token, type_index))
@classmethod
def set_root_dispatch(
cls, dispatch_token: str, root_dispatch_function: Callable[[Object, "IRDocsifier"], Doc]
) -> None:
"""
Set the root dispatch function for an IR.
The root dispatch function will be called with the root node of an IR graph
that's being transformed to Doc. This provides an injection point for
each IR's printer implemention to add specialized logic, for example,
pushing a special Frame to the IRDocsifier before doing actual IR->Doc
transformation.
The simplest root dispatch function is
```
def f(obj, ir_docsifier)
return ir_docsifier.as_doc(obj, ObjectPath.root())
```
Parameters
----------
root_dispatch_function : Callable[[_TObject, "IRDocsifier"], Doc]
The root dispatch function. It's called with the root node to be printed.
dispatch_token : str
The dispatch token of the IR that root_dispatch_funnction applies to.
"""
def dispatch_function(obj: RootNodeContainer, _, ir_docsifier):
return root_dispatch_function(obj.root_node, ir_docsifier)
cls.set_dispatch(RootNodeContainer, dispatch_function, dispatch_token)
def as_doc(self, obj: Object, object_path: ObjectPath) -> Doc:
"""
Transform the input object into Doc.
Parameters
----------
obj : Object
The IR node object.
object_path : ObjectPath
The object path of this object. It's used for locating diagnostic message.
Returns
-------
doc : Doc
The doc for this object.
"""
return _ffi_api.IRDocsifierAsDoc(self, obj, object_path) # type: ignore # pylint: disable=no-member
def get_frame(self, frame_type: Type[Frame]) -> Optional[Frame]:
"""
Get the top frame with type `frame_type`.
Parameters
----------
frame_type : Type[Frame]
The target frame type.
Returns
-------
frame : Optional[Frame]
The frame if found, otherwise None.
"""
for i in range(len(self.frames) - 1, -1, -1):
if isinstance(self.frames[i], frame_type):
return self.frames[i]
return None
@contextmanager
def dispatch_token(self, token: str):
"""
Push a new dispatch token to the stack.
Parameters
----------
token : str
The token to push.
Returns
-------
A context manager that pops this dispatch token when exits.
"""
with ExitStack() as stack:
_ffi_api.IRDocsifierPushDispatchToken(self, token) # type: ignore # pylint: disable=no-member
stack.callback(_ffi_api.IRDocsifierPopDispatchToken, self) # type: ignore # pylint: disable=no-member
yield
_TFrame = TypeVar("_TFrame", bound=Frame)
@contextmanager
def frame(self, frame: _TFrame) -> Generator[_TFrame, None, None]:
"""
Push a new frame to the stack.
Parameters
----------
frame : Frame
The frame to push.
Returns
-------
A context manager that pops this frame when exits.
"""
with ExitStack() as stack:
stack.enter_context(frame)
_ffi_api.IRDocsifierPushFrame(self, frame) # type: ignore # pylint: disable=no-member
stack.callback(_ffi_api.IRDocsifierPopFrame, self) # type: ignore # pylint: disable=no-member
yield frame
| https://github.com/zk-ml/tachikoma |
python/tvm/script/printer/var_table.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Functions to print doc into text format"""
from typing import Callable, Optional
from tvm._ffi import register_object
from tvm.runtime import Object, ObjectPath
from . import _ffi_api
from .doc import ExprDoc, IdDoc
from .frame import Frame
@register_object("script.printer.VarTable")
class VarTable(Object):
"""
Variable Table manages mapping from variable object to ExprDoc during
the process of printing TVMScript.
"""
def __init__(self):
"""
Create an empty VarTable.
"""
self.__init_handle_by_constructor__(_ffi_api.VarTable) # type: ignore # pylint: disable=no-member
def define(self, obj: Object, name_hint: str, object_path: ObjectPath, frame: Frame) -> IdDoc:
"""
Define a variable by name.
Parameters
----------
obj : Object
The variable object.
name_hint : str
The hint for variable name.
object_path : ObjectPath
The object path to be associated with the returned ExprDoc.
frame : Frame
Then frame that this variable is defined in.
Returns
-------
doc : IdDoc
The doc for this variable.
"""
return _ffi_api.VarTableDefine(self, obj, name_hint, object_path, frame) # type: ignore # pylint: disable=no-member
def define_by_doc(self, obj: Object, doc_factory: Callable[[], ExprDoc], frame: Frame) -> None:
"""
Define a variable by ExprDoc.
Parameters
----------
obj : Object
The variable object.
doc_factory : Callable[[], ExprDoc]
The hint for variable name.
frame : Frame
Then frame that this variable is defined in.
Returns
-------
None
"""
_ffi_api.VarTableDefineByDoc(self, obj, doc_factory, frame) # type: ignore # pylint: disable=no-member
def get_var_doc(self, obj: Object, object_path: ObjectPath) -> Optional[ExprDoc]:
"""
Get the doc for a variable.
Parameters
----------
obj : Object
The variable object.
object_path : ObjectPath
The object path to be associated with the returned ExprDoc.
Returns
-------
doc : ExprDoc
The doc for this variable.
"""
return _ffi_api.VarTableGetVarDoc(self, obj, object_path) # type: ignore # pylint: disable=no-member
def is_var_defined(self, obj: Object) -> bool:
"""
Check whether a variable is defined.
Parameters
----------
obj : Object
The variable object.
Returns
-------
is_defined : bool
Whether the variable is defined.
"""
return _ffi_api.VarTableIsVarDefined(self, obj) # type: ignore # pylint: disable=no-member
def __contains__(self, obj: Object) -> bool:
return self.is_var_defined(obj)
| https://github.com/zk-ml/tachikoma |
python/tvm/support.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Support infra of TVM."""
import json
import textwrap
import ctypes
import os
import sys
import tvm
import tvm._ffi
from .runtime.module import Module
from . import get_global_func
def libinfo():
"""Returns a dictionary containing compile-time info, including cmake flags and git commit hash
Returns
-------
info: Dict[str, str]
The dictionary of compile-time info.
"""
get_lib_info_func = get_global_func("support.GetLibInfo", allow_missing=True)
if get_lib_info_func is not None:
lib_info = get_lib_info_func()
if lib_info is None:
return {}
else:
return {}
return dict(lib_info.items())
def describe():
"""
Print out information about TVM and the current Python environment
"""
info = list((k, v) for k, v in libinfo().items())
info = dict(sorted(info, key=lambda x: x[0]))
print("Python Environment")
sys_version = sys.version.replace("\n", " ")
uname = os.uname()
uname = f"{uname.sysname} {uname.release} {uname.version} {uname.machine}"
lines = [
f"TVM version = {tvm.__version__}",
f"Python version = {sys_version} ({sys.maxsize.bit_length() + 1} bit)",
f"os.uname() = {uname}",
]
print(textwrap.indent("\n".join(lines), prefix=" "))
print("CMake Options:")
print(textwrap.indent(json.dumps(info, indent=2), prefix=" "))
class FrontendTestModule(Module):
"""A tvm.runtime.Module whose member functions are PackedFunc."""
def __init__(self, entry_name=None):
underlying_mod = get_global_func("testing.FrontendTestModule")()
handle = underlying_mod.handle
# Set handle to NULL to avoid cleanup in c++ runtime, transferring ownership.
# Both cython and ctypes FFI use c_void_p, so this is safe to assign here.
underlying_mod.handle = ctypes.c_void_p(0)
super(FrontendTestModule, self).__init__(handle)
if entry_name is not None:
self.entry_name = entry_name
def add_function(self, name, func):
self.get_function("__add_function")(name, func)
def __setitem__(self, key, value):
self.add_function(key, value)
tvm._ffi._init_api("support", __name__)
| https://github.com/zk-ml/tachikoma |
python/tvm/target/__init__.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Target description and codgen module.
TVM's target string is in format ``<target_kind> [-option=value]...``.
Note
----
The list of options include:
- **-device=<device name>**
The device name.
- **-mtriple=<target triple>**
Specify the target triple, which is useful for cross
compilation.
- **-mcpu=<cpuname>**
Specify a specific chip in the current architecture to
generate code for. By default this is infered from the
target triple and autodetected to the current architecture.
- **-mattr=a1,+a2,-a3,...**
Override or control specific attributes of the target,
such as whether SIMD operations are enabled or not. The
default set of attributes is set by the current CPU.
- **-mabi=<abi>**
Generate code for the specified ABI, for example "lp64d".
- **-system-lib**
Build TVM system library module. System lib is a global module that contains
self registered functions in program startup. User can get the module using
:any:`tvm.runtime.system_lib`.
It is useful in environments where dynamic loading api like dlopen is banned.
The system lib will be available as long as the result code is linked by the program.
We can use :py:func:`tvm.target.Target` to create a tvm.target.Target from the target string.
We can also use other specific function in this module to create specific targets.
"""
from .target import Target, create, TargetKind
from .target import (
cuda,
rocm,
mali,
intel_graphics,
arm_cpu,
rasp,
vta,
bifrost,
riscv_cpu,
hexagon,
stm32,
)
from .virtual_device import VirtualDevice
from .compilation_config import make_compilation_config
from .tag import list_tags
from .generic_func import GenericFunc
from .generic_func import generic_func, get_native_generic_func, override_native_generic_func
from . import datatype
from . import codegen
| https://github.com/zk-ml/tachikoma |
python/tvm/target/_ffi_api.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""FFI APIs for tvm.target"""
import tvm._ffi
tvm._ffi._init_api("target", __name__)
| https://github.com/zk-ml/tachikoma |
python/tvm/target/codegen.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Code generation related functions."""
from . import _ffi_api
from .target import Target
def build_module(mod, target):
"""Build IRModule into Module.
Parameters
----------
mod : tvm.IRModule
The ir module.
target : str
The target module type.
Returns
-------
module : runtime.Module
The corressponding module.
"""
target = Target(target) if isinstance(target, str) else target
return _ffi_api.Build(mod, target)
def llvm_lookup_intrinsic_id(name):
"""Lookup LLVM intrinsic id by name.
Parameters
----------
name : str
The name of the intrinsic.
Returns
-------
intrin_id : int
The intrinsic id.
"""
return _ffi_api.llvm_lookup_intrinsic_id(name)
def llvm_get_intrinsic_name(intrin_id: int) -> str:
"""Get the name of an intrinsic for a given id.
Parameters
----------
intrin_id : int
The id of the intrinsic.
Returns
-------
name : str
The name of the intrinsic.
"""
return _ffi_api.llvm_get_intrinsic_name(intrin_id)
def llvm_version_major(allow_none=False):
"""Get the major LLVM version.
Parameters
----------
allow_none : bool
Whether do we allow none.
Returns
-------
major : int
The major LLVM version.
"""
try:
return _ffi_api.llvm_version_major()
except AttributeError:
if allow_none:
return None
raise RuntimeError("LLVM version is not available, please check if you built TVM with LLVM")
| https://github.com/zk-ml/tachikoma |
python/tvm/target/compilation_config.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Python bindings for creating CompilationConfigs."""
import tvm
from . import _ffi_api
def make_compilation_config(ctxt, target, target_host=None):
"""Returns a CompilationConfig appropriate for target and target_host, using the same
representation conventions as for the standard build interfaces. Intended only for unit
testing."""
raw_targets = tvm.target.Target.canon_multi_target_and_host(target, target_host)
return _ffi_api.MakeCompilationConfig(ctxt, raw_targets)
| https://github.com/zk-ml/tachikoma |
python/tvm/target/datatype.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Bring Your Own Datatypes custom datatype framework
TODO(@gussmith23 @hypercubestart) link to BYODT docs when they exist"""
import tvm
from tvm.runtime import convert, DataType
from tvm.tir.expr import (
Call as _Call,
Cast as _Cast,
FloatImm as _FloatImm,
BinaryOpExpr as _BinaryOpExpr,
)
from tvm.tir.op import call_pure_extern
from tvm._ffi import register_func as _register_func
from tvm.tir import call_intrin
def register(type_name, type_code):
"""Register a custom datatype with the given type name and type code
Currently, the type code is manually allocated by the user, and the user
must ensure that no two custom types share the same code. Generally, this
should be straightforward, as the user will be manually registering all of
their custom types.
Example:
.. code-block:: python
# Register a dtype named 'posites2' under type code 130.
tvm.target.datatype.register('posites2', 130)
Parameters
----------
type_name : str
The name of the custom datatype.
type_code : int
The type's code, which should be >= kCustomBegin. See
include/tvm/runtime/data_type.h.
"""
tvm.runtime._ffi_api._datatype_register(type_name, type_code)
def get_type_name(type_code):
"""Get the type name of a custom datatype from the type code.
Note that this only works for custom datatypes registered with
tvm.target.datatype.register(). It does not work for TVM-native types.
Example:
.. code-block:: python
tvm.target.datatype.register('posites2', 130)
assert tvm.target.datatype.get_type_name(130) == 'posites2'
Parameters
----------
type_code : int
The type code of the custom datatype.
Returns
-------
type_name : String
The name of the custom datatype.
"""
return tvm.runtime._ffi_api._datatype_get_type_name(type_code)
def get_type_code(type_name):
"""Get the type code of a custom datatype from its type name
Note that this only works for custom datatypes registered with
tvm.target.datatype.register(). It does not work for TVM-native types.
Example:
.. code-block:: python
tvm.target.datatype.register('posites2', 130)
assert tvm.target.datatype.get_type_code('posites2') == 130
Parameters
----------
type_name : str
The type name
Returns
-------
type_code : int
The type code of the custom datatype.
"""
return tvm.runtime._ffi_api._datatype_get_type_code(type_name)
def get_type_registered(type_code):
"""Returns true if a custom datatype is registered under the given type code
Example:
.. code-block:: python
tvm.target.datatype.register('posites2', 130)
assert tvm.target.datatype.get_type_registered(130)
Parameters
----------
type_code: int
The type code
Returns
-------
type_registered : bool
True if a custom datatype is registered under this type code, and false
otherwise.
"""
return tvm.runtime._ffi_api._datatype_get_type_registered(type_code)
def register_op(
lower_func, op_name, target, src_type_name, dest_type_name=None, intrinsic_name=None
):
"""Register a lowering function for a specific operator of a custom datatype
At build time, Relay must lower operators over custom datatypes into
operators it understands how to compile. For each custom datatype operator
which Relay finds while lowering custom datatypes, Relay expects to find a
user-defined lowering function. Users register their user-defined lowering
functions using this function.
Users should use create_lower_func to create their lowering function. It
should serve most use-cases.
Currently, this will work with Casts, intrinsics (e.g. sqrt, sigmoid), and
binary expressions (e.g. Add, Sub, Mul, Div).
See the LowerCustomDatatypes pass to see how registered functions are used.
Lowering Functions
------------------
TODO(@gussmith23) Get the terminology right here.
Lowering functions take in a Relay node, and should return a semantically
equivalent Relay node which Relay can build. This means that the returned
node should not contain any custom datatypes. Users should likely not need
to define lowering functions by hand -- see the helper function
create_lower_func.
Parameters
----------
lower_func : function
The lowering function to call. See create_lower_func.
op_name : str
The name of the operation which the function computes, given by its
class name (e.g. Add, LE, Cast, Call).
target : str
The name of codegen target.
src_type_name : str
The name of the custom datatype, e.g. posites2 (but not custom[posites2]32).
If op_name is not "Cast", then target type is guaranteed to be the same as src_type_name.
dest_type_name : str
If op_name is "Cast", then this is required and should be set to the dest datatype of
the argument to the Cast. If op_name is not "Cast", this is unused.
intrinsic_name : str
If op_name is "Call" and intrinsic_name is not None, then we assume the
op is a Call to an Intrinsic, and intrinsic_name is the intrinsic's
name.
"""
if op_name == "Cast":
assert dest_type_name is not None
lower_func_name = (
"tvm.datatype.lower."
+ target
+ "."
+ op_name
+ "."
+ dest_type_name
+ "."
+ src_type_name
)
elif op_name == "Call" and intrinsic_name is not None:
lower_func_name = (
"tvm.datatype.lower."
+ target
+ "."
+ op_name
+ ".intrin."
+ intrinsic_name
+ "."
+ src_type_name
)
else:
lower_func_name = "tvm.datatype.lower." + target + "." + op_name + "." + src_type_name
tvm._ffi.register_func(lower_func_name, lower_func)
def register_min_func(func, type_name):
"""Register the function that returns the minimum representable value of type_name.
Operators such as max pooling and argmax require the minimum
finite value representable by the datatype the op operating on.
Users can use this function to register a function that returns a TIR expression node
outputting the minimum representable value of their custom data type.
Users should use create_min_lower_func to create their lowering function. It
should serve most use-cases.
Note: for special cases when it is known that the custom datatype is representable
by a float, the user can create their own lowering func that returns a FloatImm.
The benefits are allowing optimizations such as rewrites to work as expected on custom
datatypes.
Parameters
----------
func : function
Input is an integer num_bits, should return a TIR expression node that
represents a scalar tensor of type custom[type_name]num_bits with the minimum
representable value.
type_name : str
The name of the custom datatype, e.g. posites2 (but not custom[posites2]32).
"""
_register_func("tvm.datatype.min." + type_name, func)
def create_min_lower_func(extern_func_map, type_name):
"""Returns a lowering function for getting the minimum value of a custom datatype.
Parameters
----------
extern_func_map : map
A map from bit lengths to the name of the extern "C" function to lower to.
type_name : string
The name of the custom datatype, e.g. posites2 (but not custom[posites2]32).
"""
def lower(num_bits):
dtype = f"custom[{type_name}]{num_bits}"
if num_bits not in extern_func_map:
raise RuntimeError("missing minimum function for {dtype}")
return call_pure_extern(dtype, extern_func_map[num_bits])
return lower
def create_lower_func(extern_func_map):
"""Returns a function which lowers an operation to a function call.
Parameters
----------
extern_func_map : map
If lowering a Cast, extern_func_map should be a map from tuples of
(src_bit_length, dest_bit_length) to the name of the extern "C" function to lower to.
Otherwise, for unary and binary ops, it should simply be a map
from bit_length to the name of the extern "C" function to lower to.
"""
def lower(op):
"""
Takes an op---either a Cast, Call, or a binary op (e.g. an Add) and returns a
call to the specified external function, passing the op's argument
or arguments. The return type of the call depends
on the type of the op: if it is a custom type, then a uint of the same
width as the custom type is returned. Otherwise, the type is
unchanged."""
dtype = op.dtype
t = DataType(dtype)
if get_type_registered(t.type_code):
dtype = "uint" + str(t.bits)
if t.lanes > 1:
dtype += "x" + str(t.lanes)
key = t.bits
if isinstance(op, _Cast):
src_bits = DataType(op.value.dtype).bits
key = (src_bits, t.bits)
if key not in extern_func_map:
raise RuntimeError(f"missing key {key} in extern_func_map for {op.astext()}")
if isinstance(op, _Cast):
return call_pure_extern(dtype, extern_func_map[key], op.value)
if isinstance(op, _FloatImm):
return call_pure_extern(dtype, extern_func_map[key], op.value)
if isinstance(op, _Call):
return call_pure_extern(dtype, extern_func_map[key], *op.args)
if isinstance(op, _BinaryOpExpr):
return call_pure_extern(dtype, extern_func_map[key], op.a, op.b)
raise RuntimeError(f"lowering unsupported op: {op.astext()}")
return lower
def lower_ite(ite_op):
"""Lowered if then else function that calls intrinsic if_then_else.
Unlike a function lowered by create_lower_func, this function
calls the tvm intrinsic if_then_else.
Parameters
----------
ite_op : Op
Takes an if then else op and returns a
call to tir.if_then_else function, passing the op's
arguments. The return type of the call if a uint of the same
width as the custom type is returned.
"""
dtype = ite_op.dtype
t = tvm.DataType(dtype)
assert get_type_registered(t.type_code)
dtype = "uint" + str(t.bits)
if t.lanes > 1:
dtype += "x" + str(t.lanes)
return call_intrin(
dtype,
"tir.if_then_else",
convert(ite_op.args[0]),
convert(ite_op.args[1]),
convert(ite_op.args[2]),
)
def lower_call_pure_extern(op):
"""Lowered call pure extern function that calls intrinsic call_pure_extern.
Unlike a function lowered by create_lower_func, this function
calls the tvm intrinsic call_pure_extern.
Parameters
----------
ite_op : Op
Takes a call_pure_extern op and returns a
call to tir.call_pure_extern function, passing the op's
arguments. The return type of the call if a uint of the same
width as the custom type is returned.
"""
dtype = op.dtype
t = tvm.DataType(dtype)
assert get_type_registered(t.type_code)
dtype = "uint" + str(t.bits)
if t.lanes > 1:
dtype += "x" + str(t.lanes)
return call_intrin(dtype, "tir.call_pure_extern", *op.args)
| https://github.com/zk-ml/tachikoma |
python/tvm/target/generic_func.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Generic function."""
import tvm._ffi
try:
from decorator import decorate
except ImportError:
# Allow decorator to be missing in runtime
if not tvm._ffi.base._RUNTIME_ONLY:
raise
from tvm.runtime import Object
from .target import Target
from . import _ffi_api
@tvm._ffi.register_object
class GenericFunc(Object):
"""GenericFunc node reference. This represents a generic function
that may be specialized for different targets. When this object is
called, a specialization is chosen based on the current target.
Note
----
Do not construct an instance of this object, it should only ever be
used as a return value from calling into C++.
"""
def __call__(self, *args):
return _ffi_api.GenericFuncCallFunc(self, *args)
def set_default(self, func, allow_override=False):
"""Set the default function to be used if no specializations match
the current target.
Parameters
----------
func : function
The default function
allow_override : bool
Whether to allow the current default to be overridden
"""
_ffi_api.GenericFuncSetDefault(self, func, allow_override)
def register(self, func, key_list, allow_override=False):
"""Register a specialization for this GenericFunc.
Parameters
----------
func : function
The function to be registered.
key : str or list of str
The key to be registered.
allow_override : bool, optional
Whether to allow existing keys to be overridden.
"""
key_list = [key_list] if isinstance(key_list, str) else key_list
_ffi_api.GenericFuncRegisterFunc(self, func, key_list, allow_override)
def get_packed_func(self):
"""Get the packed function specified for the current target.
Returns
-------
func : PackedFunc
The function specified for the current target. Return the default
function if no specializations match the current target.
"""
return _ffi_api.GenericFuncGetPackedFunc(self)
def get_native_generic_func(name):
"""Get a generic function from the global registry. If no
function is registered under the given name, a new generic
function is created.
Parameters
----------
name : string
The name of the generic function to get
Returns
-------
func : GenericFunc
The generic function for the given name
"""
return _ffi_api.GenericFuncGetGlobal(name)
def override_native_generic_func(func_name):
"""Override a generic function defined in C++
Generic function allows registration of further functions
that can be dispatched on current target context.
If no registered dispatch is matched, the fdefault will be called.
Parameters
----------
func_name : string
The name of the generic func to be overridden
Returns
-------
fgeneric : function
A wrapped generic function.
Example
-------
.. code-block:: python
import tvm
# wrap function as target generic
@tvm.target.override_native_generic_func("my_func")
def my_func(a):
return a + 1
# register specialization of my_func under target cuda
@my_func.register("cuda")
def my_func_cuda(a):
return a + 2
# displays 3, because my_func is called
print(my_func(2))
# displays 4, because my_func_cuda is called
with tvm.target.cuda():
print(my_func(2))
"""
generic_func_node = get_native_generic_func(func_name)
def fdecorate(fdefault):
"""Wrap a target generic function, overriding the previous
default that was set for the generic function.
Parameters
----------
fdefault : function
The default function.
Returns
-------
fgeneric : function
A wrapped generic function.
"""
generic_func_node.set_default(fdefault, allow_override=True)
def register(key, func=None, override=True):
"""Register function to be the dispatch function.
Parameters
----------
key : str or list of str
The key to be registered.
func : function
The function to be registered.
override : bool, optional
Whether override existing registration.
Returns
-------
The register function is necessary.
"""
def _do_reg(myf):
generic_func_node.register(myf, key, override)
return myf
if func:
return _do_reg(func)
return _do_reg
def dispatch_func(func, *args, **kwargs):
# pylint: disable=unused-argument
"""The wrapped dispath function"""
if kwargs:
raise RuntimeError(
"Keyword arguments cannot be used when invoking generic_func %s" % func_name
)
return generic_func_node(*args)
fresult = decorate(fdefault, dispatch_func)
fresult.fdefault = fdefault
fresult.register = register
fresult.generic_func_node = generic_func_node
return fresult
return fdecorate
def generic_func(fdefault):
"""Wrap a target generic function.
Generic function allows registration of further functions
that can be dispatched on current target context.
If no registered dispatch is matched, the fdefault will be called.
Parameters
----------
fdefault : function
The default function.
Returns
-------
fgeneric : function
A wrapped generic function.
Example
-------
.. code-block:: python
import tvm
# wrap function as target generic
@tvm.target.generic_func
def my_func(a):
return a + 1
# register specialization of my_func under target cuda
@my_func.register("cuda")
def my_func_cuda(a):
return a + 2
# displays 3, because my_func is called
print(my_func(2))
# displays 4, because my_func_cuda is called
with tvm.target.cuda():
print(my_func(2))
"""
dispatch_dict = {}
func_name = fdefault.__name__
def register(key, func=None, override=False):
"""Register function to be the dispatch function.
Parameters
----------
key : str or list of str
The key to be registered.
func : function
The function to be registered.
override : bool
Whether override existing registration.
Returns
-------
The register function is necessary.
"""
def _do_reg(myf):
key_list = [key] if isinstance(key, str) else key
for k in key_list:
if k in dispatch_dict and not override:
raise ValueError("Key is already registered for %s" % func_name)
dispatch_dict[k] = myf
return myf
if func:
return _do_reg(func)
return _do_reg
def dispatch_func(func, *args, **kwargs):
"""The wrapped dispatch function"""
target = Target.current()
if target is None:
return func(*args, **kwargs)
for k in target.keys:
if k in dispatch_dict:
return dispatch_dict[k](*args, **kwargs)
return func(*args, **kwargs)
def get_packed_func():
"""The wrapped to get dispatched function"""
target = Target.current()
if target is None:
return fdefault
for k in target.keys:
if k in dispatch_dict:
return dispatch_dict[k]
return fdefault
fdecorate = decorate(fdefault, dispatch_func)
fdecorate.register = register
fdecorate.fdefault = fdefault
fdecorate.dispatch_dict = dispatch_dict
fdecorate.get_packed_func = get_packed_func
return fdecorate
| https://github.com/zk-ml/tachikoma |
python/tvm/target/intrin.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Target dependent intrinsic registration."""
from tvm.ir import register_intrin_lowering
from tvm.tir import call_pure_extern
def _rule_float_suffix(op):
"""Intrinsic rule: Add float suffix if it is float32.
This is an example intrinsic generation rule.
Parameters
----------
op : PrimExpr
The call expression of original intrinsic.
Returns
-------
ret : PrimExpr
The translated intrinsic rule.
Return same op if no translation is possible.
See Also
--------
register_intrin_lowering : The registration function for intrinsic lowering rule.
"""
name = op.op.name
assert name.startswith("tir.")
prefix = name[4:]
if op.dtype == "float32":
return call_pure_extern(op.dtype, "%sf" % prefix, *op.args)
if op.dtype == "float64":
return call_pure_extern(op.dtype, prefix, *op.args)
return op
def _rule_float_direct(op):
"""Intrinsic rule: Directly call pure extern function for floats.
This is an example intrinsic generation rule.
Parameters
----------
op : PrimExpr
The call expression of original intrinsic.
Returns
-------
ret : PrimExpr
The translated intrinsic rule.
Return same op if no translation is possible.
See Also
--------
register_intrin_lowering : The registration function for intrinsic lowering rule.
"""
if str(op.dtype).startswith("float"):
return call_pure_extern(op.dtype, op.op.name[4:], *op.args)
return None
# opencl pattern for exp
register_intrin_lowering("tir.exp", target="opencl", f=_rule_float_direct, level=99)
# default pattern for exp
register_intrin_lowering("tir.exp", target="default", f=_rule_float_suffix, level=99)
| https://github.com/zk-ml/tachikoma |
python/tvm/target/tag.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Target tags"""
from typing import Any, Dict, Optional
from . import _ffi_api
from .target import Target
def list_tags() -> Optional[Dict[str, Target]]:
"""Returns a dict of tags, which maps each tag name to its corresponding target.
Returns
-------
tag_dict : Optional[Dict[str, Target]]
The dict of tags mapping each tag name to its corresponding target.
None if TVM is built in runtime-only mode.
"""
if hasattr(_ffi_api, "TargetTagListTags"):
return _ffi_api.TargetTagListTags()
return None
def register_tag(name: str, config: Dict[str, Any], override: bool = False) -> Optional[Target]:
"""Add a user-defined tag into the target tag registry.
Parameters
----------
name: str
Name of the target, e.g. "nvidia/gtx1080ti"
config : Dict[str, Any]
The config dict used to create the target
override: bool
A boolean flag indicating if overriding existing tags are allowed.
If False and the tag has been registered already, an exception will be thrown.
Returns
-------
target : Optional[Target]
The target corresponding to the tag
None if TVM is built in runtime-only mode.
Examples
--------
.. code-block:: python
register_tag("nvidia/gtx1080ti", config={
"kind": "cuda",
"arch": "sm_61",
})
"""
if hasattr(_ffi_api, "TargetTagAddTag"):
return _ffi_api.TargetTagAddTag(name, config, override)
return None
# To check the correctness of all registered tags, the call is made in library loading time.
list_tags()
# We purposely maintain all tags in the C++ side to support pure C++ use cases,
# and the Python API is only used for fast prototyping.
register_tag(
"nvidia/gtx1080ti",
config={
"kind": "cuda",
"arch": "sm_61",
},
)
| https://github.com/zk-ml/tachikoma |
python/tvm/target/target.py | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Target data structure."""
import json
import re
import warnings
import tvm._ffi
from tvm._ffi import register_func as _register_func
from tvm.runtime import Object, convert
from tvm.runtime.container import String
from tvm.ir.container import Map, Array
from . import _ffi_api
@tvm._ffi.register_object
class TargetKind(Object):
"""Kind of a compilation target"""
@property
def options(self):
"""Returns the dict of available option names and types"""
return dict(_ffi_api.ListTargetKindOptions(self))
@staticmethod
def options_from_name(kind_name: str):
"""Returns the dict of available option names and types from a name of TargetKind"""
return dict(_ffi_api.ListTargetKindOptionsFromName(kind_name))
class TargetFeatures:
def __init__(self, target):
self.target = target
def __getattr__(self, name: str):
return _ffi_api.TargetGetFeature(self.target, name)
@tvm._ffi.register_object
class Target(Object):
"""Target device information, use through TVM API.
Note
----
You can create target using the constructor or the following functions
- :py:func:`tvm.target.arm_cpu` create arm_cpu target
- :py:func:`tvm.target.cuda` create CUDA target
- :py:func:`tvm.target.rocm` create ROCM target
- :py:func:`tvm.target.mali` create Mali target
- :py:func:`tvm.target.intel_graphics` create Intel Graphics target
"""
def __init__(self, target, host=None):
"""Construct a TVM target object from
1) Raw target string
2) Target config dict
3) Target tag
Parameters
----------
target : Union[str, Dict[str, Any]]
Can be one of a literal target string, a json string describing
a configuration, or a dictionary of configuration options.
When using a dictionary or json string to configure target, the
possible values are:
kind : str (required)
Which codegen path to use, for example 'llvm' or 'cuda'.
keys : List of str (optional)
A set of strategies that can be dispatched to. When using
"kind=opencl" for example, one could set keys to ["mali", "opencl", "gpu"].
device : str (optional)
A single key that corresponds to the actual device being run on.
This will be effectively appended to the keys.
libs : List of str (optional)
The set of external libraries to use. For example ['cblas', 'mkl'].
system-lib : bool (optional)
If True, build a module that contains self registered functions.
Useful for environments where dynamic loading like dlopen is banned.
mcpu : str (optional)
The specific cpu being run on. Serves only as an annotation.
model : str (optional)
An annotation indicating what model a workload came from.
runtime : str (optional)
An annotation indicating which runtime to use with a workload.
mtriple : str (optional)
The llvm triplet describing the target, for example "arm64-linux-android".
mattr : List of str (optional)
The llvm features to compile with, for example ["+avx512f", "+mmx"].
mfloat-abi : str (optional)
An llvm setting that is one of 'hard' or 'soft' indicating whether to use
hardware or software floating-point operations.
mabi : str (optional)
An llvm setting. Generate code for the specified ABI, for example "lp64d".
host : Union[str, Dict[str, Any]] (optional)
Description for target host. Can be recursive. Similar to target.
host : Optional[Union[str, Dict[str, Any]]]
Similar to target but for target host. Can be one of a literal target host string,
a json string describing a configuration, or a dictionary of configuration options.
When using a dictionary or json string to configure target, the possible values are
same as target.
"""
if isinstance(target, str) and "-libs=mkldnn" in target:
target = target.replace("mkldnn", "dnnl")
warnings.warn(
"Legacy support of mkldnn is going to be deprecated. "
"Please use -libs=dnnl instead.",
)
if isinstance(target, (dict, str)):
target = convert(target)
if isinstance(host, (dict, str)):
host = convert(host)
if target is None or not isinstance(target, (Map, String, Target)):
raise ValueError("target has to be a string or dictionary.")
if host is not None:
if not isinstance(host, (Map, String, Target)):
raise ValueError("target host has to be a string or dictionary.")
self.__init_handle_by_constructor__(_ffi_api.Target, Target(target), Target(host))
else:
self.__init_handle_by_constructor__(_ffi_api.Target, target)
def __enter__(self):
_ffi_api.TargetEnterScope(self)
return self
def __exit__(self, ptype, value, trace):
_ffi_api.TargetExitScope(self)
def export(self):
return _ffi_api.TargetExport(self)
def with_host(self, host=None):
return _ffi_api.WithHost(self, Target(host))
@staticmethod
def current(allow_none=True):
"""Returns the current target.
Parameters
----------
allow_none : bool
Whether allow the current target to be none
Raises
------
ValueError if current target is not set.
"""
return _ffi_api.TargetCurrent(allow_none)
@property
def arch(self):
"""Returns the cuda arch from the target if it exists."""
return str(self.attrs.get("arch", ""))
@property
def max_num_threads(self):
"""Returns the max_num_threads from the target if it exists."""
return int(self.attrs["max_num_threads"])
@property
def thread_warp_size(self):
"""Returns the thread_warp_size from the target if it exists."""
return int(self.attrs["thread_warp_size"])
@property
def max_function_args(self):
return int(self.attrs.get("max_function_args", -1))
@property
def device_name(self):
return str(self.attrs.get("device", ""))
@property
def model(self):
"""Returns model from the target if it exists."""
return str(self.attrs.get("model", "unknown"))
@property
def mcpu(self):
"""Returns the mcpu from the target if it exists."""
return str(self.attrs.get("mcpu", ""))
@property
def mattr(self):
"""Returns the mattr from the target if it exists."""
return list(self.attrs.get("mattr", []))
@property
def supports_integer_dot_product(self):
if self.attrs.get("supports_integer_dot_product", []):
return bool(self.attrs["supports_integer_dot_product"])
if self.kind.name == "cuda":
sm_version = int(self.arch.split("_")[1])
if sm_version >= 61:
return True
return False
@property
def libs(self):
return list(self.attrs.get("libs", []))
@property
def features(self):
return TargetFeatures(self)
def get_kind_attr(self, attr_name):
"""Get additional attribute about the target kind.
Parameters
----------
attr_name : str
The attribute name.
Returns
-------
value : object
The attribute value
"""
return _ffi_api.TargetKindGetAttr(self.kind, attr_name)
def get_target_device_type(self):
"""Returns the device_type for this target."""
return _ffi_api.TargetGetDeviceType(self)
@staticmethod
def list_kinds():
"""Returns the list of available target names."""
return list(_ffi_api.ListTargetKinds())
@staticmethod
def canon_target(target):
"""Given a single target-like object, returns the TVM Target object representing it.
Can convert from:
- None (to None).
- An existing TVM Target object.
- A string, eg "cuda" or "cuda -arch=sm_80"
- A Python dictionary, eg {"kind": "cuda", "arch": "sm_80" }
"""
if target is None:
return None
if isinstance(target, Target):
return target
return Target(target)
@staticmethod
def canon_target_and_host(target, target_host=None):
"""Returns a TVM Target capturing target and target_host. Also returns the host in
canonical form. The given target can be in any form recognized by
Target.canon_target. If given, target_host can be in any form recognized by
Target.canon_target. If target_host is given it will be set as the 'host' in the
result Target object (and a warning given).
Note that this method does not support heterogeneous compilation targets.
"""
target = Target.canon_target(target)
if target is None:
assert target_host is None, "Target host is not empty when target is empty."
return target, target_host
if target.host is None and target_host is not None:
warnings.warn(
"target_host parameter is going to be deprecated. "
"Please pass in tvm.target.Target(target, host=target_host) instead."
)
target_host = Target.canon_target(target_host)
target = target.with_host(target_host)
if target is not None:
# In case the target already had a host, extract it here.
target_host = target.host
return target, target_host
@staticmethod
def canon_multi_target(multi_targets):
"""Given a single target-like object, or a collection-like object of target-like objects,
returns a TVM Array of TVM Target objects representing then. Can convert from:
- None (to None).
- A single target-like object in a form recognized by canon_target.
- A Python list or TVM Array of target-like objects in a form recognized by
canon_target.
- A Python dict or TVM Map from TVM IntImm objects representing device types to
a target-like object in a form recognized by canon_target. (This is a legacy
method to represent heterogeneous targets. The keys are ignored.)
"""
if multi_targets is None:
return None
if isinstance(multi_targets, (dict, Map)) and "kind" not in multi_targets:
# Convert legacy heterogeneous map representation to ordinary list of targets.
return Target.canon_multi_target(list(multi_targets.values()))
if isinstance(multi_targets, (list, Array)):
# Multiple Target results.
return convert([Target.canon_target(tgt) for tgt in multi_targets])
# Single Target result.
return convert([Target.canon_target(multi_targets)])
@staticmethod
def canon_multi_target_and_host(target, target_host=None):
"""Returns a TVM Array<Target> capturing target and target_host. The given target can be in
any form recognized by Target.canon_multi_target. If given, target_host can be in
any form recognized by Target.canon_target. If target_host is given it will be set
as the 'host' in each result Target object (and a warning given).
"""
# Convert target to Array<Target>, but not yet accounting for any host.
raw_targets = Target.canon_multi_target(target)
assert raw_targets is not None and len(raw_targets) > 0
# Convert host to Target, if given.
if raw_targets[0].host is None and target_host is not None:
warnings.warn(
"target_host parameter is going to be deprecated. "
"Please pass in tvm.target.Target(target, host=target_host) instead."
)
# Make sure the (canonical) host is captured in all the (canonical) targets.
target_host = Target.canon_target(target_host)
raw_targets = convert([tgt.with_host(target_host) for tgt in raw_targets])
return raw_targets
@staticmethod
def canon_target_map_and_host(target_map, target_host=None):
"""Returns target_map as a map from TVM Target's in canonical form to IRModules. The keys
of the input target_map can be in any form recognized by Target.canon_target.
Similarly, if given, target_host can be in any form recognized by
Target.canon_target. The final target_map keys will capture the target_host in
canonical form. Also returns the target_host in canonical form."""
new_target_map = {}
canonical_target_host = None
for tgt, mod in target_map.items():
tgt = Target.canon_target(tgt)
assert tgt is not None
if canonical_target_host is None:
if tgt.host is not None:
canonical_target_host = tgt.host
elif target_host is not None:
# No deprecation warning in this case since host may have been manufactured
# behind the scenes in build_module.py build.
canonical_target_host = Target.canon_target(target_host)
if tgt.host is None and canonical_target_host is not None:
tgt = tgt.with_host(canonical_target_host)
new_target_map[tgt] = mod
return new_target_map, canonical_target_host
@staticmethod
def target_or_current(target):
"""Returns target, or the current target in the environment if target is None"""
if target is None:
target = Target.current()
if target is None:
raise ValueError("Target is not set in env or passed as argument.")
return target
# TODO(@tvm-team): Deprecate the helper functions below. Encourage the usage of config dict instead.
def _merge_opts(opts, new_opts):
"""Helper function to merge options"""
if isinstance(new_opts, str):
new_opts = new_opts.split()
if new_opts:
opt_set = set(opts)
new_opts = [opt for opt in new_opts if opt not in opt_set]
return opts + new_opts
return opts
def cuda(model="unknown", arch=None, options=None):
"""Returns a cuda target.
Parameters
----------
model: str
The model of cuda device (e.g. 1080ti)
arch: str
The cuda architecture (e.g. sm_61)
options : str or list of str
Additional options
"""
opts = _merge_opts(["-model=%s" % model], options)
if arch:
opts = _merge_opts(["-arch=%s" % arch], opts)
if not any(["-arch" in opt for opt in opts]):
warnings.warn("Try specifying cuda arch by adding 'arch=sm_xx' to your target.")
return Target(" ".join(["cuda"] + opts))
def rocm(model="unknown", options=None):
"""Returns a ROCM target.
Parameters
----------
model: str
The model of this device
options : str or list of str
Additional options
"""
opts = _merge_opts(["-model=%s" % model], options)
return Target(" ".join(["rocm"] + opts))
def mali(model="unknown", options=None):
"""Returns a ARM Mali GPU target.
Parameters
----------
model: str
The model of this device
options : str or list of str
Additional options
"""
opts = ["-device=mali", "-model=%s" % model]
opts = _merge_opts(opts, options)
return Target(" ".join(["opencl"] + opts))
def intel_graphics(model="unknown", options=None):
"""Returns an Intel Graphics target.
Parameters
----------
model: str
The model of this device
options : str or list of str
Additional options
"""
opts = ["-device=intel_graphics", "-model=%s" % model, "-thread_warp_size=16"]
opts = _merge_opts(opts, options)
return Target(" ".join(["opencl"] + opts))
MICRO_SUPPORTED_MODELS = {
"host": [],
"atsamd51": ["-mcpu=cortex-m4"],
"cxd5602gg": ["-mcpu=cortex-m4"],
"esp32": [],
"imxrt10xx": ["-mcpu=cortex-m7"],
"mps2_an521": ["-mcpu=cortex-m33"],
"mps3_an547": ["-mcpu=cortex-m55"],
"nrf52840": ["-mcpu=cortex-m4+nodsp"],
"nrf5340dk": ["-mcpu=cortex-m33"],
"rp2040": ["-mcpu=cortex-m0"],
"sam3x8e": ["-mcpu=cortex-m3"],
"stm32f746xx": ["-mcpu=cortex-m7", "-march=armv7e-m"],
"stm32h7xx": ["-mcpu=cortex-m7"],
"stm32l4r5zi": ["-mcpu=cortex-m4"],
"stm32u5xx": ["-mcpu=cortex-m33"],
"zynq_mp_r5": ["-mcpu=cortex-r5"],
}
def micro(model="unknown", options=None):
"""Returns a microTVM target.
Parameters
----------
model : str
Canonically identifies the target device. This is typically a device board level name.
The allowed values are MICRO_SUPPORTED_MODELS.keys().
options : str or list of str
Additional options
"""
if model not in MICRO_SUPPORTED_MODELS:
raise ValueError(f"Model {model} not supported by tvm.target.micro.")
opts = _merge_opts(
MICRO_SUPPORTED_MODELS[model] + [f"-model={model}"],
options,
)
# NOTE: in the future, the default micro target will be LLVM except when
# external dependencies are present.
return Target(" ".join(["c"] + opts))
def arm_cpu(model="unknown", options=None):
"""Returns a ARM CPU target.
This function will also download pre-tuned op parameters when there is none.
Parameters
----------
model: str
SoC name or phone name of the arm board.
options : str or list of str
Additional options
"""
trans_table = {
"pixel2": ["-model=snapdragon835", "-mtriple=arm64-linux-android", "-mattr=+neon"],
"mate10": ["-model=kirin970", "-mtriple=arm64-linux-android", "-mattr=+neon"],
"mate10pro": ["-model=kirin970", "-mtriple=arm64-linux-android", "-mattr=+neon"],
"p20": ["-model=kirin970", "-mtriple=arm64-linux-android", "-mattr=+neon"],
"p20pro": ["-model=kirin970", "-mtriple=arm64-linux-android", "-mattr=+neon"],
"rasp3b": ["-model=bcm2837", "-mtriple=armv7l-linux-gnueabihf", "-mattr=+neon"],
"rasp4b": [
"-model=bcm2711",
"-mtriple=armv8l-linux-gnueabihf",
"-mattr=+neon",
"-mcpu=cortex-a72",
],
"rasp4b64": [
"-model=bcm2711",
"-mtriple=aarch64-linux-gnu",
"-mattr=+neon",
"-mcpu=cortex-a72",
],
"rk3399": ["-model=rk3399", "-mtriple=aarch64-linux-gnu", "-mattr=+neon"],
"pynq": ["-model=pynq", "-mtriple=armv7a-linux-eabi", "-mattr=+neon"],
"ultra96": ["-model=ultra96", "-mtriple=aarch64-linux-gnu", "-mattr=+neon"],
"beagleai": [
"-model=beagleai",
"-mtriple=armv7a-linux-gnueabihf",
"-mattr=+neon,+vfp4,+thumb2",
"-mcpu=cortex-a15",
],
"stm32mp1": [
"-model=stm32mp1",
"-mtriple=armv7a-linux-gnueabihf",
"-mattr=+neon,+vfp4,+thumb2",
"-mcpu=cortex-a7",
],
"thunderx": [
"-model=thunderx",
"-mtriple=aarch64-linux-gnu",
"-mattr=+neon,+crc,+lse",
"-mcpu=thunderxt88",
],
}
pre_defined_opt = trans_table.get(model, ["-model=%s" % model])
opts = ["-keys=arm_cpu,cpu", "-device=arm_cpu"] + pre_defined_opt
opts = _merge_opts(opts, options)
return Target(" ".join(["llvm"] + opts))
def rasp(options=None):
"""Return a Raspberry 3b target.
Parameters
----------
options : str or list of str
Additional options
"""
warnings.warn(
"tvm.target.rasp() is going to be deprecated. " 'Please use tvm.target.arm_cpu("rasp3b")'
)
return arm_cpu("rasp3b", options)
def vta(model="unknown", options=None):
opts = ["-device=vta", "-keys=vta,cpu", "-model=%s" % model]
opts = _merge_opts(opts, options)
return Target(" ".join(["ext_dev"] + opts))
def bifrost(model="unknown", options=None):
"""Return an ARM Mali GPU target (Bifrost architecture).
Parameters
----------
options : str or list of str
Additional options
"""
opts = ["-device=bifrost", "-model=%s" % model]
opts = _merge_opts(opts, options)
return Target(" ".join(["opencl"] + opts))
def riscv_cpu(model="sifive-u54", options=None):
"""Returns a RISC-V CPU target.
Default: sifive-u54 rv64gc
Parameters
----------
model: str
CPU name.
options : str or list of str
Additional options
"""
trans_table = {
"sifive-e31": [
"-model=sifive-e31",
"-mtriple=riscv32-unknown-linux-gnu",
"-mcpu=sifive-e31",
"-mabi=ilp32",
# cc: riscv64-unknown-linux-gnu-g++ -march=rv32imac -mabi=ilp32 -mcpu=sifive-e31
],
"sifive-e76": [
"-model=sifive-e76",
"-mtriple=riscv32-unknown-linux-gnu",
"-mcpu=sifive-e76",
"-mabi=ilp32",
# cc: riscv64-unknown-linux-gnu-g++ -march=rv32imafc -mabi=ilp32 -mcpu=sifive-e76
],
"sifive-u54": [
"-model=sifive-u54",
"-mtriple=riscv64-unknown-linux-gnu",
"-mcpu=sifive-u54",
"-mabi=lp64d",
# cc: riscv64-unknown-linux-gnu-g++ -march=rv64gc -mabi=lp64d -mcpu=sifive-u54
],
"sifive-u74": [
"-model=sifive-u74",
"-mtriple=riscv64-unknown-linux-gnu",
"-mcpu=sifive-u74",
"-mabi=lp64d",
# cc: riscv64-unknown-linux-gnu-g++ -march=rv64gc -mabi=lp64d -mcpu=sifive-u74
],
}
pre_defined_opt = trans_table.get(model, ["-model=%s" % model])
opts = ["-keys=arm_cpu,cpu", "-device=arm_cpu"] + pre_defined_opt
opts = _merge_opts(opts, options)
return Target(" ".join(["llvm"] + opts))
def hexagon(cpu_ver="v66", **kwargs):
"""Returns a Hexagon target.
Parameters
----------
cpu_ver : str (default: "v66")
CPU version used for code generation. Not all allowed cpu str
will be valid, LLVM will throw an error.
Recognized keyword parameters
-----------------------------
hvx : int (default: 128)
Size of HVX vector in bytes. Value of 0 disables HVX codegen.
llvm_options : str or list of str (default: None)
User defined compiler arguments.
use_qfloat : bool (default: True for cpu_ver >= v68, False otherwise)
Whether to use QFloat HVX instructions.
use_ieee_fp : bool (default: False)
Whether to use IEEE HVX instructions
num_cores : int (default: 4)
The number of HVX threads. This attribute is required by meta scheduler.
Note: Floating point support in HVX requires LLVM 14+.
"""
# Some of the target parameters correspond to target kind attributes
# listed in src/target/target_kind.cc. For those parameters, their
# names follow the attribute names with the exception of '_' being used
# in place of '-'.
# Example compiler arguments
# llvm -mtriple=hexagon -mcpu=hexagonv66 -mattr=+hvxv66,+hvx-length128b
def get_arch_version(cpu_ver):
m = re.match(r"v([0-9]+).*", cpu_ver)
assert m
return int(m.group(1))
# Check for valid codegen cpu
valid_hex = ["v65", "v66", "v67", "v67t", "v68", "v69"]
try:
cpu_ver = cpu_ver[cpu_ver.index("v") :].lower()
assert cpu_ver in valid_hex
except:
msg = "{} is not a valid Hexagon version\nvalid versions include {}"
raise ValueError(msg.format(cpu_ver, valid_hex)) from None
# Target configuration:
arch_version = get_arch_version(cpu_ver)
config = {
"hvx": 128,
"llvm_options": None,
"use_qfloat": arch_version >= 68,
"use_ieee_fp": False,
}
config.update(kwargs)
# Warn about obsolete parameter names.
if config.get("sim_args") or config.get("sim_options"):
msg = (
"Setting simulator options in target is deprecated, set environment variable "
"HEXAGON_SIM_ARGS instead"
)
warnings.warn(msg, stacklevel=2)
if config.get("llvm_args"):
msg = "The keyword parameter 'llvm_args' is deprecated, use 'llvm_options' instead"
warnings.warn(msg, stacklevel=2)
config.update({"llvm_options": config["llvm_args"]})
# LLVM target string
def create_llvm_target(cpu_ver, config):
"""Create LLVM target string."""
target = " -mtriple=hexagon"
mcpu = " -mcpu=hexagon" + cpu_ver
# Process the options that affect target features and return the
# target feature string.
def create_target_features(config):
features = {
"use_qfloat": "hvx-qfloat",
"use_ieee_fp": "hvx-ieee-fp",
}
tfs = []
if config["hvx"] > 0:
valid_hvx = [0, 64, 128]
if not config["hvx"] in valid_hvx:
raise ValueError("Invalid hvx value, should be one of " + str(valid_hvx))
tfs += ["+hvx" + cpu_ver, "+hvx-length" + str(config["hvx"]) + "b"]
else:
tfs += ["-hvx"]
# All the additional features happen to only apply to v68+.
# Don't bother applying them (even with '-') to lower versions.
if arch_version >= 68:
tfs += ["-+"[config[f]] + features[f] for f in features]
return "-mattr=" + ",".join(tfs) if tfs else ""
return target + mcpu + " " + create_target_features(config)
# LLVM options string
def create_llvm_options(cpu_ver, config): # pylint: disable=unused-argument
"""Create LLVM options string."""
llvm_options = config["llvm_options"]
# To enable auto-vectorization for v68 target added the below llvm-option by default
if arch_version == 68:
if not llvm_options:
llvm_options = ""
llvm_options += " -force-hvx-float"
# TVM's option parser doesn't allow '=' in values, but '=' can
# appear in LLVM flags. Replace it with '@', since it's unlikely
# that '@' will be used in another context.
if llvm_options is None or len(llvm_options.strip()) == 0:
return ""
args = [s.replace("=", "@") for s in llvm_options.split()]
return "--llvm-options=" + ",".join(args)
target_str = create_llvm_target(cpu_ver, config)
llvm_str = create_llvm_options(cpu_ver, config)
args_list = target_str.split() + llvm_str.split()
num_cores = config["num_cores"] if "num_cores" in kwargs else 4
args_list.append("--num-cores=%d" % num_cores)
return Target(" ".join(["hexagon"] + args_list))
STM32_SUPPORTED_SERIES = {
# High-Performance
"stm32H7xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m7", "-march=armv7e-m"],
"stm32F7xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m7"],
"stm32F4xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m4"],
"stm32F2xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m3"],
# Mainstream
"stm32G0xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m0+"],
"stm32F0xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m0"],
"stm32F1xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m3"],
"stm32G4xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m4"],
"stm32F3xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m4"],
# Low-power
"stm32U5xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m33"],
"stm32L5xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m33"],
"stm32L4xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m4"],
"stm32L1xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m3"],
"stm32L0xx": ["-keys=arm_cpu,cpu", "-device=arm_cpu", "-mcpu=cortex-m0+"],
}
def stm32(series="unknown", options=None):
"""Returns a STM32 target.
Parameters
----------
series: str
Series name of a STM32 board series, eg. stm32H7xx or stm32F4xx
options : str or list of str
Additional options
"""
if series not in STM32_SUPPORTED_SERIES:
raise ValueError(f"Series {series} is not supported by tvm.target.stm32.")
opts = _merge_opts(STM32_SUPPORTED_SERIES[series], options)
return Target(" ".join(["c"] + opts))
def adreno(model="unknown", options=None):
"""Returns a Qualcomm GPU target.
Parameters
----------
model: str
The model of this device
options : str or list of str
Additional options
"""
opts = ["-device=adreno", "-model=%s" % model]
opts = _merge_opts(opts, options)
return Target(" ".join(["opencl"] + opts))
def create(target):
"""Deprecated. Use the constructor of :py:mod:`tvm.target.Target` directly."""
warnings.warn("tvm.target.create() is being deprecated. Please use tvm.target.Target() instead")
return Target(target)
@_register_func("target._load_config_dict")
def _load_config_dict(config_dict_str):
try:
config = json.loads(config_dict_str)
except json.decoder.JSONDecodeError:
return None
if not isinstance(config, dict):
return None
for key in config.keys():
if not isinstance(key, str):
return None
return config
| https://github.com/zk-ml/tachikoma |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.